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6 . F i n i t e A l g e b r a s o v e r a F i e l d
— H i l b e r t ’ s N u l l s t e l l e n s a t z

Submit a solution of ANY ONE of the ∗E x e r c i s e ONLY. Due Date : Thursday, 12-03-2020

Complete Correct Solutions of the ∗∗ E x e r c i s e carry SEVERAL BONUS POINTS !
Recommended to solve the violet colored R E x e r c i s e s . Good Seminar Topics!

6.1 Show that each of the following set is not an algebraic set
(1) {(x,y) ∈A2

R | y = sinx}. (2) {(x,y) ∈A2
R | y = cosx}.

(3) {(x,y) ∈A2
R | y = ex}. (4) {(z,w) ∈A2

C ||z|2 + |w|2= 1}.
(5) {(cos t,sin t, t) ∈A3

R | t ∈R}.
(6)

⋃
m∈NLm, where Lm is the line V(Y −mX).

(This shows that arbitrary (in fact, even countable) union of algebraic sets need not be an algebraic
set. — Hint : Use the Exercise 6.4 (b) below.)

6.2 Show that each of the following set is an algebraic set and find generators for the ideals
of algebraic sets in (a), (c) and (d).

(a) Finite subsets ofAn
K , ∈N+. (b) {(cos t,sin t) ∈A2

R) | t ∈R}.
(c) ( Tw i s t e d c u b i c c u r v e ) {(t, t2, t3) ∈A3

K | t ∈ K}.
(d) {(tm, tn) ∈A2

C | t ∈ C}, where m, n are relatively prime positive integers.

6.3 Let K be an arbitrary field and m, n ∈N+.

(a) If we identifyA2
K with A1

K×A1
K in a natural way, show that the Zariski topology on

A2
K is not the product of the Zariski topologies on the two copies of A1

K . Compare these
two topologies.

(b) The Zariski topology on An
K is Hausdroff if and only if K is finite.

(c) The Zariski topology onAn
R (resp. An

C) is weaker than the usual topology onAn
R (resp.

An
C).

(d) If m≤ n and we identifyAm
K as a subset ofAn

K via the natural inclusion ϕ :Am
K →An

K
given by ϕ(a1, . . . ,am) 7→ (a1, . . . ,am,0, . . . ,0). Then the Zariski topology on Am

K is the
relative topology from the Zariski topology on An

K . Moreover, if W is an algebraic set in
Am

K then ϕ(W ) is an algebraic set in An
K . What is the relation between the ideals IK(W )

and IK(ϕ(W ))?

(e) Give an example to show that the image of an algebraic set under the natural projection
mapA2

K →A1
K need not be an algebraic set.

6.4 Let L be a line, H = V( f ) be a hypersurface and V be an algebraic set in An
K . Then :

(a) Either L⊆ H or L∩H is a finite set of at most d = deg f points.
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(b) Either L⊆V or L∩V is a finite set of points. (How many!)

(c) Let C= V( f ) and D= V(g) be two plane curves inA2
K . If f and g are relatively prime

in K[X1,X2] then show that C∩D is a finite set of at most (deg f ) · (degg). (Hint : Reduce to
the case f ∈ K[X1] and g ∈ K[X2] and then use part (a).)

6.5 Let L |K be a field extension and let V , W1, . . . ,Wr ⊆ An
L be algebraic K-sets with

Wi irreducible and Wi 6⊆ V for every i = 1, . . . ,r. Then there exists a polynomial f ∈
K[X1, . . . ,Xn] such that f vanishes on V but not on any Wi, i = 1, . . . ,r. (Hint : Use the
Exercise 1.9 on the Prime Avoidance.)

6.6 Let Fq be a finite field with q elements and let f , g ∈ Fq[X1, . . . ,Xn].

(a) If degXi
( f )≤ q−1 for every i = 1, . . . ,n and f (a) = 0 for every a ∈ Fn

q then f = 0.

(b) There exists a unique polynomial R( f ) ∈ Fq[X1, . . . ,Xn] such that :
(b.1) degXi

(R( f ))≤ q−1 for all i = 1, . . .n.
(b.2) deg(R( f ))≤ deg( f ).
(b.3) R( f +g) = R( f )+R(g).
(b.4) The polynomial function f −R( f ) : Fn

q → Fq is the zero function, i. e. f (a) =
R( f )(a) for every a ∈ Fn

q .

