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0.C.1. Let (X, <) be an ordered set in which every subset has a least upper bound and has a greatest
lower bound. Further, lef : X — X be an increasing map and IEtbe the fixed points off. Show
that:

a). If {x e X| f(x) < x} #@andifa is its greatest lower bound, then eithee F or f(a) € F.
b). If {x e X | x < f(x)} # ¥ andifzis its least upper bound, then eithee F or f(z) € F.
c). F is non-empty. Further, the least upper bound and the greatest lower bofnoktdng toF .

0.C.2. a). (Lattice) Anordered set X, <) is called alattice if for every twoelementsx, y in X,
Supx, y} and Inf{x, y} exist. The power sel3(X), €) of a set with respect to the natural inclusion is
a lattice. Every totally ordered set is a lattice. Xf, i € I, is a family of lattices, then so is the product
set [[;c, X; with respect to the product order. K is a lattice, thenX is also lattice with respect to
the inverse order; this lattice is called thdual lattice).

b). Let (X, <) be alattice with largest and smallest element. Suppos&thas the following property :
if x,y € X and if Sufx, y} is adirect successer 1) of x, then Inf{x, y} is adirect predecesser of y.
Prove the followingChain theorem:If X hasa finite maximal chain, then every chainin X isfinite
and the lengths 2) of all maximal chainsin X are equal. (Hint: Itis enough to prove that:
if X has a finite maximal chairg < - -- < x, of lengthn, then every finite chaipg < --- < y,, in X has length
m < n. Induction onn: if n > 1, m > 1, then apply induction hypothesis on the lattjges M : x < x,_1}. In
the case,,_1 £ x,_1 consider the element Irf§,,_1, x,_1}. This element is< x,_1 and is a direct predecesser of
Ym—1. If yu_2 £ Inf {y,._1, x,_1}, then consider Infy,,_2, Inf {y,._1, x,_1}} and so on... (Induction o). Note
thatxo resp.x, is the smallest resp. greatest elemenki) — Give an example of a (with 5 elements) in
which there are maximal chains of different lengths.

0.c.3. (Dedekind’s Chain TheoremJuppose thaX is artinian and noetherian and théthas
the following property: ifx, y € X and if Sugx, y} is a direct successer e#fandy, then Infx, y} is a
direct predecesser afandy. Show that:all maximal chainsin X have the same (finite) lengths. ( Hint:
Similar to that of part a).

0.C.4. a). (Dilworth’s Theorem ) Let X, <) be a finite ordered set and ketbe the cardinality
of a largest possiblanti-chain 2) in X. Show thatX can be partitioned inte: chains andX cannot be
partitioned intor chains withr < m. — This natural numbem is called the DIworth’s number
of X. (Proof. By induction on the cardinality ok. LetY C X be an anti-chain irk of cardinalitym. Let
A={aeX|a<y forsomeyeY}andletB:={beX|y<b forsomeyeY}. ThenX =AWBUWY.

1) Leta, b be two elements in an ordered $&t <). If a < band(a,b) == {x € X | a < x < b} = @, then we
saythatisa direct successor afand we saythatisa direct predecessor bf

2) By the length of dinite chainC in an ordered setX, <), we mear|C| — 1.

%) An anti-chain in arordered setX, <) is a subset oK consisting of pairwise uncomparable elements.
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We divide the proof in the following four case§. A = = B.ii). A # @, B £ @.iii)). A %@, B=0.iv).

A =@, B # (. The proof in the case i) is trivial. For case ii): PXi ;= Y U A andX; := Y U B. Then by
induction bothX , andX z can be partitioned inta chains. TherX can also be partitioned inie chains. For the
case iii): Lety € Y and letC be a chain of maximal length withe C. Let X' := X \ C. Note that the extremal
elements of” are also extremal elementsXf Letm’ denote the the maximal number of pairwise uncomparable
elements inX’. Thenm — 1 <m’ < m, sinceY \ {y} C X'. Choose an anti-chairi’ in X’ with cardY’) = m’.

