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5.1 Let A be a commutative ring.

(a) An element a in A is a basis of the A-module A if and only if a ∈ A× is a unit in A.

(b) Suppose that A 6= 0. Then A is a principal ideal domain if and only if every ideal in A
is a free A-submodule of A.

(c) Let V be a free A-module of infinite rank. Then |V |= |A|·RankA V =Sup{|A|, RankA V}.
5.2 (a) The elements 1, a ∈R are linearly independent over Q, if and only if a is irrational
(i. e. not rational). (Remark : Two real numbers b,c ∈R, which are linearly independent over Q
are called i n c o m m e n s u r a b l e. Classical example : the length of the side and the length of the
diagonal of a square are incommensurable, since the real number

√
2 ∈R is irrational.)

(b) Let P be the set of all prime numbers p ∈ N∗. Show that the family (log p)p∈P is
linearly independent over Q.

5.3 (a) Let a,b∈N∗ and let d :=gcd(a,b) be the greatest common divisor of a and b.
Then the relation submodule RelZ(a,b) := {(x,y) ∈Z2 | xa+ yb = 0} ⊆Z2 is generated
by (bd−1,−ad−1) ∈Z2 as Z-module.

(b) Let V be a finite free Z-module with basis x1, . . . ,xn and let (a1, . . . ,an) ∈ Zn be an
unimodular vector, i. e. Za1 + · · ·+Zan = Z. Then there exists a Z-basis z1, . . . ,zn of V
with z1 = a1x1 + · · ·+anxn . (Hint : Use (without proving!) submodules of finite free Z-modules
are again free. Construct a Z-homomorphism π : V →Z with π(z1) = 1. Then V = Az1⊕Kerπ .)

5.4 In the subspace U := ∑
a∈R

R sin(x+a)⊆RR of theR–vector spaceRR of all functions

from R into itself, generated by the functions x 7→ sin(x+ a), a ∈ R, show that the two
functions x 7→ sinx, x 7→ cosx(= sin(x+π/2)) form a basis of U .
In particular DimR ∑

a∈R
R sin(x+a) = 2.

5.5 Every Q-vector space V 6= 0 is not free over the subring Z⊆Q.

5.6 Let n ∈N and let K be a field.

(a) Let x1, . . . ,xn+1 ∈V be linearly dependent elements of a vector space V over the field
K. Suppose that n elements among x1, . . . ,xn+1 are linearly independent over K. Then show
that the relation subspace

RelK(x1, . . . ,xn+1) := {(a1, . . . ,an+1 ∈ Kn+1 | a1x1 + · · ·+an+1xn+1 = 0}
is 1-dimensional over K, i. e. Dim K(RelK(x1, . . . ,xn+1)) = 1.
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(b) For a given n ∈ N, let a1, . . . ,an ∈ K be n distinct elements in a field K. Then the
sequence gi := (aν

i )ν∈N ∈KN, i= 1, . . . ,n, are linearly independent over K. (Hint : Suppose
that the g1, . . . ,gn, are linearly dependent over K. Without loss of generality we may assume that
DimK(RelK(g1, . . . ,gn)) = 1, see the part (a). Let (b1, . . . ,bn) ∈ RelK(g1, . . . ,gn) be a basis element
of the relation subspace RelK(g1, . . . ,gn). Then the element (b1a1, . . . ,bnan) is also belongs to
RelK(g1, . . . ,gn). This is a contradiction.)

(c) Let I be an infinite set. Then DimK(KI) = |KI |. (Hint : In view of Exercise 5.1 (c), it
is enough to prove that |K| ≤ DimKKI . Let σ :N→ I be an injective map and for a ∈ K, let ga

denote the I–tuple with (ga)σ(ν) := aν for ν ∈N and (ga)i := 0 for i ∈ I r imσ . Then by the part

(b) (ga)a∈K are linearly independent over K.) — Deduce that DimKKI > DimKK(I).

∗5.7 Let B be a ring and A be a subring of B such that B is a free A-module. Then :

(a) An element a ∈ A is a non-zerodivisor in A if and only if a is a non-zerodivisor in B.
(b) (aB)∩A = a for every ideal a⊆ A.

(c) A×= A∩B×. Moreover, if B is a field, then so is A. (Hint : If a ∈ A∩B×, then B= aB.)

5.8 Let U and W be free A-submodules of an arbitrary A–module V with bases x i, i ∈ I
and y j, j ∈ J, respectively. Show that x i, y j, i ∈ I, j ∈ J, together form a basis of U +W if
and only if U ∩W = 0.

5.9 Let 0→V ′
f ′−→V

f−→V ′′→ 0 be a short exact sequence of A-modules over a commu-
tative ring A and let a be an ideal in A. If the sequence splits1, then the canonical induced

sequence 0→V ′/aV ′
f ′−→V/aV

f−→V ′′/aV ′′→ 0 is also exact and splits.
(Remark : In general the last canonical sequence need not be exact if the initial sequence is not split.

For example, consider the short exact sequence 0→ Z λ2−→ Z π−→ Z/Z2→ 0 of abelian groups
which is not split.)

5.10 An exact sequence V
f−→V ′′→ 0 of A-modules over a commutative ring A splits if

V ′′ is a free A-module.

5.11 Let A be an Bézout domain2.
(a) Every finite submodule of a finite free A-module is again free. (Hint : Let V be a free
A-module with basis x1, . . . ,xm and let U ⊆ V be a finite A-submodule. We prove the assertion by
induction on m. For m = 0 there is nothing to prove. Assume that m > 0 and let π be the projection
of V onto V ′′ := Axm along V ′ := Ax1 + · · ·+Axm−1 and f = π | Imgπ (the restriction of π to Imgπ).
From the canonical short exact seqeunce :

0→V ′ −→V
f−→V ′′→ 0 ,

1 Split Exact Sequence An exact sequence V
f−→V ′′→ 0 (resp. 0→V ′

f ′−→V ′ ) of A-modules s p l i t s if
Ker f (resp. Img f ) is a direct summand of V . Equivalently, there exists an A-module homomorphism g ′′ : V ′′→V
(resp. g : V →V ′ ) such that f ◦g ′′ = idV ′′ (resp. g◦ f ′ = idV ′ ).