(c) ( C h e v a l l e y ’ s T h e o r e m ) If 0 ∈ VFq( f ) and if n > deg( f ), then VFq( f ) has a
non-trivialFq-rational point a∈Fn

q, a 6= 0. (Proof : Suppose on the contrary that VFq( f )= {0}. —
Use the part (b) to the polynomial F = 1− f q−1 and use (b.2), (b.4) and (a) to conclude that
R(F) = ∏

n
i=1(1−X q−1

i ). Now, use (b.2) to get :

(q−1) ·deg( f ) = deg(F)≥ deg(R(F)) = deg(∏n
i=1(1−Xq−1

i )) = (q−1) ·n
and so deg( f )≥ n. a contradiction. •)

(d) If f is homogeneous of degree 2 and if n≥ 3, then VK( f ) has a non-trivial K-rational
point. (Hint : Use Chevalley’s Theorem in the part (c).)

6.7 Let L |K be a field extension. A K-algebraic set V ⊆ Ln is called a K-c o n e ( w i t h
v e r t e x a t t h e o r i g i n ) if V = VL(F1, . . . ,Fr) for some homogeneous polynomials
F1, . . . ,Fr ∈ K[X1, . . . ,Xn]. For an algebraic set V ⊆ Kn, show that V is a cone if and only if
for each a ∈V , a 6= 0, the line L(a,0) joining a and 0 is contained in V .

∗6.8 Let K be an arbitrary field.

(a) If K is infinite then IK(A
n
K) = 0. In particular, if K is infinite, thenAn

K is irreducible.

(b) If K is finite then find a set of generators for the ideal IK(A
n
K). Deduce that if K is

finite, thenAn
K is not irreducible. (Hint : Use Exercise 6.6.)

6.9 Let L|K be a field extension and V ⊆ Ln be an L-algebraic set. Then the set VK :=V ∩Kn

of all K-rational points of V is an K-algebraic set in Kn.

6.10 Let K be an infinite and let f1, . . . , fm ∈ K[X1, . . . ,Xn]. If VK( f1)∪ ·· ·VK( fm) = Kn,
then VK( f1) = Kn (or equivalently, fi = 0) for some i ∈ {1, . . . ,m}, (Remark : One can use
this Exercise to prove the P r i m i t i v e E l e m e n t T h e o r e m (due to A b e l ) which states that :
Suppose that L |K is an algebraic field extension of an infinite field K with L = K(x1,x2, . . . ,xn) where
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x2, . . . ,xn are separable over K. Then there exists an element y ∈ L of the form y = a1x1 + · · ·+anxn
with aa, . . . ,an ∈ K such that L = K(y). )

6.11 Let K be a field.

(a) Let A be a K-algebra, a1, . . . ,an ∈ K be distinct elements and let x ∈ A be such that
x−a1, . . . ,x−an are units in A. Then 1,x, . . . ,xn−1 are linearly independent over K if and
only if the elements (x−a1)

−1, . . . ,(x−an)
−1 are linearly independent over K. (Hint : Put

yi = (x−ai)
−1 and y := ∏

n
i=1(x−ai). Then y ∈ A× and if y1, . . . ,yn are linearly independent over K,

then yy1, . . . ,yyn linearly independent over K in K +Kx+ · · ·Kxn−1. Conversely, if 1,x, . . . ,xn−1 are
linearly independent over K and if b1y1 + · · ·+bnyn = 0 with bi ∈ K, then multiply by y and compute
the co-efficient of xn−1 to get b1+ · · ·+bn = 0. Therefore 0=∑

n
i=1 bi(yi−yn) =∑

n−1
i=1 bi(ai−an)yiyn

and so y1, . . . ,yn are linearly independent over K by induction on n.)

(b) The Hilbert’s Nullstellensatz (HNS3) can be easily proved for uncountable fields (for
example, for R and C) as follows :
Let K be a countable field and L = K[x1, . . . ,xn] be a field which is finite type over K. If
x∈ L is not algebraic over K, then the elements (x−a)−1, a∈K, are K-linearly independent
over K. (Hint : Use part (a).) On the other hand DimKL is countable. (Remark : Analogously
one proves : Let K be a uncountable field and L be a field. If L is generated as an K-algebra by xi,
i ∈ I, with Card I < CardK. Then every x ∈ L is algebraic over K.)

6.12 Let L |K be a field extension with L infinite. For f1, . . . , fn ∈ K[T1, . . . ,Tm], put
V0 := {( f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)) ∈An

L | (t1, . . . , tm) ∈Am
L } .

(a) Show by an example that V0 need not be an K-algebraic set.

