0.B Finite Sets

0.B.1. Let X be a finite set with n elements. For $i \in \mathbb{N}$, let $\mathfrak{P}_{i}(X)$ be the set of all subsets Y of X with $|Y|=i$. Show that: If $i \in \mathbb{N}$ with $0 \leq i<n / 2$ (resp. with $n / 2<i \leq n$), then there exists an injective map $f_{i}: \mathfrak{P}_{i}(X) \rightarrow \mathfrak{P}_{i+1}(X)$ such that $Y \subseteq f_{i}(Y)$ for all $Y \in \mathfrak{P}_{i}(X)$ (resp. an injective map $g_{i}: \mathfrak{P}_{i}(X) \rightarrow \mathfrak{P}_{i-1}(X)$ such that $g_{i}(Y) \subseteq Y$ for all $Y \in \mathfrak{P}_{i}(X)$). (Hint : Let $0 \leq i<n / 2$. A pair $\left(Y, Y^{\prime}\right) \in \mathfrak{P}_{i}(X) \times \mathfrak{P}_{i+1}(X)$ is called amicable if $Y \subseteq Y^{\prime}$. Let \mathfrak{R} be a subset of $\mathfrak{P}_{i}(X)$ with $|\mathfrak{R}|=: r$. Further, let \mathfrak{R}^{\prime} be the set of all those $Y^{\prime} \in \mathfrak{P}_{i+1}(X)$ which are amicable to at least one $Y \in \mathfrak{R}$. Put $s:=\left|\mathfrak{R}^{\prime}\right|$. Then $r(n-i) \leq s(i+1)$ and hence $r \leq s$. Now use the Marriage-theorem see Exercise (1.2).)
0.B.2. Let X_{1}, \ldots, X_{n} be finite sets. For $J \subseteq\{1, \ldots, n\}$, let $X_{J}:=\bigcap_{i \in J} X_{i}$ with $X_{\emptyset}:=\bigcup_{i=1}^{n} X_{i}$. Generalize the formula $|Y \cup Z|=|Y|+|Z|-|Y \cap Z|$ for finite sets Y, Z, prove the well-known Sylvester's (Sieve-) formula ${ }^{1}$):

$$
\sum_{J \in \mathfrak{P}(\{1, \ldots, n\})}(-1)^{|J|}\left|X_{J}\right|=0 \text {, i.e. }|X|=\sum_{\emptyset \neq J \in \mathfrak{P}(\{1, \ldots, n\})}(-1)^{|J|-1}\left|X_{J}\right| .
$$

(Hint: By induction on n. - Variant: For $k=1, \ldots, n$, let Y_{k} be the set of elements $x \in X_{\emptyset}$ which belong to exactly k of the sets X_{1}, \ldots, X_{n}. Then $Y_{k}, 1 \leq k \leq n$ are pairwise disjoint. Using Exercise T2.2b) show that

$$
\left.\sum_{\substack{J \in \mathfrak{P}(111, n) \\|=| \text { even }}}\left|X_{J}\right|=\sum_{k=1}^{n} 2^{k-1}\left|Y_{k}\right|=\sum_{\substack{J \in \mathfrak{P}\left(11^{1} \ldots, n\right) \\|J| \text { odd }}}\left|X_{J}\right| .\right)
$$

0.B.3. a). Let X be a finite set with m elements. Let p_{m} denote the number of permutations of X which donot have fixed points and let $s_{m}=m$! be the number of all all permutations of X. Show that:

$$
\frac{p_{m}}{s_{m}}=\frac{1}{0!}-\frac{1}{1!}+\cdots+(-1)^{m} \cdot \frac{1}{m!}
$$

(Hint: Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$. Set $X_{i}:=\left\{\sigma \in \mathfrak{S}(X): \sigma\left(x_{i}\right)=x_{i}\right\}$ and compute $s_{m}-p_{m}=\left|\bigcup_{i=1}^{m} X_{i}\right|$ using the Sieve formula in Exercise 2.2. - Remark: Note that $\lim _{m \rightarrow \infty}\left(p_{m} / s_{m}\right)=e^{-1}$, where $e=2,718 \ldots$ is the base of the natural logarithm.) - The number of permutations of X with exactly r fixed points is $\binom{m}{r} p_{m-r}, 0 \leq r \leq m$. (Proof!)
b). Let X be a finite set with m elements and let Y be a finite set with n elements. The number of surjective maps from X in Y is

$$
n^{m}-\binom{n}{1}(n-1)^{m}+\binom{n}{2}(n-2)^{m}-\cdots+(-1)^{n}\binom{n}{n}(n-n)^{m}
$$

