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S u p p l e m e n t 6
G a l o i s C o n n e c t i o n s ∗

∗ In this supplement is we discuss an abstraction motivated by the celebrated Fundamental theorem of Galois Theory
(named after the French mathematician Évariste Galois1 (1811-1832)). The notion of G a l o i s c o n n e c t i o n can
be defined on arbitrary ordered sets which is a generalisation of the Galois correspondence from Galois theory which
investigate the correspondence between subgroups of the Galois group of a field extension and its intermediary subfields.

A Galois connection is a particular correspondence between ordered sets and is rather weak compared to an
order isomorphism, but every Galois connection induces an isomorphism of certain sub-ordered sets, see ???.
We use the term Galois correspondence for bijective Galois connection.

S6.1 Let (X ,≤), (Y,≤) and (Z,≤) be ordered sets.
(a) ( I s o t o n e and A n t i t o n e ) Let (X ,≤) and (Y,≤) be ordered sets. A map f : X → Y is called
o r d e r - p r e s e r v i n g or i s o t o n e if for all x,x′ ∈ X , x≤ x′ implies f (x)≤ f (x′). Similarly, f is called
o r d e r - r e v e r s i n g or a n t i t o n e if for all x,x′ ∈ X , x≤ x′ implies f (x)≥ f (x′).
(b) Let f : X →Y and g : Y → Z be maps. (1) If f and g are isotone, then g◦ f is isotone. (2) If f and g are
antitone, then g◦ f is isotone. (3) If one of f and g is isotone and the other is antitone, then g◦ f is antitone.
(c) ( G a l o i s C o n n e c t i o n s ) An i s o t o n e (resp. a n t i t o n e) G a l o i s c o n n e c t i o n b e t w e e n
X a n d Y is a pair of maps (Φ,Ψ), Φ : X → Y , Ψ : Y → X such that
(IGC1 (resp. GC1)) Φ and Ψ are both isotone (resp, antitone) maps, and
(IGC2 (resp. GC2)) For all x ∈ X and all y ∈ Y , Φ(x)≤ y⇐⇒x≤Ψ(y) (resp. y≤Φ(x)⇐⇒x≤Ψ(y)).
(Remarks : (1) Note that the condition (IGC2 (resp. GC2)) is equivalent to the condition :
(IGC2′ (resp. GC2′)) For all x ∈ X and all y ∈ Y , both inequalities Ψ(Φ(x)≤ x and y≤Φ(Ψ(y)) (resp. x≤Ψ(Φ(x)
and y≤Φ(Ψ(y)) ) hold.
(2) In the antitone case there is a symmetry in the defintion : If (Φ,Ψ) is an antitone Galois connection between X
and Y , then (Ψ,Φ) is an antitone Galois connection between Y and X . — In contrast to the antitone case, there is a
asymmetry in the isotone case, more precisely, see the part (d) below.
(3) In the isotone case Φ is called the l o w e r a d j o i n t of Ψ and Ψ is called the u p p e r a d j o i n t of Φ. The
essential property of a isotone Galois connection is that its upper and lower adjoint determine each other : Φ(x) =
LUBY{y′ ∈ Y | x≤Ψ(y′)} and Ψ(y) = GLB X{x′ ∈ X |Φ(x′)≤ y}. In particular, if Φ or Ψ is invertible, then each is
the inverse of the other, i.e. Φ = Ψ−1.
(4) In the antitone case the symmetry erases the distinction between upper and lower and the two maps Φ and Ψ

are called p o l a r i t i e s. Each polarity uniquely determines the other, since Φ(x) = GLBY{y ∈ Y | x ≤ Ψ(y)} and
Ψ(y) = GLB X{x ∈ X | y≤Φ(x)}.)
(5) The composition ΨΦ : X→ X (resp. ΦΨ : Y →Y ) is called the c l o s u r e o p e r a t o r (resp. k e r n e l o p e r a t o r)
of the Galois connection (Φ,Ψ). Both these are isotone idempotent maps with the property : x≤Ψ(Φ(x)) for all x ∈ X
and Φ(Ψ(y))≤ for all y ∈ Y (resp. x≤Ψ(Φ(x)) for all x ∈ X and y≤Φ(Ψ(y)) for all y ∈ Y if (Φ,Ψ) is isotone (resp.
antitone), see details in Supplement S6.3. )
(d) The concepts of isotone and antitone Galois connections are equivalent. More precisely : For ordered sets
X , Y (with o r d e r d u a l s2 X∨, Y∨) and the maps Φ : X → Y and Ψ : Y → X , the following statements are
equivalent : (i) (Φ,Ψ) is an antitone Galois connections between X and Y . (ii) (Φ,Ψ) is an isotone Galois
connections between X∨ and Y . (iii) (Ψ,Φ) is an isotone Galois connections between Y∨ and X . (Remark :
With this equivalence the study of Galois connections one can always assume that the given Galois connection is
antitone. Antitone Galois connections are more common in many applications and prominent in Lattice Theory.)

