MA 312 Commutative Algebra / Jan-April 2020

(BS, Int PhD, and PhD Programmes)

Tel : +91-(0)80-2293 3212/09449076304	E-mails: patil@math.ac.in
Lectures : Tuesday and Thursday ; 15:30-17:00	Venue: MA LH-5 / LH-1
5. Linear Independence, Relation submodules and Free Modules	
Submit a solution of ANY ONE of the ${ }^{*}$ E x ercise ONLY. Recommended to solve the violet colored ${ }^{R}$ Exercises	Due Date : Thursday, 05-03-2020

5.1 Let A be a commutative ring.

(a) An element a in A is a basis of the A-module A if and only if $a \in A^{\times}$is a unit in A.
(b) Suppose that $A \neq 0$. Then A is a principal ideal domain if and only if every ideal in A is a free A-submodule of A.
(c) Let V be a free A-module of infinite rank. Then $|V|=|A| \cdot \operatorname{Rank}_{A} V=\operatorname{Sup}\left\{|A|, \operatorname{Rank}_{A} V\right\}$.
5.2 (a) The elements $1, a \in \mathbb{R}$ are linearly independent over \mathbb{Q}, if and only if a is irrational (i. e. not rational). (Remark : Two real numbers $b, c \in \mathbb{R}$, which are linearly independent over \mathbb{Q} are called incommensurable. Classical example: the length of the side and the length of the diagonal of a square are incommensurable, since the real number $\sqrt{2} \in \mathbb{R}$ is irrational.)
(b) Let \mathbb{P} be the set of all prime numbers $p \in \mathbb{N}^{*}$. Show that the family $(\log p)_{p \in \mathbb{P}}$ is linearly independent over \mathbb{Q}.
5.3 (a) Let $a, b \in \mathbb{N}^{*}$ and let $d:=\operatorname{gcd}(a, b)$ be the greatest common divisor of a and b. Then the relation submodule $\operatorname{Rel}_{\mathbb{Z}}(a, b):=\left\{(x, y) \in \mathbb{Z}^{2} \mid x a+y b=0\right\} \subseteq \mathbb{Z}^{2}$ is generated by $\left(b d^{-1},-a d^{-1}\right) \in \mathbb{Z}^{2}$ as \mathbb{Z}-module.
(b) Let V be a finite free \mathbb{Z}-module with basis x_{1}, \ldots, x_{n} and let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ be an unimodular vector, i. e. $\mathbb{Z} a_{1}+\cdots+\mathbb{Z} a_{n}=\mathbb{Z}$. Then there exists a \mathbb{Z}-basis z_{1}, \ldots, z_{n} of V with $z_{1}=a_{1} x_{1}+\cdots+a_{n} x_{n}$. (Hint: Use (without proving!) submodules of finite free \mathbb{Z}-modules are again free. Construct a \mathbb{Z}-homomorphism $\pi: V \rightarrow \mathbb{Z}$ with $\pi\left(z_{1}\right)=1$. Then $V=A z_{1} \oplus \operatorname{Ker} \pi$.)
5.4 In the subspace $U:=\sum_{a \in \mathbb{R}} \mathbb{R} \sin (x+a) \subseteq \mathbb{R}^{\mathbb{R}}$ of the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} into itself, generated by the functions $x \mapsto \sin (x+a), a \in \mathbb{R}$, show that the two functions $x \mapsto \sin x, x \mapsto \cos x(=\sin (x+\pi / 2))$ form a basis of U.
In particular $\operatorname{Dim}_{\mathbb{R}} \sum_{a \in \mathbb{R}} \mathbb{R} \sin (x+a)=2$.
5.5 Every \mathbb{Q}-vector space $V \neq 0$ is not free over the subring $\mathbb{Z} \subseteq \mathbb{Q}$.
5.6 Let $n \in \mathbb{N}$ and let K be a field.
(a) Let $x_{1}, \ldots, x_{n+1} \in V$ be linearly dependent elements of a vector space V over the field K. Suppose that n elements among x_{1}, \ldots, x_{n+1} are linearly independent over K. Then show that the relation subspace

$$
\operatorname{Rel}_{K}\left(x_{1}, \ldots, x_{n+1}\right):=\left\{\left(a_{1}, \ldots, a_{n+1} \in K^{n+1} \mid a_{1} x_{1}+\cdots+a_{n+1} x_{n+1}=0\right\}\right.
$$