(b) Show that the closure V in An
L (in the Zariski topology) of the set V0 is an irreducible

K-algebraic set. (Hint : In fact V = V(Kerε f ), where ε f : K[X1, . . . ,Xn]→ K[T1, . . . ,Tm], Xi 7→ fi
for every i = 1, . . . ,n, is the substitution K-algebra homomorphism. — In this situation one says that
V is given by a p o l y n o m i a l p a r a m e t r i z a t i o n with parameters T1, . . . ,Tm. If m = 1 and
fi = T di , i = 1, . . . ,n, for some positive integers d1, . . . ,dn ∈N+ then we say that V is a m o n o m i a l
c u r v e given by the sequence d1, . . . ,dn of positive integers.)

(c) Assume that K =L is algebraically closed and K[T1, . . . ,Tm] is integral over K[ f1, . . . , fn],
then show that V0 is closed, that is, V0 =V .

6.13 (H N S 4) Let A be a K-algebra of finite type over a field K and let L |K be a field
extension with L algebraically closed. Then Hom K-alg(A,L 6= /0, i. e. there exits a K-algebra
homomorphism A→ L. Moreover, prove HNS 1 if and only if HNS 4. (Remark : In the case
when A is an integral domain, one can even demand more, namely : For given non-zero elements
f1, . . . , fr ∈ A, there exists a K-algebra homomorphism ϕ : A→ L such that ϕ( fi) 6= 0 for every
i = 1, . . . ,r. For this proof consider the finite type K-algebra A[1/ f1, . . . , fr].)

6.14 Let K be a field and let K be a fixed algebraic closure of K.
(a) Every maximal ideal m ∈ Spm K[X1, . . . ,Xn], there exists a = (a1, . . . ,an) ∈ K n with
m=ma := { f ∈ K[X1, . . . ,Xn] | f (a) = 0}.
(b) (H N S 5) Let K be an algebraically closed field. Then the map

Kn −→ Spm K[X1, . . . ,Xn], a 7−→ma = 〈X1−a1, . . . ,Xn−an〉
is bijective. Moreover, for any ideal a ∈ I(K[X1, . . . ,Xn]), a ∈ VK(a) if and only if a⊆ma.

6.15 Let E |K be an arbitrary field extension and a ( K[X1, . . . ,Xn] be a non-unit ideal.
Then the extended ideal aE[X1, . . . ,Xn](E[X1, . . . ,Xn] is also a non-unit ideal. (Hint : Apply
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HNS1 to the field extension E |K, where E denote an algebraic closure of E. See also Exercise 5.7 (b).)
Moreover, use this result to prove the equivalence of HNS 5 (see Exercise 6.14 (b)) and
HNS 1.

6.16 Let K be any field. Then every maximal ideal m ∈ Spm K[X1, . . . ,Xn] is generated by
n irreducible polynomials f1, . . . , fn ∈ K[X1, . . . ,Xn]. (Hint : Let K be a fixed algebraic closure
of K. Then by the above Exercise 6.14 (a), m = ma := { f ∈ K[X1, . . . ,Xn] | f (a) = 0} with a =
(a1, . . . ,an) ∈ K n. Now, choose fn ∈ K[X1, . . . ,Xn−1][Xn] with fn(a1, . . . ,an−1,Xn] = µan ,K[a1,...,an−1]

(the minimal polynomial of an over the field K[a1, . . . ,an−1]). Let f ∈m. Division with remainder
over K[X1, . . . ,Xn−1] yields f = q · fn + r with r ∈ K[X1, . . . ,Xn−1][Xn] whose coefficients belong
to the kernel mn−1 of the substitution homomorphism ε : K[X1, . . . ,Xn−1]→ K[a1, . . . ,an−1]. By
induction we may assume that mn−1 is generated by f1, . . . , fn−1. Then f ∈ 〈 f1, . . . , fn−1, fn〉.
— Remark : It is even true that every reduced ideal a in K[X1, . . . ,Xn] is generated by n polynomials
f1, . . . , fn ∈ K[X1, . . . ,Xn]. Kronecker proved that an K-algebraic set V ⊆ K n can be defined (s e t -
t h e o r e t i c a l l y) by n+1 polynomials, i. e. V = V( f1, . . . , fn+1) — one can actually replace n+1
by n as proved by U. Storch. It is interesting — and difficult — question to determine under what
conditions an K-algebraic set V ⊆ K n is defined set-theoretically by n−dimV equations. Even in
the case of space curves in C3, i. e. dimV = 1 and n = 3, this is not known.)

