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1. The Set of Natural Numbers — Peano’s axioms

G i u s e p p e P e a n o †

(1858-1932)

1.1. a). ( F i r s t p r i n c i p l e o f i n d u c t i o n )Using the third axiom of Peano prove the following :
Suppose that for each natural number n ∈ N , we have associated a statement S(n) . Assume that the
following conditions are satisfied :

(i) S(0) is true. ( B e g i n i n g o f I n d u c t i o n )

(ii) For every n ∈ N , S(n + 1) is true whenever S(n) is true. ( I n d u c t i v e s t e p )

Then S(n) is true for all n ∈ N. ( Hint : Let M := {n ∈ N | S(n) is true} ⊆ N. Then 0∈ M by
the hypothesis (i). Furher, by hypothesis (ii) ifn ∈ M, then n+1 ∈ M . ThereforeM = N by the axiom third
of Peano.) ( Remark : The following variant is also used very often:Let n0 ∈ N . Suppose that for
every natural number n ≥ n0 , we have associated a statement S(n) . Assume that S(n0) is true and for every
n ≥ n0 S(n + 1) is true whenever S(n) is true. Then S(n) is true for all n ≥ n0 . For the proof consider the set
M := {n ∈ N | n < n0} ∪ {n ∈ N | n ≥ n0 and S(n) is true}.)
b). Using the first principle of induction prove the following basic property ofN :

( M i n i m u m P r i n c i p l e )Every non-empty subset M of N has a smallest element, i.e., there exists
an element m0 ∈ M such that m0 ≤ m for all m ∈ M . ( Hint : For n ∈ N , let S(n) be the following
statement:If M contains a natural number m with m ≤ n , then M has a smallest element. By using induction
show that the statement S(n) is true for all n .) ( Remark : The minimum principle forN is also known as the
w e l l - o r d e r i n g p r o p e r t y o fN .)

c). The above well-ordering property ofN is the basis of the followingsecond principle of induction :

( S e c o n d p r i n c i p l e o f i n d u c t i o n )Suppose that for each natural number n ∈ N , we have
associated a statement S(n) . Assume that for every n ∈ N , if the S(m) is true for all m < n , then
S(n) is also true. Then S(n) is true for all n ∈ N. ( Hint : Let M := {n ∈ N | S(n) is NOT true} ⊆ N.
Then show thatM = ∅ .)

1.2. Latin squares could be used by dating services to organize meetings between a numbern of girls
and the same numbern of boys. Having met all the boys, each girl comes up with a list of boys she would not
mind marrying. The dating service is faced now with the task of arranging marriages so as to satisfy each girl
preferences. Call the set of boys listed by thei-th girl Yi . The problem is then to pick boys, one from each list,
without selecting the same boy more than once. An abstract formulation of this problem the following theorem :

( M a r r i a g e T h e o r e m )Let Yi , i ∈ I be a finite family of sets, i.e. I is a finite set. Suppose that
for every subset J of I , the set YJ := ∪j∈J Yj contains at least card(J ) elements. Then there exists
an injective choice function f : I → YI with f (i) ∈ Yi for every i ∈ I . ( Hint : Use induction on the
cardinality card(I ) of I .)

(Remarks : In mathematics, themarriage theorem (1935), usually credited to mathematicianPhilip Hall, is a
combinatorial result that gives the condition allowing the selection of a distinct element from each of a collection
of subsets.
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1.2 Algebra, Arithmetic and Geometry / 2005 1. The Set of Natural Numbers — Peano’s axioms

The standard example (somewhat dated at this point) of an application of the marriage theorem is to imagine two
groups ofn men and women. Each woman would happily marry some subset of the men; and any man would
be happy to marry a woman who wants to marry him. If we letMi be the set of men that thei-th woman would
be happy to marry, then each woman can happily marry a man if and only if the collection of sets{Mi} meets the
marriage condition (=hypothesis in the Marriage theorem).

The theorem has many other interesting "non-marital" applications. For example, take a standard deck of cards,
and deal them out into 13 piles of 4 cards each. Then, using the marriage theorem, we can show that it is possible
to select exactly 1 card from each pile, such that the 13 selected cards contain exactly one card of each rank (ace,
2, 3, ..., queen, king).

More abstractly, letG be a group, andH be a finite subgroup ofG . Then the marriage theorem can be used to
show that there is a setX such thatX is an SDR1) for both the set of left cosets and right cosets ofH in G .