We now further consider the following two cases: iii.ay* = m. In this case replacg by Y’ and then apply
the case ii) to complete the proof. iii.byi’ = m — 1. In this case apply induction hypothesisxbto complete

the proof. Proof in the case iv) is similar to that of case)iii).

b). (E. Sperner ) LeX be a finite set withh elements. Show that the Dilworth’s number of the
ordered setB(X), <) is ([n’}z]), where /2] is the integral part ofi /2. (Hint: Use the maps
fi,0<i <n/2andg;,n/2 < i < n of Exercise 2.1 to give an explicit partition §f(X) into ([n’/‘z]) chains.
Variant: if & C PB(X) be an anti-chain if3(X) then|&| < ([n'/’z]) as follows: Fory e &, let ¢y be the set of
all maximal chains if3(X) in which Y appears as an element. Th€p| = (n — |YD! - |Y|'and&y NC; =0

if Y, Z e &,Y # Z. Since there are! maximal chains, it follows thap Y € S — |Y|)! - [Y|! < n!and so

1&]) < ([n’/’z]) ) For 1<i < n, whatis the Dilworth’s number d3_;(X) := {Y € B(X) | |[Y]| <i}?

0.c.5. (Filters)LetX beaset. Afilter § on X isasubsetof3(X) with the following properties :
(1) The intersection of finitely many elements §fis again an element of. (2) If Y € § and if

Y € Z C X,thenZ € §. Note that for every filter§ on X, the setX € § by (1), since the
intersection over the empty family is the sEt Afilter § on X is equal to3(X) ifand only if ¥ € §.

TAfilter basis B on X isasubsetof3(X) satisfying the following property : (LThe intersection
of finitely many elements of8 contains an element dB. — A filter § on X is calledfixed if

the intersection of all its elements is non-empty, otherwise is cdliede . The set of alfilters onX is

ordered by the natural inclusion. Maximal elements in the set of filters different §¢gi) are called
ultra filters.

a). Give all filters on a finite set.

b). If X is not a finite set, then the complements of the finite subsefs dbrm a free filter diferent
from B(X) on X . (Remark: This is called the (well-known) Fe¢het—filter)

c). If 9B is a filter basis, then the set of al € X which contain a subseX € B, is a filter on X .
(this filter is called thefilter generated by B . If & C B(X), the the set of all intersections of
each finite family of elements fron® is a filter—basis.

d). If X # @, then the set of filters diferent frod8(X) on X is inductively ordered (with respect to
the natural inclusion). Every filter different frof§(X) on a setX is contained in an ultra—filter.

e). If § is a fixed ultra—filter onX ,theng ={Y C Y | x € Y} forsomex € X . If X is not finite,
then there exists free ultra—filter oxi.

f). A filter § different from B(X) on X is an ultra-filter if and only if for everyY € X we have:
YeFor(X\Y)eF. (Hint: Consider{Yy NZ:Z eF}.) On anot finite set , the FEchetfilter is
not an ultra—filter.

0.c.6. (Modular Lattice) LetV be a lattice (see Exercise 5). In lattice theory, it is customarey to
denotexuy := Sufx, y} andxny = Inf{x, y} for x, y € V and more generally;c; x; := Supx; :

i € I} respectively, Mi¢; x; ;= Inf{x; : i € I} forafamily x;,i € I of elements inV . Suppose that

V has a greatest as well as smallest element, then the above elements exist if the indéxedisgeé.

— V iscalledmodular,ifforallx,y,z € V with z <x wehave:xn(yuz)=Gxny uz(
Modular laws).Suppose that is modular ands, v € V. Show that: the maps — x nv and

y — y Uu are inverse isomorphisms of each other of the ordered intervalsLj v] and [u rv, v].

— Deduce that: A modular lattice with greatest and smallest elements satisfies the condition which is
used for the proving the chain theorem given in the Exercise 0.C.2 -a).

T Note that some authors donot accept thtX) is a filter on X . They further assume that ¢ § for every
filter § on X.
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0.C.7. Let I be a well-ordered set and I€KX;),c; be a family of ordered sets. For two elements
(xDier, iier € X :=[],¢; Xi we define(x;) < (y;) if and only if either (x;) = (y;) or (x;) # ()
and for the smallest indelg in the set{i € I : x; # y;} we havex;, < y;,. Show that the relatiorx
define an order orX .  ( Remark: This order is called théexicographic order onx.) If X; # ¢
forall i € I,then X is totally ordered if and only if allX;,i € I, are totally ordered. IiX; # ¢ for

all i € I,thenX is well-ordered if and only if allX;, i € I, are well-ordered and for almost all (i. e.,
for all but finitely many) indices € I, the setsX; are singletons.

