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∗ The concept of a module seems to have made its first appearance in Algebra in Algebraic Number
Theory – in studying subsets of rings of algebraic integers. Modules first became an important tool in
Algebra in late 1920’s largely due to the insight of E m m y N o e t h e r ( 1 8 8 2 - 1 9 3 5 ), who was
the first to realize the potential of the module concept. In particular, she observed that this concept
could be used to bridge the gap between two important developments in Algebra that had been going
on side by side and independently:the theory of representations (=homomorphisms) of finite groups
by matrices due to F r o b e n i u s , B u r n s i d e , S c h u r et al and the structure theory of algebras
due to M o l i e n , C a r t a n , We d d e r b u r n et al.

2.1 Let A be a commutative ring and V be an A-module with the action (ring) homomorphism
ϑ : A−→ End(V,+).

(a) If a ∈ A is a unit in A, then the homothecy ϑa : V →V x 7→ ax is bijective. Give an example of a
non-zero A-module V and a non-unit a ∈ A such that the homothecy ϑa is bijective. (Hint : Consider
Z-modules, i. e. Finite abelian groups.)
(b) If ϕ : A′ −→ A is a ring homomorphism, then the composition ring homomorphism ϑ ′ = ϑ ◦ϕ :
A′ −→ End (V,+) defines the A′-module structure on V with the operation (a′,x) 7→ a′x = ϕ(a′)x. It
is called the i n d u c e d A′-m o d u l e s t r u c t u r e on V by ϕ . Particularly important is the case
when A′ is a subring of A and ϕ = ι : A′ ↪→ A is the canonical inclusion. In this case the A′-operation
on V is simply the restriction of the A-operation on V . For example, the restriction of the tautological

1 Module–structures. Let A be a ring and (V,+) an additive abelian group. If
A×V −→V , (a,x) 7−→ ax ,

is an operation of the multiplicative monoid (A, ·) of A on V as monoid of group homomorphism, i. e. the action
homomorphism

ϑ : A−→ End V , a 7−→ (ϑa : x 7→ ax) ,
is a homomorphism of (A, ·) in the multiplicative monoid (End V,◦) of the endomorphism ring End V =
(End V,+,◦) of (V,+). Since End V is a ring, it is natural to consider such an operation of A which is even a ring
homomorphism. In other words, an additive abelain group (V,+) together with an operation A×V →V is called
an ( l e f t ) A-m o d u l e or also a ( l e f t ) m o d u l e o v e r A, if the action homomorphism of this operation is
defined by a ring homomorphism ϑ = ϑV : A→ End V , i. e. for all a,b ∈ A and all x,y ∈V , we have :

(1) (ab)x = a(bx) , (2) a(x+ y) = ax+by , (3) (a+b)x = ax+bx , (4) 1 · x = x .

On the ring A itself has two module structures which are compatible in the following sense : The homothecies
of one structure commute with the homothecies of the other structure : λa ◦ρa = ρa ◦λa for all a,b ∈ A, where
λa : A→ A, c 7→ ac (resp. ρa : A→ A, c 7→ ca) denoted the left (resp. right) multiplication on A by a.
More generally, two (left) module structures on the same abelian group (V,+) with action (ring) homomorphisms
ϑ : A−→ End (V,+) and η : B−→ End (V,+) are c o m p a t i b l e if the homothecies ϑa, a ∈ A and ηb, b ∈ B,
commute, i. e. a(bx) = b(ax) for all a ∈ A, b ∈ B, x ∈V . This means that the homothecies of one structure are
linear with respect to the other structure. In such case one says that V is an A-B-b i m o d u l e. Every ring A is
an A-Aop-bimodule and every module over a commutative ring A with one and the same A-module structure is a
A-A-bimodule.