(Hint: Let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. Set $P_{i}:=\left\{f \in Y^{X}: y_{i} \notin \operatorname{im} f\right\}$ and compute the number $\left|\bigcup_{i=1}^{n} P_{i}\right|$ of non-surjective maps using the Sieve formula in Exercise 2.2.)
0.B.4. Let I be a finite index set with n elements and let $\sigma_{i} \in \mathbb{N}$ for $i \in I, \pi:=\prod_{i \in I} \sigma_{i}, \sigma:=\sum_{i \in I} \sigma_{i}$ and $\sigma_{H}:=\sum_{i \in H} \sigma_{i}$ for $H \subseteq I$. Then

$$
\sum_{H \subseteq I}(-1)^{|H|}\binom{\sigma_{H}}{n}=(-1)^{n} \pi \quad \text { and } \quad \sum_{H \subseteq I}(-1)^{|H|}\binom{\sigma_{H}}{n+1}=\frac{(-1)^{n}}{2}(\sigma-n) \pi
$$

(Hint: Let $X=\bigcup_{i \in I} X_{i}$, where X_{i} are pairwise disjoint subsets with $\left|X_{i}\right|=\sigma_{i}$. For a proof of the first formula consider the set $\mathfrak{P}_{n}(X)$ and its subsets $Y_{i}:=\left\{A \in \mathfrak{P}_{n}(X) \mid A \cap X_{i}=\emptyset\right\}$ and use the Sieve formula in Exercise 2.2 to find $\left|\bigcup_{i \in I} Y_{i}\right|$.)

$$
\overline{\text { On the other side one can see (simple) test-exercises. }}
$$

[^0]
Test-Exercises

T0.B.1. Let X be a finite set with n elements.
a). The number of subsets of X is 2^{n} (Induction).
b). If $n \in \mathbb{N}^{*}$, then the number of subsets of X with an even number of elements is equal to the number of subsets of X with an odd number of elements. Moreover, this number is equal to 2^{n-1}.
(Hint : Let $a \in X$ The map defined by $A \mapsto A \cup\{a\}$, if $a \notin A$, resp. $A \backslash\{a\}$, if $a \in A$, is a bijective map from the set of subsets with an even number of elements onto the set of subsets with an odd number of elements.)

T0.B.2. (Factorials and Binomial co-efficients) For natural number $n \in \mathbb{N}$, the natural number $n!:=\prod_{i=1}^{n} i 1 \cdot 2 \cdots n$ is called the n-factorial. Note that $0!=1$.
Let X and Y be two finite sets. Then :
a). If $|X|=m \leq n=|Y|$, then the set $\mathfrak{I}(X, Y):=\{f: X \rightarrow Y \mid f$ is injective $\}$ has cardinality $n!/(n-m)$!.
b). The set of all permutations $\mathfrak{S}(X)$ has exactly $|X|$! elements.
c). For any $m \in \mathbb{N}$ with $m \leq|Y|$, the set $\mathfrak{P}_{m}(Y):=\{Z \in \mathfrak{P}(Y)| | Z \mid=m\}$ has cardinality $n!/(n-m)$!.
(Remark : For $0 \leq m \leq n$, the natural numbers $\binom{n}{m}:=n!/ m!\cdot(n-m)$! are called binomial co-efficients, since they occur in the Binomial theorem. For $m, n \in \mathbb{Z}$, we define $\binom{n}{m}:=0$ if either $m<0$ or if $n<m$.)
d). Prove the formuals : $\binom{n}{m}=\binom{n}{n-m}$ and $\binom{n+1}{m}=\binom{n}{m}+\binom{n}{m-1}$.
(Hint: For the first let $0 \leq m \leq n$. Then the map $\mathfrak{P}_{m}(\{1, \ldots, n\}) \rightarrow \mathfrak{P}_{n-m}(\{1, \ldots, n\})$ defined by $J \mapsto\{1, \ldots, n\} \backslash J$ is a bijective map. - For the second, let $1 \leq m \leq n$ and let $\mathfrak{X}:=\left\{I \in \mathfrak{P}_{m}(\{1, \ldots, n+1\}) \mid n+1 \notin I\right\}$ and $\mathfrak{Y}:=\left\{I \in \mathfrak{P}_{m}(\{1, \ldots, n+1\}) \mid n+1 \in I\right\}$. Then the maps $\mathfrak{X} \rightarrow \mathfrak{P}_{m}(\{1, \ldots, n\})$ defined by $J \mapsto J$ and $\mathfrak{Y} \rightarrow \mathfrak{P}_{m-1}(\{1, \ldots, n\})$ defined by $J \mapsto J \backslash\{n+1\}$ are bijective and hence $|\mathfrak{X}|=\binom{n}{m},|\mathfrak{Y}|=\binom{n}{m-1}$ and $\{\mathfrak{X}, \mathfrak{Y}\}$ is a partition of $\mathfrak{P}_{m}(\{1, \ldots, n, n+1\})$.)

