MA 312 Commutative Algebra / Jan-April 2020

(BS, Int PhD, and PhD Programmes)

Download from : http://www.math.iisc.ac.in/patil/courses/Current Courses/...	
Tel : +91-(0)80-2293 3212/09449076304	E-mails : patil@math.ac.in
Lectures: Tuesday and Thursday ; 15:30-17:00	Venue: MA LH-5 /LH-1

7. Rings and Modules of Fractions - Localization*

Submit a solution of ANY ONE of the *E x ercise ONLY. Due Date: Thursday, 19-03-2020 Complete Correct Solutions of the ${ }^{* *}$ Exercise carry BONUS POINTS !

* Localization is a very powerful technique in Commutative Algebra that often allows to reduce questions on rings and modules to union of smaller problems. It is motivated from both an algebraic and a geometric point of view.

In the following Exercises, let A be a commutative ring. For a multiplicatively closed subset $S \subseteq A$, let $l_{S}: A \rightarrow S^{-1} A, a \longmapsto a / 1$, be the natural ring homomorphism. With this $S^{-1} A$ is endowed with the A-algebra structure with the structure homomorphism l_{S}.
For an A-module V and let $l_{S}^{V}: V \rightarrow S^{-1} V, x \longmapsto x / 1$, be the natural map. With the natural scalar multiplication $S^{-1} A \times S^{-1} V \rightarrow S^{-1} V,(a / s, x / t) \longmapsto(a x) /(s t)$, the abelian group $S^{-1} V$ is endowed with the $S^{-1} A$-module structure.
Moreover, the assignment $S^{-1}: A-\mathcal{M} \operatorname{Cod} \rightsquigarrow S^{-1} A-\mathcal{M} o d, V \rightsquigarrow S^{-1} V$, defines a covariant functor from the category of A-modules to the category of S^{-1}-modules.
7.1 Let A be a commutative ring and let $S \subseteq A$ be a multiplicatively closed subset.
(a) Let $\mathfrak{p} \in \operatorname{Spec} A$ with $S \cap \mathfrak{p}=\emptyset$. Then the natural map $\imath: A \rightarrow S^{-1} A$ induces an isomorphism of rings $A_{\mathfrak{p}} \xrightarrow{\sim}\left(S^{-1} A\right)_{S^{-1} \mathfrak{p}}$.
(b) Let $T \subseteq A$ be a multiplicatively closed subset with $T \subseteq S$. Then the natural map $\iota_{S}: A \rightarrow S^{-1} A$ induces a ring homomorphism $v_{T, S}: T^{-1} A \rightarrow S^{-1} A$, in particular, $S^{-1} A$ is an $T^{-1} A$-algebra with the structure homomorphism $t_{T, S}$. Further, the $T^{-1} A$-algebra $S^{-1} A$ is canonically isomorphic to the ring of fractions of $T^{-1} A$ with respect to the image $\iota_{T}(S)$ of S in $T^{-1} A$ under the canonical map $\imath_{T}: A \rightarrow T^{-1} A$, i. e. The ring homomorphism $\iota_{T}: A \rightarrow T^{-1} A$ induces an $T^{-1} A$-algebra homomorphism

$$
S^{-1} A \xrightarrow{\sim}\left(l_{T}(S)\right)^{-1}\left(T^{-1} A\right)
$$

such that the diagram

is commutative.
*7.2 Let A be a commutative ring. A multiplicatively closed subset S in A is called saturated if for all $a, b \in A, a b \in S$ implies that $a \in S$ and $b \in S$.
(a) For a multiplicatively closed subset $S \subseteq A$, let

$$
\bar{S}:=\{a \in A \mid \text { there exists } b \in A \text { with } a b \in S\}
$$