Tautological module structure on an abelian group. Let (W,+) be an abelian group. then the identity (ring)
homomorphism End (W,+)−→ End (W,+) defines the so-called t a u t o l g i c a l End (W,+)-m o d u l e s t r u c -
t u r e on (W,+) with the scalar multiplication f x := f (x), f ∈ End (W,+) x ∈W .
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End (V,+)-module structure (see Footnote No. 1) on (V,+) defines EndA V -module structure on V .
Every complex (i. e. C-)vector space is also a real (i. e. R-)vector space and everyR-vector space is
also a Q-vector space.
(c) ( To r s i o n e l e m e n t s , To r s i o n a n d To r s i o n - f r e e m o d u l e s ) An element x ∈V
is called a t o r s i o n e l e m e n t of V if there exists a non-zerodivisor a ∈ A∗ with ax = 0 or
equivalently if the annihilator AnnA x contains a non-zerodivisor. The set of all torsion elements
of V is denoted by TAV which is obviously an A-submodule of V . For a non-zerodivisor a ∈ A∗,
TaV := Kerϑa = {x ∈V | ax = 0} is called the a-t o r s i o n of V . Then Aa⊆ AnnATaV and hence
TaV is an (A/Aa)-module (see part (c) below), and TAV =

⋃
a∈A TaV . Further, V is called a t o r s i o n

m odule if TAV =V and is called t o r s i o n - f r e e if TAV = 0.

(d) ( A n n i h i l a t o r o f a n A - m o d u l e ) The ideal
AnnA V :=Kerϑ ={a ∈ A | ax=0 for all x∈V}= {a ∈ A | aV =0}

is called the A n n i h i l a t o r o f t h e A-m o d u l e V . Clearly, Ann A V =
⋂

x∈V AnnA x, where
AnnA x :={a ∈ A | ax=0} is the a n n i h i l a t o r of the element x∈V which is the kernel of the
A-module homomorphism A→V , a 7→ ax. The A-module V is called a f a i t h f u l A - m o d u l e if
AnnA V =0, i. e. the action (ring) homomorphism ϑ : A→ EndA(V,+) is injective.

(e) Let a be an ideal in A with a⊆AnnA V . Then the action ring homomorphism ϑ : A→ End(V,+)
induces a homomorphism ϑ : A/a −→ End (V,+) of rings and hence induces an (A/a)-module
structure on V with scalar multiplication ax = ax and Ann (A/a)V = (Ann A V )/a. Conversely,
(A/a)-module structure on (V,+) defines an A-module structure using the canonical residue-class
ring homomorphism πa : A→ A/a with a ⊆ AnnA V . Therefore the (A/a)-modules and the A-
modules whose annihilator contain a are one and the same. The annihilator of an abelian group
(W,+) (as Z-module) is the ideal ZExpW ⊆Z. For m ∈N, the abelian groups with ExpW |m and
the Am-modules are one and the same. In particular, for a prime number p ∈P, elementary abelian
p-groups and Fp-vector spaces are identical objects.

2.2 Let U , W , U ′ , W ′ be submodules of an R-module V . Then :
(a) (M o d u l a r L a w) If U ⊆W , then W ∩ (U +U ′) =U +(W ∩U ′) .
(b) If U ∩W =U ′∩W ′, then U is the intersection of U +(W ∩U ′) and U +(W ∩W ′) .

2.3 Let U and W be A-submodules of the A-module V .
(a) Obtain the following canonical isomorphisms : U/(U ∩W ) ∼−→ (U +W )/W , and if
U ⊆W , then V/W ∼−→ (V/U)/(W/U).
(b) The following so-called M a y e r - Vi e t o r i s S e q u e n c e s :

0−→U ∩W −→U⊕W −→U +W −→ 0
0−→V/(U ∩W )−→ (V/U)⊕ (V/W )−→V/(U +W )−→ 0

are exact, where the non-trivial homomorphisms in the first sequence are defined by
x 7−→ (x,−x) and (x,y) 7−→ x+ y, respectively and in the second sequence are defined
(analogously) by x 7−→ (x,−x) and (x,y) 7−→ x+ y, respectively.
In particular, if A = K is a field, then from the first exact sequences we get the so-called
d i m e n s i o n f o r m u l a :

Dim K U +Dim K W = Dim K(U ∩W )+Dim K(U +W )

and from the second we get the so-called c o d i m e n s i o n f o r m u l a :
CodimKU +CodimKW = CodimK(U ∩W )+CodimK(U +W )

2.4 Let U , V and W be modules over a commutative ring A. Then :
(a) If µA(V )∈N, then every generating system of V contains a finite generating subsystem.
(Recall that The infimum of the cardinal numbers of the generating systems of V (which exists by the
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well ordering of cardinal numbers!) is called the m i n i m a l n u m b e r o f g e n e r a t o r s f o r V
and is denoted by µA(V ). If µA(V ) ∈N, then V is called a f i n i t e A-module. If µA(V )≤ 1, i. e. V
is generated by (at most) one element, then V is called c y c l i c. Note that µA(0) = 0.
— Remarks : Note that a minimal generating system of a finite A-module can contain more than
µA(V ) elements. For example, {2,3} is a minimal generating system for the cyclic Z-module Z.
Further, an A-module V may not have any minimal generating system. Then naturally, µA(V ) is
infinite. For example, the Z-module Q has no minimal generating system, see the Exercise below.)