This can also be applied to the problem of Assignment: Given a set ofn employees, fill out a list of the jobs each
of them would be able to preform. Then, we can give each person a job suited to their abilities if, and only if, for
every value ofk = 1, . . . n , the union of anyk of the lists contains at leastk jobs.)

1.3. Proofs by induction are very common in Mathematics and are undoubtedly familer to the reader. One
also encounters quite frequently – without being conscious of it – definitions by induction or recursion.
For example, powers of a non-zero real numberan are defined bya0 = 1, ar+1 = ara . Definition by
induction is not as trivial as it may appear at first glance. This can be made precise by the following
well-known recursion theorem proved byDedekind :

a). ( R e c u r s i o n T h e o r e m )Let X be a non-empty set and let F : X → X be a map. For
a ∈ X , there exists a unique (sequence in X ) map f : N−−−−−−−−−−−−−−−−−� X such that (i) f (0) = a and
(ii) f (s(n)) = F(f (n)) for all n ∈ N, i.e., the following diagramm is commutative.

N −−−−−−−−−−−−−s−−−−−−−−−−−−−−� N

f

�
f

�
X −−−−−−−−−−−−−F−−−−−−−−−−−−−−� X

( Hint : Uniqueness off is clear by induction. For existence, putIn := {0, 1, . . . , n} . By induction show that
the following statement S(n) is true for all n ∈ N . S(n) : There exists a unique map fn : In → X such that
fn(0) = a and f (r + 1) = F(f (r)) for every r ∈ N with r < n . For arbitrary natural numbersm, n ∈ N with
m ≤ n , we then havefm = fn|Im . Thereforefn(n) = F(fn(n − 1)) = F(fn−1(n − 1)) for all n ≥ 1 . Now,
define f by n �→ fn(n) .) ( Remark : One might be tempted to say that one candefine inductively by
conditions (i) and (ii). However, this does not make sense since in talking about a function onN we must have
anà priori definition off (n) for every n ∈ N . A proof of the existence off must useall of Peano’s axioms.
See the example illustrating this in b) below.)
b). (Henk in ) Let N = {0, 1} and define the mapsN : N → N by sN(0) := 1 and sN(1) := 1 .
Show that(N, sN) satifiesPeano’s axioms 1 and 3 but not 2. Show that the recusion theorem breaks
down for (N, sN) . ( Hint : Let F : N → N be the map defined byF(0) = 1 and F(1) = 0 .
Show that there is no mapf : N → N satisfyingf (0) = 0 andf (sN(a)) = F(f (a)) for all a ∈ N .)
c). ( I terat ion of maps) LetX be a set,� : X → X be a map, i.e.,� ∈ XX . and letF : XX → XX

be the map defined by� �→ � ◦ � . Then there exists a sequencef : N → XX in XX such that
f (0) = idX and f (n + 1) = F(f (n)) = � ◦ f (n) for all n ∈ N . For n ∈ N the mapf (n) : X → X

is called then- t h i t e r a t e o f � and is denoted by�n . Note that�0 = idX, �n+1 = �n ◦ � for all
n ∈ N . Further,(idX)n = idX for n ∈ N .

d). Show that addition+ : N × N → N and multiplication· : N × N → N on N can be defined by
using the recursion theorem. Further, verify the standard properties+ and · , e.g., existence of identity
element, associativity, commutativity, distributive laws, cancellation laws, monotonicity etc.( Hint :

1) Let Yi i ∈ I be a family of subsets of a setX . A s e t o f d i s t i n c t r e p r e s e n t a t i v e s(sometimes
abbreviated as an SDR) is a subsetZ = {zi | i ∈ I } of pairwise distinct elements ofX , i.e., card(Z) = card(I )

and with the property that :xi ∈ Yi for all i ∈ I .
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For + apply recursion theorem toX = N F = s and a = m ∈ N to get the unique mapsm : N → N

such thatsm(0) = m and sm(s(n)) = s(sm(n) for all n ∈ N . Now, definem + n := sm(n) . Note that
m + 0 = sm(0) = m and m + s(n) = sm(s(n)) = s(sm(n)) . Further, note that form ∈ N , the mapsm : N → N

is the m-th iterate (see b))sm = s ◦ s ◦ · · · ◦ s︸ ︷︷ ︸
m-times

of the successor maps . For m, n ∈ N , define the multiplication

m · n := sm
n (0) = (sn)m(0) .)

e). Show that there exists a binary operation ofexponent ia t ion ( orn -th power ofm ) N×N → N ,
(m, n) �→ mn . Further, state and verify the standard laws of exponents. ( Hint : For m ∈ N , let
pm : N → N be the multiplication bym . Define mn := pn

m(1) .)

f). ( S i m u l t a n e o u s r e c u r s i o n ) LetX, Y be sets and letH : X × Y → X , K : X × Y → Y

be given maps. For(a, b) ∈ X × Y , there exist a unique mapsf : N → X and g : N → Y such that
f (0) = a , g(0) = b and f (n + 1) = H(f (n), g(n)) , g(n + 1) = K(f (n), g(n)) for all n ∈ N .

