MA 312 Commutative Algebra / Jan-April 2020 (BS, Int PhD, and PhD Programmes)

Download from : http://www.math.iisc.ac.in/patil/courses/Current Courses/...

Tel: +91-(0)80-2293 3212/09449076304	E-mails: patil@math.ac.in
Lastures , Tuesday and Thursday : 15:20, 17:00	Vonue, MAIU5/IU1

7. Rings and Modules of Fractions — Localization*

Submit a solution of ANY ONE of the *Exercise ONLY. Due Date: Thursday, 19-03-2020 Complete Correct Solutions of the ** Exercise carry BONUS POINTS!

* Localization is a very powerful technique in Commutative Algebra that often allows to reduce questions on rings and modules to union of smaller problems. It is motivated from both an algebraic and a geometric point of view.

In the following Exercises, let *A* be a commutative ring. For a multiplicatively closed subset $S \subseteq A$, let $\iota_S : A \to S^{-1}A$, $a \mapsto a/1$, be the natural ring homomorphism. With this $S^{-1}A$ is endowed with the *A*-algebra structure with the structure homomorphism ι_S .

For an *A*-module *V* and let $\iota_S^V : V \to S^{-1}V$, $x \mapsto x/1$, be the natural map. With the natural scalar multiplication $S^{-1}A \times S^{-1}V \to S^{-1}V$, $(a/s, x/t) \mapsto (ax)/(st)$, the abelian group $S^{-1}V$ is endowed with the $S^{-1}A$ -module structure.

Moreover, the assignment S^{-1} : A- $Mod \rightsquigarrow S^{-1}A$ - $Mod, V \Join S^{-1}V$, defines a covariant functor from the category of A-modules to the category of S^{-1} -modules.

7.1 Let *A* be a commutative ring and let $S \subseteq A$ be a multiplicatively closed subset.

(a) Let $\mathfrak{p} \in \operatorname{Spec} A$ with $S \cap \mathfrak{p} = \emptyset$. Then the natural map $\iota : A \to S^{-1}A$ induces an isomorphism of rings $A_{\mathfrak{p}} \xrightarrow{\sim} (S^{-1}A)_{S^{-1}\mathfrak{p}}$.

(b) Let $T \subseteq A$ be a multiplicatively closed subset with $T \subseteq S$. Then the natural map $\iota_S : A \to S^{-1}A$ induces a ring homomorphism $\iota_{T,S} : T^{-1}A \to S^{-1}A$, in particular, $S^{-1}A$ is an $T^{-1}A$ -algebra with the structure homomorphism $\iota_{T,S}$. Further, the $T^{-1}A$ -algebra $S^{-1}A$ is canonically isomorphic to the ring of fractions of $T^{-1}A$ with respect to the image $\iota_T(S)$ of S in $T^{-1}A$ under the canonical map $\iota_T : A \to T^{-1}A$, i. e. The ring homomorphism $\iota_T : A \to T^{-1}A$ induces an $T^{-1}A$ -algebra homomorphism

such that the diagram

is commutative.

*7.2 Let A be a commutative ring. A multiplicatively closed subset S in A is called s at u r at e d if for all $a, b \in A$, $ab \in S$ implies that $a \in S$ and $b \in S$.

(a) For a multiplicatively closed subset $S \subseteq A$, let

 $\overline{S} := \{a \in A \mid \text{there exists } b \in A \text{ with } ab \in S\}$ is a multiplicatively closed in $A, S \subseteq \overline{S} = \iota_S^{-1}((S^{-1}A)^{\times})$, where $\iota_S : A \to S^{-1}A, a \mapsto a/1$ is

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

Page 2

the natural map and \overline{S} is the smallest saturated multiplicatively closed subset containing S and hence \overline{S} is called the saturation of S (in A). Further, \overline{S} is saturated, i.e. $\overline{(\overline{S})} = \overline{S}$ and the natural map (see Exercise 6.1 (b)) $S^{-1}A \longrightarrow \overline{S}^{-1}A$ is an isomorphism.

(b) If $p \in \text{Spec}A$, then the multiplicatively closed subset $A \setminus p$ is saturated. More generally, a multiplicatively closed subset $S \subseteq A$ is saturated if and only if $A \setminus S$ is a union of prime ideals.

(c) If S and T are multiplicatively closed subset in A, then the A-algebras $S^{-1}A$ and $T^{-1}A$ are isomorphic if and only if $\overline{S} = \overline{T}$.