(b) For every m ∈N∗, there is a minimal generating system for the abelian group Z with
exactly m elements.
(c) Suppose that µA(V ) is not finite. Then every generating system of V has a generating
subsystem with µA(V ) elements. In particular, every minimal generating system of V has
µA(V ) elements.

(d) If 0→U
f−→ V

g−→W → is an exact sequence of A-modules and A-module homo-
morphisms, then µA(V )≤ µA(U)+µA(W ). — In particular, if both U and W are finitely
generated, then V is finitely generated.

2.5 The Z–module Q does not have minimal generating system. (Hint : In fact the additive
group (Q,+) does not have a subgroup of finite index 6= 1. This follows from the fact that the
group (Q,+) is divisible2 and hence every quotient group of (Q,+) is also divisible. Further, If
H finitely generated divisible abelian group, then H = 0. — More generally, the quotient field Q(A)
of an integral domain A which is not a field, has no minimal generating system as an A-module.
In particular, Q(A) is not finitely generated A-module.)

2.6 Let V be an A-module over a ring A.
(a) If Y ⊆V is an infinite generating system for V . then every generating system xi, i ∈ I,
of V contains a generating system x j, j ∈ J ⊆ I with #J ≤ #Y . In particular, if V has
a countable generating system then every generating system of V contains a countable
generating system.
(b) If every ideal in A is generated by r elements and if V is generated by n elements, then
every A-submodule of V is generated by nr elements. In particular, over principal ideal
ring every submodule of a module generated by n elements is also generated by n elements.
(Hint : By induction on n. Suppose V = Ax1 + · · ·+Axn and f : V →V/Ax1 is the residue-class map,
then consider the restriction map f |U : U →V/Ax1 and note that if V1,V2 and U are submodules of V
with V1 ⊆V2. Then (V2∩U)/(V1∩U) is isomorphic to a submodule of V2/V1, and (V2+U)/(V1+U)
is isomorphic to a residue-class module of V2/V1.)

2.7 Let V be an A-module over the local ring A with the unique maximal ideal (= the
Jacobson-Radical mA and vi, i ∈ I, be a family of elements of V .
(a) If vi, i ∈ I, is a generating system of V , then vi, i ∈ I, is minimal if and only if
SyzA(vi, i ∈ I) ⊆ mAA(I). (Hint : Use A× = ArmA.) Moreover, in this case, the residue
classes [vi] ∈V/mAV , i ∈ I, form a (A/mA)-basis of V/mAV , and

µA(V ) = |I|= DimA/mA(V/mAV ) .

In particular, for every finite A-module V : µA(V ) = DimA/mA(V/mAV ) and V = 0 if and
only if V =mAV .

2 Divisible abelian groups. An abelian (additively written) group H is d i v i s i b l e if for every n ∈Z, the
group homomorphism λn : H→ H, defined by a 7→ na is surjective. For example, the group (Q,+) is divisible,
the group (Z,+) and finite groups are not divisible. Further, quotient of a divisible group is also divisible. Free
abelian groups of finite rank are not divisible.
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(b) (L e m m a v o n N a k a y a m a) If U ⊆ V is an A-submodule of V such that the
residue class module V/U is finite and if V = U +mAV , then V = U . (Hint : Note that
V/U =mA(V/U) and hence V/U = 0.) If V is finite, then the elements vi, i ∈ I, generates V if
and only if their residue classes generate the vector space V/mAV over the field A/mA.

2.8 Let K be a field.
(a) Let A be a subring of K such that K is the quotient field of A. If K is a finite A-module,
then A = K. In particular, Q is not a finite Z–module. (Hint : Suppose K = Ax1 + · · ·+Axn
and b ∈ A, b 6= 0, with bxi ∈ A for i = 1, . . . ,n. Now, try to express 1/b2 as a linear combination of
xi ,i = 1, . . . ,n .)
(b) More generally, if A is a subring of K and if the A-module K is finite, then A itself is
a field. (Hint : Let x1, . . . ,xm ∈ K be a A-generating system of K , Q(A) be the quotient field of
A contained in K and let y1, . . . ,yn be a Q(A) -basis of K with y1 = 1. Then y∗1(x1), . . . ,y∗1(xm) is
an A-generating system of Q(A), where y∗1 is the first coordinate function with respect to the basis
y1, . . . ,yn. Now use the part (a).)