( Hint : Apply recursion theorem to the setX × Y , the mapF := H × K : X × Y → X × Y , (x, y) �→
(H(x, y), K(x, y)) and (a, b) ∈ X × Y , to get the mapG : N → X × Y such thatG(0) = (a, b) and
G(n + 1) = F(G(n)) for all n ∈ N . Now, take f = p ◦ G and q ◦ G , where p : X × Y → X (resp.
q : X × Y → Y ) is the first (resp. second) projection. Using the properties ofG check thatf andg have the
required properties.)

g). ( P r i m i t i v e r e c u r s i o n ) LetX be a set,a ∈ X and let H : X × N → X be a given map.
Show that there exists a unique mapf : N → X such thatf (0) = a and f (n + 1) = G(f (n), n) for
all n ∈ N . ( Hint : Apply the simultaneous recursion forY = N , b = 0 and the mapK : X × N → N defined
by (x, n) �→ n + 1 .)

h). Construct a mapf : N → N such thatf (0) = 1 andf (n) = 1 · 2 · · · (n − 1) · n (the product of
the first n non-zero natural numbers) for eachn > 0 . ( Hint : Use the primitive recursion toX = N ,
a = 1 andH : N × N → N the map defined byH(m, n) = (n + 1) · m .) ( Remark : For eachn ∈ N , the
natural numberF(n) is called f a c t o r i a ln and is denoted byn! .)

i). ( n - a r y o p e r a t i o n s – g e n e r a l i z e d s u m s a n d p r o d u c t s ) Letn ∈ N , X be a set and let
X{1,...,n} := Xn := X × · · · × X︸ ︷︷ ︸

n- times

. A map f : Xn → X is called ann- a r y o p e r a t i o n o nX .

Let X be a set and let∗ : X × X → X be a binary operation onX . Then there exists a unique family
fn : Xn → X , n ∈ N

∗ of n-ary operation onX such that :f1 = idX , f2 = ∗ and

fn+1((x1, . . . , xn, xn+1)) = fn((x1, . . . , xn))∗xn+1 for all (x1, . . . , xn, xn+1) ∈ Xn+1 and for alln ≥ 1 .

(Remarks : Applying the above part to the operation of addition+ on N , we have a unique familyfn : N
n → X ,

n ∈ N
∗ of n-ary operation onN . For n ∈ N and (x1, . . . , xn) ∈ N

n , fn((x1, . . . , xn)) is denoted by
∑n

i=1 xi .
Therefore

∑0
i=1 xi = 0 and

∑n+1
i=1 xi = (∑n

i=1 xi

) + xn+1 for all (x1, . . . , xn, xn+1) ∈ N
n+1 and for all n ≥ 1 .

Similarly, applying the above part to the operation of multiplicationcdot on N , we have a unique family
pn : N

n → X , n ∈ N
∗ of n-ary operation onN . For n ∈ N and (x1, . . . , xn) ∈ N

n , pn((x1, . . . , xn)) is
denoted by

∏n

i=1 xi . Therefore
∏0

i=1 xi = 1 and
∏n+1

i=1 xi = (∏n

i=1 xi

) + xn+1 for all (x1, . . . , xn, xn+1) ∈ N
n+1

and for all n ≥ 1 .

For n ∈ N , (x1, . . . , xn) ∈ N
n and any permutationσ of {1, . . . , n} , prove that

∑n

i=1 xi = ∑n

i=1 xσ(i) and∏n

i=1 xi = ∏n

i=1 xσ(i) .