7.3 (Total Quotient ring) Let $A \neq 0$ be a commutative ring and $S_0 := Nzd(A) = A \setminus Z(A)$ be the set of all non-zerodivisors¹ in A. Then S_0 is a multiplicatively closed subset in A. The ring of fractions $S_0^{-1}A$ is called the total quotient ring of A and is usually denoted by Q(A). The natural ring homomorphism $\iota_{S_0} : A \to Q(A)$ is injective and hence A can be identified with a subring of its total quotient ring. In particular, if A is an integral domain, then Q(A) is the field of fractions of A (the quotient field of A).

(a) S₀ is the largest multiplicatively closed subset of A for which the homomorphism $\iota_{S_0}: A \to S_0^{-1}A$ is injective.

(b) Every element in Q(A) is either a zerodivisor or a unit.

(c) Every non-zero ring of fractions $S^{-1}A$ of a integral domain is canonically isomorphic to a subring of the quotient field Q(A) of A.

(d) For every ring A in which every non-unit is a zerodivisor the natural homomorphism $\iota_{S_0}: A \to S_0^{-1}A$ is bijective.

7.4 Let *A* be an integral domain with the quotient field $K = S^{-1}A$, where $S = A \setminus \{0\}$. Then in *K* the following equalities hold :

$$A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} A_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \in \operatorname{Spm} A} A_{\mathfrak{m}}.$$

7.5 (a) Let *A* be an integral domain, $S_0 := A \setminus \{0\}$ and $K = S_0^{-1}A = Q(A)$ be the quotient field of *A*. Then A = K if and only if the canonical homomorphism

$$\mathbf{S}_0^{-1}\mathrm{Hom}_A(K,A) \longrightarrow \mathrm{Hom}_{\mathbf{S}_0^{-1}(A)}\left(\mathbf{S}_0^{-1}K, \mathbf{S}_0^{-1}A\right)$$

is surjective. (Hint: Consider id_K !—Once again if K = A is finite over A, then A = K.)

(b) Let *A* be a commutative ring and $S \subseteq A$ be a multiplicatively closed set. If $S^{-1}A$ is a *finite A*-module, then $S^{-1}A$ is isomorphic to the *A*-module $A/\text{Ker }\iota_S$, where $\iota : A \to S^{-1}A$ is the natural ring homomorphism.

7.6 Let *A* be a commutative ring.

(a) Let $S \subseteq A$ be a multiplicatively closed subset. Then S^{-1} commutes with the nilradical, i. e. nil $(S^{-1}A) = S^{-1}(nilA)$.

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

¹ Zerodivisors in a ring An element $a \in A$ in a ring A is called a $z \operatorname{erodivisor}$ in A if there exists $b \in A$, $b \neq 0$ with ab = 0. An element which is not a zerodivisor is called a $n \circ n - z \operatorname{erodivisor}$ in A. Note that 0 is a zerodivisor in A if and only if the ring $A \neq 0$. The set of all zerodivisors in the ring A is denoted by Z(A) and hence the $Nzd(A) = A \setminus Z(A)$ is the set of all non-zerodivisors in A.

(b) A prime ideal $\mathfrak{p} \in (\operatorname{Spec} A, \subseteq)$ if and only if $\operatorname{Spec} A_{\mathfrak{p}}$ is singleton.

(c) If A is reduced and if $\mathfrak{p} \in (\operatorname{Spec} A, \subseteq)$ is minimal, then $A_{\mathfrak{p}}$ is a field.

(d) Let \mathfrak{a} be an ideal in A and let $S_\mathfrak{a} := 1 + \mathfrak{a} := \{1 + a \mid a \in \mathfrak{a}\}$. Then S is a mutiplicatively closed set in A and $\mathfrak{a} S_\mathfrak{a}^{-1} A \subseteq \mathfrak{m}_{S_\mathfrak{a}^{-1} A}$ = the Jacobson-radical of $S_\mathfrak{a}^{-1} A$. What is the saturation $\overline{S_\mathfrak{a}}$ (see Exercise 7.2) of the multiplicatively closed set $S_\mathfrak{a}$?