∗2.9 Let A be an integral domain with quotient field K. Then :
(a) If V is a torsion module (See Exercise 2.1) over A, then Hom A(V,A) = 0.
(b) Hom A(K,A) 6= 0 if and only if A = K . In particular, HomZ(Q,Z) = 0. (Hint : Every
element f ∈ HomA(K,A) is a homothecy of K by the element f (1).)
(c) If K is an A-submodule of an arbitrary direct sum of finite A-modules, then A = K.
(Solution : Suppose Vi, i ∈ I, is a family of finite A-modules with K ⊆

⊕
i∈I Vi and ι : K→

⊕
i∈I Vi

is the natural injective A-module homomorphism. We shall apply the part (b) to conclude that A = K.
For this we need to prove that HomA(K,A) 6= 0. Note that ι(1) is not a torsion element in V (if a ∈ A
and if ι(a) = a · ι(1) = 0, then a = 0, since ι : K→

⊕
i∈I Vi injective A-module homomorphism) and

there exists a finite subset J ⊆ I such that (xi)i∈I = ι(1) ∈
⊕

i∈I Vi with 0 6= x j ∈V j for all j ∈ J and
xi = 0 for all IrJ. Now, consider the composite A-module homomorphsim :

f : K ι−→
⊕

i∈I Vi
πJ−→
⊕

j∈J V j
π−→
⊕

j∈J(V j/tAV j),

where πJ is the projection of
⊕

i∈I Vi onto
⊕

j∈J V j and π is the product of the canonical residue-class
homomorphism V j→V j/tAV j, y 7→ y, j ∈ J, modulo the torsion-submodules. Note that, since ι(1)
is not a torsion element, it follows that x j 6= 0 for some j ∈ J and hence y := f (1) =

(
x j
)

j∈J 6= 0.
Altogether, we have a finite torsion-free A-module W :=

⊕
j∈J(V j/tAV j) and a non-zero A-module

homomorphism f : K→W . Now, we use the following Exercise to conclude that HomA(K,A) 6= 0
and hence can apply (b) to get the required equality A = K.

Exercise For every finite torsion-free module W over an integral domain A is torsion-less 3, i. e. for
every y ∈W , y 6= 0, there exists a linear form ϕ : W → A with ϕ(y) 6= 0.
Solution : It is enough to prove that there exists an injective A-module homomorphism W → F where
F is a finite free A-module. Let w1, . . . ,wm ∈W be a maximal linearly independent over A subset of
W and put F := Ax1 + · · ·+Axm ⊆W . Then F is a free A-submodule of W with A-basis x1, . . . ,xm.
Note that every w ∈W , there exists a ∈ A, a 6= 0 with aw ∈ F by the maximal linear independence
property of the subset {x1, . . . ,xn}. Since W is finite, it follows that there exists 0 6= a ∈ A with

aW ⊆ F . With this the composite map W
λa−→ aW ι−→ F is an injective A-module homomorphism.)

3 Torsionless modules An A-module V over a commutative ring A is called t o r s i o n l e s s if for every two
elements x,y ∈V , there exists a linear form ϕ : V → A on V with ϕ(x) 6= ϕ(y). An A-module V is torsionless if
and only if for every z ∈V , z 6= 0, there exists a linear form ϕ : V → A with ϕ(z) 6= 0.
Submodules of torsionless module are torsionless. The arbitrary I-fold direct product AI are torsionless, since two
distinct I-tuples (bi),(ci) have distinct values under at least one A-linear projection (ai) 7→ a j . Free A-modules are
torsionless : If xi, i ∈ I, is an A-basis of V , then the coordinate functions x∗i , i ∈ I, are A-linear and for two distinct
elements x,y ∈V , x∗i (x) 6= x∗i (y) for some i ∈ I. Every torsionless A-module V is torsion-free. Converse is not true
in general, for example, the Z-module Q is torsion-free, but not torsionless, see Exercise 2.7 (b). However, Finite
torsion-free modules over an integral domain are torsionless, see the above proof.
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2.10 Let A be a commutative ring and let Vi , i ∈ I , be an infinite family of non-zero
A-modules. Prove that W :=

⊕
i∈I Vi is not a finite A-module.

