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7 . R i n g s a n d M o d u l e s o f F r a c t i o n s
— L o c a l i z a t i o n∗

Submit a solution of ANY ONE of the ∗E x e r c i s e ONLY. Due Date : Thursday, 19-03-2020
Complete Correct Solutions of the ∗∗ E x e r c i s e carry BONUS POINTS !
∗ Localization is a very powerful technique in Commutative Algebra that often allows to reduce
questions on rings and modules to union of smaller problems. It is motivated from both an algebraic
and a geometric point of view.

In the following Exercises, let A be a commutative ring. For a multiplicatively closed subset S⊆ A,
let ιS : A→ S−1A, a 7−→ a/1, be the natural ring homomorphism. With this S−1A is endowed with
the A-algebra structure with the structure homomorphism ιS.

For an A-module V and let ιV
S : V → S−1V , x 7−→ x/1, be the natural map. With the natural scalar

multiplication S−1A×S−1V → S−1V , (a/s,x/t) 7−→ (ax)/(st), the abelian group S−1V is endowed
with the S−1A-module structure.
Moreover, the assignment S−1 : A-Mod S−1A-Mod, V p S−1V , defines a covariant functor from
the category of A-modules to the category of S−1-modules.

7.1 Let A be a commutative ring and let S⊆ A be a multiplicatively closed subset.
(a) Let p ∈ SpecA with S∩p= /0. Then the natural map ι : A→ S−1A induces an isomor-
phism of rings Ap

∼−→
(
S−1A

)
S−1p

.

(b) Let T ⊆ A be a multiplicatively closed subset with T ⊆ S. Then the natural map
ιS : A→ S−1A induces a ring homomorphism ιT ,S : T−1A→ S−1A, in particular, S−1A
is an T−1A-algebra with the structure homomorphism ιT ,S. Further, the T−1A-algebra
S−1A is canonically isomorphic to the ring of fractions of T−1A with respect to the image
ιT (S) of S in T−1A under the canonical map ιT : A→ T−1A, i. e. The ring homomorphism
ιT : A→ T−1A induces an T−1A-algebra homomorphism

S−1A ∼−→ (ιT (S))
−1 (T−1A

)
such that the diagram A

ιS //

ιT

��

S−1A

∼=

��
T−1A

ιι(S) //

ιT ,S

77

(ιT (S))
−1 (T−1A

)
is commutative.
∗7.2 Let A be a commutative ring. A multiplicatively closed subset S in A is called s a t u -

r a t e d if for all a,b ∈ A, ab ∈ S implies that a ∈ S and b ∈ S.
(a) For a multiplicatively closed subset S⊆ A, let

S := {a ∈ A | there exists b ∈ A with ab ∈ S}
is a multiplicatively closed in A, S⊆ S = ι

−1
S ((S−1A)×) , where ιS : A→ S−1A, a 7→ a/1 is
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Page 2 7. Rings and Modules of Fractions — Localization Exercise Set 7

the natural map and S is the smallest saturated multiplicatively closed subset containing S
and hence S is called the s a t u r a t i o n of S (in A). Further, S is saturated, i. e.

(
S
)
= S

and the natural map (see Exercise 6.1 (b)) S−1A ∼−→ S−1A is an isomorphism.

(b) If p∈SpecA, then the multiplicatively closed subset Arp is saturated. More generally,
a multiplicatively closed subset S⊆A is saturated if and only if ArS is a union of prime
ideals.

(c) If S and T are multiplicatively closed subset in A, then the A-algebras S−1A and T−1A
are isomorphic if and only if S = T .

7.3 (To t a l Q u o t i e n t r i n g) Let A 6= 0 be a commutative ring and S0 := Nzd(A) =
ArZ(A) be the set of all n o n - z e r o d i v i s o r s 1 in A. Then S0 is a multiplicatively
closed subset in A. The ring of fractions S−1

0 A is called the t o t a l q u o t i e n t r i n g
of A and is usually denoted by Q(A). The natural ring homomorphism ιS0 : A→ Q(A) is
injective and hence A can be identified with a subring of its total quotient ring. In particular,
if A is an integral domain, then Q(A) is the field of fractions of A (the quotient field of A).

(a) S0 is the largest multiplicatiely closed subset of A for which the homomorphism
ιS0 : A→ S−1

0 A is injective.

(b) Every element in Q(A) is either a zerodivisor or a unit.