1 While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals,
thereby solving a problem standing for 350 years. His work laid the foundations for Galois theory and group theory, two major
branches of abstract algebra, and the subfield of Galois connections. He died at age 20 from wounds suffered in a duel.— A d u e l
is an arranged engagement in combat between two people, with matched weapons, in accordance with agreed-upon rules. Duels
in this form were chiefly practiced in early modern Europe with precedents in the medieval code of chivalry, and continued into
the modern period (19th to early 20th centuries) especially among military officers. For example, in an ancient epic Mahabharata
records that hitting below the waist is forbidden in mace duels.

2 An o r d e r d u a l of an ordered set (X ,≤) is the ordered set X∨ := (X ,≥), where ≥ is the inverse order relation : x≥ y if and
only if y≤ x.
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S6.2 Let A be any set and X := (P(A),⊆).
(a) Let Y := (P(A),⊆). For a fixed subset B ∈ P(A), the maps Φ : X → Y , A′ 7→ B∩A′ and Ψ : Y → X ,
C 7→C∪ (ArB) form an isotone Galois connection.
(Remark : A similar Galois connection can be found in any Heyting algebra. — Recall that a H e y t i n g a l g e b r a3

is a bounded lattice (with operations ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary
operation a⇒ b of implication such that c∧a≤ b is equivalent to c≤ a⇒ b. In particular, in any Boolean algebra the
maps Φ(x) = (a∧ x) and Φ(y) = (y∨¬a) = (a⇒ y) form an isotone Galois connection. In logical terms “implication
from a” is the upper adjoint (see Remarks in Supplement S6.1(̇c)) of “conjunction with a”. )

(b) ( G a l o i s c o n n e c t i o n o f a m a p ) Let f : A→ B be a map of sets. The maps f∗ : P(A)→P(B),
A′ 7→ f (A′) and f ∗ : P(B)→P(A), B′ 7→ f−1(B′), form an isotone Galois connection. Further, (1) The
interior operator is f∗ ◦ f∗ : P(B)→P(A), B′ 7→ B′ ∩ f (A). In particular, the Galois connection is l e f t -
p e r f e c t if and only if f is surjective. (2) The Galois connection is r i g h t - p e r f e c t, i.e. f ∗ f∗(A′) = A′
for all A′ ∈P(A) if and only if f is injective. (3) Interpret this isotone Galois connection in terms of the
universal antitone Galois connection of Supplement S6.7.
(c) ( G a l o i s c o n n e c t i o n o f a r i n g h o m o m o r p h i s m ) Let f : A→ B be a homomorphism of
commutative rings and let I(A) and I(B) the lattices of ideals of A and B, respectively. The push-forward
map f∗ : I(A)→ I(B), a 7→ aB and the pull-back map f ∗ : I(B)→ I(A), b 7→ f−1(b) form an isotone Galois
connection. (Remarks : In general, it is fruitful to describe the closure operators f ∗ f∗ and f∗ f ∗ and to ask about
properties of f∗ and f ∗, in particular, are they injective or surjective? The most satisfying and important answers can be
given in the case when f is surjective, f = ιS : A→ AS is the localisation map and f is an integral. For instance :
(1) If f is surjective with a := Ker f , then f ∗ is injective homomorphism of lattices and Img f ∗ = {a∈ I(A) |Ker f ⊆ a}.
Moreover, ( p u l l - p u s h f o r m u l a ) f∗ f ∗(b) = b for all ideals b ∈ I(B), i.e. f∗ f ∗ = idI(B) and ( p u s h - p u l l
f o r m u l a ) f ∗ f∗(a) = a+Ker f for all ideals a ∈ I(A). In particular, there is a bijective isotone Galois connection
(which is also an isomorphism of lattices) between I(B) and Img f ∗ = {a ∈ I(A) | Ker f ⊆ a}.
(2) If S ⊆ (A, ·) is a submonoid of the multiplicative monoid (A, ·) of A and ι = ιS : A→ AS is the localisation map,
then ι∗ ι∗ = idI(AS) and ι∗ ι∗(a) = {x ∈ A | sx ∈ a for some s ∈ S}. Moreover, the restriction of the map ι∗ induces the
injective map ι∗ : SpecAS→ SpecA image Img ι∗ = {p ∈ SpecA | p∩S = /0}. In particular, there is a bijective isotone
Galois connection between SpecAS and Img ι∗ = {p ∈ SpecA | p∩S = /0}. )