is a multiplicatively closed in $A, S \subseteq \bar{S}=v_{S}^{-1}\left(\left(S^{-1} A\right)^{\times}\right)$, where $\imath_{S}: A \rightarrow S^{-1} A, a \mapsto a / 1$ is
the natural map and \bar{S} is the smallest saturated multiplicatively closed subset containing S and hence \bar{S} is called the saturation of S (in A). Further, \bar{S} is saturated, i.e. $\overline{(\bar{S})}=\bar{S}$ and the natural map (see Exercise 6.1 (b)) $S^{-1} A \xrightarrow{\sim} \bar{S}^{-1} A$ is an isomorphism.
(b) If $\mathfrak{p} \in \operatorname{Spec} A$, then the multiplicatively closed subset $A \backslash \mathfrak{p}$ is saturated. More generally, a multiplicatively closed subset $S \subseteq A$ is saturated if and only if $A \backslash S$ is a union of prime ideals.
(c) If S and T are multiplicatively closed subset in A, then the A-algebras $S^{-1} A$ and $T^{-1} A$ are isomorphic if and only if $\bar{S}=\bar{T}$.
7.3 (Total Quotient ring) Let $A \neq 0$ be a commutative ring and $\mathrm{S}_{0}:=\operatorname{Nzd}(A)=$ $A \backslash \mathrm{Z}(A)$ be the set of all non-zerodivisors ${ }^{1}$ in A. Then S_{0} is a multiplicatively closed subset in A. The ring of fractions $S_{0}^{-1} A$ is called the total quotientring of A and is usually denoted by $\mathrm{Q}(A)$. The natural ring homomorphism $l_{\mathrm{S}_{0}}: A \rightarrow \mathrm{Q}(A)$ is injective and hence A can be identified with a subring of its total quotient ring. In particular, if A is an integral domain, then $\mathrm{Q}(A)$ is the field of fractions of A (the quotient field of A).
(a) S_{0} is the largest multiplicatiely closed subset of A for which the homomorphism ${ }^{\mathrm{s}_{0}}: A \rightarrow \mathrm{~S}_{0}^{-1} A$ is injective.
(b) Every element in $\mathrm{Q}(A)$ is either a zerodivisor or a unit.
(c) Every non-zero ring of fractions $S^{-1} A$ of a integral domain is canonically isomorphic to a subring of the quotient field $\mathrm{Q}(A)$ of A.
(d) For every ring A in which every non-unit is a zerodivisor the natural homomorphism ${ }^{\mathrm{s}_{0}}: A \rightarrow \mathrm{~S}_{0}^{-1} A$ is bijective.
7.4 Let A be an integral domain with the quotient field $K=S^{-1} A$, where $S=A \backslash\{0\}$. Then in K the following equalities hold:

$$
A=\bigcap_{\mathfrak{p} \in \operatorname{Spec} A} A_{\mathfrak{p}}=\bigcap_{\mathfrak{m} \in \operatorname{Spm} A} A_{\mathfrak{m}}
$$

7.5 (a) Let A be an integral domain, $\mathrm{S}_{0}:=A \backslash\{0\}$ and $K=\mathrm{S}_{0}^{-1} A=\mathrm{Q}(A)$ be the quotient field of A. Then $A=K$ if and only if the canonical homomorphism

$$
\mathrm{S}_{0}^{-1} \operatorname{Hom}_{A}(K, A) \longrightarrow \operatorname{Hom}_{\mathrm{S}_{0}^{-1}(A)}\left(\mathrm{S}_{0}^{-1} K, \mathrm{~S}_{0}^{-1} A\right)
$$

is surjective. (Hint : Consider id_{K} ! —Once again if $K=A$ is finite over A, then $A=K$.)
(b) Let A be a commutative ring and $S \subseteq A$ be a multiplicatively closed set. If $S^{-1} A$ is a finite A-module, then $S^{-1} A$ is isomorphic to the A-module $A / \operatorname{Ker} \imath_{S}$, where $\imath: A \rightarrow S^{-1} A$ is the natural ring homomorphism.
7.6 Let A be a commutative ring.
(a) Let $S \subseteq A$ be a multiplicatively closed subset. Then S^{-1} commutes with the nilradical, i. e. $\operatorname{nil}\left(S^{-1} A\right)=S^{-1}(\operatorname{nil} A)$.