0.C.8. Let (X, <) be an ordered set. Aection ofX is a subsetA of X with the following property:
if x e A,y € Xwithy < x,theny € A. — The subsetg and X are sections o¥X. Arbitrary
intersections and arbitrary unions of sectionsXofire again sections of. Fora € X, the subsets
A, ={xe X |x <a)andA, ;= {x € X | x < a} are sections oX.

a). The mapz — A, from X into 3(X) is a strictly monotone increasing (Whelig X) is ordered by
the natural inclusion) and induces an isomorphisnX @nto a subset o3 (X).

b). Suppose further thatX, <) is well-ordered. Then show that: X is a section ofX, A # X, then
there exists exactly one € X such thatA = A,. The mapu +— A, is an isomorphism ok onto the
set of sections different frorX which is ordered by the natural inclusion. The set of section¥ o
well-ordered and has a greatest element.

0.C.9. Let X be a well-ordered set and lgt be strictly increasing map frori into itself. Show that:
a). x <g) forall x € X.

b). If im g is a section ofX , then g = idx . Inparticular, id is the only isomorphism ofX onto
itself.

c). If X andY are two well-ordered sets, then there is atmost one isomorphiskn afito a section
of Y.

0.c.10. (Irreducible Elements) Le¥ be a lattice with greatest and least elements. We used the
notation introduced in Exercise ??. An elemerd V is calledirreducible (with respect tad), if

z is not the greatest element ¥fand ifz = x My with x, y € V implies eitherz = x orz = y. A
representation of the form= r;c,x; with irreducible elements; € V is calledadecomposition

of z into irreducible elements (with respect ). This decompsition is calledrredundant, if

7 # MieryryXi foreveryrel.

a). Suppose tha¥ is noetherian. Using noetherian induction show that: every element has a
decomposition into finitely many irreducible elements and hence also has an irredundant decomposition
into finitely many irreducible elements.

b). SupposethaV is distributive,i.e.xu(ynz) = (xuUy)r(xUz) andxn(yuz) = (xMNy)U(xrz)

forall x,y,z € V. Show that: Ifx = r;¢;x; and x = njc;x; are two irredundant decompositions

of an elementx € V in finitely many irreducible elements, theh| = |J|, and there exists a bijective
mapo : I — J suchthaty; = x_; foralli e .

c). Prove the followingExchange theoremLet V beamodular (see Exercise ??)f x = M;¢;x;
and x = Mjeyx; aretwo irredundant decompositionsof x € V' into finitely many irreduzible elements

andif r € I, thenthereexistsanelement s € J suchthat x = x; MM;¢;)x; . Thisnew decomposition
of x isirrendundant. Deduce that in particulat/| = |J|. (Hint: For the proof of Exchange theorem:
Let X := Mjesyr)x; - FOrarbitraryu, w € v with x = Xxnx, < u, from the modular laws, we have the following
chain of equalities :

(Gnwux)n(Gnw ux,) =(ENwux)nG&nw))Ux,
=((GNuw)ux,)nNX) Nw)ux,
=(XNu)u(x,NX))Nw) U x,
=Xnunw)Ux,;
and hencesgcapjc; (X U xXpHux,) = xn MjesX) U X, =X, . ThereforeX nx))ux, =x, forase J.)
d). Define irreducible elements with respectitoand formulate the analogous assertions for them.
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Below one can see (simple) test-exercises.

Test-Exercises

T0.C.1. a). Let (X, <) be a finite non-empty ordered set. Show tkabas (at least one) a minimal and (at least
one) a maximal element.

b). Let (X, <) be a finite totally ordered set withelements. Show that there exists exactly one isomorphism of
the interval [1n] = {1, ..., n} € N (with the natural order) ont&.

c). Let (X, <) be an inductively ordered set and let X. Show that there is a maximal element X such that
x < z. (Apply Zorn's T lemma #) to the subsety € X | x < y}.)