2.11 Let A be a non-zero ring and let I be an infinite indexed set. For every i ∈ I, let e i be
the I-tuple (δ i j) j∈I ∈ AI with δ i j = 1 for j = i and δ i j = 0 for j 6= i.

(a) The family e i, i ∈ I, is a minimal generating system for the ideal A(I) in the ring AI .
In particular, A(I) is not finitely generated ideal. (Remark : Submodules of finitely generated
modules need not be finitely generated!)

(b) There exists a generating system for the AI-module A(I) that does not contain any
minimal generating system. (Hint : First consider the case I =N and the tuples e0 + · · ·+ en,
n ∈N.)

2.12 Let A be a non-zero commutative ring.
(a) The ring A is a field if and only if every A-module is free.
(b) Let V = Ax be a cyclic free A-module with basis x. Then y = ax ∈V , a ∈ A is a basis
of V if and only if a ∈ A×.

2.13 Let A be a commutative ring, A 6= 0 and let V be an A-module. with generating system
xi, i ∈ I. If W ⊆V is a free A-submodule of V then Rank AW ≤ # I.

2.14 ( S i m p l e m o d u l e s ) Let A a non-zero (not necessarily commutative) ring. An
A-module V is called a s i m p l e A - m o d u l e if V 6= 0 and the only submodules of V are
the trivial submodules 0 and V .
(a) For an A-module V , the following statements are equivalent:
(i) V is simple.
(ii) Every homomorphism V →W of A-modules is either the zero-homomorphism or is
injective.
(iii) V = Ax for every x ∈V r{0}.
(iv) V is isomorphic to a residue-class module A/m, where m is a maximal left-ideal in A.
(b) Let V be simple A-module. Then the annihilator (See Exercise 2.1) ideal AnnAV of V
is the intersection of the maximal left-ideals AnnA x, x ∈V r{0}.

2.15 Let A be a (not necessarily commutative) ring and let f : V →W be a homomorphism
of A-modules.
(a) For a submodule U ⊆V , we have f−1( f (U)) =U +Ker f and

U/(U ∩Ker f ) ∼−→ (U +Ker f )/Ker f ∼−→ f (U).
(b) If f surjective, then the maps U 7→ f (U) and X 7→ f−1(X) are inverse maps of each
other between the set of submodules U of V containing Ker f and the set of all submodules
X of W .
(c) Let V and W be simple A-modules (see the above Exercise). Then every A-homomor-
phism V −→W is either the zero-homomorphism or is an isomorphism. In particular,
(L e m m a o f ( I s s a i ) S c h u r) : EndAV is a division ring4.
(d) If A is commutative, then the modules A/m, m ∈ SpmA, up to isomorphism, are the
only simple A-modules and distinct maximal ideals of A define non-isomorphic simple

4 A ring is called a d i v i s i o n r i n g if (Ar {0}·) is a (not necessarily commutative) group with neutral
element 1 6= 0.
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A-modules. (Remark : Note that AnnA(A/m) = m. — The classification of the simple modules
over non-commutative rings is complicated. Over a local ring A with Jacobson-radical mA, up to
isomorphism of A-modules, the residue-class division ring A/mA is the only simple A-module.)

R 2.16 Let V be a vector space over a field K.
(a) If V 6= 0, then V is a simple EndKV -module (See Exercise 2.1) The endomorphisms of
V as EndKV -module are the homothecies ϑa, a ∈ K, of V . In particular, EndEndKVV ∼−→ K
is the image of the action homomorphism ϑ : K −→ End V . The Jacobson-Radical of
End K V is 0. (Hint : Note that AnnEnd K V V =

⋂
x∈V Ann End K V x = 0.)

(b) Let V be a finite dimensional vector space over the field K of dimension n > 0. Then
End K V is a simple ring5. (Hint : If f ∈ EndK V and if v1, . . . ,vn ∈ V is a K-basis of V with
f (v1) 6= 0, then the two-sided ideal generated by f in EndK V contains an element f1 with f1(v j) =
δ1 j(v j), j = 1, . . . ,n and hence also contains idV .)