[^0](b) A prime ideal $\mathfrak{p} \in(\operatorname{Spec} A, \subseteq)$ if and only if $\operatorname{Spec} A_{\mathfrak{p}}$ is singleton.
(c) If A is reduced and if $\mathfrak{p} \in(\operatorname{Spec} A, \subseteq)$ is minimal, then $A_{\mathfrak{p}}$ is a field.
(d) Let \mathfrak{a} be an ideal in A and let $S_{\mathfrak{a}}:=1+\mathfrak{a}:=\{1+a \mid a \in \mathfrak{a}\}$. Then S is a mutiplicatively closed set in A and $\mathfrak{a} S_{\mathfrak{a}}^{-1} A \subseteq \mathfrak{m}_{S_{\mathfrak{a}}^{-1} A}=$ the Jacobson-radical of $S_{\mathfrak{a}}^{-1} A$. What is the saturation $\overline{S_{\mathfrak{a}}}$ (see Exercise 7.2) of the multiplicatively closed set $S_{\mathfrak{a}}$?
7.7 Let A be a commutative ring, $\mathfrak{a} \subseteq A$ an ideal and let $S \subseteq A$ be a multiplicative closed subset. The residue-class homomorphism $\pi_{\mathfrak{a}}: A \rightarrow A / \mathfrak{a}$ induces a canonical surjective A-algebra homomorphism $S^{-1} A \longrightarrow \pi_{\mathfrak{a}}(S)^{-1}(A / \mathfrak{a})$ with kernel $\mathfrak{a} S^{-1} A$. In particular, there is a canonical A-algebra isomorphism $S^{-1} A / \mathfrak{a} S^{-1} S A \xrightarrow{\sim} \pi_{\mathfrak{a}}(S)^{-1}(A / \mathfrak{a})$. Furthermore, there is a natural bijection
$$
\operatorname{Spec} S^{-1}(A / \mathfrak{a}) \xrightarrow{\sim}\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p} \text { and } S \cap \mathfrak{p}=\emptyset\} \subseteq \operatorname{Spec} A
$$
7.8 Let A be a commutative ring.
(a) Let $\mathfrak{p} \in \operatorname{Spec} A$ be a prime ideal in $A, \kappa(\mathfrak{p})=A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$ the residue field of the local ring $A_{\mathfrak{p}}, \mathrm{Q}(A / \mathfrak{p})$ be the field of fractions of the integral domain A / \mathfrak{p} and $\pi_{\mathfrak{p}}: A \rightarrow A / \mathfrak{p}$, $\pi_{\mathfrak{p} A_{\mathfrak{p}}}: A_{\mathfrak{p}} \rightarrow \kappa(\mathfrak{p})$ be the canonical residue-class homomorphisms. Then there exists a natural isomorphism $\sigma_{\mathfrak{p}}: \mathrm{Q}(A / \mathfrak{p}) \longrightarrow \kappa(\mathfrak{p})\left(\pi_{\mathfrak{p}}(a) / \pi_{\mathfrak{p}}(s) \longmapsto \pi_{\mathfrak{p} A_{\mathfrak{p}}}(a / s)\right.$ of fields such that the diagram

is commutative. We shall use $\sigma_{\mathfrak{p}}$ to identify $\kappa(\mathfrak{p})$ and $\mathrm{Q}(A / \mathfrak{p})$. With this for $f \in A$, the image of f under either composite $\pi_{\mathfrak{p} A_{\mathfrak{p}}} \circ \boldsymbol{\imath}$ or $\imath \circ \pi_{\mathfrak{p}}$ is denoted by $f(\mathfrak{p})$ and is called the value of f at \mathfrak{p}.
(b) The ring A is reduced if and only if the map
$$
A \longrightarrow \prod_{\mathfrak{p} \in \operatorname{Spec} A} \kappa(\mathfrak{p}), f \longmapsto(f(\mathfrak{p}))_{\mathfrak{p} \in \operatorname{Spec} A}
$$
is injective. (Remark : This means for a reduced ring A, an element $f \in A$ is zero if and only if it is the zero function on Spec A.)
7.9 Let A be a commutative ring and let $T=\left\{t_{i} \mid i \in I\right\}$ be a family of elements in A and let $S:=\langle T, \cdot\rangle \subseteq A$ be the multiplicative submonoid of (A, \cdot) generated by T, i. e. S consists of all finite products of elements in T. Then there exists a canonical isomorphism of A-algebras
$$
S^{-1} A \xrightarrow{\sim} A\left[X_{i} \mid i \in I\right] /\left\langle t_{i} X_{i}-1 \mid i \in I\right\rangle .
$$

In particular, if T is finite, then $S^{-1} A$ is a finite type algebra over A generated by $S^{-1}:=$ $\{1 / s \mid s \in S\}$. If $T=\{t\}$, then $A_{t} \xrightarrow{\sim} A[X] /\langle t X-1\rangle$ is a cyclic A-algebra.
7.10 The localization $A[X]_{X}=S^{-1}(A[X])$ of the polynomial ring over a ring A with $S=$ $\left\{X^{n} \mid n \in \mathbb{N}\right\}$ is the so-called ring of Laurent polynomials over A usually denoted by $A\left[X, X^{-1}\right]$ which consists of all formal expressions of type $\sum_{n \in \mathbb{Z}} a_{n} X^{n}$, where $\left(a_{n}\right)_{n \in \mathbb{Z}} \in$ $A^{(\mathbb{Z})}$ endowed with conventional addition and multiplication.
7.11 Let $A\left[X_{i} \mid i \in I\right]$ be the polynomial rings over a ring A in indeterminates $X_{i}, i \in I$. The for a multiplicatively closed subset $S \subseteq A$, there exists a canonical isomorphism of rings

$$
S^{-1}\left(A\left[X_{i} \mid i \in I\right]\right) \xrightarrow{\sim}\left(S^{-1} A\right)\left[X_{i} \mid i \in I\right] .
$$