6.17 Let K be a field and let m,m1, . . . ,mr ∈ Spm K[X1, . . . ,Xn] be a maximal ideals.

(a) The K-algebraic set VK(m)⊆An
K contains at most one point. Moreover, VK(m) 6= /0 if

and only if if m ∈ K-Spec K[X1, . . . ,Xn].
(b) There exists fi ∈ K[X1, . . . ,Xi], 1≤ i≤ n, such that m is generated by f1, . . . , fn. (Hint :
Induction on n. For each i = 1, . . . ,n, m∩K[X1, . . . ,Xi] is a maximal ideal in K[X1, . . . ,Xi] by HNS 3.
Use Induction on n. See also Exercise 6.16.)

(c) More generally, there exists fi ∈ K[X1, . . . ,Xi], 1 ≤ i ≤ n, such that the ideal a :=
m1∩·· ·∩mr is generated by f1, . . . , fn. In particular, the ideal IK({P1, . . . ,Pr}) of a finite
subset {P1, . . . ,Pr} ⊆An

K is generated by n polynomials. By Chinese Remainder Theorem
K[X1, . . . ,Xn]/a ∼= ∏

r
i=1 K[X1, . . . ,Xn]/mi and K[X1, . . . ,Xn]/ IK({P1, . . . ,Pr) ∼= Kr as K-

algebras.

∗∗6.18 Let a be an ideal in a polynomial ring K[X1, . . . ,Xn] over a field K and let A :=
K[x1, . . . ,xn] = K[X1, . . . ,Xn]/a.

(a) Show that the ideal IK(VK(a))/a in A is the intersection K-rA :=
⋂

ξ∈K-Spec A mξ of
the maximal ideals mξ corresponding to the homomorphisms (points) ξ ∈ K-Spec A and
that the equality IK(VK(a)) =

√
a is equivalent to the condition that the nilradical of A and

the K-radical of A coincide, i. e. nA = K-rA. (Hint : Use the identifications

Kn←−−−−−−−−−−→ HomK-alg(K[X1, . . . ,Xn] ,K) ←−−−−−−−−−−→ K-Spec K[X1, . . . ,Xn] ,

a ←−−−−−−−−−−−→ ξa : Xi 7→ ai , i = 1, . . . ,n ←−−−−−−−−−−−−−→ ma = Kerξa .

to note that VK(a)=HomK-alg(A,K)=K-Spec A. — Remark : The ideal K-rA is an invariant of the
K-algebra A, called the K-r a d i c a l of A. Therefore the equality IK(VK(a))=

√
a implies the equality

IK(VK(b))=
√
b for any ideal b in a polynomial algebra K[Y1, . . . ,Ym] with A∼= K[Y1, . . . ,Ym]/b.)

(b) Suppose that K is infinite. Let f ∈ K[X ,Y ] be a prime polynomial which is monic Y
with coefficients in K[X ]. Show that IK(VK( f )) = ( f ) if and only if VK( f ) has infinitely
many points. (Hint : Use the finite free ring extension K[X ] ↪→ K[X ,Y ]/( f ) of integral domains to
prove that K-rA 6= 0 if and only if VK( f ) is finite and use the part (a). — Remark : Of course, if K
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is algebraically closed and if f is a prime polynomial in K[X ,Y ], then VK( f ) is infinite and hence
IK(VK( f )) = ( f ). This is a very special case of HNS2.)

6.19 Let K be a field. If the unit group K× of K is finitely generated, then K is finite.
(Remarks : One can generalize this result to commutative rings which has only finitely many
maximal ideals. — Such rings are called s e m i-l o c a l. Let L |K be a finite field extension of an
infinite field K. Then the quotient group L×/K× of the multiplicative groups of L and K is not even
finitely generated. This is a much deeper result. However, it is much easier to prove that the quotient
group L×/K× is finite. See also Exercise 4.15.)

6.20 Let K be a field. A commutative K-algebra of finite type in aritinian if and only if it is
finite over K. (Hint : Use HNS 3.)

6.21 (a) A finite commutative reduced C-algebra 6= 0 is isomorphic to a product algebra
Cn, n ∈N, where n is determined uniquely by the isomorphism type of the algebra. Every
such a C-algebra is cyclic.

(b) A finite commutative R-algebra 6= 0 is isomorphic to a product algebra Rm×Cn,
m,n ∈N, where the natural numbers m,n are determined uniquely by the isomorphism type
of the algebra. Every such R-algebra is cyclic.

6.22 Let K be a field. If K is finite type over Z, then K is finite. (Hint : If CharK = 0, then
show that Q is finite type over Z-algebra.)

6.23 Let Zn := {(a1, . . . ,an) | ai ∈Z for every i = 1, . . . ,n} be the set of lattice points. If
V is an algebraic set in Cn with Zn ⊆V , then V = Cn.

