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* The concept of a module seems to have made its first appearance in Algebra in Algebraic Number
Theory —in studying subsets of rings of algebraic integers. Modules first became an important tool in
Algebra in late 1920’s largely due to the insight of Emmy Noether (1882-1935), who was
the first to realize the potential of the module concept. In particular, she observed that this concept
could be used to bridge the gap between two important developments in Algebra that had been going
on side by side and independently:the theory of representations (=homomorphisms) of finite groups
by matrices due to Frobenius, Burnside, Schur etal and the structure theory of algebras
dueto Molien, Cartan, Wedderburn etal.

2.1 Let A be a commutative ring and V be an A-module with the action (ring) homomorphism
¥ :A— End(V,+).

(a) If a € Ais aunit in A, then the homothecy ¥, : V — V x — ax is bijective. Give an example of a
non-zero A-module V' and a non-unit @ € A such that the homothecy 9, is bijective. (Hint : Consider
Z-modules, i. e. Finite abelian groups.)

(b) If ¢ : A" — A is a ring homomorphism, then the composition ring homomorphism ¥/ = 9o ¢ :
A" — End (V,+) defines the A’-module structure on V with the operation (@', x) — a'x = @(a’)x. It
is called the induced A’-module structure onV by ¢. Particularly important is the case

when A’ is a subring of A and @ =1 : A’ < A is the canonical inclusion. In this case the A’-operation
on V is simply the restriction of the A-operation on V. For example, the restriction of the tautological

! Module-structures. Let A be a ring and (V,+) an additive abelian group. If
AXV —V, (a,x)— ax,

is an operation of the multiplicative monoid (A, - ) of A on V as monoid of group homomorphism, i. e. the action
h hi
omomorphisim 9:A—EndV, ar— (0 x—ax),
is a homomorphism of (4, -) in the multiplicative monoid (End V,0) of the endomorphism ring End V =
(End V,+,0) of (V,+). Since End V is a ring, it is natural to consider such an operation of A which is even a ring
homomorphism. In other words, an additive abelain group (V,+) together with an operation A X V — V is called
an (left) A-moduleoralsoa (left) module over A, if the action homomorphism of this operation is
defined by a ring homomorphism ¥ = 9y : A — End V,i.e. forall a,b € A and all x,y € V, we have :
(1) (ab)x=a(bx), (2) a(x+y)=ax+by, (3) (a+b)x=ax+bx, (4) 1-x=x.

On the ring A itself has two module structures which are compatible in the following sense : The homothecies
of one structure commute with the homothecies of the other structure : A,0p, = p, oA, for all a,b € A, where
Ag:A— A, ¢ ac (tesp. p, A — A, ¢ — ca) denoted the left (resp. right) multiplication on A by a.

More generally, two (left) module structures on the same abelian group (V,+) with action (ring) homomorphisms
¥ :A—End (V,+)and n:B— End (V,+) are compatible if the homothecies ¥, a € A and 1, b € B,
commute, i.e. a(bx) = b(ax) for all a € A, b € B, x € V. This means that the homothecies of one structure are
linear with respect to the other structure. In such case one says that V is an A-B-bimodule. Every ring A is
an A-A°P-bimodule and every module over a commutative ring A with one and the same A-module structure is a
A-A-bimodule.

Tautological module structure on an abelian group. Let (W, +) be an abelian group. then the identity (ring)
homomorphism End (W, +) — End (W,+) defines the so-called tautolgical End (W,+)-module struc-
ture on (W,+) with the scalar multiplication fx := f(x), f € End (W,+)x € W.
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End (V,+)-module structure (see Footnote No. 1) on (V,+) defines End 4 V-module structure on V.
Every complex (i. e. C-)vector space is also a real (i.e. R-)vector space and every R-vector space is
also a QQ-vector space.