(c) For every K-basis v1, . . . ,vn of V , the map End K V −→ V n, f 7−→ ( f (v1), . . . , f (vn)),
is an isomorphism of End K V -modules, and V is the only simple left (End K V )-module, up
to isomorphism.
(d) Suppose that α = Dim K V ≥ ℵ0 := #N, i. e. V is not finite dimensional. Then the
maps β 7−→ { f ∈ End K V |Rank f < β} and b 7−→Min{γ |Rank f < γ for all f ∈ b}
are inverse isomorphisms to each other from the (well ordered) set of infinite cardinal
numbers β ≤ α and the set (ordered by the inclusion) of two-sided ideals b ⊆ End K V
with 0 6= b 6= End K V . In particular, mα := { f ∈ End K V | Dim K Img f < α} is the only
maximal two-sided ideal in End K V . The ring (End K V )/mα is simple, but not a division
ring. — How many two-sided ideals are there in the ring End(R,+) = EndQR ?
(Hints and Remarks : Recall that for f ∈ EndK V , RankK f := DimK Img f . Put B := EndK V . The
map B f 7−→ Ker f is an anti-isomorphism of lattices from the lattice {B f | f ∈ B} of left-ideals in
B onto the lattice of all K-subspaces of V . Moreover, if V is finite dimensional then the ring B is
left-principal ideal ring as well as right-principal ideal ring.)

∗2.17 Let V be an A-module over the ring A and U ⊆ V be an A-submodule of V . Recall
that, by definition, U is a d i r e c t s u m m a n d of V if U has an A-module complement
W ⊆V , i. e. V =U⊕W .
(a) The A-submodule U is a direct summand of V if and only if there exists a projection
p ∈ End A V , i. e. p2 = p with Img p =U . In this case V =U ⊕W with W := Ker p, and
p = pU,W is the p r o j e c t i o n o n t o U a l o n g W , and the complementary projection
q = qU,W = idV −pU,W = pW,U is the p r o j e c t i o n a l o n g U o n t o W .
(b) If A = K is a field, then every subspace U ⊆V has a complement.
(c) Let W be a complement of U . Then the map f 7−→ Γ f = { f (y)+ y | y ∈W} ⊆V is a
bijection from HomA(W,U) onto the set of all complements of U in V .

2.18 Let V be an A-module over the ring A 6= 0. We say that V is i n d e c o m p o s a b l e if
V 6= 0 and it has no direct sum decomposition V =U⊕W with submodules U 6= 0 6=W of
V .
(a) The A-module V is irreducible if and only if V 6= 0 and the endomorphism ring EndAV
has no non-trivial idempotent elements. Every simple A-module is indecomposable. Give

5 Simple ring. A ring A is called s i m p l e if A 6= 0 and if 0 and A are the only two-sided ideals in A. Note
that A ring, A 6= 0, is simple if and only if every ring homomorphism A→ B from A into a ring B with B 6= 0, is
injective. Division rings are obviously simple, but not every simple ring is a division ring! Commutative simple
rings are fields.
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an example of an indecomposable module which is not simple. The ring A as A-(left- or
right-) module is indecomposable if and only if the ring A has no non-trivial idempotent
elements.
(Remark : Note the difference between the irreducibility of the ring A as A-(left- or right-) module
and that of A as the ring. The later is equivalent with the condition that A has no non-trivial central
idempotent elements.)
(b) The only indecomposable vector spaces over a field K are one dimensional vector
spaces. (Remarks : In general it difficult — if not impossible to classify the indecomposable
modules over a given ring A. The finitely generated indecomposable abelian groups (= Z-modules)
are precisely the cyclic groups Z= Z0 and Zpα , p ∈P, α ∈N∗. This is essentially the Structure
Theorem for finitely generated abelian groups. But there are many more indecomposable abelian
groups, for example, all subgroups 6= 0 of Q= (Q,+) are indecomposable and similarly all Prüfer’s
p-groups6 I(p), p ∈P, are also indecomposable. Every abelian p-group with 1-dimensional (i. e.
non-zero cyclic) p-s o c a l 7 is indecomposable. Up to isomorphism these are precisely the groups
Zpα , α ∈N∗, and I(p). Why?)