6.24 The aim of this Exercise is to prove the following (generalization of solutions of
homogeneous system of linear equations, see also Chevalley’s Theorem in Exercise 6.6 (c)) :
Let K be an algebraically closed field and f1, . . . , fm ∈ K[X1, . . . ,Xn] be a system of homo-
geneous polynomials in more indeterminates than the number of equations, i. e. n ≥ m.
Then VK( f1, . . . , fm) 6= {0}. More precisely, for polynomials f1, . . . , fm ∈ K[X1, . . . ,Xn]
with VK( f1, . . . , fm) = {0}, prove that (the following steps are due to H . - J . N a s t o l d) :

(a) There exists a natural number q ∈N such that Xq
i ∈ 〈X1, . . . ,Xn〉 for all i = 1, . . . ,n.

(b) Let q∈N be as in the part (a). If f1, . . . , fm are homogeneous, then for each i = 1, . . . ,n,
there exist homogeneous polynomials h1, . . . ,hm ∈ K[X1, . . . ,Xn] of degrees < q such that
Xq

i = h1 f1 + · · ·+hm fm.
(c) If f1, . . . , fm are homogeneous, then the ring extension K[ f1, . . . , fm] ⊆ K[X1, . . . ,Xn]
id finite, i. e. K[X1, . . . ,Xn] is a finite K[ f1, . . . , fm]-algebra. |small(Hint : By the part (b),
every monomial of degree ≥ nq can be generated by monomials of lower degree.)
(d) If f1, . . . , fm are homogeneous, then m≥ n.

6.25 Let K be a field which is not algebraically closed.

(a) For every m ∈N+, there exists a non-constant polynomial fm ∈ K[X1, . . . ,Xm] whose
zero-set in Km is singleton {0 = (0, . . . ,0)}, i.e. VK( f ) = {(0, . . . ,0)}.
(b) Every K-algebraic set V ⊆ Kn, n≥ 1, is a hypersurface in Kn, i. e. it is the zero-set of a
single polynomial : V = VK( f ) with f ∈ K[X1, . . . ,Xn]. (Hint : Use the part (a).)

∗∗6.26 ( G e n e r a l i s a t i o n o f H N S 1 ) Let K be an arbitrary field, S be the set of all
polynomials in K[X1, . . . ,Xn] which have no zeros in Kn, i. e.
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S := { f ∈ K[X1, . . . ,Xn] | VK( f ) = /0}
and let a be an ideal in K[X1, . . . ,Xn]. If S∩ a = /0, then VK(a) 6= /0. (Hint : Use the Exer-
cise 6.25 (b).)

6.27 Let K be a field. Two elements x,y ∈ A in the K-algebra A are said to be K-c o n j u -
g a t e s or c o n j u g a t e over K if they are algebraic over K and if they have the same
minimal polynomial over K, i. e. µx ,K = µy ,K .

(a) Let L |K be a normal field extension. Then x, y ∈ L are conjugate over K if and only if
there exists a K-algebra automorphism ψ : L→ L such that ψ(x) = y.

(b) Let L |K be a normal field extension and let L1 be an intermediary field such that
every polynomial in K[X ] which has a zero in L has a zero in L1. Then L = L1. (Hint : We
may assume that L |K is finite. If K is finite, then the assertion from that fact that L has a primitive
element, i. e. L = K(x) for some x ∈ L. Now, if K is infinite and if ϕ1, . . . ,ϕr ∈ AutK-alg L are all
K-automorphisms of L, then L =

⋃r
i=1 ϕ i(L1) by the part (a) and hence L = L1.)

6.28 Let L |K be a normal field extension. Two points a=(a1, . . . ,an) and b=(b1, . . . ,bn)∈
Ln, n ∈N+ are K-conjugates if and only if there exists a K-automorphism σ : L→ L of L
such that σ(bi) = ai for every i = 1, . . .n.

(a) Let V ⊆ Ln be an K-algebraic set. If a ∈V , then V contains all K-conjugates of a.

(b) Let V ⊆ Ln be a finite set of points with the property that : if a ∈V , then V contains
all K-conjugates of a. Then V is a K-algebraic set. (Hint : If a ∈ Ln, then there exist an ideal
a⊆ K[X1, . . . ,Xn] and a K-algebra isomorphism K[a1, . . . ,an] ∼←− K[X1, . . . ,Xn]/a.)

