Algebra, Arithmetic and Geometry - With a View Toward Applications / 2005
Lectures : Tuesday/Thursday 18:15-19:15 ; LH-1, Department of Mathematics
Supplementary Lectures : Friday 18:15-19:15 ; LH-1, Department of Mathematics

Topics (January 2006 - June 2006)

\diamond Algebra --- Rings, Modules and Algebras

- Rings :
- Polynomial rings, Zeros of polynomials, Resultants and Discriminants, Gröbner basis, Hilbert basis theorem. Euclidean rings, Principal ideal domains and Factorial rings. Factorisation in rings.
- Elementary symmetric functions and Fundamental theorem on symmetric functions. Proof of Fundamental theorem of Algebra.
- Prime ideals and Maximal ideals - Chinese remainder theorem.
- Noetherian rings and Modules, Graded rings and modules, Formal power series rings.
- Local rings, Nakayamma-lemma. Localisation, Primary decomposition, Integral extensions.
- Modules :
- Module Homomorphisms - Basic theorems, Exact sequences.
- Projective and Injective modules.
- Hom and Duality. Tensor Products. Multilinear algebra.
- Modules over PlD. Jordan Cannonical form.
- Algebras :
- Finite algebras over a field - Finite dimensional division algebras.
- Finite type algebras over a field - Noether's normalisation lemma.

\diamond Arithmetic --- Algebraic extensions, Galois theory and Algebraic number theory

- Galois Theory :
- Finite and Algebraic extensions. Algebraic closure, Algebraically closed fields.
- Splitting fields, Normal extensions. Separable and inseparable extensions. Primitive elements. Finite fields.
- Galois Extensions. The fundamental theorem of Galois theory, Galois groups of polynomials. Solvable and radical extensions. Insolvability of the Quintic, Computation of Galois groups over the field of rational numbers.
- Norm and Trace. Roots of unity, Cyclotomic extensions. Cyclic and Abelian extensions.
- Normal basis theorem
- Infinite Galois extensions.
- Algebraic Number Theory :
- Integral extensions - Integral closure. Algebraic Number Fields and Algebraic integers.
- Resultants and Discriminants. Integral Bases.
- Discrete valuation rings and Dedekind domains.
- Lattices - Minkowski theory. The class number, Finiteness of class number, Dirichlet's unit theorem,
- Differents and Discriminants.
\diamond Geometry --- Basic Algebraic Geometry
- Affine varieties, Algebra-Geometry Dictionary : Various forms of Hilbert's Nullstellensatz, Ideal-Variety correspondence, Irreducible varieties and Prime ideals, Decomposition of a variety into irreducibles.
- The prime spectrum of a ring - Affine schemes.
- Projective algebraic geometry - Projective varieties, Bezout's theorem, Elliptic curves.
- The Dimesion of a variety - The Hilbert function and the Dimension, Elementary properties of Dimension, Dimension and algebraic independence, Dimension and non-singularity.

\diamond In Supplementary lectures on Fridays ---

- Groups : Groups actions - Sylow theorems. Permutations groups, Alternating groups, Special linear groups. Solvable and Nilpotent groups.
- Linear Algebra (over commutative rings) : Theory of Determinants — Basic theorems on determinants, Affine and Projective Geometry.

Topics for Seminars by Participants (January 2006 - June 2006)

- Sylow theorems.
- Structure of the unit group $\left(\mathbb{Z}_{m}\right)^{\times}$of \mathbb{Z}_{m}
- Quadratic reciprocity.
- Free groups and the theorem of Nielsen and Schreier
- Divisible abelian groups.
- Fermat's two square theorem.
- Lagrange's four square theorem.
- Matrix rings.
- Semi-simple rings and modules.
- Pell's Equation and Continued fractions.

Texts/References

- Algebra :

[1] Artin, M., Algebra, Prentice-Hall, 1994.
[2] Herstein, I.N., Topics in Algebra, Wiley Eastern, 1987.
[3] Jacobson, N., Basic Algebra, Vols. I \& II, Hindustan Pub. Co., 1984.
[4] Lang, S., Algebra, Third edition, Addison-Wesley, 1993.
[5] Hungerford, T. W., Algebra, Graduate Texts in Mathematics 73, Springer-Verlag, 1974.
[6] van der Waerden, B. L., Algebra I, II, Heidelberger Taschenbücher 12 und 23, Springer-Verlag, Berlin-HeidelbergNew York, 1971.

- Commutative Algebra :

[7] Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, 1969.
[8] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, 1995.
[9] Serre, J.-P., LocalAlgebra (Translated from French), Springer Monographs in Mathematics, Springer-Verlag, 2000.
[10] Zariski, O. and Samuel, P., Commutative Algebra, Vols. I \& II, Van Nostrand, 1958 and 1960.

- Algebraic Number Theory :

[11] Borevich, Z. I. and Shafarevich, I. R., Number Theory, Academic Press Inc. New York, 1966.
[12] Hasse, H., Vorlesungen über Zahlentheorie, Springer-verlag, Berlin, 1964.
[13] Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, Graduate Studies in Mathematics, Volume 84, Springer-Verlag, 1990.
[14] Lorenzini, D., An Invitation to Alrithmetic Geometry, Graduate Studies in Mathematics, Volume 9, American Mathematical Society, 1996.
[15] Neukirsch, J., Algebraic Number Theory, Grundleheren der mathematischen Wissenschaften, Volume 322, Springer-Verlag, 1991.

- Algebraic Geometry :

[17] Abhyankar, S. S., Algebraic Geometry for Scientists and Engineers, American Mathematical Society, 1990.
[18] Cox, D., Little, J. and O'Shea, D., Ideals, Varieties andAlgorithms, Undergraduate Texts in Mathematics, SpringerVerlag, 1996.
[19] Cox, D., Little, J. and O'Shea, D., Using Algebraic Geometry, Graduate Texts in Mathematics, Volume 185, Springer-Verlag, 1998.
[20] Fulton, W., Algebraic Curves, Benjamin, 1969.
[21] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, 1977.
[22] Patil, D. P. and Storch, U., Introduction to Algebraic Geometry and Commutative Algebra, Anamaya Publishers, ISBN 81-88342-61-0 (co-publishing and worldwide distribution by M/s Anshan Ltd., U.K.).
[23] Shafarevich, I. R., Basic Algebraic Geometry, Springer-Verlag, 1974.