(c) Every non-zero ring of fractions S−1A of a integral domain is canonically isomorphic
to a subring of the quotient field Q(A) of A.

(d) For every ring A in which every non-unit is a zerodivisor the natural homomorphism
ιS0 : A→ S−1

0 A is bijective.

7.4 Let A be an integral domain with the quotient field K = S−1A, where S = Ar{0}. Then
in K the following equalities hold :

A =
⋂

p∈SpecA

Ap =
⋂

m∈Spm A

Am .

7.5 (a) Let A be an integral domain, S0 := Ar{0} and K = S−1
0 A = Q(A) be the quotient

field of A. Then A = K if and only if the canonical homomorphism
S−1

0 Hom A(K,A)−→ Hom S−1
0 (A)

(
S−1

0 K , S−1
0 A

)
is surjective. (Hint : Consider idK ! —Once again if K = A is finite over A, then A = K.)

(b) Let A be a commutative ring and S ⊆ A be a multiplicatively closed set. If S−1A is a
finite A-module, then S−1A is isomorphic to the A-module A/Ker ιS, where ι : A→ S−1A is
the natural ring homomorphism.

7.6 Let A be a commutative ring.

(a) Let S⊆ A be a multiplicatively closed subset. Then S−1 commutes with the nilradical,
i. e. nil(S−1A) = S−1(nilA).

1 Zerodivisors in a ring An element a ∈ A in a ring A is called a z e r o d i v i s o r in A if there exists b ∈ A,
b 6= 0 with ab = 0. An element which is not a zerodivisor is called a n o n - z e r o d i v i s o r in A. Note that 0 is
a zerodivisor in A if and only if the ring A 6= 0. The set of all zerodivisors in the ring A is denoted by Z(A) and
hence the Nzd(A) = ArZ(A) is the set of all non-zerodivisors in A.
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(b) A prime ideal p ∈ (SpecA,⊆) if and only if Spec Ap is singleton.

(c) If A is reduced and if p∈(SpecA,⊆) is minimal, then Ap is a field.

(d) Let a be an ideal in A and let Sa := 1+a := {1+a | a ∈ a}. Then S is a mutiplicatively
closed set in A and aS−1

a A⊆mS−1
a A = the Jacobson-radical of S−1

a A. What is the saturation
Sa (see Exercise 7.2) of the multiplicatively closed set Sa?

7.7 Let A be a commutative ring, a⊆ A an ideal and let S⊆ A be a multiplicative closed
subset. The residue-class homomorphism πa : A→ A/a induces a canonical surjective
A-algebra homomorphism S−1A−→ πa(S)−1 (A/a) with kernel aS−1A. In particular, there
is a canonical A-algebra isomorphism S−1A/aS−1SA ∼−−−−→ πa(S)−1 (A/a). Furthermore,
there is a natural bijection

Spec S−1(A/a) ∼−−−−→ {p ∈ SpecA | a⊆ p and S∩p= /0} ⊆ SpecA.
7.8 Let A be a commutative ring.

(a) Let p ∈ SpecA be a prime ideal in A, κ(p) = Ap/pAp the residue field of the local
ring Ap, Q(A/p) be the field of fractions of the integral domain A/p and πp : A→ A/p,
πpAp : Ap → κ(p) be the canonical residue-class homomorphisms. Then there exists a
natural isomorphism σp : Q(A/p)−→ κ(p) (πp(a)/πp(s) 7−→ πpAp(a/s) of fields such
that the diagram

A
ι // Ap

πpAp // κ(p)

A
πp // A/p

ι // Q(A/p)

σp∼=

OO

is commutative. We shall use σp to identify κ(p) and Q(A/p). With this for f ∈ A, the
image of f under either composite πpAp ◦ ι or ι ◦πp is denoted by f (p) and is called the
v a l u e of f at p.
(b) The ring A is reduced if and only if the map

A−−−−−→ ∏
p∈Spec A

κ(p) , f 7−→ ( f (p))p∈Spec A

is injective. (Remark : This means for a reduced ring A, an element f ∈ A is zero if and only if it is
the zero function on Spec A.)

7.9 Let A be a commutative ring and let T = {ti | i ∈ I} be a family of elements in A
and let S := 〈T , ·〉 ⊆ A be the multiplicative submonoid of (A, ·) generated by T , i. e. S
consists of all finite products of elements in T . Then there exists a canonical isomorphism
of A-algebras

S−1A ∼−−−−→ A[Xi | i ∈ I]/〈tiXi−1 | i ∈ I〉.
In particular, if T is finite, then S−1A is a finite type algebra over A generated by S−1 :=
{1/s | s ∈ S}. If T = {t}, then At

∼−→ A[X ]/〈tX−1〉 is a cyclic A-algebra.