7.7 Let *A* be a commutative ring, $\mathfrak{a} \subseteq A$ an ideal and let $S \subseteq A$ be a multiplicative closed subset. The residue-class homomorphism $\pi_{\mathfrak{a}} : A \to A/\mathfrak{a}$ induces a canonical surjective *A*-algebra homomorphism $S^{-1}A \longrightarrow \pi_{\mathfrak{a}}(S)^{-1}(A/\mathfrak{a})$ with kernel $\mathfrak{a}S^{-1}A$. In particular, there is a canonical *A*-algebra isomorphism $S^{-1}A/\mathfrak{a}S^{-1}SA \longrightarrow \pi_{\mathfrak{a}}(S)^{-1}(A/\mathfrak{a})$. Furthermore, there is a natural bijection

Spec $S^{-1}(A/\mathfrak{a}) \xrightarrow{\sim} \{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p} \text{ and } S \cap \mathfrak{p} = \emptyset\} \subseteq \operatorname{Spec} A$. **7.8** Let A be a commutative ring.

(a) Let $\mathfrak{p} \in \operatorname{Spec} A$ be a prime ideal in A, $\kappa(\mathfrak{p}) = A_\mathfrak{p}/\mathfrak{p}A_\mathfrak{p}$ the residue field of the local ring $A_\mathfrak{p}$, $Q(A/\mathfrak{p})$ be the field of fractions of the integral domain A/\mathfrak{p} and $\pi_\mathfrak{p} : A \to A/\mathfrak{p}$, $\pi_{\mathfrak{p}A_\mathfrak{p}} : A_\mathfrak{p} \to \kappa(\mathfrak{p})$ be the canonical residue-class homomorphisms. Then there exists a natural isomorphism $\sigma_\mathfrak{p} : Q(A/\mathfrak{p}) \longrightarrow \kappa(\mathfrak{p}) \ (\pi_\mathfrak{p}(a)/\pi_\mathfrak{p}(s) \longmapsto \pi_{\mathfrak{p}A_\mathfrak{p}}(a/s)$ of fields such that the diagram

$$A \xrightarrow{\iota} A_{\mathfrak{p}} \xrightarrow{\kappa (\mathfrak{p})} \kappa(\mathfrak{p})$$
$$\| \xrightarrow{\pi_{\mathfrak{p}}} A/\mathfrak{p} \xrightarrow{\iota} Q(A/\mathfrak{p})$$

is commutative. We shall use $\sigma_{\mathfrak{p}}$ to identify $\kappa(\mathfrak{p})$ and $Q(A/\mathfrak{p})$. With this for $f \in A$, the image of f under either composite $\pi_{\mathfrak{p}A_{\mathfrak{p}}} \circ \iota$ or $\iota \circ \pi_{\mathfrak{p}}$ is denoted by $f(\mathfrak{p})$ and is called the value of f at \mathfrak{p} .

(b) The ring A is reduced if and only if the map

$$A \longrightarrow \prod_{\mathfrak{p} \in \operatorname{Spec} A} \kappa(\mathfrak{p}), \ f \longmapsto (f(\mathfrak{p}))_{\mathfrak{p} \in \operatorname{Spec} A}$$

is injective. (**Remark :** This means for a reduced ring *A*, an element $f \in A$ is zero if and only if it is the zero function on Spec *A*.)

7.9 Let *A* be a commutative ring and let $T = \{t_i \mid i \in I\}$ be a family of elements in *A* and let $S := \langle T, \cdot \rangle \subseteq A$ be the multiplicative submonoid of (A, \cdot) generated by *T*, i.e. *S* consists of all finite products of elements in *T*. Then there exists a canonical isomorphism of *A*-algebras

$$S^{-1}A \xrightarrow{\sim} A[X_i \mid i \in I]/\langle t_i X_i - 1 \mid i \in I \rangle.$$

In particular, if *T* is finite, then $S^{-1}A$ is a finite type algebra over *A* generated by $S^{-1} := \{1/s \mid s \in S\}$. If $T = \{t\}$, then $A_t \xrightarrow{\sim} A[X]/\langle tX - 1 \rangle$ is a cyclic *A*-algebra.

7.10 The localization $A[X]_X = S^{-1}(A[X])$ of the polynomial ring over a ring A with $S = \{X^n \mid n \in \mathbb{N}\}$ is the so-called ring of L a u r e n t p o l y n o m i a l s over A usually denoted by $A[X, X^{-1}]$ which consists of all formal expressions of type $\sum_{n \in \mathbb{Z}} a_n X^n$, where $(a_n)_{n \in \mathbb{Z}} \in A^{(\mathbb{Z})}$ endowed with conventional addition and multiplication.