R 6.29 The R-algebra C :=R[X ,Y ]/〈X2 +Y 2−1〉 is not UFD, The maximal ideals corre-
sponding to the real points need two generators. The maximal ideals corresponding to the
complex points are principal ideals.
(Hint : The real circle algebra C :=R[X ,Y ]/(X2 +Y 2−1) with theR-spectrumR-SpecC = S1 =
{(a,b) ∈R2 | a2 +b2 = 1} is not factorial. The maximal ideals m(a,b) = (x−a,y−b) corresponding
to the points (a,b) ∈ S1, need two generators. Suppose that the maximal ideal m(a,b) ⊆ C is generated
by f ∈ C. Then f induces a real-valued analytic function on S1 which has a simple zero at (a,b)
and no other zeros. Hence, f changes the sign at (a,b) and has no zero on S1r{(a,b)} ∼=R1. This
contradicts the intermediate value theorem.
For an algebraic proof, consider the quadratic R[x]-algebra C = R[x][y] which is free with basis
1,y over the polynomial algebra R[x]⊆ C with defining equation y2 = 1− x2. Then the norm (see
the Footnote No 4) of an element g=g0 +g1y, g0,g1 ∈R[x], is N(g)=NC

R[x](g)=g2
0 +g2

1(x
2−1).

In particular, N(y) = x2− 1 and, either N(g) ∈ R× or deg(N(g)) ≥ 2. Now, if f ∈ C generates
m(a,b), then N( f ) has to be a linear polynomial, since DimR(R[x]/R[x]N( f )) = DimR(C/C f ) = 1
which is impossible (the leading term of N( f ) is of even degree). However, the square m2

(a,b) =

〈(x−a)2,(x−a)(y−b), (y−b)2〉= 〈ax+by−1〉 is a principal ideal.)

R 6.30 The R-algebra M :=R[X ,Y ]/〈X2 +Y 2 +1〉 is a PID, but not an Euclidean domain1.

1 Euclidean functions and Euclidean domains Let A be an integral domain. A Euclidean function on A is a
map δ : Ar{0} →N which satisfies the following property : for every two elements a,b ∈ A with b 6= 0 there
exist elements q and r in A such that a = qb+ r and either r = 0 or δ (r)< δ (b). If there is a Euclidean function
δ on A, then A is called a Euclidean domain (with respect to δ ). For example, the usual absolute value function
| · | :Zr{0}→N, a 7→ |a| is a Euclidean function on the the ring of integersZ ; For a field K, the degree function
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(Remark : The maximal Spm M contains only complex points and can be identified with the punc-
tured real projective plane, i. e. the Möbius strip.)
(Hint : Use the following simple key observation that the K-Spectrum of a K-algebra of finite type A
over a field K which is an Euclidean domain with a small unit group is non-empty. More precisely :

Proposition Let A be an affine domain 2 over a field K. If A is an Euclidean domain, then there exists
a maximal ideal m ∈ Spm A such that the natural group homomorphism π× : A×→ (A/m)× (which
is the restriction of the canonical surjective map π : A→ A/m) is surjective. In particular, if A is an
Euclidean domain with A× = K×, then K-Spec A 6= /0.
Proof : Suppose that A is an Euclidean domain and that δ : A \ {0} →N is a minimal Euclidean
function on A. Then choose an element f ∈ A such that δ ( f ) := Min{δ (a) | 0 6= a ∈

(
ArA×

)
}.

Such an element f exists, since the ordered set (N,≤) where ≤ is the usual order on N, is well
ordered. We claim that f is irreducible. For, if f = gh with g,h ∈ A, then δ ( f ) = δ (gh) ≥ δ (g).
In the case δ ( f ) > δ (g), g ∈ A× by the minimality of δ ( f ). In the case δ (gh) = δ ( f ) = δ (g),
h ∈ A×. Therefore, m= A f is a non-zero prime ideal and hence a maximal ideal in A. To prove that
π× : A×→ (A/m)× is surjective, let z ∈ (A/m)×. Then z = π(g) for some g ∈ A and g /∈m. Use the
Euclidean function δ to write g = f q+ r with q,r ∈ A and either r = 0 or δ (r)< δ ( f ). Since z 6= 0,
i. e. g 6∈m, we must have r 6= 0 and hence δ (r)< δ ( f ). But, then by the minimality of δ ( f ), r ∈ A×

and z = π(g) = π(r) = π×(r). •
We can reformulate the above Proposition in the language of algebraic geometry as :
Corollary Let C be an affine algebraic irreducible curve over a field K. If C has no K-rational points
and the unit group of the coordinate ring K[C] of C is K×, then K[C] is not a Euclidean domain.)