2.19 Let A be a non-zero ring. Then
(a) If Am ∼−→ Am+1 (as A-modules) for m ∈N, then Am ∼−→ An for all n≥ m.
(b) Let x,y ∈ A. then x , y is a basis of the A-module A if and only if there exists elements
a,b ∈ A with (i) ax+ by = 1, (ii) xa = 1, (iii) xb = 0, (iv) ya = 0, and (v) yb = 1.
(Equivalently, (

x , y
)(a

b

)
= (1) ,

(
a
b

)(
x , y

)
=

(
1 0
0 1

)
,

where all matrices are considered over the opposite ring Aop, see Footnote No. 10 also. )
(c) Let B be a ring 6= 0 and V be a B-module 6= 0 with V ∼= V ⊕V (for example, a free
B-module with infinite basis). Then in the endomorphism ring A := EndBV , there exists
elements a,b,x,y, which satisfy the equations (i) to (v) in (b) above. In particular, the
finite free A-modules do not have rank. (Hint : Describe inverse isomorphisms of each other
V ∼−→V ⊕V and V ⊕V ∼−→V with matrices over the ring EndAV .)

2.20 Let ϕ : A−→ B be a homomorphism of rings. If every free B-module has a rank, then
every free A-module also has a rank.
( Proof : We need to show that : If m,n∈N and Am∼=An (as A-modules), then m= n. Let f : An→Am

and g : Am → An be inverse A-isomorphisms to each other which are described8 by the matrices

6 Prüfer’s p-group. For a prime number p ∈P, the p-p r i m a r y c o m p o n e n t of the torsion group Q/Z
and every other group which isomorphic to it, is called the P r ü f e r ’ s p - g r o u p (named in the honour of
P r ü f e r , E . P. H ( 1 8 9 6 - 1 9 3 4 ) and is denoted by I(p). For an arbitrary group G and a prime number p ∈P,
the subset G(p) := ∪n∈NTpn G := {x ∈ G | Ord x is a power of p}(⊆ T(G) := {x ∈ G | Ord x > 0}) is called the
p-p r i m a r y c o m p o n e n t o f G.

7 p-Socal of a group. For a prime number p ∈P, the p-torsion pG := {x ∈ G | xp = eG} of an arbitrary group
G is called the p-s o c a l of G. If G is abelian, then the p-socal pG = Ker (G→ G , x 7→ xp) is an elementary
abelian p-group, see the Remark in the Exercise 1.3 (b).

8 Every A-module homomorphism f : An −→ Am can be described by a m× n-matrix A =
(
ai j
)

1≤i≤m
1≤ j≤n

∈
Mm ,n(Aop). We write elements x ∈ An (resp. y ∈ Am) as 1-column matrices with n (resp. m) rows, then

f (x) = Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




x1
x2
...

xn

=


y1
y2
...

ym

= y with yi =
n

∑
j=1

x jai j , 1≤ i≤ m .

Note that the entries in the matrices are considered in the opposite ring Aop and are multiplied there! This
provides the summands x jai j instead of ai jx j and this is also followed in the multiplication of matrices as well.
Therefore : The endomorphism ring End A An of the free A-module An is the ring Mn(Aop) of the square n× n-
matrices with entries in the opposite ring Aop. The identity of End A An is represented by the u n i t m a t r i x
En = (δi j)) ∈Mn(A). In the important case when A is commutative, naturally one need not distinguish the rings
A and Aop.
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A = (ai j) ∈Mm,n(Aop) and B = (b jk) ∈Mn,m(Aop). Then the product matrices BA ∈Mn(A) and
AB∈Mm(A) describe the compositions g◦ f = idAn and f ◦g = idAm , respectively, where En and Em
denote the unit matrices. Then the ϕ-images ϕ(A) = (ϕ(ai j)) ∈Mm,n(B op) and ϕ(B) = (ϕ(b jk)) ∈
Mn,m(B op) describe the inverse B-isomorphisms of each other Bn→ Bm and Bm→ Bn, respectively.
Therefore m = n by hypothesis on B. •
— Remark : The Theory of Rings is the theory of modules over rings where as in the Commutative
Algebra all modules over noetherian commutative rings are studied. The large part of Linear Algebra
is concentrated to study linear maps between free modules and in particular, determining the structure
of the linear maps between the vector spaces (by the Theorem on the Existence of bases (for vector
space) which are readily free). Moreover, in the case of a field K, the homomorphism groups
HomK(V,W ) are even K-vector spaces and hence free.)
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