7.10 The localization A[X ]X = S−1(A[X ]) of the polynomial ring over a ring A with S =
{Xn | n ∈N} is the so-called ring of L a u r e n t p o l y n o m i a l s over A usually denoted
by A[X ,X−1] which consists of all formal expressions of type ∑n∈Z anXn, where (an)n∈Z ∈
A(Z) endowed with conventional addition and multiplication.

7.11 Let A[Xi | i ∈ I] be the polynomial rings over a ring A in indeterminates Xi, i ∈ I. The
for a multiplicatively closed subset S⊆ A, there exists a canonical isomorphism of rings
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Page 4 7. Rings and Modules of Fractions — Localization Exercise Set 7

S−1(A[Xi | i ∈ I]) ∼−−−−→
(
S−1A

)
[Xi | i ∈ I].

7.12 Let K[X ,Y ] be the polynomial ring over a field K, a = 〈X2,XY 〉 ⊆ K[X ,Y ] and
S = K[X ,Y ]r〈X〉. Then (in contrast to the case when a= p ∈ Spec K[X ,Y ])

a( aS−1(K[X ,Y ])∩K[X ,Y ].

7.13 Let A be a integral domain.

(a) (L e m m a o f N a g a t a) Suppose that every a ∈ Ar({0}∪A×) has a irreducible
factorisation, i. e. is a product of irreducible elements in A (for example, A is a noetherian
integral domain) and that S ⊆ A is a multiplicatively closed subset with 0 6∈ S and every
non-unit in S has a prime factorisation, i. e. is product of prime elements in A. Then if
S−1A is a factorial domain, then A is also a factorial domain.

(b) (T h e o r e m o f G a u s s) If A is a factorial domain, then the polynomial ring A[X ]
is also a factorial domain. (Hint : We give a proof using the Lemma of Nagata in Part (a). Let
S := Ar{0}. Then S−1(A[X ]) ∼−→

(
S−1A

)
[X ] (see Exercise 7.11) is a PID, since S−1A = Q(A) is

the quotient field of A and hence a factorial domain. Further, since A is factorial, S is generated by
prime elements in A which are also prime elements in A[X ] (proof?). Now use Lemma of Nagata
to conclude that A[X ] is factorial. — Remark : Lemma of Nagata is very useful to produce many
examples of factorial domains. For example, one can use it to prove the following theorem :
(K l e i n-N a g a t a) Let K be a field of Characteristic 6= 2. For every natural number n ≥ 5 and
arbitrary non-zero elements a1, . . . ,an ∈ K, the finite type K-algebra

A := K[X1, . . . ,Xn]/〈a1X2
1 + · · ·+anX2

n 〉
is a factorial integral domain.)

7.14 Let A be a commutative ring, S ⊆ A be a multiplicatively closed set in A and let V
be an A-module. We say that an element a ∈ A is a n o n - z e r o d i v i s o r o n V if the
map λa : V → V , x 7→ ax is injective. If a ∈ A is a non-zerodivisor on V , then a/1 is a
non-zerodivisor on the S−1A-module S−1V . In particular, if a ∈ A is a non-zerodivisor in A,
then a/1 is a non-zerodivisor in S−1A.

7.15 Let V be an A-module, S⊆A be a multiplicatively closed subset and let ιV
S :V→ S−1V ,

x 7−→ x/1, be the natural map.

(a) Ker ιV
S = {x ∈ V | sx = 0 for some s ∈ S}. In particular, ιV

S is injective if and only
if λs : V → V , v 7→ sv, is injective for every s ∈ S. If S0 = Nzd(A) is the set of all non-
zerodivisors in A, then Ker ιV

S0
= tAV = {x ∈ V | sx = 0 for some s ∈ S0 } is the torsion-

submodule of V .

(b) The map ιV
S is bijective if and only if all λs, s ∈ S, are bijective. In this case, there is a

unique S−1A-module structure on V which is induced by the given A-mdule structure on V .
the scalar multiplication of S−1A on V is : (a/s) · x = aλ−1

s (x), a ∈ A, x ∈V .

(c) The natural ring homomorphism ιS : A→ S−1A is bijective if and only if S⊆ A×.