Finally, applying the above part to the operation of compositionXX , we have a unique family�n : (XX)n → XX ,
n ∈ N

∗ of n-ary operation onXX . For n ∈ N and (f1, . . . , fn) ∈ (XX)n , �n((f1, . . . , fn)) is denoted by
f◦f2 ◦ · ◦ fn . In particular, if fi = f for every i ≥ 1 , then forn ≥ 1 �n((f, f, . . . , f )) = f n is then-th iterate
of f (see also 1.1-b)).)

j). Let X be a set,a ∈ X , Y := ⋃
n∈N

Xn and let G : Y → X be a map. Then there exists a unique
sequenceg : N → X such that, g(0) = a and g(n + 1) = G(g(0), g(1), . . . , g(n)) for all n ∈ N .
( Hint : Define the mapF : Y → Y be (x1, . . . , xn) �→ (x1, . . . , xn, G((x1, . . . , xn))) . Then by recursion
theorem there exists a unique mapf : N → Y such thatf (0) = a and f (n + 1) = F(f (n)) for all n ∈ N .
Now, defineg : N → X by n �→ f (n)(n) .)
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k). ( D o u b l e r e c u r s i o n ) LetX be a set,a ∈ X and letF, G : X → X be two maps. Then there
exists a unique mapg : N × N → X such thatg((0, 0)) = a ,

g((0, n + 1)) = F(g(0, n)) for all n ∈ N and g((m + 1, n)) = G(g(m, n)) for all m, n ∈ N .

Use double recursion to obtain directly the operations of addition+ and · on N .

1.4. Let Ñ be a non-empty set,̃0 ∈ Ñ and let s̃ : Ñ → Ñ be a map. Suppose that for each map
F : X → X and eacha ∈ X , there exists a unique map̃f : Ñ → X such that (i) f̃ (̃0) = a and (ii)
f̃ (̃s(n)) = F(f̃ (n)) for all n ∈ N, i.e., the diagramm

Ñ −−−−−−−−−−−̃s−−−−−−−−−−−−� Ñ

f̃

�
f̃

�
X −−−−−−−−−−−F−−−−−−−−−−−−� X

is commutative. Then there exists a unique bijective map� : N → Ñ such that�(0) = 0̃ and
�(s(n)) = s̃(�(n)) for all n ∈ N, i.e., the diagramm

N −−−−−−−−−−−s−−−−−−−−−−−−� N

�

�
�

�
Ñ −−−−−−−−−−−̃s−−−−−−−−−−−−� Ñ

is commutative. ( Remark : This exercise says thatN is essentially unique as a set on which maps can be
defined by recursion.)

1.5. ( F i b o n a c c i S e q u e n c e ) Thesequencefn , n ∈ N , defined recursively byf0 = 0 , f1 = 1
and fn+1 = fn + fn−1 for all n ≥ 1 , is called theF i b o n a c c i S e q u e n c e and itsn-th term
fn is called the n-th F i b o n a c c i n u m b e r . Thefirst few terms of the Fibonacci Sequence are
0, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . . ( Remark : How do we know such a sequence exists? The
recursion theorem cannot directly justify its existence, for the valuefn+1 for n ≥ 1 depend not only onfn ,
but uoponfn−1 as well. However, we can justify the simultaneous existence of the two sequencesfn and gn

satisfying :
{

f0 = 0, fn+1 = fn + gn , for n ≥ 0 ,
g0 = 1, gn+1 = fn , for n ≥ 0 . For this we can use the simultaneous recursion by taking

(a, b) = (0, 1) , H : N × N → N is the addition onN and K : N × N → N is the first projection.)
a). For then-th Fibonacci number prove the following explicit( B i n e t ’s F o r m u l a ) :

fn = 1√
5

((
1+√

5
2

)n

−
(

1−√
5

2

)n)
b). Prove the following equalities by induction : (i)fn+m = fn−1fm + fnfm+1 for all m ≥ 0 and all
n ≥ 1 . In particular,f2n = fn(fn−1 + fn+1) = f 2

n+1 − f 2
n−1 for all n ≥ 1 .

(ii) f 2
n = fn−1fn+1 + (−1)n+1 for all n ≥ 1 .

(iii) ϕn = fn−1 + fnϕ , for all n ∈ N
∗, whereϕ := (1 + √

5)/2 . ( Remark : Using this equality we can
define the Fibonacci-numbersfn for all n ∈ Z . We then havefn = fn−1 + fn−2 for all n ∈ Z.)

