Department of Mathematics, IISc, Bangalore, Prof. Dr. D. P. Patil MA 312 Commutative Algebra / Jan-April 2020

MA 312 Commutative Algebra / Jan-April 2020 (BS, Int PhD, and PhD Programmes)

Download from : http://www.math.iisc.ac.in/patil/courses/Current Courses/	
Tel: +91-(0)80-2293 3212/09449076304	E-mails: patil@math.ac.in
Lectures : Tuesday and Thursday ; 15:30–17:00	Venue: MA LH-5 / LH-1

5. Linear Independence, Relation submodules and Free Modules

Submit a solution of ANY ONE of the *Exercise ONLY.Due Date : Thursday, 05-03-2020Recommended to solve the violet colored R Exercises

5.1 Let *A* be a commutative ring.

(a) An element a in A is a basis of the A-module A if and only if $a \in A^{\times}$ is a unit in A.

(b) Suppose that $A \neq 0$. Then A is a principal ideal domain if and only if every ideal in A is a free A-submodule of A.

(c) Let V be a free A-module of infinite rank. Then $|V| = |A| \cdot \operatorname{Rank}_A V = \operatorname{Sup}\{|A|, \operatorname{Rank}_A V\}$.

5.2 (a) The elements 1, $a \in \mathbb{R}$ are linearly independent over \mathbb{Q} , if and only if *a* is irrational (i. e. not rational). (**Remark :** Two real numbers $b, c \in \mathbb{R}$, which are linearly independent over \mathbb{Q} are called in c om m e n s u r a b l e. Classical example : the length of the side and the length of the diagonal of a square are incommensurable, since the real number $\sqrt{2} \in \mathbb{R}$ is irrational.)

(b) Let \mathbb{P} be the set of all prime numbers $p \in \mathbb{N}^*$. Show that the family $(\log p)_{p \in \mathbb{P}}$ is linearly independent over \mathbb{Q} .

5.3 (a) Let $a, b \in \mathbb{N}^*$ and let $d := \operatorname{gcd}(a, b)$ be the greatest common divisor of a and b. Then the relation submodule $\operatorname{Rel}_{\mathbb{Z}}(a, b) := \{(x, y) \in \mathbb{Z}^2 \mid xa + yb = 0\} \subseteq \mathbb{Z}^2$ is generated by $(bd^{-1}, -ad^{-1}) \in \mathbb{Z}^2$ as \mathbb{Z} -module.

(b) Let *V* be a finite free Z-module with basis x_1, \ldots, x_n and let $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ be an unimodular vector, i. e. $\mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n = \mathbb{Z}$. Then there exists a Z-basis z_1, \ldots, z_n of *V* with $z_1 = a_1x_1 + \cdots + a_nx_n$. (Hint: Use (without proving!) submodules of finite free Z-modules are again free. Construct a Z-homomorphism $\pi : V \to \mathbb{Z}$ with $\pi(z_1) = 1$. Then $V = Az_1 \oplus \text{Ker } \pi$.)

5.4 In the subspace $U := \sum_{a \in \mathbb{R}} \mathbb{R} \sin(x+a) \subseteq \mathbb{R}^{\mathbb{R}}$ of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$ of all functions

from \mathbb{R} into itself, generated by the functions $x \mapsto \sin(x+a), a \in \mathbb{R}$, show that the two functions $x \mapsto \sin x$, $x \mapsto \cos x (= \sin(x + \pi/2))$ form a basis of *U*.

In particular $\operatorname{Dim}_{\mathbb{R}} \sum_{a \in \mathbb{R}} \mathbb{R} \sin(x+a) = 2.$

5.5 Every Q-vector space $V \neq 0$ is not free over the subring $\mathbb{Z} \subseteq \mathbb{Q}$.

5.6 Let $n \in \mathbb{N}$ and let *K* be a field.

(a) Let $x_1, \ldots, x_{n+1} \in V$ be linearly dependent elements of a vector space *V* over the field *K*. Suppose that *n* elements among x_1, \ldots, x_{n+1} are linearly independent over *K*. Then show that the relation subspace

 $\operatorname{Rel}_{K}(x_{1},\ldots,x_{n+1}) := \{(a_{1},\ldots,a_{n+1} \in K^{n+1} \mid a_{1}x_{1}+\cdots+a_{n+1}x_{n+1}=0\}$ is 1-dimensional over K, i.e. $\operatorname{Dim}_{K}(\operatorname{Rel}_{K}(x_{1},\ldots,x_{n+1})) = 1.$

D. P. Patil/IISc

2020MA-MA312-ca-ex05.tex

July 5, 2020 ; 6:08 p.m.