(3) If f is an integral, i.e. B is integral over the image f (A) of A, then the restriction of f ∗ to SpecB (resp.
Spm B) induces the surjective (l y i n g o v e r T h e o r e m) map f ∗ : SpecB→ SpecA (resp. f ∗ : Spm B→
Spm A).
(d) ( S p a n a n d C l o s u r e ) Let A ∈ObjC be a object is in the category C, where C is one of the category :
the category of groups, Rings, K-vector spaces, R-modules, R-algebras and SC(A)(⊆P(A)) be the subset of
all subobjects to A. The maps Φ : P(A)→ SC(A), X 7→Ψ(X) := the smallest subobject of A containing X ,
and Ψ : SC(A)→P(A), B→ B (the natural inclusion) form an isotone Galois connection. — For a topological
space X , one may take STX (X) := the set of all closed sets in X and Φ : P(X)→ STX (X), Y 7→ Y := the
closure of Y in X .

S6.3 In the examples below (X ,≤), (Y,≤) are ordered sets.
(a) ( I n d i c r e t i o n ) Suppose that x0 := MaxX and y0 := MaxY exist. Let Φ : X → Y , x 7→ y0 and
Ψ : Y → X , y 7→ x0. Then (X ,Y,Φ,Ψ) is an antitone Galois connection. In this case, the induced closure
operators (see Supplement S6.6) are the constant maps X→ X , x 7→ x0 and Y →Y , y 7→ y0. Further, X0 = {x0}
and Y0 = {y0} are singletons.
(b) ( P e r f e c t i o n ) Suppose that X and Y are anti-isomorohic ordered sets, i.e. there exists a bijection
Φ : X → Y such that for all x,x′ ∈ X , x ≤ x′ if and only if Φ(x′) ≤ Φ(x). Then the inverse map Ψ :=
Φ−1 : Y → X satisfies for all y,y′ ∈ Y , y ≤ y′ if and only if Ψ(y′) ≤ Ψ(y). Moreover, for all x ∈ X , y ∈ Y ,
x≤Ψ(y) ⇐⇒ y = Ψ(Φ(x))≤Φ(x). Therefore (X ,Y,Φ,Ψ) is an antitone Galois connection. In this case,
X0 = X and Y0 = Y . Further, the converse also holds : If X0 = X and Y0 = Y , then Φ and Ψ are inverses of
each other, see Supplement S6.6 (d). Such a Galois connection is called p e r f e c t.

S6.4 Let G= (X ,Y,Φ,Ψ) be an antitone Galois connection.
(a) If both X and Y are lattices, then for all x,x′ ∈ X , Φ(x∧x′) = Φ(x)∨Φ(x′) and Φ(x∨x′) = Φ(x)∧Φ(x′).
(b) If both X and Y are complete lattices, then for all A ∈P(X), Φ(∧A) = ∨Φ(A) and Φ(∨A) = ∧Φ(A).

3 Heyting algebras were introduced in 1930 by a Dutch mathematician and logician Arend Heyting (1898-1980) to formalize
intuitionistic logic. Heyting algebras serve as the algebraic models of propositional intuitionistic logic in the same way Boolean
algebras model propositional classical logic. Intuitionistic logic is weaker than classical logic. Each theorem of intuitionistic logic
is a theorem in classical logic. Many tautologies in classical logic are not theorems in intuitionistic logic. Examples include the
law of excluded middle p∨¬p, Peirce’s law ((p⇒ q)⇒ p)⇒ p, and double negation elimination ¬¬p⇒ p. But double negation
introduction p⇒¬¬p is a theorem.
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(Recall that an ordered set (X ,≤) is a l a t t i c e if for all x,x′ ∈ X , there is a greatest lower bound (GLB) x∧ x′ and a
least upper bound (LUB) x∨ x′. Moreover, it is a c o m p l e t e l a t t i c e if for every subset A⊆ X , both the greatest
lower bound ∧A and the least upper bound ∨A exist.)
(c) Let c : (P(A),⊆)→ (P(A),⊆) be a closure operator on the power set of a set A. Then the collection
c(P(A)) of closed subsets of A forms a complete lattice with ∧B= ∩B∈BB and ∨B= c(∪B∈BB) for every
B⊆P(A). ( — For definitions see Supplement S6.6 (a).)