7.12 Let $K[X, Y]$ be the polynomial ring over a field $K, \mathfrak{a}=\left\langle X^{2}, X Y\right\rangle \subseteq K[X, Y]$ and $S=K[X, Y] \backslash\langle X\rangle$. Then (in contrast to the case when $\mathfrak{a}=\mathfrak{p} \in \operatorname{Spec} K[X, Y]$)

$$
\mathfrak{a} \subsetneq \mathfrak{a} S^{-1}(K[X, Y]) \cap K[X, Y] .
$$

7.13 Let A be a integral domain.
(a) (Lemma of Nagata) Suppose that every $a \in A \backslash\left(\{0\} \cup A^{\times}\right)$has a irreducible factorisation, i. e. is a product of irreducible elements in A (for example, A is a noetherian integral domain) and that $S \subseteq A$ is a multiplicatively closed subset with $0 \notin S$ and every non-unit in S has a prime factorisation, i. e. is product of prime elements in A. Then if $S^{-1} A$ is a factorial domain, then A is also a factorial domain.
(b) (Theorem of Gauss) If A is a factorial domain, then the polynomial ring $A[X]$ is also a factorial domain. (Hint : We give a proof using the Lemma of Nagata in Part (a). Let $S:=A \backslash\{0\}$. Then $S^{-1}(A[X]) \xrightarrow{\sim}\left(S^{-1} A\right)[X]$ (see Exercise 7.11) is a PID, since $S^{-1} A=\mathrm{Q}(A)$ is the quotient field of A and hence a factorial domain. Further, since A is factorial, S is generated by prime elements in A which are also prime elements in $A[X]$ (proof?). Now use Lemma of Nagata to conclude that $A[X]$ is factorial. - Remark: Lemma of Nagata is very useful to produce many examples of factorial domains. For example, one can use it to prove the following theorem :
(Klein-Nagata) Let K be a field of Characteristic $\neq 2$. For every natural number $n \geq 5$ and arbitrary non-zero elements $a_{1}, \ldots, a_{n} \in K$, the finite type K-algebra

$$
A:=K\left[X_{1}, \ldots, X_{n}\right] /\left\langle a_{1} X_{1}^{2}+\cdots+a_{n} X_{n}^{2}\right\rangle
$$

is a factorial integral domain.)
7.14 Let A be a commutative ring, $S \subseteq A$ be a multiplicatively closed set in A and let V be an A-module. We say that an element $a \in A$ is a non-zerodivisor on V if the map $\lambda_{a}: V \rightarrow V, x \mapsto a x$ is injective. If $a \in A$ is a non-zerodivisor on V, then $a / 1$ is a non-zerodivisor on the $S^{-1} A$-module $S^{-1} V$. In particular, if $a \in A$ is a non-zerodivisor in A, then $a / 1$ is a non-zerodivisor in $S^{-1} A$.
7.15 Let V be an A-module, $S \subseteq A$ be a multiplicatively closed subset and let $l_{S}^{V}: V \rightarrow S^{-1} V$, $x \longmapsto x / 1$, be the natural map.
(a) $\operatorname{Ker} v_{S}^{V}=\{x \in V \mid s x=0$ for some $s \in S\}$. In particular, v_{S}^{V} is injective if and only if $\lambda_{s}: V \rightarrow V, v \mapsto s v$, is injective for every $s \in S$. If $\mathrm{S}_{0}=\operatorname{Nzd}(A)$ is the set of all nonzerodivisors in A, then $\operatorname{Ker} l_{\mathrm{S}_{0}}^{V}=\mathrm{t}_{A} V=\left\{x \in V \mid s x=0\right.$ for some $\left.s \in \mathrm{~S}_{0}\right\}$ is the torsionsubmodule of V.
(b) The map τ_{S}^{V} is bijective if and only if all $\lambda_{s}, s \in S$, are bijective. In this case, there is a unique $S^{-1} A$-module structure on V which is induced by the given A-mdule structure on V. the scalar multiplication of $S^{-1} A$ on V is : $(a / s) \cdot x=a \lambda_{s}^{-1}(x), a \in A, x \in V$.
(c) The natural ring homomorphism $v_{S}: A \rightarrow S^{-1} A$ is bijective if and only if $S \subseteq A^{\times}$.
7.16 For A-submodules U and U^{\prime} of an A-module V and for ideals $\mathfrak{a}, \mathfrak{b}$ in A, we have
(1) $S^{-1}\left(U \cap U^{\prime}\right)=S^{-1} U \cap S^{-1} U^{\prime}$.
(2) $S^{-1}\left(U+U^{\prime}\right)=S^{-1} U+S^{-1} U^{\prime}$.
(3) $S^{-1}\left(U: U^{\prime}\right)=\left(S^{-1} U: S^{-1} U^{\prime}\right)$ if the submodule U^{\prime} is finitely generated
(4) $S^{-1}(\mathfrak{a} U)=S^{-1}(\mathfrak{a}) S^{-1} U$.
(5) $S^{-1}(\mathfrak{a} \mathfrak{b})=S^{-1} \mathfrak{a} S^{-1} \mathfrak{b}$.
(6) $S^{-1}(\mathfrak{a} \cap \mathfrak{b})=S^{-1}(\mathfrak{a}) \cap S^{-1}(\mathfrak{b})$.
(7) $S^{-1}(\sqrt{\mathfrak{a}})=\sqrt{S^{-1} \mathfrak{a}}$.
(8) $S^{-1}(\mathfrak{a}: \mathfrak{b})=\left(S^{-1} \mathfrak{a}: S^{-1} \mathfrak{b}\right)$ if the ideal \mathfrak{b} is finitely generated.
7.17 Let A be a commutative ring and V be a finite A-module. For a multiplicatively closed subset S in A, show that $S^{-1} V=0$ if and only if $s V=0$ for some $s \in S$, i. e. $S \cap \mathrm{Ann}_{A} V \neq 0$.
7.18 (Lemma of Dedekind) Let A be a commutative ring, V be a finite A-module and \mathfrak{a} be an ideal in A with $V=\mathfrak{a} V$. Show that $(1+a) V=0$ for some $a \in \mathfrak{a}$. (Hint : Note that $(1+\mathfrak{a})^{-1} V_{1+\mathfrak{a}}=0$ by Exercise 6.6 (d) and the Lemma of Krull-Nakayam $\underbrace{2}$