7.11 Let $A[X_i | i \in I]$ be the polynomial rings over a ring A in indeterminates X_i , $i \in I$. The for a multiplicatively closed subset $S \subseteq A$, there exists a canonical isomorphism of rings

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

$$S^{-1}(A[X_i \mid i \in I]) \xrightarrow{\sim} (S^{-1}A)[X_i \mid i \in I]$$

7.12 Let K[X,Y] be the polynomial ring over a field K, $\mathfrak{a} = \langle X^2, XY \rangle \subseteq K[X,Y]$ and $S = K[X,Y] \setminus \langle X \rangle$. Then (in contrast to the case when $\mathfrak{a} = \mathfrak{p} \in \text{Spec } K[X,Y]$)

$$\mathfrak{a} \subsetneq \mathfrak{a} S^{-1}(K[X,Y]) \cap K[X,Y].$$

7.13 Let *A* be a integral domain.

(a) (Lemma of Nagata) Suppose that every $a \in A \setminus (\{0\} \cup A^{\times})$ has a irreducible factorisation, i.e. is a product of irreducible elements in A (for example, A is a noetherian integral domain) and that $S \subseteq A$ is a multiplicatively closed subset with $0 \notin S$ and every non-unit in S has a prime factorisation, i.e. is product of prime elements in A. Then if $S^{-1}A$ is a factorial domain, then A is also a factorial domain.

(b) (Theorem of Gauss) If A is a factorial domain, then the polynomial ring A[X] is also a factorial domain. (Hint: We give a proof using the Lemma of Nagata in Part (a). Let $S := A \setminus \{0\}$. Then $S^{-1}(A[X]) \xrightarrow{\sim} (S^{-1}A)[X]$ (see Exercise 7.11) is a PID, since $S^{-1}A = Q(A)$ is the quotient field of A and hence a factorial domain. Further, since A is factorial, S is generated by prime elements in A which are also prime elements in A[X] (proof?). Now use Lemma of Nagata to conclude that A[X] is factorial. — **Remark :** Lemma of Nagata is very useful to produce many examples of factorial domains. For example, one can use it to prove the following theorem :

(Klein-Nagata) Let K be a field of Characteristic $\neq 2$. For every natural number $n \ge 5$ and arbitrary non-zero elements $a_1, \ldots, a_n \in K$, the finite type K-algebra

$$\Lambda := K[X_1, \dots, X_n] / \langle a_1 X_1^2 + \dots + a_n X_n^2 \rangle$$

is a factorial integral domain.)

7.14 Let *A* be a commutative ring, $S \subseteq A$ be a multiplicatively closed set in *A* and let *V* be an *A*-module. We say that an element $a \in A$ is a non-zerodivisor on *V* if the map $\lambda_a : V \to V$, $x \mapsto ax$ is injective. If $a \in A$ is a non-zerodivisor on *V*, then a/1 is a non-zerodivisor on the $S^{-1}A$ -module $S^{-1}V$. In particular, if $a \in A$ is a non-zerodivisor in *A*, then a/1 is a non-zerodivisor in $S^{-1}A$.

7.15 Let *V* be an *A*-module, $S \subseteq A$ be a multiplicatively closed subset and let $\iota_S^V : V \to S^{-1}V$, $x \mapsto x/1$, be the natural map.

(a) Ker $\iota_S^V = \{x \in V \mid sx = 0 \text{ for some } s \in S\}$. In particular, ι_S^V is injective if and only if $\lambda_s : V \to V$, $v \mapsto sv$, is injective for every $s \in S$. If $S_0 = Nzd(A)$ is the set of all non-zerodivisors in *A*, then Ker $\iota_{S_0}^V = t_A V = \{x \in V \mid sx = 0 \text{ for some } s \in S_0\}$ is the torsion-submodule of *V*.

(b) The map t_S^V is bijective if and only if all λ_s , $s \in S$, are bijective. In this case, there is a unique $S^{-1}A$ -module structure on V which is induced by the given A-mdule structure on V. the scalar multiplication of $S^{-1}A$ on V is $: (a/s) \cdot x = a\lambda_s^{-1}(x), a \in A, x \in V$.

(c) The natural ring homomorphism $\iota_S : A \to S^{-1}A$ is bijective if and only if $S \subseteq A^{\times}$.