R 6.31 In most textbooks it is stated that there are examples of principal ideal domains which
are not Euclidean domains. However, concrete examples are almost never presented with
full details. In this subsection we use HNS 3 to give a family of such examples with full
proofs which are accessible even to undergraduate students. The main ingredients are
computations of the unit group3 A× of A by using the norm map4 and the K-Spec A for an
affine algebras over a field K.

f 7→ deg f is a Euclidean function on the the polynomial ring K[X ] ; the order function f 7→ ord f , is a Euclidean
function on the the formal power series ring K[[X ]].
Note that in the definition of a Euclidean function on A, many authors also include the condition that δ respect the
multiplication, i. e. δ (ab)≥ δ (a) for all a,b ∈ Ar{0}. However, if A is a Euclidean domain, then there exists a
so-called minimal Euclidean function δ on A which respects the multiplication and the equality δ (ab) = δ (a) for
a,b ∈ Ar{0} holds if and only if b ∈ A×. For a proof we recommend the reader to see the beautiful article by
P. Samuel : [Samuel, P. : About Euclidean rings. J. Algebra 19 (1971), 282–301.]
In a Euclidean domain, any two elements have a gcd which can be effectively computed by Euclidean algorithm.
In particular, Euclidean domains are principal ideal domains and hence unique factorization domains.

2 A K-algebra of finite type over a field K is called an a f f i n e a l g e b r a o v e r K. An affine algebra over a
field K which is an integral domain is called a f f i n e d o m a i n o v e r K.

3 Unit Groups For a ring A, the group A× of the invertible elements in the multiplicative monoid (A, ·) of the
ring A is called the unit group ; its elements are called the units in A. The determination of the unit group of
a ring is an interesting problem which is not always easy. Some simple examples are : Z×={−1,1}; if n≥ 2,
then Z×n ={m ∈N | 0≤ m < n and gcd(m,n)=1}; if K is a field then K×=Kr{0} ; if A is an integral domain,
then (A[X1, . . . ,Xn])

×=A×; if K is a field, then (K[T,T−1])×={λT n | λ ∈ K×and n ∈Z} ∼= the product group
K××Z ; (A[[X1, . . . ,Xn]])

×={ f ∈ A[[X1, . . . ,Xn]] | f (0) ∈ A×}.
4 Norm The notion of the norm is very useful for the determination of the unit groups of some domains. Let R

be a (commutative) ring and let A be a finite free R-algebra. For x∈A, let λx : A→ A denote the (left) multiplication
by x. The norm map NA

R : A→ R, x 7→ Det λx, contains important information about the multiplicative structure of
A over R. The following properties of the norm map are easy to verify :

The norm map NA
R : A→ R is multiplicative, i. e. NA

R(xy)=NA
R(x) ·NA

R(y) for all x,y ∈ A, NA
R(a)=an for every

a ∈ R, where n :=RankR(A). Further, for an element x ∈ A, x ∈ A× if and only if NA
R(a) ∈ R×.
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(a) In the following examples we shall illustrate the use of the norm map to compute the
unit group.

(1) Lemma Let ϕ(X)∈R[X ] be a non-constant polynomial with positive leading coeffi-
cient, Φ :=Y 2+ϕ(X)∈R[X ,Y ] and let A :=R[X ,Y ]/〈Φ〉. Then A is an affine domain (over
R) of (Krull) dimension 1 and A× =R×.
(Proof Let x,y ∈ A denote the images of X ,Y in A respectively. Then A is a freeR[X ]-algebra of rank
2 with R-basis 1,y, i. e. A =R[X ]+R[X ] · y and y2 =−ϕ(X). Further, let N := NA

R[X ] : A→R[X ]

denote the norm-map of A overR[X ]. Then N(F +Gy) = Det
(

F −Gϕ

G F

)
= F2 +G2ϕ for every

F,G ∈R[X ]. Therefore F +Gy ∈ A× if and only if F2 +G2ϕ ∈R[X ]× =R×, equivalently, F ∈R×
and G = 0, since the leading coefficient of ϕ is positive by assumption. This proves that A× =R×.)

(2) The R-algebras
(i) P :=R[X ,Y ]/〈Y 2−X〉 ∼=R[Y ],
(ii) H :=R[X ,Y ]/(X2−Y 2−1)∼=R[X ,Y ]/〈XY −1〉 ∼=R[Z,Z−1],
(iii) C :=R[X ,Y ]/〈X2 +Y 2−1〉,
(iv) Lb,c :=R[X ,Y ]/〈Y 2 +bX2 + c〉 with b,c ∈R,b > 0,
are all affine domains (over R) of dimension one, (i. e. every non-zero prime ideal is
maximal) and H× ∼=R××Z, P× = K× = L×b ,c =R

×. For the R-affine domains H (see
(ii) above) and C (see (iii) above), the assumptions in Proposition in Exercise 6.30 are not
satisfied, but H is a Euclidean domain and C is not a Euclidean domain, in fact, not even a
PID or a UFD, see Exercise 6.29.