- Another elementary proof : Suppose that $V=A x_{1}+\cdots+A x_{n}$ and $V_{i}:=A x_{1}+\cdots+A x_{i}, i=0, \ldots, n$. By induction show that there are elements $a_{j} \in \mathfrak{a}$ such that $\left(1-a_{j}\right) V \subseteq \mathfrak{a} V_{n-j}, j=0, \ldots, n$.)
7.19 (Modules with rank) Let A be a non-zero commutative ring, S_{0} be the multiplicatively closed subset of non-zerodivisors in A and $\mathrm{Q}(A)=\mathrm{S}_{0}^{-1} A$ be the total quotient ring of A (see Exercise 6.3). An A-module V is called a module with rank over A if $\mathrm{S}_{0}^{-1} V$ is a free $\mathrm{Q}(A)$-module; in this case, we also say that V has rank over A and put $\operatorname{Rank}_{A} V:=\operatorname{Rank}_{\mathrm{Q}(A)} \mathrm{S}_{0}^{-1} V$.
(a) Every free A-module V is $\mathrm{n} A$-module with rank and in this case its rank is nothing but the rank of the free A-module V, i. e. the cardinality of an A-basis of V.
(b) If A is an integral domain, then $\mathrm{Q}(A)$ is the quotient field of A and hence every A-module V has rank and $\operatorname{Rank}_{A} V=\operatorname{Dim}_{\mathrm{Q}(A)} \mathrm{S}_{0}^{-1} V$.
(c) If V is an A-module with rank, then $\mathrm{S}_{0}^{-1} V$ has a $\mathrm{Q}(A)$-basis of the type $x_{i} / 1, i \in I$ and $x_{i}, i \in I$, s a maximal linearly independent (over A) family in V.
(d) Every finite torsion-free A-module with rank is isomorphic to a A-submodule of a finite free A-module.
7.20 Let A be a commutative ring and let V be a projective A-module (i. e. V is a direct summand of a free A-module). Let S_{0} be the multiplicatively closed subset of non-zerodivisors in A. If $\mathrm{S}_{0}^{-1} V$ is a finite $\mathrm{Q}(A)=\mathrm{S}_{0}^{-1} A$-module, then V is a finite A-module. - In particular, a projective modul ${ }^{3}$ over an integral domain is finite if and only if it has a finite rank. (Hint : Let f be an embedding of V as a direct summand in a free A-module of the type $A^{(I)}, I$ an indexed set and consider the image of $S_{0}^{-1} f$.)
7.21 If V is a noetherian (resp. artinian) A-module over a commutative ring, then $S^{-1} V$ is a noetherian (resp. artinian) $S^{-1} A$-module
*7.22 Let A be a commutative ring, S a multiplicatively closed subset in A and V, W be modules over A. For the canonical homomorphism

$$
\Phi_{V}: S^{-1} \operatorname{Hom}_{A}(V, W) \longrightarrow \operatorname{Hom}_{S^{-1} A}\left(S^{-1} V, S^{-1} W\right), f / s \longmapsto(x / s \mapsto f(x) / s)
$$

the following assertions hold :
(a) If V is a finite A-module, then Φ_{V} injective.