7.16 For *A*-submodules *U* and *U'* of an *A*-module *V* and for ideals \mathfrak{a} , \mathfrak{b} in *A*, we have (1) $S^{-1}(U \cap U') = S^{-1}U \cap S^{-1}U'$. (2) $S^{-1}(U + U') = S^{-1}U + S^{-1}U'$.

(1) $S^{-1}(U + U') = S^{-1}U + S^{-1}U^{-1}$ (2) $S^{-1}(U + U') = S^{-1}U + S^{-1}U^{-1}$ (3) $S^{-1}(U + U') = (S^{-1}U + S^{-1}U')$ if the submodule U' is finitely generated (4) $S^{-1}(\mathfrak{a} U) = S^{-1}(\mathfrak{a})S^{-1}U$. (5) $S^{-1}(\mathfrak{a} \mathfrak{b}) = S^{-1}\mathfrak{a}S^{-1}\mathfrak{b}$. (6) $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) = S^{-1}(\mathfrak{a}) \cap S^{-1}(\mathfrak{b})$. (7) $S^{-1}(\sqrt{\mathfrak{a}}) = \sqrt{S^{-1}\mathfrak{a}}$.

D. P. Patil/IISc 2020MA

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

(8) $S^{-1}(\mathfrak{a}:\mathfrak{b}) = (S^{-1}\mathfrak{a}:S^{-1}\mathfrak{b})$ if the ideal \mathfrak{b} is finitely generated. 7.17 Let *A* be a commutative ring and *V* be a *finite A*-module. For a multiplicatively closed subset *S* in *A*, show that $S^{-1}V = 0$ if and only if sV = 0 for some $s \in S$, i. e. $S \cap \operatorname{Ann}_A V \neq 0$.

7.18 (Lemma of Dedekind) Let A be a commutative ring, V be a finite A-module and a be an ideal in A with V = aV. Show that (1+a)V = 0 for some $a \in a$. (Hint: Note that $(1+a)^{-1}V_{1+a} = 0$ by Exercise 6.6 (d) and the Lemma of Krull-Nakayama²

— Another elementary proof: Suppose that $V = Ax_1 + \dots + Ax_n$ and $V_i := Ax_1 + \dots + Ax_i$, $i = 0, \dots, n$. By induction show that there are elements $a_j \in \mathfrak{a}$ such that $(1 - a_j)V \subseteq \mathfrak{a}V_{n-j}$, $j = 0, \dots, n$.)

7.19 (Modules with rank) Let A be a non-zero commutative ring, S_0 be the multiplicatively closed subset of non-zerodivisors in A and $Q(A) = S_0^{-1}A$ be the total quotient ring of A (see Exercise 6.3). An A-module V is called a module with rank over A if $S_0^{-1}V$ is a free Q(A)-module; in this case, we also say that V has rank over A and put Rank_AV := Rank_{Q(A)} $S_0^{-1}V$.

(a) Every free A-module V is n A-module with rank and in this case its rank is nothing but the rank of the free A-module V, i. e. *the* cardinality of an A-basis of V.

(b) If *A* is an integral domain, then Q(A) is the quotient field of *A* and hence every *A*-module *V* has rank and $\operatorname{Rank}_A V = \operatorname{Dim}_{O(A)} S_0^{-1} V$.

(c) If V is an A-module with rank, then $S_0^{-1}V$ has a Q(A)-basis of the type $x_i/1$, $i \in I$ and $x_i, i \in I$, s a maximal linearly independent (over A) family in V.

(d) Every finite torsion-free *A*-module with rank is isomorphic to a *A*-submodule of a finite free *A*-module.

7.20 Let *A* be a commutative ring and let *V* be a projective *A*-module (i. e. *V* is a direct summand of a free *A*-module). Let S_0 be the multiplicatively closed subset of non-zerodivisors in *A*. If $S_0^{-1}V$ is a finite $Q(A) = S_0^{-1}A$ -module, then *V* is a finite *A*-module. — In particular, a *projective module*³ over an integral domain is finite if and only if it has a finite rank. (**Hint :** Let *f* be an embedding of *V* as a direct summand in a free *A*-module of the type $A^{(I)}$, *I* an indexed set and consider the image of $S_0^{-1}f$.)