is 1-dimensional over K, i. e. $\operatorname{Dim}_{K}\left(\operatorname{Rel}_{K}\left(x_{1}, \ldots, x_{n+1}\right)\right)=1$.
(b) For a given $n \in \mathbb{N}$, let $a_{1}, \ldots, a_{n} \in K$ be n distinct elements in a field K. Then the sequence $g_{i}:=\left(a_{i}^{v}\right)_{v \in \mathbb{N}} \in K^{\mathbb{N}}, i=1, \ldots, n$, are linearly independent over K. (Hint : Suppose that the g_{1}, \ldots, g_{n}, are linearly dependent over K. Without loss of generality we may assume that $\operatorname{Dim}_{K}\left(\operatorname{Rel}_{K}\left(g_{1}, \ldots, g_{n}\right)\right)=1$, see the part (a). Let $\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{Rel}_{K}\left(g_{1}, \ldots, g_{n}\right)$ be a basis element of the relation subspace $\operatorname{Rel}_{K}\left(g_{1}, \ldots, g_{n}\right)$. Then the element ($b_{1} a_{1}, \ldots, b_{n} a_{n}$) is also belongs to $\operatorname{Rel}_{K}\left(g_{1}, \ldots, g_{n}\right)$. This is a contradiction.)
(c) Let I be an infinite set. Then $\operatorname{Dim}_{K}\left(K^{I}\right)=\left|K^{I}\right|$. (Hint: In view of Exercise 5.1 (c), it is enough to prove that $|K| \leq \operatorname{Dim}_{K} K^{I}$. Let $\sigma: \mathbb{N} \rightarrow I$ be an injective map and for $a \in K$, let g_{a} denote the I-tuple with $\left(g_{a}\right)_{\sigma(v)}:=a^{v}$ for $v \in \mathbb{N}$ and $\left(g_{a}\right)_{i}:=0$ for $i \in I \backslash \operatorname{im} \sigma$. Then by the part (b) $\left(g_{a}\right)_{a \in K}$ are linearly independent over K.) - Deduce that $\operatorname{Dim}_{K} K^{I}>\operatorname{Dim}_{K} K^{(I)}$.
*5.7 Let B be a ring and A be a subring of B such that B is a free A-module. Then :
(a) An element $a \in A$ is a non-zerodivisor in A if and only if a is a non-zerodivisor in B.
(b) $(\mathfrak{a} B) \cap A=\mathfrak{a}$ for every ideal $\mathfrak{a} \subseteq A$.
(c) $A^{\times}=A \cap B^{\times}$. Moreover, if B is a field, then so is A. (Hint: If $a \in A \cap B^{\times}$, then $B=a B$.)
5.8 Let U and W be free A-submodules of an arbitrary A-module V with bases $x_{i}, i \in I$ and $y_{j}, j \in J$, respectively. Show that $x_{i}, y_{j}, i \in I, j \in J$, together form a basis of $U+W$ if and only if $U \cap W=0$.
5.9 Let $0 \rightarrow V^{\prime} \xrightarrow{f^{\prime}} V \xrightarrow{f} V^{\prime \prime} \rightarrow 0$ be a short exact sequence of A-modules over a commutative ring A and let \mathfrak{a} be an ideal in A. If the sequence split. $\left[\frac{1}{\square}\right.$ then the canonical induced sequence $0 \rightarrow V^{\prime} / \mathfrak{a} V^{\prime} \xrightarrow{\overline{f^{\prime}}} V / \mathfrak{a} V \xrightarrow{\bar{f}} V^{\prime \prime} / \mathfrak{a} V^{\prime \prime} \rightarrow 0$ is also exact and splits.
(Remark: In general the last canonical sequence need not be exact if the initial sequence is not split.
For example, consider the short exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\lambda_{2}} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z} / \mathbb{Z} 2 \rightarrow 0$ of abelian groups which is not split.)
5.10 An exact sequence $V \xrightarrow{f} V^{\prime \prime} \rightarrow 0$ of A-modules over a commutative ring A splits if $V^{\prime \prime}$ is a free A-module.
5.11 Let A be an Bézout domain ${ }^{2}$
(a) Every finite submodule of a finite free A-module is again free. (Hint : Let V be a free A-module with basis x_{1}, \ldots, x_{m} and let $U \subseteq V$ be a finite A-submodule. We prove the assertion by induction on m. For $m=0$ there is nothing to prove. Assume that $m>0$ and let π be the projection of V onto $V^{\prime \prime}:=A x_{m}$ along $V^{\prime}:=A x_{1}+\cdots+A x_{m-1}$ and $f=\pi \mid \operatorname{Img} \pi$ (the restriction of π to $\operatorname{Img} \pi$). From the canonical short exact seqeunce :

$$
0 \rightarrow V^{\prime} \longrightarrow V \xrightarrow{f} V^{\prime \prime} \rightarrow 0
$$