(¢) (Torsion elements, Torsion and Torsion-free modules) Anelementx €V
is called a torsion element of V if there exists a non-zerodivisor a € A* with ax = 0 or
equivalently if the annihilator Ann 4 x contains a non-zerodivisor. The set of all torsion elements
of V is denoted by T4V which is obviously an A-submodule of V. For a non-zerodivisor a € A*,
T,V :=Kerd; = {x €V |ax =0} is called the a-torsion of V. Then Aa C AnnsT,V and hence
T,V is an (A/Aa)-module (see part (c) below), and TgV =, T4V Further, Viscalleda torsion
module if T4V =V andis called torsion-free if T4V =0.

(d) (Annihilator of an A-module) The ideal

AmnyV:=Kerd={a€A|ax=0forallxeV}={a€A|aV=0}

is called the Annihilator of the A-module V. Clearly, Anng V =(,cy Anny x, where
Amnyg x:={a €A |ax=0}isthe annihilator of the element x €V which is the kernel of the
A-module homomorphism A — V, a — ax. The A-module V is calleda faithful A-module if
Anny V=0, i.e. the action (ring) homomorphism ¥ : A — End 4 (V, +) is injective.

(e) Let a be an ideal in A with a C Anny4 V. Then the action ring homomorphism ¥ : A — End (V, +)

induces a homomorphism ¥ : A/a — End (V,+) of rings and hence induces an (A/a)-module
structure on V with scalar multiplication @x = ax and Ann4,q)V = (AnnsV)/a. Conversely,

(A/a)-module structure on (V,+) defines an A-module structure using the canonical residue-class
ring homomorphism 7, : A — A/a with a C Anny V. Therefore the (A/a)-modules and the A-
modules whose annihilator contain a are one and the same. The annihilator of an abelian group
(W,+) (as Z-module) is the ideal ZExpW C Z. For m € IN, the abelian groups with ExpW |m and
the A,,-modules are one and the same. In particular, for a prime number p € IP, elementary abelian
p-groups and F,-vector spaces are identical objects.

22 Let U, W, U, W be submodules of an R-module V. Then :
(a) Modular Law)If U CW,then WN(U+U")=U+(WnNU’).
(b) If UNW =U’'NW’, then U is the intersection of U + (WNU') and U + (W NW’).
2.3 Let U and W be A-submodules of the A-module V.
(a) Obtain the following canonical isomorphisms: U/(UNW) =% (U+W)/W, and if
UCW,thenV/W =% (V/U)/(W/U).
(b) The following so-called Mayer-Vietoris Sequences:
0—UNW —UBW —U+W—0
0—V/(UnW)— (V/U)®&V/W)—V/(U+W)—0
are exact, where the non-trivial homomorphisms in the first sequence are defined by
x+— (x,—x) and (x,y) — x+, respectively and in the second sequence are defined
(analogously) by x — (¥, —X) and (X,y) — x + y, respectively.
In particular, if A = K is a field, then from the first exact sequences we get the so-called
dimension formula:
Dimg U +Dimg W = Dimg (U NW) 4+ Dimg (U + W)
and from the second we get the so-called codimension formula:
CodimgU + CodimgW = Codimg (U NW) 4 Codimg (U + W)
2.4 Let U,V and W be modules over a commutative ring A. Then :

(a) If s (V) € IN, then every generating system of V contains a finite generating subsystem.
(Recall that The infimum of the cardinal numbers of the generating systems of V (which exists by the
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well ordering of cardinal numbers!) is called the minimal number of generators for V
and is denoted by s (V). If s (V) € IN, then V is called a finite A-module. If uy (V) <1,i.e. V
is generated by (at most) one element, then V is called cyclic. Note that 4 (0) = 0.

— Remarks: Note that a minimal generating system of a finite A-module can contain more than
ua(V) elements. For example, {2,3} is a minimal generating system for the cyclic Z-module Z.
Further, an A-module V may not have any minimal generating system. Then naturally, us (V) is
infinite. For example, the Z-module @ has no minimal generating system, see the Exercise below.)