[^1](b) If V is a finite A-module and if the canonical homomorphism $W \rightarrow S^{-1} W$ injective (in this case one say that W is S-torsion-free), then Φ_{V} bijective.
(c) If V is finitely presented (see Exercise Set 05 Footnote No. 3) A-module, then Φ_{V} bijective. (Hint : For a proof of (c), first note that:
For any indexed set I and any A-module W, the natural map $\operatorname{Hom}_{A}\left(A^{(I)}, W\right) \xrightarrow{\sim} W^{i}, f \mapsto\left(f\left(e_{i}\right)\right)_{i \in I}$ is an isomorphism of A-modules, where $e_{i}, i \in I$, is the standard basis of the free A-module $A^{(I)}$.
Now, consider an exact sequence $G \xrightarrow{f} F \xrightarrow{g} V \longrightarrow 0$ with finite free A-modules F, G and the canonical commutative diagram

with exact rows, Φ_{F}, Φ_{G} are bijective and hence Φ_{V} is bijective.)
7.23 Let K be a field, I be an infinite indexed set and $A:=K^{I}, \mathfrak{a}:=K^{(I)}$ ideal in A and let $S:=\left\{\left(s_{i}\right)_{i \in I} \in K^{I} \mid s_{i} \neq 0\right.$ for almost all $\left.i \in I\right\}$. Then S is a multiplicatively closed in A.
(a) The canonical homomorphism
$$
\Phi_{A / \mathfrak{a}}: S^{-1} \operatorname{Hom}_{A}(A / \mathfrak{a}, A) \longrightarrow \operatorname{Hom}_{S^{-1} A}\left(\left(S^{-1}(A / \mathfrak{a}), S^{-1} A\right)\right.
$$
is not surjective. (Hint : The map $f \mapsto f\left(1_{A / \mathfrak{a}}\right)$ shows $\operatorname{Hom}_{A}(A / \mathfrak{a}, A) \cong \operatorname{Ann}_{A} \mathfrak{a}=0$ and $S^{-1} \mathfrak{a}=0$.)
(b) For every infinite set J, the canonical homomorphism
$$
\Phi_{A^{(J)}}: S^{-1}\left(\operatorname{Hom}_{A}\left(A^{(J)}, A\right)\right) \longrightarrow \operatorname{Hom}_{S^{-1} A}\left(S^{-1} A^{(J)}, S^{-1} A\right)
$$
is not injective.

Local-global Principle:

A local-global principle is a theorem that states that some prperty holds "globally" if and only it holds everywhere "locally."
7.24 Let V be an A-module over a commutative ring A.
(a) Then the following statements are equivalent:
(i) $V=0 . \quad$ (ii) $V_{\mathfrak{p}}=0$ for all $\mathfrak{p} \in \operatorname{Spec} A$. (iii) $V_{\mathfrak{m}}=0$ for all $\mathfrak{m} \in \operatorname{Spm} A$.
(b) Let U, U^{\prime} be A-submodules of V. Then $U=U^{\prime}$ if and only if $U_{\mathfrak{m}}=U_{\mathfrak{m}}^{\prime}$ for all $\mathfrak{m} \in \operatorname{Spm} A$.
(c) Let $x, y \in V^{\prime}$. Then $x=y^{\prime}$ if and only if $x / 1=y / 1$ in $V_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Spm} A$.
7.25 Let V be an A-module over a commutative ring A and let $\mathfrak{a} \subseteq A$ be an ideal. Suppose that $V_{\mathfrak{m}}=0$ for all $\mathfrak{m} \in \operatorname{Spm} A$ with $\mathfrak{m} \supseteq \mathfrak{a}$. Then $V=\mathfrak{a} V$. (lbf Hint: Pass to the A / \mathfrak{a}-module $V / \mathfrak{a} V$ and use Exercise 7.24.)
7.26 Let A be a ring.
(a) Being reduced is a local property i. e. a ring A is reduced if and only if $A_{\mathfrak{m}}$ is reduced for all $\mathfrak{m} \in \operatorname{Spm} A$.
(b) Being an integral domain is not local property, i. e. a ring A might not be an integral domain although the localizations $A_{\mathfrak{m}}$ are integral domains for all $\mathfrak{m} \in \operatorname{Spm} A$.
7.27 Let A be an integral domain, $S \subseteq A$ be a multiplicatively closed subset in A and let V be an A-module. Then $\mathrm{t}_{S^{-1} A} S^{-1} V=S^{-1} \mathrm{t}_{A} V$ (recall that $\mathrm{t}_{A} V$ denote the torsion-submodule of V). Deduce that the following statements are equivalent:
(i) V is torsion-free.
(ii) $V_{\mathfrak{p}}$ is torsion-free for all prime ideals $\mathfrak{p} \in \operatorname{Spec} A$.
(iii) $V_{\mathfrak{m}}$ is torsion-free for all prime ideals $\mathfrak{m} \in \operatorname{Spm} A$.
7.28 Let K be a field, I an infinite indexed set and A be the product ring K^{I}. For every $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is a field. In particular, $\mathfrak{p} \in \operatorname{Spm} A$.
7.29 Let A be a commutative semi-local ring, i. e. the maximal spectrum $\operatorname{Spm} A$ is finite. An A-module V is free of rank r if and only if $V_{\mathfrak{m}}$ is free of rank r over $A_{\mathfrak{m}}$ for every $\mathfrak{m} \in \operatorname{Spm} A$. (Hint: One can compute modulo the Jacobson-radical $\mathfrak{m}_{A}=\mathfrak{m}_{1} \cap \cdots \cap \mathfrak{m}_{n}$ of A and note that A / \mathfrak{m}_{A} is the product of fields $A / \mathfrak{m}_{i}, i=1, \ldots, n$.)
7.30 Let A be a commutative ring.
(a) A sequence $V^{\prime} \rightarrow V \rightarrow V^{\prime \prime}$ of A-modules is exact if and only if for every $\mathfrak{m} \in \operatorname{Spm} A$, the sequence $V_{\mathfrak{m}}^{\prime} \rightarrow V_{\mathfrak{m}} \rightarrow V_{\mathfrak{m}}^{\prime \prime}$ of $A_{\mathfrak{m}}$-modules is exact.
(b) An A-module homomorphism $f: V \rightarrow W$ is injective (resp. surjective, resp. bijective, resp. zero) if and only if $f_{\mathfrak{m}}: V_{\mathfrak{m}} \rightarrow W_{\mathfrak{m}}$ is injective (resp. surjective, resp. bijective, resp. zero) for every maximal ideal $\mathfrak{m} \in \operatorname{Spm} A$, i. e. being injective, surjective, bijective and zero-ness of a module homomorphisms are local properties.
(c) Let U be an A-submodule of an A-module V and $x \in V$. Then $x \in U$ if and only if $x / 1 \in U_{\mathfrak{m}}$ for every $\mathfrak{m} \in \operatorname{Spm} A$, i. e. being an element of a submodule is a local property.
7.31 Let V be an A-module of finite presentation over a commutative ring A. Then V is a projective A-module if and only if for all $\mathfrak{m} \in \operatorname{Spm} A$ the localizations $V_{\mathfrak{m}}$ are projective $A_{\mathfrak{m}}$-modules. (Remark: In general, being projective module is not a local property. But the projective modules are always locally free.)
*7.32 Let A be a commutative ring and let $B=A[x]$ be a finite cyclic (commutative) free A-algebra of rank $n \in \mathbb{N}$. Then there exists a unique monic polynomial $f \in A[X]$ of degree n which generates the kernel of the substitution A-algebra homomorphism $\varepsilon_{x}: A[X] \rightarrow B$, $X \mapsto x$. oreover, if $\mathfrak{m} \in \operatorname{Spm} A$ is a maximal ideal in A and if \bar{x} denote the residue-class of x in $B / \mathfrak{m} B$, then the residue-class of f in $(A / \mathfrak{m})[X]$ is the minimal monic polynomial $\mu_{\bar{x}, A / \mathfrak{m}}$. (Hint: To show that B is a free A-module with basis $1, x, \ldots, x^{n-1}$, consider the A-module homomorphism $g: A^{n} \rightarrow B, e_{i} \mapsto x^{i-1}, i=1, \ldots, n$ where $e_{i}, i=1, \ldots n$, is the standard A-basis of the free A-module A^{n}. Now, use Exercise 7.30 (b) to conclude that g is an isomorphism of A-modules.)
**7.33 (Kronecker Extensions) For a system $U_{i}, i \in I$, of indeterminates over a (commutative) ring A, we use the short notation $A[U]:=A\left[U_{i} \mid i \in I\right]$. For a polynomial $F \in A[U]$, the ideal $\mathrm{C}(F)$ generated by the coefficients of F in A is called the content of F. A polynomial $F \in A[U]$ is called a primitive if its content $\mathrm{C}(F)$ is a unit ideal.
(a) A polynomial $F \in A[U]$ is primitive if and only if for every maximal ideal $\mathfrak{m} \in \operatorname{Spm} A$, the residue-class of F in $(A / \mathfrak{m})[U]$ is not the zero-polynomial.
(b) The set $S \subseteq A[U]$ of all primitive polynomials in $A[U]$ is a saturated multiplicatively closed subset in $A[U]$. (Hint: Use the Lemma of McCoy which states that: If $F \in A[U]$ is non-zerodivisor, then there exists an element $a \in A, a \neq 0$, with $a F=0$.)
(c) For arbitrary family $U_{i}, i \in I$, of indeterminates the A-algebra