TO.B.3. a). From 1a) deduce that: For $n \in \mathbb{N},\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$.
b). From 1b) deduce that: For $n \in \mathbb{N}^{*},\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n}\binom{n}{n}=0$.
c). Let X be a finite set with n elements. The number of pairs $\left(X_{1}, X_{2}\right)$ in $\mathfrak{P}(X) \times \mathfrak{P}(X)$ with $X_{1} \cap X_{2}=\emptyset$ is 3^{n} (Induction). General: The number of r-tuples $\left(X_{1}, \ldots, X_{r}\right)$ of pairwise disjoint subsets $X_{1}, \ldots, X_{r} \subseteq X$ is equal $(r+1)^{n}, r \in \mathbb{N}$.
d). For $m, n, k \in \mathbb{N},\binom{m+n}{k}=\binom{m}{0}\binom{n}{k}+\binom{m}{1}\binom{n}{k-1}+\cdots+\binom{m}{k}\binom{n}{0}$. In particular, $\binom{2 n}{n}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}$ for $n \in \mathbb{N}$. (Hint : Let X, Y be disjoint sets with $|X|=m,|Y|=n$. The assignment $A \mapsto(A \cap X, A \cap Y)$ defines a bijective map $\mathfrak{P}(X \cup Y) \rightarrow \mathfrak{P}(X) \times \mathfrak{P}(Y)$.)

TO.B.4. Let m be a natural number (resp. a positive natural number) and let n be another natural number. Let a (m, n) (resp. $\mathrm{b}(m, n)$) denote the number of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$ with $x_{1}+\cdots+x_{m} \leq n\left(\right.$ resp. $\left.x_{1}+\cdots+x_{m}=n\right)$. Show that

$$
\mathrm{a}(m, n)=\binom{n+m}{m}, \quad \mathrm{~b}(m, n)=\binom{n+m-1}{m-1} .
$$

(Hint: Note that $\mathrm{a}(m-1, n)=\mathrm{b}(m, n)$ and $\mathrm{a}(m, n)=\mathrm{a}(m, n-1)+\mathrm{a}(m-1, n)$ if $m \geq 1$ and use induction on $n+m$. - Variant: The map $\left(x_{1}, \ldots, x_{m}\right) \mapsto\left\{x_{1}+1, x_{1}+x_{2}+2, \ldots, x_{1}+\cdots+x_{m}+m\right\}$ maps the set of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$ with $x_{1}+\cdots+x_{m} \leq n$ bijectively onto the set of m-element subsets of $\{1,2, \ldots, n+m\}$.)

T0.B.5. Let $\mathfrak{X}=\left(X_{1}, \ldots, X_{r}\right)$ and let $\mathfrak{Y}=\left(Y_{1}, \ldots, Y_{r}\right)$ be partitions of the set X into r pairwise disjoint subsets each of them with $n \geq 1$ elements (i.e. $\bigcup_{i=1}^{r} X_{i}=X$ and $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$ and analogously for \mathfrak{Y}). Show that: \mathfrak{X} and \mathfrak{Y} has a common representative system, i.e. there exist r distinct elements x_{1}, \ldots, x_{r} in X such that each x_{i} belongs to exactly one of the subset X_{1}, \ldots, X_{r} and exactly one of the subset Y_{1}, \ldots, Y_{r}. (Hint: Using the Marriage-theorem find a permutation $\sigma \in \mathfrak{S}_{r}$ such that $X_{i} \cap Y_{\sigma(i)} \neq \emptyset$ for every $1 \leq i \leq r$.)

[^0]: ${ }^{1}$) This is also called the Inclusion-Exclusion principle