(b) For every m € IN*, there is a minimal generating system for the abelian group Z with
exactly m elements.

(c) Suppose that 4 (V) is not finite. Then every generating system of V has a generating
subsystem with (14 (V) elements. In particular, every minimal generating system of V has
ua(V) elements.

dIfo—-U L> V 55 W — is an exact sequence of A-modules and A-module homo-

morphisms, then iy (V) < pa(U) + pa(W). — In particular, if both U and W are finitely
generated, then V is finitely generated.

2.5 The Z-module Q does not have minimal generating system. (Hint : In fact the additive
group (Q,+) does not have a subgroup of finite index # 1. This follows from the fact that the

group (Q,+) is divisibld? and hence every quotient group of (Q,+) is also divisible. Further, If
H finitely generated divisible abelian group, then H = 0.— More generally, the quotient field Q(A)
of an integral domain A which is not a field, has no minimal generating system as an A-module.
In particular, Q(A) is not finitely generated A-module.)

2.6 LetV be an A-module over a ring A.

(a) If Y C V is an infinite generating system for V. then every generating system x;, i € I,
of V contains a generating system x;, j € J C I with #J < #Y. In particular, if V has
a countable generating system then every generating system of V contains a countable
generating system.

(b) If every ideal in A is generated by r elements and if V is generated by n elements, then
every A-submodule of V is generated by nr elements. In particular, over principal ideal
ring every submodule of a module generated by n elements 1s also generated by n elements.
(Hint : By induction on n. Suppose V = Axj +---+Ax, and f : V — V /Ax; is the residue-class map,
then consider the restriction map f|U : U — V /Ax; and note that if V;,V; and U are submodules of V
with V; C V5. Then (V,NU)/ (Vi NU) is isomorphic to a submodule of V5 /V;, and (Vo +U)/ (V) +U)
is isomorphic to a residue-class module of V;,/V;.)

2.7 Let V be an A-module over the local ring A with the unique maximal ideal (= the
Jacobson-Radical my and v;, i € I, be a family of elements of V.

(a) If v;, i € 1, is a generating system of V, then v;, i € I, is minimal if and only if
Syz,(viyi € I) C muA). (Hint: Use AX = A~ m,.) Moreover, in this case, the residue
classes [v;] € V/muV, i€ I, form a (A/my)-basis of V/myV, and

pa(V) = |I| = Dimy py, (V/maV).

In particular, for every finite A-module V : pi4 (V) = Dimy , (V/maV) and V = 0 if and
only if V. =myV.

2 Divisible abelian groups. An abelian (additively written) group H is divisible if for every n € Z, the
group homomorphism A, : H — H, defined by a — na is surjective. For example, the group (Q,+) is divisible,
the group (Z,+) and finite groups are not divisible. Further, quotient of a divisible group is also divisible. Free
abelian groups of finite rank are not divisible.
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(b) Lemma von Nakayama) If U CV is an A-submodule of V such that the
residue class module V/U is finite and if V.= U +m,V, then V = U. (Hint: Note that
V/U =m4(V/U) and hence V/U = 0.) If V is finite, then the elements v;, i € I, generates V if
and only if their residue classes generate the vector space V/myV over the field A/m,.

2.8 Let K be a field.

(a) Let A be a subring of K such that K is the quotient field of A. If K is a finite A-module,
then A = K. In particular, @ is not a finite Z—module. (Hint: Suppose K = Ax| + -+ Ax;,
and b € A, b # 0, with bx; € A fori = 1,...,n. Now, try to express l/b2 as a linear combination of
xii=1,...,n.)

(b) More generally, if A is a subring of K and if the A-module K is finite, then A itself is
a field. (Hint: Let x,...,x, € K be a A-generating system of K , Q(A) be the quotient field of
A contained in K and let y1,...,y, be a Q(A)-basis of K with y; = 1. Then y}(x{),...,¥}(xn) is

an A-generating system of Q(A), where y7 is the first coordinate function with respect to the basis
Y1i,---,¥n. Now use the part (a).)