7.21 If V is a noetherian (resp. artinian) A-module over a commutative ring, then $S^{-1}V$ is a noetherian (resp. artinian) $S^{-1}A$ -module

*7.22 Let *A* be a commutative ring, *S* a multiplicatively closed subset in *A* and *V*, *W* be modules over *A*. For the canonical homomorphism

 $\Phi_V: S^{-1}\operatorname{Hom}_A(V, W) \longrightarrow \operatorname{Hom}_{S^{-1}A}(S^{-1}V, S^{-1}W), \ f/s \longmapsto (x/s \mapsto f(x)/s)$ the following assertions hold :

(a) If V is a finite A-module, then Φ_V injective.

³ Recall that an A-module P is called projective over A if it is isomorphic to direct summand of a free A-module. Equivalently, every short exact sequence $0 \rightarrow V' \xrightarrow{f'} V \xrightarrow{f} P \rightarrow 0$ of A-modules *splits*. See Footnote No. 1 in Exercise Set 05.

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

² Lemma of Krull-Nakayama Let A be a commutative ring, a be an ideal in A. The following statements are equivalent: (i) $a \subseteq m_A$. (ii) For every A-module V and every submodule U of V with V/U finitely generated, the following implication hold : If V = U + aV, then V = U.

Rings and Modules of Fractions — Localization

Exercise Set 7

(b) If V is a finite A-module and if the canonical homomorphism $W \to S^{-1}W$ injective (in this case one say that W is S-torsion-free), then Φ_V bijective.

(c) If V is *finitely presented* (see Exercise Set 05 Footnote No. 3) A-module, then Φ_V bijective. (Hint: For a proof of (c), first note that:

For any indexed set I and any A-module W, the natural map $\operatorname{Hom}_A(A^{(I)}, W) \xrightarrow{\sim} W^i$, $f \mapsto (f(e_i))_{i \in I}$ is an isomorphism of A-modules, where e_i , $i \in I$, is the standard basis of the free A-module $A^{(I)}$. Now, consider an exact sequence $G \xrightarrow{f} F \xrightarrow{g} V \longrightarrow 0$ with finite free A-modules F, G and the

Now, consider an exact sequence $G \xrightarrow{s} F \xrightarrow{s} V \longrightarrow 0$ with finite free A-modules F, G and the canonical commutative diagram

$$0 \longrightarrow S^{-1}\operatorname{Hom}_{A}(V,W) \xrightarrow{g} S^{-1}\operatorname{Hom}_{A}(F,W) \xrightarrow{g} S^{-1}\operatorname{Hom}_{A}(G,W)$$

$$\Phi_{V} \qquad \Phi_{F} \qquad \Phi_{G} \qquad \Phi_$$

with exact rows, Φ_F , Φ_G are bijective and hence Φ_V is bijective.)

7.23 Let *K* be a field, *I* be an *infinite* indexed set and $A := K^I$, $\mathfrak{a} := K^{(I)}$ ideal in *A* and let $S := \{(s_i)_{i \in I} \in K^I \mid s_i \neq 0 \text{ for almost all } i \in I\}$. Then *S* is a multiplicatively closed in *A*. (a) The canonical homomorphism

$$\Phi_{A/\mathfrak{a}}: S^{-1}\operatorname{Hom}_A(A/\mathfrak{a}, A) \longrightarrow \operatorname{Hom}_{S^{-1}A}((S^{-1}(A/\mathfrak{a}), S^{-1}A))$$

is *not* surjective. (**Hint**: The map $f \mapsto f(1_{A/a})$ shows $\operatorname{Hom}_A(A/a, A) \cong \operatorname{Ann}_A a = 0$ and $S^{-1}a = 0$.)

(b) For every *infinite* set J, the canonical homomorphism

$$\Phi_{A^{(J)}}: S^{-1}\left(\operatorname{Hom}_{A}(A^{(J)}, A)\right) \longrightarrow \operatorname{Hom}_{S^{-1}A}(S^{-1}A^{(J)}, S^{-1}A)$$

is not injective.

Local-global Principle:

A *local-global principle* is a theorem that states that some prperty holds "globally" if and only it holds everywhere "locally."

7.24 Let *V* be an *A*-module over a commutative ring *A*.

(a) Then the following statements are equivalent :

(i) V = 0. (ii) $V_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec} A$. (iii) $V_{\mathfrak{m}} = 0$ for all $\mathfrak{m} \in \operatorname{Spm} A$.