T0.C.2. Let X be a set. Then the power $BtX) of X is (with respect to the natural inclusion) noetherian resp.
artinian if and only ifX is finite.

T0.C.3. Let (X, <) be awell-ordered set. Suppose that every elemektwhich is not the largest element &
has a direct successer M. Is it true that every element ik which is not the smallest element ¥anecessarily
have a direct predesser in?

T Max August Zorn (1906-1993) Max Zorn was born on 6 June 1906 in Krefeld, Germany and died on 9
March 1993 in Bloomington, Indiana, USA. Max Zorn was born in Krefeld in western Germany, about 20 km northwest of
Dusseldorf. He attended Hamburg University where he studied under Artin. Hamburg was Artin’s first academic appointment
and Zorn became his second doctoral student. He received his Ph.D. from Hamburg in April 1930 for a thesis on alternative
algebras. His achievements were considered outstanding by the University of Hamburg and he was awarded a university
prize. He was appointed as an assistant at Halle but he did not have the opportunity to work there for long since, in 1933, he
was forced to leave Germany because of the Nazi policies. He was not, however, Jewish. Zorn emigrated to the United States
and was appointed a Sterling Fellow at Yale University. He worked there from 1934 to 1936 and it was during this period
that he proposed "Zorn’s Lemma" for which he is best known. Since Zorn is best known for "Zorn’s Lemma" it is perhaps
appropriate that we should begin a discussion of his mathematical achievements by considering this contribution. Of course
Zorn did not call his result "Zorn’s Lemma", rather it was given by him as a "maximum principle" in a short paper etitled :
remark on method in transfinite algebra, which he published in the Bulletin of the American Mathematical Society in 1935.
Perhaps in passing we should note that the name "Zorn’s Lemma" was due to John Tukey. Zorn’s aim in this paper was to
study field theory and in particular to improve on the method used for obtaining results in the subject. Methods used up to
that time had depended heavily on the well- ordering principle which Zermelo had proposed in 1904, namely that every set
can be well-ordered. What Zorn proposed in the 1935 paper was to develop field theory from the standard axioms of set
theory, together with his maximum principle rather than Zermelo’s well-ordering principle.

The form in which Zorn stated his maximum principle was as follows. The principle involved chains of setsasn is

a collection of sets with the property that for any two sets in the chain, one of the two sets is a subset of the other. Zorn
defined a collection of sets to be closed if the union of every chain is in the collection. His maximum principle asserted
that: if a collection of setsis closed, then it must contain a maximal member, that is, a set which is not a proper subset of
some other in the collection. The paper then indicated how the maximum principle could be used to prove the standard field
theory results.

Today we know that théxiom of Choice, thewell-ordering principle, andZorn’s Lemma (the name now given to Zorn’s
maximum principle by Tukey and now the standard name) are equivalent. Did Zorn know this when he wrote his 1935
paper? Well at the end of the 1935 paper he did say that these three are all equivalent and promised a proof in a future papel
Was Zorn’s idea entirely new? Well similar maximum principles had been proposed earlier in different contexts by several
mathematicians, for example Hausdorff, Kuratowski and Brouwer. Paul Campbell. Following his years at Yale, he moved
to the University of California at Los Angeles where he remained until 1946. During this time Herstein was one of his
doctoral students. He left the University of California to become professor at Indiana University, holding this position from
1946 until he retired in 1971. After 1947 Zorn stopped publishing mathematical papers. This does not mean that he gave up
mathematics. In recent years Max became fascinated i3i¢h@nn Hypothesisand possible proofs using techniques from
functional analysis . He read and studied and talked about mathematics nearly every day of his life. From time to time he
published a slim newsletter. He was a gentle man with a sharp wit who, during nearly half a century, inspired and charmed
his colleagues at Indiana University.

Max Zorn married Alice Schlottau and they had one son Jens and one daughter Liz.

4y Zorn’s Lemma Let (X, <) bean inductively ordered set, i.e. every chainin X hasan upper boundin X. Then
X has (at least one) a maximal element.
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