*2.9 Let A be an integral domain with quotient field K. Then :
(a) If V is a torsion module (See Exercise 2.1) over A, then Hom 4 (V,A) = 0.
(b) Homy4(K,A) # 0 if and only if A = K. In particular, Hom 7(Q, Z) = 0. (Hint: Every
element f € Homy (K, A) is a homothecy of K by the element f(1).)
(¢) If K is an A-submodule of an arbitrary direct sum of finite A-modules, then A = K.

(Solution : Suppose V;, i € I, is a family of finite A-modules with K C @;;Viand 1 : K — P,; Vi
is the natural injective A-module homomorphism. We shall apply the part (b) to conclude that A = K.
For this we need to prove that Hom 4 (K,A) # 0. Note that 1(1) is not a torsion element in V (if a € A
and if 1(a) =a-1(1) =0, thena =0, since 1 : K — @ ;; V; injective A-module homomorphism) and
there exists a finite subset J C I such that (x;);c; = 1(1) € @;¢;V; with 0 £ x; € V; forall j € J and
x; = 0 for all /~.J. Now, consider the composite A-module homomorphsim :

K5 @i Vi 5 @jes Vi By (Vi/tV)),

where 7; is the projection of B, V; onto €D j; V; and 7 is the product of the canonical residue-class
homomorphism V; — V;/t4V;, y— ¥, j € J, modulo the torsion-submodules. Note that, since 1(1)
is not a torsion element, it follows that Xj # 0 for some j € J and hence y := f(1) = ()TJ) jes #0.
Altogether, we have a finite torsion-free A-module W := @ ¢ ;(V;/taV;) and a non-zero A-module
homomorphism f : K — W. Now, we use the following Exercise to conclude that Hom 4 (K,A) # 0
and hence can apply (b) to get the required equality A = K.

Exercise For every finite torsion-free module W over an integral domain A is torsion-lessEl, i.e. for
every y € W,y # 0, there exists a linear form ¢ : W — A with ¢(y) # 0.

Solution : It is enough to prove that there exists an injective A-module homomorphism W — F where
F is a finite free A-module. Let wy,...,w;,, € W be a maximal linearly independent over A subset of
W and put F := Ax| +--- +Ax,, CW. Then F is a free A-submodule of W with A-basis xy,...,x.
Note that every w € W, there exists a € A, a # 0 with aw € F by the maximal linear independence
property of the subset {x1,...,x,}. Since W is finite, it follows that there exists 0 # a € A with

aW C F. With this the composite map W L aW -5 Fis an injective A-module homomorphism.)

3 Torsionless modules An A-module V over a commutative ring A is called torsionless if for every two

elements x,y € V, there exists a linear form ¢ : V— A on V with ¢(x) # ¢(y). An A-module V is torsionless if
and only if for every z € V, z # 0, there exists a linear form ¢ : V — A with ¢(z) # 0.
Submodules of torsionless module are torsionless. The arbitrary I-fold direct product A’ are torsionless, since two
distinct /-tuples (b;), (c;) have distinct values under at least one A-linear projection (g;) + a;. Free A-modules are
torsionless : If x;, i € I, is an A-basis of V, then the coordinate functions x7, i € 1, are A-linear and for two distinct
elements x,y € V, x7(x) # x (y) for some i € I. Every torsionless A-module V is torsion-free. Converse is not true
in general, for example, the Z-module Q is torsion-free, but not torsionless, see Exercise 2.7 (b). However, Finite
torsion-free modules over an integral domain are torsionless, see the above proof.
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2.10 Let A be a commutative ring and let V;, i € I, be an infinite family of non-zero
A-modules. Prove that W := @,; V; is not a finite A-module.