(b) Let U, U' be A-submodules of V. Then U = U' if and only if $U_m = U'_m$ for all $m \in \text{Spm } A$.

(c) Let $x, y \in V'$. Then x = y' if and only if x/1 = y/1 in $V_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Spm} A$.

7.25 Let *V* be an *A*-module over a commutative ring *A* and let $\mathfrak{a} \subseteq A$ be an ideal. Suppose that $V_{\mathfrak{m}} = 0$ for all $\mathfrak{m} \in \operatorname{Spm} A$ with $\mathfrak{m} \supseteq \mathfrak{a}$. Then $V = \mathfrak{a}V$. (lbf Hint : Pass to the *A*/ \mathfrak{a} -module $V/\mathfrak{a}V$ and use Exercise 7.24.)

7.26 Let *A* be a ring.

(a) Being reduced is a local property i.e. a ring A is reduced if and only if $A_{\mathfrak{m}}$ is reduced for all $\mathfrak{m} \in \operatorname{Spm} A$.

(b) Being an integral domain is not local property, i. e. a ring A might not be an integral domain although the localizations $A_{\mathfrak{m}}$ are integral domains for all $\mathfrak{m} \in \operatorname{Spm} A$.

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

7.27 Let *A* be an integral domain, $S \subseteq A$ be a multiplicatively closed subset in *A* and let *V* be an *A*-module. Then $t_{S^{-1}A}S^{-1}V = S^{-1}t_AV$ (recall that t_AV denote the torsion-submodule of *V*). Deduce that the following statements are equivalent :

(i) V is torsion-free.

(ii) $V_{\mathfrak{p}}$ is torsion-free for all prime ideals $\mathfrak{p} \in \operatorname{Spec} A$.

(iii) $V_{\mathfrak{m}}$ is torsion-free for all prime ideals $\mathfrak{m} \in \operatorname{Spm} A$.

7.28 Let *K* be a field, I an *infinite* indexed set and *A* be the product ring K^I . For every $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is a field. In particular, $\mathfrak{p} \in \operatorname{Spm} A$.

7.29 Let *A* be a commutative *semi-local* ring, i. e. the maximal spectrum Spm *A* is finite. An *A*-module *V* is free of rank *r* if and only if $V_{\mathfrak{m}}$ is free of rank *r* over $A_{\mathfrak{m}}$ for every $\mathfrak{m} \in \operatorname{Spm} A$. (Hint: One can compute modulo the Jacobson-radical $\mathfrak{m}_A = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ of *A* and note that A/\mathfrak{m}_A is the product of fields A/\mathfrak{m}_i , i = 1, ..., n.)

7.30 Let *A* be a commutative ring.

(a) A sequence $V' \to V \to V''$ of A-modules is exact if and only if for every $\mathfrak{m} \in \operatorname{Spm} A$, the sequence $V'_{\mathfrak{m}} \to V_{\mathfrak{m}} \to V''_{\mathfrak{m}}$ of $A_{\mathfrak{m}}$ -modules is exact.

(b) An *A*-module homomorphism $f: V \to W$ is injective (resp. surjective, resp. bijective, resp. zero) if and only if $f_{\mathfrak{m}}: V_{\mathfrak{m}} \to W_{\mathfrak{m}}$ is injective (resp. surjective, resp. bijective, resp. zero) for every maximal ideal $\mathfrak{m} \in \text{Spm } A$, i. e. *being injective, surjective, bijective and zero-ness of a module homomorphisms are local properties.*

(c) Let U be an A-submodule of an A-module V and $x \in V$. Then $x \in U$ if and only if $x/1 \in U_{\mathfrak{m}}$ for every $\mathfrak{m} \in \operatorname{Spm} A$, i. e. *being an element of a submodule is a local property.*

7.31 Let V be an A-module of finite presentation over a commutative ring A. Then V is a projective A-module if and only if for all $\mathfrak{m} \in \text{Spm } A$ the localizations $V_{\mathfrak{m}}$ are projective $A_{\mathfrak{m}}$ -modules. (**Remark :** In general, being projective module is not a local property. But the projective modules are always locally free.)