S6.5 ( L a t t i c e T h e o r y ) Let (A,≤) be a lattice. Then the maps Φ : P(A)→P(A), B 7→ UB A(B) :=
{x ∈ A | b≤ x for all b ∈ B} and Ψ : P(A)→P(A), A′ 7→ LB A(B) := {x ∈ A | x≤ b for all b ∈ B} form an
antitone Galois connection. The subset M(A) := {B ∈P(A) | B = (ΨΦ)(B) = LB A(UB A(B)) with inclusion
is a complete lattice with the operations joins and meets are given by ∨i∈IBi = LB A(UB A (∪i∈IBi)) and
∧i∈IBi = LB A(UB A (∩i∈IBi). Further, A and /0 are the greatest and least elements in M(A). If A ∈M(A),
then B = ∨b∈B ]→,b] and hence every element of M(A) is a join of elements of A. By means of the canonical
injective map ιA : A→M(A), a 7→ ]→,a] := {x ∈ A | x ≤ a}, (M(A),⊆) may be considered as a complete
extension of (A,≤). It is called the D e d e k i n d - M a c N e i l l e c o m p l e t i o n of A. Note that A = M(A)
if and only if A is already complete. Prove that the Dedekind-Mac Neille completion of A is its smallest
completion in the following sense: If the ordered set A is an ordered subset of the complete lattice C , then
the map B 7→ supC B is strictly increasing and induces an order isomorphism of M(A) onto its image in C .
(Remarks : In general, the Dedekind-Mac Neille completion is much smaller than the completion Dcl (A)(⊇M(A)) of
downward closed subsets of A, see § A, A.4, Exercise 9 b) of the Appendix on Sets and Categories. For example, compare
both completions for an anti-chain. The Dedekind-Mac Neille completion of R is the extended line R=R]{±∞},
where the extremal elements ±∞ with −∞ < x <+∞ for all x ∈R are represented by the lower cuts /0 ,R ∈M(R) ,
respectively. More generally, determine the Dedekind-Mac Neille completion of an arbitrary conditionally complete
ordered set. R is also the Dedekind-Mac Neille completion of Q . Why? Dedekind used the ordered set M(Q)r{ /0 ,Q}
as a model for the field R of real numbers. This construction can be generalised to arbitrary ordered division domains
K. There we define so-called Dedekind cuts (= Dedekind sections). Besides the open initial segments ]←, a [ , a ∈ K,
these are particular lower cuts of K. )

S6.6 ( C l o s u r e o p e r a t o r s and C l o s e d e l e m e n t s o f a G a l o i s c o n n e c t i o n ) Let G =
(X ,Y,Φ,Ψ) be an antitone Galois connection.
(a) The map ΨΦ : X → X (resp. ΦΨ : Y → Y ) is a closure operator (See Remarks below) on the ordered
set X (resp. Y ). ( — Recall that a map f : (X ,≤)→ (X ,≤) of an ordered set X is called a c l o s u r e o p e r a t o r
on X if it satisfies : (C1) For all x ∈ X , x ≤ f (x). (C2) For all x,x′ ∈ X , x ≤ x′ implies f (x) ≤ f (x′). (C3) For all
x ∈ X , f ( f (x)) = f (x). Similarly, a map f : (X ,≤)→ (X ,≤) of an ordered set X is called an i n t e r i o r o p e r a t o r
on X if it satisfies : (I1) For all x ∈ X , f (x) ≤ x. (C2) For all x,x′ ∈ X , x ≤ x′ implies f (x) ≤ f (x′). (C3) For all
x ∈ X , f ( f (x)) = f (x). A map f : X → X of an ordered set X is a closure operator on X if and only if f : X∨→ X∨
is an interior operator on the order dual X∨ of X . For example, if X is a topological space, then the operator on the
power set P(A)→P(X), A 7→ A := the closure of A in X (resp. A 7→ A◦ := the interior of A in X) is a closure (resp.
an interior) operator on the ordered set (P(X),⊆). — Hint : By symmetry it is enough to prove that the map Ψ◦Φ

is a closure operator on X . Since both Φ and Ψ are antitone, for all x,x′ ∈ X with x≤ x′, we have Φ(x′)≤Φ(x) and
so Ψ(Φ(x))≤Ψ(Φ(x′)). For all x ∈ X , since Φ(x)≤Φ(x), by (GC2), see Supplement S6.1 (c), we have x≤Ψ(Φ(x)).
This proves (C1). Finally, applying (C1) to the element Ψ(Φ(x)), we get Ψ(Φ(x))≤Ψ(Φ(Ψ(Φ(x)))). For the reverse
inequality, apply (GC2) to Ψ(Φ(x))≤Ψ(Φ(x)) to get Φ(x)≤ Φ(Ψ(Φ(x))). Now, apply the order reversing map Ψ