2.11 Let A be a non-zero ring and let / be an infinite indexed set. For every i € I, let e; be
the I-tuple (8;;) jes € A with §;; =1 for j=1iand §;; =0 for j #1i.

(a) The family e;, i € I, is a minimal generating system for the ideal A') in the ring A’.
In particular, A() is not finitely generated ideal. (Remark : Submodules of finitely generated
modules need not be finitely generated!)

(b) There exists a generating system for the A-module AU that does not contain any
minimal generating system. (Hint: First consider the case I = IN and the tuples eg + - - - + ey,
neN.)

2.12 Let A be a non-zero commutative ring.
(a) Thering A is a field if and only if every A-module is free.

(b) Let V = Ax be a cyclic free A-module with basis x. Theny =ax €V, a € A is a basis
of V if and only if a € A*.

2.13 Let A be a commutative ring, A = 0 and let V be an A-module. with generating system
xi, 1€ 1. If W CV is afree A-submodule of V then Rank 4 W < #1.

2.14 (Simple modules) Let A a non-zero (not necessarily commutative) ring. An
A-module V iscalleda simple A-module if V # 0 and the only submodules of V are
the trivial submodules 0 and V.

(a) For an A-module V, the following statements are equivalent:

(i) V is simple.

(ii)) Every homomorphism V — W of A-modules is either the zero-homomorphism or is
1njective.

(iii) V = Ax for every x € V ~ {0}.

(iv) V is isomorphic to a residue-class module A /m, where m is a maximal left-ideal in A.
(b) LetV be simple A-module. Then the annihilator (See Exercise 2.1) ideal AnnyV of V
is the intersection of the maximal left-ideals Anng x, x € V ~ {0}.

2.15 Let A be a (not necessarily commutative) ring and let f: V — W be a homomorphism
of A-modules.
(a) For a submodule U C V, we have f~!(f(U)) = U +Ker f and

U/(UnNKerf) == (U+Kerf)/Kerf == f(U).
(b) If f surjective, then the maps U + f(U) and X + f~1(X) are inverse maps of each
other between the set of submodules U of V containing Ker f and the set of all submodules
X of W.
(c) LetV and W be simple A-modules (see the above Exercise). Then every A-homomor-
phism V. — W is either the zero-homomorphism or is an isomorphism. In particular,
(Lemma of (Issai) Schur): End4V is a division ringﬂ

(d) If A is commutative, then the modules A/m, m € SpmA, up to isomorphism, are the
only simple A-modules and distinct maximal ideals of A define non-isomorphic simple

4 Aringiscalleda division ring if (A~ {0}-) is a (not necessarily commutative) group with neutral
element 1 # 0.
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A-modules. (Remark: Note that Anng (A/m) = m.— The classification of the simple modules
over non-commutative rings is complicated. Over a local ring A with Jacobson-radical m4, up to
isomorphism of A-modules, the residue-class division ring A/my is the only simple A-module.)

R2.16 Let V be a vector space over a field K.
(a) If V #£0, then V is a simple EndgV-module (See Exercise 2.1) The endomorphisms of
V as EndgV-module are the homothecies ¥, a € K, of V. In particular, Endgpg,vV —= K
is the image of the action homomorphism ¢#: K — End V. The Jacobson-Radical of
End gV is 0. (Hint : Note that Anngpg,v V = Niey Angp, v x =0.)
(b) LetV be a finite dimensional vector space over the field K of dimension n > 0. Then
EndgV is a simple rin (Hint: If f € EndgV and if vy,...,v, € V is a K-basis of V with
f(v1) # 0, then the two-sided ideal generated by f in End x V contains an element f} with fi (v;) =
61j(vj), j=1,...,n and hence also contains idy.)
(c¢) For every K-basis vy,...,v, of V, the map Endx V. — V", f+—— (f(v1),...,f(va))s
is an isomorphism of End ¢ V-modules, and V is the only simple left (End ¢ V')-module, up
to isomorphism.
(d) Suppose that &« = DimgV > X :=#IN, i.e. V is not finite dimensional. Then the
maps B +—— {f €EndgV |Rank f < B} and b+~ Min{y|Rankf <y forall fecb}
are inverse isomorphisms to each other from the (well ordered) set of infinite cardinal
numbers 3 < « and the set (ordered by the inclusion) of two-sided ideals b C Endg V
with 0 £ b # Endg V. In particular, my, := {f € Endg V | Dimg Img f < o} is the only
maximal two-sided ideal in Endg V. The ring (Endx V')/m, is simple, but not a division
ring. — How many two-sided ideals are there in the ring End (R, +) =EndgR ?