7.16 For A-submodules U and U ′ of an A-module V and for ideals a, b in A, we have

(1) S−1(U ∩U ′) = S−1U ∩S−1U ′. (2) S−1(U +U ′) = S−1U +S−1U ′.
(3) S−1(U : U ′) =

(
S−1U : S−1U ′

)
if the submodule U ′ is finitely generated

(4) S−1(aU) = S−1(a)S−1U . (5) S−1(ab) = S−1aS−1b.
(6) S−1(a∩b) = S−1(a)∩S−1(b). (7) S−1(

√
a) =

√
S−1a.
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(8) S−1(a : b) =
(
S−1a : S−1b

)
if the ideal b is finitely generated.

7.17 Let A be a commutative ring and V be a finite A-module. For a multiplicatively closed
subset S in A, show that S−1V = 0 if and only if sV = 0 for some s∈ S, i. e. S∩Ann A V 6= 0.

7.18 ( L e m m a o f D e d e k i n d ) Let A be a commutative ring, V be a finite A-module
and a be an ideal in A with V = aV . Show that (1+a)V = 0 for some a ∈ a. (Hint : Note
that (1+a)−1V1+a = 0 by Exercise 6.6 (d) and the L e m m a o f K r u l l - N a k a y a m a 2

— Another elementary proof : Suppose that V =Ax1+· · ·+Axn and Vi :=Ax1+· · ·+Ax i, i=0, . . . ,n.
By induction show that there are elements a j ∈ a such that (1−a j)V ⊆ aVn− j, j=0, . . . ,n.)

7.19 (M o d u l e s w i t h r a n k) Let A be a non-zero commutative ring, S0 be the multi-
plicatively closed subset of non-zerodivisors in A and Q(A) = S−1

0 A be the total quotient
ring of A (see Exercise 6.3). An A-module V is called a m o d u l e w i t h r a n k o v e r A
if S−1

0 V is a free Q(A)-module ; in this case, we also say that V h a s r a n k o v e r A and
put RankAV := RankQ(A)S

−1
0 V .

(a) Every free A-module V is n A-module with rank and in this case its rank is nothing but
the rank of the free A-module V , i. e. the cardinality of an A-basis of V .

(b) If A is an integral domain, then Q(A) is the quotient field of A and hence every A-module
V has rank and RankAV = Dim Q(A) S−1

0 V .

(c) If V is an A-module with rank, then S−1
0 V has a Q(A)-basis of the type xi/1, i ∈ I and

xi, i ∈ I, s a maximal linearly independent (over A) family in V .

(d) Every finite torsion-free A-module with rank is isomorphic to a A-submodule of a finite
free A-module.
7.20 Let A be a commutative ring and let V be a projective A-module (i. e. V is a direct sum-
mand of a free A-module). Let S0 be the multiplicatively closed subset of non-zerodivisors
in A. If S−1

0 V is a finite Q(A) = S−1
0 A-module, then V is a finite A-module. — In particular,

a projective module3 over an integral domain is finite if and only if it has a finite rank.
(Hint : Let f be an embedding of V as a direct summand in a free A-module of the type A(I), I an
indexed set and consider the image of S−1

0 f .)

7.21 If V is a noetherian (resp. artinian) A-module over a commutative ring, then S−1V is
a noetherian (resp. artinian) S−1A-module

∗7.22 Let A be a commutative ring, S a multiplicatively closed subset in A and V , W be
modules over A. For the canonical homomorphism

ΦV : S−1HomA(V,W )−→HomS−1A
(
S−1V , S−1W

)
, f/s 7−→ (x/s 7→ f (x)/s)

the following assertions hold :

(a) If V is a finite A-module, then ΦV injective.

2 Lemma of Krull-Nakayama Let A be a commutative ring, a be an ideal in A. The following
statements are equivalent : (i) a⊆mA . (ii) For every A-module V and every submodule U of V
with V/U finitely generated, the following implication hold : If V =U +aV , then V =U.

3 Recall that an A-module P is called p r o j e c t i v e over A if it is isomorphic to direct summand of a free

A-module. Equivalently, every short exact sequence 0→V ′
f ′−→V

f−→ P→ 0 of A-modules splits. See Footnote
No. 1 in Exercise Set 05.
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(b) If V is a finite A-module and if the canonical homomorphism W → S−1W injective (in
this case one say that W is S - t o r s i o n - f r e e), then ΦV bijective.