to get Ψ(Φ(Ψ(Φ(x)))) ≤Ψ(Φ(x)). — If (Φ,Ψ) is an isotone Galois connection, then the map Ψ◦Φ : X → X is an
interior operator on X and the map Φ◦Ψ : Y → Y is a closure operator on Y . — Hint : By Supplement S6.1 (d) (Φ,Ψ)
is an antitone Galois connection between X∨ and Y and hence Φ◦Ψ is a closure operator on Y and Ψ◦Φ is a closure
operator on X∨. Therefore Ψ◦Φ is an interior operator on X , see remark in (a).)
(b) ΦΨΦ = Φ and ΨΦΨ = Ψ. (Hint : By symmetry it is enough to prove the first equality. Since ΦΨ is a closure
operator by (a), Φ(x)≤ (ΦΨ)(Φ(x)) for every x ∈ X . Moreover, since ΨΦ is a closure operator by (a), x≤ (ΨΦ)(x),
and since Φ is antitone, Φ(ΨΦ(x))≤Φ(x). This proves the equality ΦΨΦ(x) = x.)
(c) The subset X0 := {x ∈ X | x = Ψ(Φ(x))} (resp. Y0 := {y ∈ Y | y = Φ(Ψ(y))}) of X (resp Y ) is called the
set of c l o s e d elements of X (resp. Y ). The subsets of closed points are X0 = Img(Ψ) and Y0 = Img(Φ).
(Hint : If x = Ψ(Φ(x)), then x ∈ X0. Conversely, if x ∈ X0, then x = (ΨΦ)(x′) for some x′ ∈ X and so by (b)
(ΨΦ)(x) = (ΨΦ)(ΨΦ(x′)) = Ψ(ΦΨΦ(x′)) = (ΨΦ)(x′) = x, i.e. x ∈ X0 is a closed point in X .)
(d) The maps Φ : X0→ Y0, x 7→Φ(x) and Ψ : Y0→ X0, y 7→Ψ(y), are antitone bijective and are inverses of
each other. (Hint : Note that if x ∈ X0, then x = (ΨΦ)(x) by definition and hence Φ(x) = Φ((ΨΦ)(x)) ∈ ImgΦ = Y0,
i.e. Φ(X0)⊆Y0. For x,x′ ∈ X0 with Φ(x) = Φ(x′), applying Φ yields x = (ΨΦ)(x) = (ΨΦ)(x′)) = x′, i.e. Φ is injective
on X0. For y ∈ Y0 = Img(Φ), there is x ∈ X with y = Φ(x) = (ΦΨΦ)(x) = Φ(Ψ(Φ(x))) ∈Φ(ImgΨ)⊆Φ(X0) by (b)
and (c). This proves that Φ is a bijection from X0 onto Y0. Similarly, Ψ is a bijection from Y0 onto X0. Finally, For
x ∈ X0 and y ∈ Y0, by definitions x = (ΨΦ)(x) and y = (ΦΨ)(y) and hence Φ : X0→ Y0 and Ψ : Y0→ X0 are inverses
of each other. )

S6.7 ( L i n e a r A l g e b r a ) Let V be a vector space over a field K and S(V ) the set of all subspaces of V .
(a) Let V ∗ := Hom KV,K) be the dual space of of V .
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The maps Φ : S(V )−→ S(V ∗), U 7−→U◦ := {e ∈V ∗ | e(x) = 0 for all x ∈U}, and
Ψ : S(V ∗)−→ S(V ), W 7−→ ◦W := {x ∈V | e(x) = 0 for all e ∈W}

form an antitone Galois connection. What are the closure operators and closed points (see Supplement S6.6)
of this Galois connection? See Lecture Notes, § 5G, 2016 CSA-E0 219 Linear Algebra and Applications
(b) Suppose that ϕ : V ×V →K be either a symmetric bilinear form or a complex hermitian form on V ,
whereK=R or C. Then G= (S(V ),S(V ),Φ,Φ) is an antitone Galois connection, where Φ : S(V )−→ S(V )
is the map defined by U 7−→U⊥ := {x ∈V | ϕ(u,x) = 0 for all u ∈U}.
What are the closure operators and closed points (see Supplement S6.6) of this Galois connection?