(Hints and Remarks : Recall that for f € Endg V, Rankg f := Dimg Img f. Put B:=Endg V. The
map Bf — Ker f is an anti-isomorphism of lattices from the lattice {Bf | f € B} of left-ideals in
B onto the lattice of all K-subspaces of V. Moreover, if V is finite dimensional then the ring B is
left-principal ideal ring as well as right-principal ideal ring.)

*2.17 Let V be an A-module over the ring A and U C V be an A-submodule of V. Recall
that, by definition, U isa direct summand of V if U has an A-module complement
WCV,ie V=UdW.

(a) The A-submodule U is a direct summand of V if and only if there exists a projection
p€EndyV,i.e. p?>=pwith Imgp =U. In this case V = U & W with W := Ker p, and
p=pywisthe projection onto U along W, and the complementary projection
q=quw =idy —pyw = pwy is the projection along U onto W.

(b) If A=K is afield, then every subspace U C V has a complement.

(c) Let W be a complement of U. Then the map f— 'y ={f(y)+y|yeW}CVisa
bijection from Homy (W, U) onto the set of all complements of U in V.

2.18 Let V be an A-module over the ring A # 0. We say that V is indecomposable if
V # 0 and it has no direct sum decomposition V = U & W with submodules U # 0 # W of
1%

(a) The A-module V is irreducible if and only if V # 0 and the endomorphism ring End4V
has no non-trivial idempotent elements. Every simple A-module is indecomposable. Give

> Simple ring. A ring A is called simple if A % 0 and if 0 and A are the only two-sided ideals in A. Note
that A ring, A # 0, is simple if and only if every ring homomorphism A — B from A into a ring B with B # 0, is
injective. Division rings are obviously simple, but not every simple ring is a division ring! Commutative simple
rings are fields.
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an example of an indecomposable module which is not simple. The ring A as A-(left- or
right-) module is indecomposable if and only if the ring A has no non-trivial idempotent

elements.

(Remark : Note the difference between the irreducibility of the ring A as A-(left- or right-) module
and that of A as the ring. The later is equivalent with the condition that A has no non-trivial central
idempotent elements.)

(b) The only indecomposable vector spaces over a field K are one dimensional vector
spaces. (Remarks: In general it difficult—if not impossible to classify the indecomposable
modules over a given ring A. The finitely generated indecomposable abelian groups (= Z-modules)
are precisely the cyclic groups Z = Zg and Z,«, p € IP, oo € IN*. This is essentially the Structure
Theorem for finitely generated abelian groups. But there are many more indecomposable abelian
groups, for example, all subgroups # 0 of Q = (Q,+) are indecomposable and similarly all Priifer’s
p-groupsE] I(p), p € PP, are also indecomposable. Every abelian p-group with 1-dimensional (i. e.
non-zero cyclic) p-socal|’|is indecomposable. Up to isomorphism these are precisely the groups
Zpa, o € IN*, and I(p). Why?)

2.19 Let A be a non-zero ring. Then

(a) If A =5 A"+ (as A-modules) for m € IN, then A™ =2 A" for all n > m.
(b) Letx,y € A. then x, y is a basis of the A-module A if and only if there exists elements
a,b € A with (i) ax+by=1, (ii) xa=1, (iii)) xb =0, (iv) ya=0, and (v) yb=1.