(b) For a given $n \in \mathbb{N}$, let $a_1, \ldots, a_n \in K$ be *n* distinct elements in a field *K*. Then the sequence $g_i := (a_i^V)_{V \in \mathbb{N}} \in K^{\mathbb{N}}$, $i = 1, \ldots, n$, are linearly independent over *K*. (**Hint :** Suppose that the g_1, \ldots, g_n are linearly dependent over *K*. Without loss of generality we may assume that $\text{Dim}_K(\text{Rel}_K(g_1, \ldots, g_n)) = 1$, see the part (a). Let $(b_1, \ldots, b_n) \in \text{Rel}_K(g_1, \ldots, g_n)$ be a basis element of the relation subspace $\text{Rel}_K(g_1, \ldots, g_n)$. Then the element (b_1a_1, \ldots, b_na_n) is also belongs to $\text{Rel}_K(g_1, \ldots, g_n)$. This is a contradiction.)

(c) Let *I* be an infinite set. Then $\text{Dim}_K(K^I) = |K^I|$. (Hint: In view of Exercise 5.1 (c), it is enough to prove that $|K| \leq \text{Dim}_K K^I$. Let $\sigma : \mathbb{N} \to I$ be an injective map and for $a \in K$, let g_a denote the *I*-tuple with $(g_a)_{\sigma(v)} := a^v$ for $v \in \mathbb{N}$ and $(g_a)_i := 0$ for $i \in I \setminus \text{im } \sigma$. Then by the part (b) $(g_a)_{a \in K}$ are linearly independent over *K*.) — Deduce that $\text{Dim}_K K^I > \text{Dim}_K K^{(I)}$.

*5.7 Let B be a ring and A be a subring of B such that B is a free A-module. Then :

- (a) An element $a \in A$ is a non-zerodivisor in A if and only if a is a non-zerodivisor in B.
- (**b**) $(\mathfrak{a}B) \cap A = \mathfrak{a}$ for every ideal $\mathfrak{a} \subseteq A$.
- (c) $A^{\times} = A \cap B^{\times}$. Moreover, if *B* is a field, then so is *A*. (Hint: If $a \in A \cap B^{\times}$, then B = aB.)

5.8 Let *U* and *W* be free *A*-submodules of an arbitrary *A*-module *V* with bases x_i , $i \in I$ and y_j , $j \in J$, respectively. Show that x_i , y_j , $i \in I$, $j \in J$, together form a basis of U + W if and only if $U \cap W = 0$.

5.9 Let $0 \to V' \xrightarrow{f'} V \xrightarrow{f} V'' \to 0$ be a short exact sequence of *A*-modules over a commutative ring *A* and let \mathfrak{a} be an ideal in *A*. If the sequence *splits*¹, then the canonical induced sequence $0 \to V'/\mathfrak{a}V' \xrightarrow{\overline{f'}} V'/\mathfrak{a}V' \xrightarrow{\overline{f'}} V''/\mathfrak{a}V'' \to 0$ is also exact and splits

sequence $0 \to V'/\mathfrak{a}V' \xrightarrow{\overline{f'}} V/\mathfrak{a}V \xrightarrow{\overline{f}} V''/\mathfrak{a}V'' \to 0$ is also exact and splits. (**Remark :** In general the last canonical sequence need not be exact if the initial sequence is not split. For example, consider the short exact sequence $0 \to \mathbb{Z} \xrightarrow{\lambda_2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/\mathbb{Z} 2 \to 0$ of abelian groups which is not split.)