S6.8 ( T r a n s i t i v e G r o u p A c t i o n s ) Let G be a group which operates on a set X . A subset Y ⊆ X is
called a b l o c k if for every σ ∈ G, then either σY ∩Y = /0, or σY = Y .
For x ∈ X , let Bx := {Y ∈ P(X) | Y is a block with x ∈ Y} be the set of all blocks in X containing x and
Sx := {H ∈P(G) | H is a subgroup of G with Gx ⊆ H}.
The maps Φ : Sx −→Bx, H 7−→H x := {hx | h ∈H} and Ψ : Bx 7−→ Sx, Y 7−→HY := {g ∈G | gx ∈Y} form
an isotone Galois connection. Moreover, if G operates on X transitively, then they are inverses of each other.
( — Remarks : As a consequence it follows that : if G operates 2-transitive on X, then there are only trivial blocks in X,
or equivalently, for every x ∈ X, the isotropy subgroups Gx is a maximal subgroup in G. In this case, we say that the
group G operates p r i m i t i v e l y o n X . If G⊆S(G) is a subgroup of the symmetric group on X , then we say that G
is p r i m i t i v e if the natural operation of G on X is primitive. For example, the symmetric group is primitive for any
set X . The alternating group A(X) is primitive if X is finite. If |X |= 4, then the Klein’s four group operates transitively,
but not primitively on X .
This terminology was introduced by Évariste Galois in his last letter, in which he used the French term équation
primitive for an equation whose Galois group is primitive. )

S6.9 ( G a l o i s T h e o r y ) This is the motivating example for the concept Galois connection.
Let L |K be a field extension, Gal(L |K) := Aut K--alg(L) be the group of K-algebra automorphisms of L,
I(L |K) := {E | K ⊆ E ⊆ L , E subfield of L}, and S(Gal(L |K) := {H | H subgroup of Gal(L |K)}.
(a) The maps Φ := Gal(L |−) : I(L |K)−→ S(Gal(L |K)), E 7−→ Gal(L |E) and

Ψ := Fix− L : S(Gal(L |K))−→ I(L |K), H 7−→ FixH L
form an antitone Galois connection. (Immediate from the obvious inclusions E = x≤Ψ(Φ(x)) = FixGal(L |E)(L)
for every x = E ∈ X = I(L |K) and H = y≤Φ(Ψ(y)) = Gal(L | FixH L), see Remark (1) in the Supplement S6.1. )
(b) ( F u n d a m e n t a l T h e o r e m o f G a l o i s T h e o r y — F i n i t e C a s e ) If Ł |K is a finite Galois
extension, then X0 = X and Y0 = Y and hence Φ and Ψ are antitone bijective which are inverses of each
other, see Supplement S6.6. ( — Recall that : (1) ( D e d e k i n d - A r t i n ) For every finite field extension L |K,
|Gal(L |K)| ≤ [L : K] =: Dim K L. (2) A finite field extension L |K is called a G a l o i s e x t e n s i o n if the above
inequality is an equality, i.e. if |Gal(L |K)|= [L : K], or equivalently, FixGal(L |K) L = K. (3) An algebraic extension
L |K of fields is called a G a l o i s e x t e n s i o n if FixGal(L |K) L = K or equivalently, L |K is normal and separable. )

(c) ( F u n d a m e n t a l T h e o r e m o f G a l o i s T h e o r y — I n f i n i t e C a s e ) Let Ł |K be an algebraic
Galois extension (but not necessarily finite). In this case, the set of closed points (see Supplement S6.6)
X0 = X , but Y0 is rather difficult to describe. However, there is a topology on the Galois group Gal(L |K)
called the Krull topology and the closed points Y0 is precisely the subgroups of Gal(L |K) which are closed
in the Krull toplogy of Gal(L |K). ( — Recall that : An algebraic extension L |K of fields is called a G a l o i s
e x t e n s i o n if FixGal(L |K) L = K or equivalently, L |K is normal and separable field extension. )

S6.10 ( C o m m u t a t i v e a l g e b r a / M o d e r n A l g e b r a i c G e o m e t r y ) Let A be a commutative
ring, I(A) (resp. SpecA, Spm A) be the set of all ideals (resp. prime ideals, maximal ideals) in A.
(a) The maps Φ := V : I(A)−→P(SpecA), a 7−→ V(a) := {p ∈ SpecA | a⊆ p} and

Ψ := I : P(SpecA)−→ I(A), W 7−→ I(W ) := ∩p∈Wp

form an antitone Galois connection. (For a ∈ I(A) and W ∈P(SpecA), a ⊆ Ψ(W ) = ∩p∈Wp⇐⇒ a ⊆ p for all
p ∈W ⇐⇒W ⊆ V(a) = Φ(a).)
(b) The set of closed points X0 := ImgI in X = I(A) is the set of all ideals in A which can be written as the
intersection of a family of prime ideals and hence are precisely the radical ideals in A, i.e. X0 = Rad(I(A)) :=
{a ∈ I(A) | a=

√
a}. The closure operator ΨΦ = I◦V : I(A)−→ I(A) maps a 7−→

√
a.