(Equivalently, e ) (Z) —(), (Z) (r, y)= ((1) ?) ,

where all matrices are considered over the opposite ring A°P, see Footnote No. 10 also. )

(c) Let B be aring # 0 and V be a B-module # 0 with V =2V &V (for example, a free
B-module with infinite basis). Then in the endomorphism ring A := EndpV, there exists
elements a,b,x,y, which satisfy the equations (i) to (v) in (b) above. In particular, the
finite free A-modules do not have rank. (Hint: Describe inverse isomorphisms of each other
V = VaeVand VeV =4V with matrices over the ring EndV'.)

2.20 Let ¢ : A —> B be a homomorphism of rings. If every free B-module has a rank, then
every free A-module also has a rank.

(Proof : We need to show that: If m,n € IN and A =2 A" (as A-modules), thenm =n. Let f: A" — A™
and g: A™ — A" be inverse A-isomorphisms to each other which are describecﬂ by the matrices

6 Priifer’s p-group. For a prime number p € P, the p-primary component of the torsion group Q/7Z
and every other group which isomorphic to it, is called the Priifer’s p-group (named in the honour of
Priifer,E.P.H (1896-1934) and is denoted by I(p). For an arbitrary group G and a prime number p € PP,
the subset G(p) := Upew Tpn G := {x € G | Ord xis a power of p} (C T(G) := {x € G| Ord x > 0}) is called the
p-primary component of G.

7 p-Socal of a group. For a prime number p € PP, the p-torsion ,G := {x € G | x” = e} of an arbitrary group
G is called the p-socal of G. If G is abelian, then the p-socal ,G = Ker (G — G, x — x”) is an elementary
abelian p-group, see the Remark in the Exercise 1.3 (b).

1<i<m S
1<j<n

8 Every A-module homomorphism f : A" —s A™ can be described by a m x n-matrix A = (a,- j)

M, (A°P). We write elements x € A" (resp. y € A™) as 1-column matrices with n (resp. m) rows, then

ar arz Ain X1 Y1
azy ann azn X2 2 n
fx)=2Ax= . . . . =1 . | =y with y;sz_,va,v_;,lﬁiﬁm.
. . . . . . Jj=1
Am1 am2 T Amn Xn Vm

Note that the entries in the matrices are considered in the opposite ring A°P and are multiplied there! This
provides the summands x;a;; instead of a;;x; and this is also followed in the multiplication of matrices as well.
Therefore : The endomorphism ring End 4 A" of the free A-module A" is the ring M,,(A°P) of the square n X n-
matrices with entries in the opposite ring A°P. The identity of End4 A" is represented by the unit matrix
¢, = (8;j)) € M,,(A). In the important case when A is commutative, naturally one need not distinguish the rings
A and A°P.
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2 = (ajj) € Mpn(AP) and B = (bj) € My, 1 (A°P). Then the product matrices B2 € M,,(A) and
AB € M,,,(A) describe the compositions go f =idg» and f o g = idm, respectively, where €, and &,
denote the unit matrices. Then the @-images @(2) = (¢(a;;)) € Mpy,n(BP) and ¢(B) = (@(bjx)) €
M,, »(B°P) describe the inverse B-isomorphisms of each other B” — B™ and B" — B", respectively.
Therefore m = n by hypothesis on B. °

— Remark : The Theory of Rings is the theory of modules over rings where as in the Commutative
Algebra all modules over noetherian commutative rings are studied. The large part of Linear Algebra
is concentrated to study linear maps between free modules and in particular, determining the structure
of the linear maps between the vector spaces (by the Theorem on the Existence of bases (for vector
space) which are readily free). Moreover, in the case of a field K, the homomorphism groups
Homg (V,W) are even K-vector spaces and hence free.)
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