(c) If V is finitely presented (see Exercise Set 05 Footnote No. 3) A-module, then ΦV
bijective. (Hint : For a proof of (c), first note that :

For any indexed set I and any A-module W, the natural map HomA(A(I) ,W ) ∼−→W i, f 7→ ( f (ei)) i∈I
is an isomorphism of A-modules, where e i, i ∈ I, is the standard basis of the free A-module A(I).

Now, consider an exact sequence G
f−→ F

g−→ V −→ 0 with finite free A-modules F , G and the
canonical commutative diagram

0 // S−1HomA(V,W )
g ′ //

ΦV

��

S−1HomA(F,W )

ΦF

��

g // S−1HomA(G,W )

ΦG

��
0 // HomS−1A(S

−1V,S−1W )
f ′ // HomS−1A(S

−1F,S−1W )
f // HomS−1A(S

−1G,S−1W )

with exact rows, ΦF , ΦG are bijective and hence ΦV is bijective.)

7.23 Let K be a field, I be an infinite indexed set and A := KI , a := K(I) ideal in A and let
S := {(si)i∈I ∈ KI | s i 6= 0 for almost all i ∈ I}. Then S is a multiplicatively closed in A.
(a) The canonical homomorphism

ΦA/a : S−1HomA(A/a,A)−→ HomS−1A((S
−1(A/a) , S−1A)

is not surjective. (Hint : The map f 7→ f (1A/a) shows HomA(A/a,A)∼= AnnAa=0 and S−1a=0.)

(b) For every infinite set J, the canonical homomorphism
ΦA(J) : S−1

(
HomA(A(J) , A)

)
−→ HomS−1A(S

−1A(J) , S−1A)
is not injective.

L o c a l - g l o b a l P r i n c i p l e :
A local-global principle is a theorem that states that some prperty holds “globally” if and only it
holds everywhere “locally.”

7.24 Let V be an A-module over a commutative ring A.

(a) Then the following statements are equivalent :

(i) V = 0. (ii) Vp = 0 for all p ∈ SpecA. (iii) Vm = 0 for all m ∈ Spm A.

(b) Let U , U ′ be A-submodules of V . Then U=U ′ if and only if Um=U ′mfor all m∈Spm A.

(c) Let x, y ∈V ′. Then x=y′ if and only if x/1 = y/1 in Vm for all m∈Spm A.

7.25 Let V be an A-module over a commutative ring A and let a⊆ A be an ideal. Suppose
that Vm = 0 for all m ∈ Spm A with m⊇ a. Then V = aV . (|bf Hint : Pass to the A/a-module
V/aV and use Exercise 7.24.)

7.26 Let A be a ring.

(a) Being reduced is a local property i. e. a ring A is reduced if and only if Am is reduced
for all m ∈ Spm A.

(b) Being an integral domain is not local property, i. e. a ring A might not be an integral
domain although the localizations Am are integral domains for all m ∈ Spm A.
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7.27 Let A be an integral domain, S⊆ A be a multiplicatively closed subset in A and let V
be an A-module. Then tS−1AS−1V = S−1tAV (recall that tAV denote the torsion-submodule
of V ). Deduce that the following statements are equivalent :
(i) V is torsion-free.
(ii) Vp is torsion-free for all prime ideals p ∈ SpecA.
(iii) Vm is torsion-free for all prime ideals m ∈ Spm A.

7.28 Let K be a field, I an infinite indexed set and A be the product ring K I . For every
p ∈ SpecA, the localization Ap is a field. In particular, p ∈ Spm A.

7.29 Let A be a commutative semi-local ring, i. e. the maximal spectrum Spm A is finite.
An A-module V is free of rank r if and only if Vm is free of rank r over Am for every
m ∈ Spm A. (Hint : One can compute modulo the Jacobson-radical mA =m1∩·· ·∩mn of A and
note that A/mA is the product of fields A/m i, i = 1, . . . ,n.)

7.30 Let A be a commutative ring.

(a) A sequence V ′→V →V ′′ of A-modules is exact if and only if for every m ∈ Spm A,
the sequence V ′m→Vm→V ′′m of Am-modules is exact.

(b) An A-module homomorphism f : V →W is injective (resp. surjective, resp. bijective,
resp. zero) if and only if fm : Vm→Wm is injective (resp. surjective, resp. bijective, resp.
zero) for every maximal ideal m ∈ Spm A, i. e. being injective, surjective, bijective and
zero-ness of a module homomorphisms are local properties.