(c) It is not easy to describe the set of closed points Y0 = ImgV of Y =P(SpecA)) and the closure operator
ΦΨ = V◦ I : P(SpecA)−→P(SpecA), W 7−→V(I(W )) = V(∩p∈W p). However, there is something nice to
describe : Y0 = is precisely the closed subsets for the Zariski topology on SpecA and ΦΨ(W ) = V(I(W )) =
W := the closure of the subset W ⊆ SpecA with respect to the Zariski topology of SpecA.
(d) The maps V : Rad(I(A)) −→ {V(a) | a ∈ Rad(I(A))}=Zariski-closed subsets in SpecA, a 7−→ V(a)
and I : {V(a) | a ∈ Rad(I(A))}=Zariski-closed subsets in SpecA −→ Rad(I(A)), V(a) 7−→ a ,
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are antitone bijective which are inverses of each other. (Immediate from (a), (b), (c) and Supplement S6.6 (d).)

S6.11 Let A be a commutative ring and X = (I(A),⊆), J⊆ SpecA and Y = (P(J),⊆). (For example in the
above Supplement S6.9 we have considered J= SpecA).
The maps Φ : I(A)−→P(J), a 7−→ V(a) := {b ∈ J | a⊆ b} and Ψ : P(SpecA)−→ I(A), W 7−→ ∩b∈Wb

form an antitone Galois connection.
Various particular, choices for subset J⊆ SpecA have been considered and the most important among them
is the subset SpmA of all maximal ideals in A. In this case, the set X0 of closed points of X consists of
all ideals which can be written as the intersection of a family of maximal ideals. Such ideals are clearly
radical ideals, but not all radical ideals are obtained in this way. — For a commutative ring A, the following
statements are equivalent : (i) Every radical ideal a is the intersection of the maximal ideals containing a. (ii)
Every prime ideal p is the intersection of the maximal ideals containing it. A commutative ring A is called
a J a c o b s o n r i n g if these equivalent conditions are satisfied. For example, Z is a Jacobson ring. The
polynomial ring K[X1, . . . ,Xn] in n indeterminates X1, . . . ,Xn over a field K is a Jacobson ring. More generally,
finite type algebra over a field is a Jacobson ring. This follows from Z a r i s k i - L e m m a ( H N S 3 ) : If A
is a K-algebra of finite type over a field K, then for every maximal ideal m ∈ Spm A, A/m is a finite field
extension. In particular, A/m |K is an algebraic field extension.

S6.12 ( C l a s s i c a l A l g e b r a i c G e o m e t r y — H i l b e r t ’ s N u l l s t e l l e n s a z ) Let L |K be a
field extension (mostly L algebraically closed, for example, (K,L) = (Q,Q), (Q,C), (R,C), or K = L is
an arbitrary algebraically closed field). For n ∈N, let An

L := Ln be the a f f i n e s p a c e o v e r L and let
Pn := K[X1, . . . ,Xn] be the polynomial ring in n indeterminates X1, . . . ,Xn over K.
(a) The maps Φ := VL : I(Pn)−→P(An

L), a 7−→ VL(a) := {a ∈An
L | f (a) = 0 for every f ∈ a} and

Ψ := IK : P(An
L)−→ I(Pn), W 7−→ IK(W ) := { f ∈ Pn | f (a) = 0 for every a ∈W }

form an antitone Galois connection. (For a ∈ I(Pn) and W ∈P(An
L), a⊆ IK(W ) = Ψ(W )⇐⇒W ⊆VL(a) = Φ(a).)

(b) The set of closed points (see Supplement S6.6 (d)) Y0 = ImgVL in Y = I(Pn) is precisely the set of
K-algebraic subsets {VL(a) | a ∈ Rad(I(Pn))} in An

L. The closure operator ΦΨ = VL IK : P(An
L)→P(An

L)
maps every K-algebraic subset VL(a) to itself, see Supplement S6.6 (c).
(c) The map IK is injective on the set of K-algebraic subsets in An

L. Generally the set of closed points
X0 = ImgIK is rather difficult to describe. However, if L is algebraically closed this can be described by
using the famous geometric version of H i l b e r t ’ s N u l l s t e l l e n s a t z ( H N S 2 ) : Let L |K be a field
extenstion with L algebraically closed and a ∈ I(K[X1, . . . ,Xn]) be an ideal. Then IK(VL(a)) =

√
a . One

proves easily that HNS2 and HNS3 (Zariski’s Lemma) are equivalent.
(d) If L is algebraically closed, then the maps

VL : Rad(I(Pn))−→ {VL(a) | a ∈ Rad(I(Pn))}=K-algebraic subsets inAn
L, a 7−→ VL(a) and