(b) Lemma Let ϕ(X) ∈ R[X ] be a non-constant polynomial with ϕ(α) > 0 for every
α ∈R and let Φ :=Y 2 +ϕ(X) ∈R[X ,Y ]. Then the affine domain A :=R[X ,Y ]/〈Φ〉 is not
a Euclidean domain. In particular, Lb,c = R[X ,Y ]/〈Y 2 + bX2 + c〉 with b, c ∈ R, b>0,
c>0 is not a Euclidean domain.
(Proof : Note that A× =R× by the part (a) (1) and R-SpecA = {(α,β ) ∈R2 | Φ(α,β ) = 0}= /0
by the assumption on ϕ . Therefore A can not be a Euclidean domain by Corollary in Exercise 6.30.
•)
(c) In the following theorem, we give a criterion for the affine R-domain Lb ,c to be a
principal ideal domain :
Theorem Let b, c∈R, b>0 and c 6=0. Then the affine domain Lb,c:=R[X ,Y ]/〈Y 2+bX2+c〉
over R is a principal ideal domain if and only if c > 0.

(Proof : By replacing X by
√
|c|/bX and Y by

√
|c|Y , it follows that Lb ,c ∼=

{
L1 ,1 if c > 0,
L1 ,−1 if c < 0,

as R-algebras and hence we may assume that b = 1 and c = ±1. Since L1 ,−1 is not a principal
ideal domain by Exercise 6.29, it is enough to prove that A := L1 ,1 is a principal ideal domain. Note
that B :=C⊗R A =C[X ,Y ]/〈X2 +Y 2 +1〉 ∼−→C[U,V ]/〈UV −1〉 ∼=C[T,T−1] is a principal ideal
domain and that B is a free A-algebra with basis 1, i, where i ∈C with i2 +1 = 0. Let x ,y ∈ B denote
the images of X , Y in B respectively and let σ : B→ B, i 7→ −i, denote the conjugation automorphism
of B over A. Then σ2= idB and (x+ iy) ·σ(x+ iy)=(x+ iy)(x− iy)=−1, in particular, σ(x+ iy)=
−(x+ iy)−1. Further, an element f ∈ B belongs to A if and only if σ( f )= f . Moreover, B×=
{λ (x+ iy)n | λ ∈C× and n ∈Z}.
Let A be any ideal in A. To show that A is principal, we may assume that A 6= 0 and A 6= A. Since B is
a PID, the ideal AB(6= 0) generated by A in B is principal. We claim that there exists f ∈ A such that
AB = B f . First choose g∈ B, g 6= 0 such that AB = Bg. Since Bσ(g) = σ(Bg) = σ(AB) = σ(A)B =
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AB = Bg and since B is an integral domain, there exists a unit u ∈ B× such that σ(g) = u ·g. Further,
since σ2 = idB and g 6= 0, we have u ·σ(u) = 1. Therefore u = λ (x+ iy)n for some (λ ,n) ∈C××Z
and 1 = u ·σ(u) = λ (x+ iy)n ·σ(λ )(−1)n(x+ iy)−n = (−1)n| |λ |2. This proves that n is even and
|λ |2 = 1, i. e. n = 2m and λ = eit with m ∈Z and t ∈R.

Now, put f := imeit/2(x+ iy)m ·g. Then AB = Bg = B f . To show that f ∈ A, it is enough to prove
that σ( f ) = f . We have

σ( f ) = (−i)me−it/2(x− iy)m ·σ(g) = (−i)me−it/2 · (x− iy)m ·u ·g

= (−i)me−it/2(x− iy)m · eit(x+ iy)2m ·g

= (−i)meit/2(x− iy)m(x+ iy)m(x+ iy)m ·g

= (−i)m(−1)meit/2(x+ iy)m ·g = imeit/2(x+ iy)m ·g = f .

Therefore, since B is a free A-module with basis 1, i, it follows that A= AB∩A = B f ∩A = A f is a
principal ideal. •)
(d) Finally, we come to a class of affine domains overR which are principal ideal domains,
but not Euclidean domains :
Theorem Let b, c∈R with b > 0 and c > 0 and let Φ :=Y 2+bX2+c∈R[X ,Y ]. Then the
affine R-domain Lb ,c :=R[X ,Y ]/〈Φ〉 is a principal ideal domain and is not an Euclidean
domain.
(Proof : By Theorem in part (c) Lb ,c is a principal ideal domain and by Lemma in part (b) Lb ,c is not
a Euclidean domain.)
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