(c) Let U be an A-submodule of an A-module V and x ∈ V . Then x ∈U if and only if
x/1 ∈Um for every m ∈ Spm A, i. e. being an element of a submodule is a local property.

7.31 Let V be an A-module of finite presentation over a commutative ring A. Then V is a
projective A-module if and only if for all m ∈ Spm A the localizations Vm are projective
Am-modules. (Remark : In general, being projective module is not a local property. But the
projective modules are always locally free.)

∗7.32 Let A be a commutative ring and let B = A[x] be a finite cyclic (commutative) free
A-algebra of rank n ∈N. Then there exists a unique monic polynomial f ∈ A[X ] of degree
n which generates the kernel of the substitution A-algebra homomorphism εx : A[X ]→ B,
X 7→ x. oreover, if m ∈ Spm A is a maximal ideal in A and if x denote the residue-class
of x in B/mB, then the residue-class of f in (A/m)[X ] is the minimal monic polynomial
µ x ,A/m. (Hint : To show that B is a free A-module with basis 1,x, . . . ,xn−1, consider the A-module
homomorphism g : An→ B, e i 7→ x i−1, i = 1, . . . ,n where ei, i = 1, . . .n, is the standard A-basis of the
free A-module An. Now, use Exercise 7.30 (b) to conclude that g is an isomorphism of A-modules.)

∗∗7.33 (K r o n e c k e r E x t e n s i o n s ) For a system Ui, i ∈ I, of indeterminates over a
(commutative) ring A, we use the short notation A[U ] := A[Ui | i ∈ I]. For a polynomial
F ∈ A[U ], the ideal C(F) generated by the coefficients of F in A is called the c o n t e n t of
F . A polynomial F ∈ A[U ] is called a p r i m i t i v e if its content C(F) is a unit ideal.
(a) A polynomial F ∈ A[U ] is primitive if and only if for every maximal ideal m ∈ Spm A,
the residue-class of F in (A/m)[U ] is not the zero-polynomial.
(b) The set S ⊆ A[U ] of all primitive polynomials in A[U ] is a saturated multiplicatively
closed subset in A[U ]. (Hint : Use the L e m m a o f M c C o y which states that : If F ∈ A[U ] is
non-zerodivisor, then there exists an element a ∈ A, a 6= 0, with aF = 0.)
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(c) For arbitrary family Ui, i ∈ I, of indeterminates the A-algebra
A(U) = A(U | i ∈ I) := S−1A[[Ui | i ∈ I],

where S is the multiplicatively closed subset of all primitive polynomials in A[U ] is called
the K r o n e c k e r e x t e n s i o n4 of A (in the indeterminates Ui, i ∈ I.)
Every Kronecker extension A→ A(U) is faithfully flat. In particular, A(U)× ∩A = A×.
Moreover, the canonical map SpecA(U) −→ SpecA induces a homeomorphism (with
respect to the Zariski topologies) Spm A(U) ∼−→ Spm A. Every maximal ideal of A(U) is
the extension of a maximal ideal of A.
5

4 Kronecker extensions provide the conceptual tools for Kronecker’s method of indeterminates (“Unbestimmten-
Methode’). Special cases of it have been used for a long time, for instance, see Exercise 4.27. A modern use of the
method can be found in Nagata’s book [Nagata, M. :, Local rings, Intersc. Publ.,New York 1962].

5 Faithfully flat algebras Let A be a commutative ring and let B is an A-algebra with the structure homomor-
phism ϕ : A→ B. We say that B is f a i t h f u l l y f l a t A - a l g e b r a if B is a flat A-module.
(a) If B 6= 0 is free A-algebra, then B is faithfully flat over A.
(b) If B is flat over A, then the following statements are equivalent :
(i) B is a faithfully flat A-algebra. (ii) B is a pure A-algebra.
(iii) For every ideal a in A, ϕ−1Ba) = a. (iv) For every maximal ideal m ∈ Spm A in A, Bm 6= B.
(c) Let A⊆ B be a flat extension of commutative rings. If B is integral over A, then B is faithfully flat over A.
(Hint : For a proof of the implication (i)⇒(ii) : Let V be an arbitrary A-module, ι : V →V(B) = B⊗V the canonical
map. Then there exists a B-module homomorphism h : (V(B))(B) −→V(B) with h◦ ι(B) = id. It follows that ι(B) is
injective and hence ι is also injective. )
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