*7.32 Let *A* be a commutative ring and let B = A[x] be a finite cyclic (commutative) free *A*-algebra of rank $n \in \mathbb{N}$. Then there exists a unique monic polynomial $f \in A[X]$ of degree *n* which generates the kernel of the substitution *A*-algebra homomorphism $\varepsilon_x : A[X] \to B$, $X \mapsto x$. oreover, if $\mathfrak{m} \in \text{Spm } A$ is a maximal ideal in *A* and if \overline{x} denote the residue-class of *x* in $B/\mathfrak{m}B$, then the residue-class of *f* in $(A/\mathfrak{m})[X]$ is the minimal monic polynomial $\mu_{\overline{x},A/\mathfrak{m}}$. (Hint : To show that *B* is a free *A*-module with basis $1, x, \ldots, x^{n-1}$, consider the *A*-module homomorphism $g : A^n \to B$, $e_i \mapsto x^{i-1}$, $i = 1, \ldots, n$ where e_i , $i = 1, \ldots, n$ is the standard *A*-basis of the free *A*-module A^n . Now, use Exercise 7.30 (b) to conclude that *g* is an isomorphism of *A*-modules.)

**7.33 (Kronecker Extensions) For a system U_i , $i \in I$, of indeterminates over a (commutative) ring A, we use the short notation $A[U] := A[U_i | i \in I]$. For a polynomial $F \in A[U]$, the ideal C(F) generated by the coefficients of F in A is called the content of F. A polynomial $F \in A[U]$ is called a primitive if its content C(F) is a unit ideal.

(a) A polynomial $F \in A[U]$ is primitive if and only if for every maximal ideal $\mathfrak{m} \in \operatorname{Spm} A$, the residue-class of F in $(A/\mathfrak{m})[U]$ is not the zero-polynomial.

(b) The set $S \subseteq A[U]$ of all primitive polynomials in A[U] is a saturated multiplicatively closed subset in A[U]. (Hint: Use the Lemma of McCoy which states that: If $F \in A[U]$ is non-zerodivisor, then there exists an element $a \in A$, $a \neq 0$, with aF = 0.)

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

(c) For arbitrary family U_i , $i \in I$, of indeterminates the A-algebra

$$A(U) = A(U \mid i \in I) := S^{-1}A[[U_i \mid i \in I]],$$

where S is the multiplicatively closed subset of all primitive polynomials in A[U] is called the Kronecker extension⁴ of A (in the indeterminates $U_i, i \in I$.) Every Kronecker extension $A \to A(U)$ is faithfully flat. In particular, $A(U)^{\times} \cap A = A^{\times}$. Moreover, the canonical map Spec $A(U) \to$ SpecA induces a homeomorphism (with

respect to the Zariski topologies) $\text{Spm}A(U) \xrightarrow{\sim} \text{Spm}A$. Every maximal ideal of A(U) is the extension of a maximal ideal of A.

(a) If $B \neq 0$ is free A-algebra, then B is faithfully flat over A.

(i) *B* is a faithfully flat *A*-algebra. (ii) *B* is a pure *A*-algebra.

(c) Let $A \subseteq B$ be a flat extension of commutative rings. If *B* is integral over *A*, then *B* is faithfully flat over *A*.

(**Hint :** For a proof of the implication (i) \Rightarrow (ii): Let *V* be an arbitrary *A*-module, $\iota : V \rightarrow V_{(B)} = B \otimes V$ the canonical map. Then there exists a *B*-module homomorphism $h : (V_{(B)})_{(B)} \longrightarrow V_{(B)}$ with $h \circ \iota_{(B)} = \text{id}$. It follows that $\iota_{(B)}$ is injective and hence ι is also injective.)

D. P. Patil/IISc

2020MA-MA312-ca-ex07.tex

July 5, 2020 ; 6:08 p.m.

⁴ Kronecker extensions provide the conceptual tools for Kronecker's *method of indeterminates* ("Unbestimmten-Methode'). Special cases of it have been used for a long time, for instance, see Exercise 4.27. A modern use of the method can be found in Nagata's book [Nagata, M.:, Local rings, Intersc. Publ.,New York 1962].

⁵ Faithfully flat algebras Let A be a commutative ring and let B is an A-algebra with the structure homomorphism $\varphi: A \to B$. We say that B is faithfully flat A-algebra if B is a flat A-module.

⁽**b**) If *B* is flat over *A*, then the following statements are equivalent :

⁽iii) For every ideal \mathfrak{a} in A, $\varphi^{-1}B\mathfrak{a}$) = \mathfrak{a} . (iv) For every maximal ideal $\mathfrak{m} \in \operatorname{Spm} A$ in A, $B\mathfrak{m} \neq B$.