5.10 An exact sequence $V \xrightarrow{f} V'' \to 0$ of *A*-modules over a commutative ring *A* splits if V'' is a free *A*-module.

5.11 Let *A* be an *Bézout domain*².

(a) Every finite submodule of a finite free *A*-module is again free. (Hint : Let *V* be a free *A*-module with basis x_1, \ldots, x_m and let $U \subseteq V$ be a finite *A*-submodule. We prove the assertion by induction on *m*. For m = 0 there is nothing to prove. Assume that m > 0 and let π be the projection of *V* onto $V'' := Ax_m$ along $V' := Ax_1 + \cdots + Ax_{m-1}$ and $f = \pi | \text{Img } \pi$ (the restriction of π to Img π). From the canonical short exact sequence :

$$0 \to V' \longrightarrow V \xrightarrow{J} V'' \to 0,$$

A short exact sequence $0 \to V' \xrightarrow{f'} V \xrightarrow{f} V'' \to 0$ spilts if $\operatorname{Img} f' = \operatorname{Ker} f$ is a direct summand of V. Equivalently, one (and hence both) of the exact sequences $0 \to V' \xrightarrow{f'} V$ and $V \xrightarrow{f} V'' \to 0$ splits. Moreover, in this case $V = \operatorname{Img} f' \oplus U$, where $U \subseteq V$ is an A-submodule with $f | U : U \xrightarrow{\sim} V''$, i. e. the restriction of f to U is an A-isomorphism of U onto V''. Therefore $V \cong V' \oplus V''$.

 2 A integral domain in which every finitely generated ideal is principal is called a Bézout domain. Bézout domains are named after the French mathematician Étienne Bézout (1730-1783). Every PID is a Bézout domain, but not conversely.

D. P. Patil/IISc

2020MA-MA312-ca-ex05.tex

July 5, 2020 ; 6:08 p.m.

¹ Split Exact Sequence An exact sequence $V \xrightarrow{f} V'' \to 0$ (resp. $0 \to V' \xrightarrow{f'} V'$) of A-modules splits if Ker f (resp. Img f) is a direct summand of V. Equivalently, there exists an A-module homomorphism $g'': V'' \to V$ (resp. $g: V \to V'$) such that $f \circ g'' = \operatorname{id}_{V'}$ (resp. $g \circ f' = \operatorname{id}_{V'}$).

CITT

by restrictions we get an exact sequence

$$0 \to V' \cap U \longrightarrow U \xrightarrow{f \mid U} f(U) \to 0$$
.

Now, since f(U) (as the image of U) is a finite submodule of a free A-module $V'' = Ax_m$, it is a free A-module by induction hypothesis. Further, by Exercise 5.10 the last exact sequence splits and hence $U \cong f(U) \oplus (V' \cap U)$. Moreover, $V' \cap U$ is a finite A-module, since it is a direct summand of a finite A-module U and by induction hypothesis $V' \cap U$ is an A-submodule of a free A-module V' with basis x_1, \ldots, x_{m-1} . Altogether, this proves that U is a free A-module.

(b) Every finite torsion-free A-module is free. (Hint: Every finite torsion-free module over an integral domain is a submodule of a finite free A-module. for a proof see solution of Ecxersie 2.9 (c).)

(c) Every finite submodule of an A-module of finite presentation³ is itself of finite presentation.

5.12 Let $f: V \to W$ be an *A*-module homomorphism of *A*-modules over a commutative ring *A*, where *W* is a *free A*-module. Further, let $\mathfrak{a} \subseteq A$ be an ideal in *A*.

(a) If a is *nilpotent* and if f induces an isomorphism $\overline{f}: V/\mathfrak{a}V \xrightarrow{\sim} W/\mathfrak{a}W$, then f itself is an isomorphism.

(b) If $\mathfrak{a} \subseteq \mathfrak{m}_A$ (=the Jacobson-radical of *A*), and if *V* and *W* are finite *A*-modules and if *f* induces an isomorphism $\overline{f}: V/\mathfrak{a}V \longrightarrow W/\mathfrak{a}W$, then *f* itself is an isomorphism.