$$
A(U)=A(U \mid i \in I):=S^{-1} A\left[\left[U_{i} \mid i \in I\right],\right.
$$

where S is the multiplicatively closed subset of all primitive polynomials in $A[U]$ is called the Kronecker extensior ${ }^{4}$ of A (in the indeterminates $U_{i}, i \in I$.)
Every Kronecker extension $A \rightarrow A(U)$ is faithfully flat. In particular, $A(U)^{\times} \cap A=A^{\times}$. Moreover, the canonical map $\operatorname{Spec} A(U) \longrightarrow \operatorname{Spec} A$ induces a homeomorphism (with respect to the Zariski topologies) $\operatorname{Spm} A(U) \xrightarrow{\sim} \operatorname{Spm} A$. Every maximal ideal of $A(U)$ is the extension of a maximal ideal of A.

[^2]
[^0]: ${ }^{1}$ Zerodivisors in a ring An element $a \in A$ in a ring A is called a zerodivis or in A if there exists $b \in A$, $b \neq 0$ with $a b=0$. An element which is not a zerodivisor is called a non-zerodivisor in A. Note that 0 is a zerodivisor in A if and only if the ring $A \neq 0$. The set of all zerodivisors in the ring A is denoted by $Z(A)$ and hence the $\operatorname{Nzd}(A)=A \backslash \mathrm{Z}(A)$ is the set of all non-zerodivisors in A.

[^1]: ${ }^{2}$ Lemma of Krull-Nakayama Let A be a commutative ring, \mathfrak{a} be an ideal in A. The following statements are equivalent: (i) $\mathfrak{a} \subseteq \mathfrak{m}_{A}$. (ii) For every A-module V and every submodule U of V with V / U finitely generated, the following implication hold : If $V=U+\mathfrak{a} V$, then $V=U$.
 ${ }^{3}$ Recall that an A-module P is called projective over A if it is isomorphic to direct summand of a free A-module. Equivalently, every short exact sequence $0 \rightarrow V^{\prime} \xrightarrow{f^{\prime}} V \xrightarrow{f} P \rightarrow 0$ of A-modules splits. See Footnote No. 1 in Exercise Set 05.

[^2]: ${ }^{4}$ Kronecker extensions provide the conceptual tools for Kronecker's method of indeterminates ("UnbestimmtenMethode'). Special cases of it have been used for a long time, for instance, see Exercise 4.27. A modern use of the method can be found in Nagata's book [Nagata, M. :, Local rings, Intersc. Publ.,New York 1962].
 ${ }^{5}$ Faithfully flat algebras Let A be a commutative ring and let B is an A-algebra with the structure homomorphism $\varphi: A \rightarrow B$. We say that B is faithfully flat A-algebra if B is a flat A-module.
 (a) If $B \neq 0$ is free A-algebra, then B is faithfully flat over A.
 (b) If B is flat over A, then the following statements are equivalent:
 $\begin{array}{ll}\text { (i) } B \text { is a faithfully flat } A \text {-algebra. } & \text { (ii) } B \text { is a pure } A \text {-algebra. }\end{array}$
 (iii) For every ideal \mathfrak{a} in $\left.A, \varphi^{-1} B \mathfrak{a}\right)=\mathfrak{a}$.
 (iv) For every maximal ideal $\mathfrak{m} \in \operatorname{Spm} A$ in $A, B \mathfrak{m} \neq B$.
 (c) Let $A \subseteq B$ be a flat extension of commutative rings. If B is integral over A, then B is faithfully flat over A.
 (Hint : For a proof of the implication (i) \Rightarrow (ii) : Let V be an arbitrary A-module, $l: V \rightarrow V_{(B)}=B \otimes V$ the canonical map. Then there exists a B-module homomorphism $h:\left(V_{(B)}\right)_{(B)} \longrightarrow V_{(B)}$ with $h \circ \boldsymbol{l}_{(B)}=$ id. It follows that $l_{(B)}$ is injective and hence l is also injective.)