[^0]by restrictions we get an exact sequence
$$
0 \rightarrow V^{\prime} \cap U \longrightarrow U \xrightarrow{f \mid U} f(U) \rightarrow 0
$$

Now, since $f(U)$ (as the image of U) is a finite submodule of a free A-module $V^{\prime \prime}=A x_{m}$, it is a free A-module by induction hypothesis. Further, by Exercise 5.10 the last exact sequence splits and hence $U \cong f(U) \oplus\left(V^{\prime} \cap U\right)$. Moreover, $V^{\prime} \cap U$ is a finite A-module, since it is a direct summand of a finite A-module U and by induction hypothesis $V^{\prime} \cap U$ is an A-submodule of a free A-module V^{\prime} with basis x_{1}, \ldots, x_{m-1}. Altogether, this proves that U is a free A-module.
(b) Every finite torsion-free A-module is free. (Hint : Every finite torsion-free module over an integral domain is a submodule of a finite free A-module. for a proof see solution of Ecxersie 2.9 (c).)
(c) Every finite submodule of an A-module of finite presentation ${ }^{3}$ is itself of finite presentation.
5.12 Let $f: V \rightarrow W$ be an A-module homomorphism of A-modules over a commutative $\operatorname{ring} A$, where W is a free A-module. Further, let $\mathfrak{a} \subseteq A$ be an ideal in A.
(a) If \mathfrak{a} is nilpotent and if f induces an isomorphism $\bar{f}: V / \mathfrak{a} V \xrightarrow{\sim} W / \mathfrak{a} W$, then f itself is an isomorphism.
(b) If $\mathfrak{a} \subseteq \mathfrak{m}_{A}$ (=the Jacobson-radical of A), and if V and W are finite A-modules and if f induces an isomorphism $\bar{f}: V / \mathfrak{a} V \xrightarrow{\sim} W / \mathfrak{a} W$, then f itself is an isomorphism.
(Hint : First show that f is surjective and then consider the split exact sequence, see Footnote No. 1

$$
0 \rightarrow \operatorname{Ker} f \rightarrow V \xrightarrow{f} W \rightarrow 0 .
$$

- Remark : The assertions in the parts (a) and (b) holds also even if W is only projective A-module. Recall that an A-module P is called projective over A if it is isomorphic to direct summand of a free A-module. Equivalently, every short exact sequence $0 \rightarrow V^{\prime} \xrightarrow{f^{\prime}} V \xrightarrow{f} P \rightarrow 0$ of A-modules splits, see Footnote No. 1.)
5.13 An A-module V over a commutative $\operatorname{ring} A$ is isomorphic to the dual of an A-module of finite presentation if and only if V is isomorphic to the kernel $\operatorname{Ker} f$ of an A-module homomorphism $f: F \rightarrow G$ where F and G are finite free A-modules.
5.14 Let A be a noetherian commutative ring. then every torsion-less finite A-module is isomorphic to submodule of a finite free A-module. (Hint : Recall the concept of a torsion-less modules from the solution of the Exercise 2.9 (c).)
${ }^{\mathrm{R}} 5.15$ Let $x_{i}, i \in I$, be a family of n-tuples from \mathbb{Z}^{n}. For a prime number p, let \mathbb{F}_{p} denote the prime field of characteristic p. Show that the following statements are equivalent:
(i) The $x_{i}, i \in I$, are linearly independent over \mathbb{Z}.
(ii) The images of $x_{i}, i \in I$, in \mathbb{Q}^{n}, are linearly independent over \mathbb{Q}.
(iii) There exists a prime number p such that the images of $x_{i}, i \in I$, in \mathbb{F}_{p}^{n}, are linearly independent over \mathbb{F}_{p}.
(iv) For almost all prime numbers p, the images of $x_{i}, i \in I$, in \mathbb{F}_{p}^{n}, are linearly independent over \mathbb{F}_{p}.