(**Hint :** First show that f is surjective and then consider the split exact sequence, see Footnote No. 1

 $0 \to \operatorname{Ker} f \to V \xrightarrow{f} W \to 0.$

— Remark : The assertions in the parts (a) and (b) holds also even if W is only *projective* A-module. — Recall that an A-module P is called projective over A if it is isomorphic to direct summand of a free A-module. Equivalently, every short exact sequence $0 \rightarrow V' \xrightarrow{f'} V \xrightarrow{f} P \rightarrow 0$ of A-modules splits, see Footnote No. 1.)

5.13 An *A*-module *V* over a commutative ring *A* is isomorphic to the dual of an *A*-module of finite presentation if and only if *V* is isomorphic to the kernel Ker *f* of an *A*-module homomorphism $f: F \to G$ where *F* and *G* are finite free *A*-modules.

5.14 Let *A* be a noetherian commutative ring. then every torsion-less finite *A*-module is isomorphic to submodule of a finite free *A*-module. (**Hint**: Recall the concept of a torsion-less modules from the solution of the Exercise 2.9 (c).)

R 5.15 Let x_i , $i \in I$, be a family of *n*-tuples from \mathbb{Z}^n . For a prime number *p*, let \mathbb{F}_p denote the prime field of characteristic *p*. Show that the following statements are equivalent:

(i) The x_i , $i \in I$, are linearly independent over \mathbb{Z} .

(ii) The images of x_i , $i \in I$, in \mathbb{Q}^n , are linearly independent over \mathbb{Q} .

(iii) There exists a prime number p such that the images of x_i , $i \in I$, in \mathbb{F}_p^n , are linearly independent over \mathbb{F}_p .

(iv) For almost all prime numbers p, the images of x_i , $i \in I$, in \mathbb{F}_p^n , are linearly independent over \mathbb{F}_p .

is exact. Note that : Finitely generated modules over a noetherian ring A are finitely presented.

D. P. Patil/IISc

2020MA-MA312-ca-ex05.tex

July 5, 2020 ; 6:08 p.m.

³ Finitely presented modules Recall that an A-module V is of finite presentation if there exists a finite generating system x_i , $i \in I$ (finite indexed set), such that the corresponding relation-module rel_A $(x_i | i \in I)$ is also finite. Equivalently, if there exist natural numbers $m, n \in \mathbb{N}$ such that the sequence of A-modules $A^m \to A^n \to V \to 0$

Exercise Let *V* be an *A*-module of finite presentation and let *W* be a finite *A*-modue, $\pi : W \to V$ be a *surjective A*-module homomorphism Then Ker π is also finite *A*-module.

Page 4

Moreover, if *I* is finite with |I| = n, then the above statements are further equivalent to the following statement

(v) There exists a non-zero integer *m* such that $m\mathbb{Z}^n \subseteq \sum_{i \in I} \mathbb{Z}x_i$.

(**Hint :** All four conditions (i) to iv) imply that $|I| \le n$. Consider the case |I| = n.)

5.16 Let x_i , $i \in I$, be a family of *n*-tuples from \mathbb{Z}^n . For every prime number *p* let \mathbb{F}_p denote a field with *p* elements. Show that the following statements are equivalent :

(i) The x_i , $i \in I$, generate (the \mathbb{Z} -module) \mathbb{Z}^n .

(ii) For every prime number p, the images of x_i , $i \in I$, in \mathbb{F}_p^n , generate the \mathbb{F}_p -vector space \mathbb{F}_p^n . (**Hint:** (ii) \Rightarrow (i): Let $U := \sum_{i \in I} \mathbb{Z}x_i$. Note that by the above Exercise 5.9, there exists a non-zero integer m with $m\mathbb{Z}^n \subseteq U$. Further: to every prime number p and every $x \in \mathbb{Z}^n$ there exist $x' \in U, y \in \mathbb{Z}^n$ such that x = x' + py, i. e. $\mathbb{Z}^n \subseteq U + p\mathbb{Z}^n$ for every prime number p. From this deduce that $U = \mathbb{Z}^n$.)

2020MA-MA312-ca-ex05.tex

July 5, 2020 ; 6:08 p.m.