A short exact sequence 0→V ′
f ′−→V

f−→V ′′→ 0 s p i l t s if Img f ′ = Ker f is a direct summand of V . Equiva-

lently, one (and hence both) of the exact sequences 0→V ′
f ′−→V and V

f−→V ′′→ 0 splits. Moreover, in this
case V = Img f ′⊕U , where U ⊆V is an A-submodule with f |U : U ∼−→V ′′, i. e. the restriction of f to U is an
A-isomorphism of U onto V ′′. Therefore V ∼=V ′⊕V ′′.

2 A integral domain in which every finitely generated ideal is principal is called a B é z o u t d o m a i n. Bézout
domains are named after the French mathematician Étienne Bézout (1730-1783). Every PID is a Bézout domain,
but not conversely.
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by restrictions we get an exact sequence

0→V ′∩U −→U
f |U−→ f (U)→ 0 .

Now, since f (U) (as the image of U) is a finite submodule of a free A-module V ′′ = Axm, it is a free
A-module by induction hypothesis. Further, by Exercise 5.10 the last exact sequence splits and hence
U ∼= f (U)⊕ (V ′∩U). Moreover, V ′∩U is a finite A-module, since it is a direct summand of a finite
A-module U and by induction hypothesis V ′∩U is an A-submodule of a free A-module V ′ with basis
x1, . . . ,xm−1. Altogether, this proves that U is a free A-module. •)
(b) Every finite torsion-free A-module is free. (Hint : Every finite torsion-free module over an
integral domain is a submodule of a finite free A-module. for a proof see solution of Ecxersie 2.9 (c).)

(c) Every finite submodule of an A-module of finite presentation3 is itself of finite presen-
tation.

5.12 Let f : V →W be an A-module homomorphism of A-modules over a commutative
ring A, where W is a free A-module. Further, let a⊆ A be an ideal in A.
(a) If a is nilpotent and if f induces an isomorphism f : V/aV ∼−→W/aW , then f itself
is an isomorphism.
(b) If a⊆mA (=the Jacobson-radical of A), and if V and W are finite A-modules and if f
induces an isomorphism f : V/aV ∼−→W/aW , then f itself is an isomorphism.
(Hint : First show that f is surjective and then consider the split exact sequence, see Footnote No. 1

0→ Ker f →V
f−→W → 0.

— Remark : The assertions in the parts (a) and (b) holds also even if W is only projective A-module. —
Recall that an A-module P is called p r o j e c t i v e over A if it is isomorphic to direct summand of a

free A-module. Equivalently, every short exact sequence 0→V ′
f ′−→V

f−→ P→ 0 of A-modules
splits, see Footnote No. 1. )

5.13 An A-module V over a commutative ring A is isomorphic to the dual of an A-module
of finite presentation if and only if V is isomorphic to the kernel Ker f of an A-module
homomorphism f : F → G where F and G are finite free A-modules.

5.14 Let A be a noetherian commutative ring. then every torsion-less finite A-module is
isomorphic to submodule of a finite free A-module. (Hint : Recall the concept of a torsion-less
modules from the solution of the Exercise 2.9 (c).)

R 5.15 Let x i, i ∈ I, be a family of n-tuples from Zn. For a prime number p, let Fp denote
the prime field of characteristic p. Show that the following statements are equivalent:
(i) The x i, i ∈ I, are linearly independent over Z.
(ii) The images of x i, i ∈ I, in Qn, are linearly independent over Q.
(iii) There exists a prime number p such that the images of x i, i ∈ I, in Fn

p , are linearly
independent over Fp.
(iv) For almost all prime numbers p, the images of x i, i ∈ I, in Fn

p , are linearly independent
over Fp.

3 Finitely presented modules Recall that an A-module V is of f i n i t e p r e s e n t a t i o n if there exists a
finite generating system xi, i ∈ I (finite indexed set), such that the corresponding relation-module relA(xi | i ∈ I) is
also finite. Equivalently, if there exist natural numbers m, n ∈N such that the sequence of A-modules

Am→ An→V → 0
is exact. Note that : Finitely generated modules over a noetherian ring A are finitely presented.
Exercise Let V be an A-module of finite presentation and let W be a finite A-modue, π : W →V be a surjective
A-module homomorphism Then Kerπ is also finite A-module.
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Moreover, if I is finite with |I|= n , then the above statements are further equivalent to the
following statement
(v) There exists a non-zero integer m such that mZn ⊆ ∑ i∈I Zx i.
(Hint : All four conditions (i) to iv) imply that |I| ≤ n. Consider the case |I|= n.)

5.16 Let x i, i ∈ I, be a family of n–tuples from Zn. For every prime number p let Fp
denote a field with p elements. Show that the following statements are equivalent :
(i) The x i, i ∈ I, generate (the Z–module) Zn.
(ii) For every prime number p, the images of x i, i ∈ I, in Fn

p , generate the Fp-vector space
Fn

p . (Hint : (ii) ⇒ (i) : Let U := ∑i∈I Zxi. Note that by the above Exercise 5.9, there exists a
non-zero integer m with mZn ⊆U . Further: to every prime number p and every x ∈Zn there exist
x′ ∈U, y ∈Zn such that x = x′+ py, i. e. Zn ⊆U + pZn for every prime number p. From this deduce
that U =Zn.)
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