[^1]Moreover, if I is finite with $|I|=n$, then the above statements are further equivalent to the following statement
(v) There exists a non-zero integer m such that $m \mathbb{Z}^{n} \subseteq \sum_{i \in I} \mathbb{Z} x_{i}$.
(Hint : All four conditions (i) to iv) imply that $|I| \leq n$. Consider the case $|I|=n$.)
5.16 Let $x_{i}, i \in I$, be a family of n-tuples from \mathbb{Z}^{n}. For every prime number p let \mathbb{F}_{p} denote a field with p elements. Show that the following statements are equivalent:
(i) The $x_{i}, i \in I$, generate (the \mathbb{Z}-module) \mathbb{Z}^{n}.
(ii) For every prime number p, the images of $x_{i}, i \in I$, in \mathbb{F}_{p}^{n}, generate the \mathbb{F}_{p}-vector space \mathbb{F}_{p}^{n}. (Hint: (ii) \Rightarrow (i) : Let $U:=\sum_{i \in I} \mathbb{Z} x_{i}$. Note that by the above Exercise 5.9 , there exists a non-zero integer m with $m \mathbb{Z}^{n} \subseteq U$. Further: to every prime number p and every $x \in \mathbb{Z}^{n}$ there exist $x^{\prime} \in U, y \in \mathbb{Z}^{n}$ such that $x=x^{\prime}+p y$, i. e. $\mathbb{Z}^{n} \subseteq U+p \mathbb{Z}^{n}$ for every prime number p. From this deduce that $U=\mathbb{Z}^{n}$.)

[^0]: ${ }^{1}$ Split Exact Sequence An exact sequence $V \xrightarrow{f} V^{\prime \prime} \rightarrow 0$ (resp. $0 \rightarrow V^{\prime} \xrightarrow{f^{\prime}} V^{\prime}$) of A-modules splits if $\operatorname{Ker} f\left(\right.$ resp. $\operatorname{Img} f$) is a direct summand of V. Equivalently, there exists an A-module homomorphism $g^{\prime \prime}: V^{\prime \prime} \rightarrow V$ (resp. $g: V \rightarrow V^{\prime}$) such that $f \circ g^{\prime \prime}=\mathrm{id}_{V^{\prime \prime}}\left(\right.$ resp. $\left.g \circ f^{\prime}=\mathrm{id}_{V^{\prime}}\right)$.
 A short exact sequence $0 \rightarrow V^{\prime} \xrightarrow{f^{\prime}} V \xrightarrow{f} V^{\prime \prime} \rightarrow 0$ spilts if $\operatorname{Img} f^{\prime}=\operatorname{Ker} f$ is a direct summand of V. Equivalently, one (and hence both) of the exact sequences $0 \rightarrow V^{\prime} \xrightarrow{f^{\prime}} V$ and $V \xrightarrow{f} V^{\prime \prime} \rightarrow 0$ splits. Moreover, in this case $V=\operatorname{Img} f^{\prime} \oplus U$, where $U \subseteq V$ is an A-submodule with $f \mid U: U \xrightarrow{\sim} V^{\prime \prime}$, i. e. the restriction of f to U is an A-isomorphism of U onto $V^{\prime \prime}$. Therefore $V \cong V^{\prime} \oplus V^{\prime \prime}$.
 ${ }^{2}$ A integral domain in which every finitely generated ideal is principal is called a Bézout domain. Bézout domains are named after the French mathematician Étienne Bézout (1730-1783). Every PID is a Bézout domain, but not conversely.

[^1]: ${ }^{3}$ Finitely presented modules Recall that an A-module V is of finite presentation if there exists a finite generating system $x_{i}, i \in I$ (finite indexed set), such that the corresponding relation-module rel $A_{A}\left(x_{i} \mid i \in I\right)$ is also finite. Equivalently, if there exist natural numbers $m, n \in \mathbb{N}$ such that the sequence of A-modules
 $A^{m} \rightarrow A^{n} \rightarrow V \rightarrow 0$
 is exact. Note that: Finitely generated modules over a noetherian ring A are finitely presented.
 Exercise Let V be an A-module of finite presentation and let W be a finite A-modue, $\pi: W \rightarrow V$ be a surjective A-module homomorphism Then $\operatorname{Ker} \pi$ is also finite A-module.