IK : {VL(a) | a ∈ Rad(I(Pn))}=K-algebraic subsets inAn
L −→ Rad(I(Pn)), VL(a) 7−→ a ,

are antitone bijective which are inverses of each other. (Immediate from (a), (b), (c) and Supplement S6.6 (d).)
(e) In the special case of K = L algebraically closed field, the Galois connection between X = I(Pn) and
P(Spm Pn) has the following description :
(i) (HNS4) The canonical injective mapAn

K −→ Spm Pn , a = (a1, . . . ,an) 7−→ma := 〈X1−a1, . . . ,Xn−an〉,
is bijective. Moreover, for every a ∈ I(Pn), a ∈VK(a) if and only if a⊆ma. (By the way HNS4 is also equivalent
to HNS2, Proof!).
(ii) The closure operator I(Pn)−→ I(Pn) maps a to its radical ideal

√
a.

(iii) The closure operator P(Spm Pn)−→P(Spm Pn) coincides with the topological closure with respect to
the Zariski topology onAn

K
∼−→ Spm Pn, see (i).

S6.13 ( A l g e b r a i c t o p o l o g y ) Let X be a path connected topological space and let π1(X) be the first
fundamental group of X . Then there is an antitone Galois connection between subgroups S(π1(X)) of π1(X)
and path-connected covering spaces of X .

S6.14 ( G a l o i s C o n n e c t i o n s D e c o r t i c a t e d ) To relations between sets one can associate antitone
Galois connection naturally as follows :

(a) Let X , Y be sets and R⊆ X ×Y be a relation between X and Y . For A ∈P(X) and y ∈ Y , write ARy if
(x,y) ∈ R for every x ∈ A. Similarly, B ∈P(Y ) and x ∈ X , (dually) write xRB if (x,y) ∈ R for every y ∈ B.
Further, for A ∈P(X) and B ∈P(Y ), write ARB if (x,y) ∈ R for all x ∈ A and all y ∈ B.
The maps ΦR :P(X)−→P(Y ), ΦR(A) := {y∈Y |ARy} and ΨR :P(Y )−→P(X)), ΨR(B) := {x∈Y | xRB}
are antitone and GR := (P(X),P(Y ),ΦR,ΨR) is a antitone Galois connection. Indeed, For all A ∈P(X) and
all B ∈P(Y ), we have A⊆ΨR(B) ⇐⇒ ARB ⇐⇒ B⊆ΦR(A).
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(b) Let X , Y be sets and G = (P(X),P(Y ),Φ,Ψ) be any antitone Galois connection. Let R ⊆ X ×Y
be the relation defined by (x,y) ∈ R if y ∈ Ψ({x}). Then G = GR. (Hint : Since (P(X),⊆) and (P(X),⊆)
are complete lattices, we can apply Supplement 6.4 (b). For A ∈P(X), A = ∪x∈A{x} = ∨x∈A{x}, we have Φ(A) =
∩x∈AΦ({x}) = ∩x∈A{y ∈ Y | xRy} = {y ∈ Y | ARy} = ΦR(A). Moreover, since G is a galois connection, we have
{x} ⊆ Ψ({y})⇐⇒ {y} ⊆ Φ({x})⇐⇒ xRy. Therefore, for every B ∈ P(Y ), B = ∪y∈B{x} = ∨y∈B{x}, we have
Ψ(B) = ∩y∈BΨ({y}) = ∩y∈B{x ∈ X | xRy}= {x ∈ X | xRB}= ΨR(B).)

(c) Every antitone Galois connection G= (X ,Y,Φ,Ψ) with X and Y complete lattices can be extended to an
antitone Galois connection between P(X) and P(Y ). In particular, every antitone Galois connection between
complete lattices is the antitone Galois connection induced by a relation between sets. (— Recall that : Every
ordered sets can be embedded into a power set lattice, see for example, Supplement S6.4. — Hint : For A ⊆ X , put
Φ(A) = ∧{Φ({x})}x∈A and for Y ⊆ Y , put Ψ(B) = ∧{Ψ({y})}y∈B. For the supplement use part (c).)

S6.15 Most examples of the Galois connections given above arise from a relation. For example :
(a) For the Galois connection in Galois Theory, see Supplement S6.9, take X =P(L) and Y =P(Gal(L |K)).
In this case, the Galois connection is induced by the relation σx = x on L×Gal(L |K).
(b) For the Galois connection in Commutative algebra/Modern Algebraic Geometry, see Supplement S6.10,
take X =P(A) and Y =P(SpecA). In this case, the Galois connection is induced by the relation x ∈ p on
A×SpecA.
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