1.6. Let X be a non-empty set which is not finite. Then there exists an injective mapN → X .
( Hint : Consider the setPf (X) := {A ∈ P(X) | A is finite} of all finite subsets ofX . Then for every
A ∈ Pf (X) , the complementX \ A is a non-empty subset ofX and by theaxiom of choice there exists achoice
function g : Pf (X) → ⋃

A∈Pf (X) (X \ A) , i.e., g(A) ∈ X \ A for every A ∈ Pf (X) . Now, apply recursion
theorem to the mapF : Pf (X) → Pf (X) defined byA �→ A ∪ {g(A)} , to get a sequencef : N → Pf (X)

in Pf (X) such thatf (0) = ∅ abd f (n + 1) = F(f (n)) for all n ≥ 1 . let xn := g(f (n)) . Then it is clear
that the subsetf (n) is contained in the subset{x0, . . . , xn−1} . This shows that the mapN → X , n �→ xn is
injective. The above proof is also written shortly but less formal as : letx0 ∈ X be an arbitrary element. Assume
that x0, x1, . . . , xn ∈ X are already ben defined. Now, letxn+1 be an arbitrary element inX \ {x0, x1, . . . , xn}
(which is non-empty by assumtion).)
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Below one can see (simple) test-exercises.

Test-Exercises

T1.1. (some ar i t h m e t i c s e r i e s ) For alln ∈ N , prove the following formulas by induction :

a).

n∑
k=1

k = n(n+1)

2
. b).

n∑
k=1

k2 = n(n+1)(2n+1)

6
. c).

n∑
k=1

k3 =
(n(n+1)

2

)2
=

( n∑
k=1

k

)2

.

d).

n∑
k=1

(−1)k−1k = 1
4

(
1 + (−1)n−1(2n+1)

)
. e).

n∑
k=1

(−1)k−1k2 = (−1)n+1 · n(n+1)

2
.

f).

n∑
k=1

(2k − 1) = n2. g).

n∑
k=1

(2k − 1)2 = n

3
(4n2 − 1) . h).

n∑
k=1

k(k + 1) = 1
3
n(n+1)(n + 2) .

i).

n∑
k=1

1
k(k + 1)

= 1 − 1
n+1

. j).

n∑
k=1

1
4k2 − 1

= 1
2

(
1 − 1

2n+1

)
.

k).

n∑
k=1

1
k(k + 1)(k + 2)

= 1
4

− 1
2(n+1)(n + 2)

. l).

n∑
k=1

k − 1
k(k + 1)(k + 2)

= 1
4

− 2n+1
2(n+1)(n + 2)

.

T1.2. For all n ≥ 1 prove:

a).

n∏
k=2

(
1− 1

k2

)
= 1

2

(
1+ 1

n

)
. b).

n∏
k=2

(
1− 2

k(k + 1)

)
= 1

3

(
1+ 2

n

)
. c).

n∏
k=2

k3 − 1
k3 + 1

= 2
3

(
1+ 1

n(n+1)

)
.

T1.3. ( F i n i t e g e o m e t r i c s e r i e s ) For everyreal (or complex) numberq �= 1 and everyn ∈ N , prove

that : a).
∑n

k=0 qk = qn+1−1
q−1 b).

n∏
k=0

(1 + q2k

) = q2n+1 − 1
q − 1

. c).

n∑
k=1

kqk = nqn+2 − (n+1)qn+1 + q

(q − 1)2 .

T1.4. For all n ≥ 1 prove:a). 5 divides 2n+1 + 3 · 7n. b). 3 dividesn3 + 2n . c). 6 dividesn3 − n .

d). 7 divides 52n+1 + 22n+1. e). 30 dividesn5 − n . f). 3 divides 22n − 1. g). 15 divides 3n5 + 5n3 + 7n .

h). 133 divides 11n+2 + 122n+1. i). 5 divides 3n+1 + 23n+1.

T1.5. For the recursively defined sequences(an) in a) , b) , c) prove the given explicit representations.

a). a0 = 2, an = 2 − a−1
n−1 , n ≥ 1. Thenan = (n + 2)/(n+1) for all n ∈ N.

b). a0 = 0, a1 = 1, an = 1
2(an−1 + an−2) , n ≥ 2. Thenan = 2

3

(
1 − (−1)n 1

2n

)
for all n ∈ N.

c). a0 = 1 , an = 1 + a−1
n−1 , n ≥ 1. Thenan = fn+2/fn+1 for all n ∈ N, where fork ∈ N, fk is thek-th

Fibonacci-number (see exercise 1.5).

d). a0 = 1 , an = ∑n−1
k=0 ak , n ≥ 1. Thenan = 2n−1 for all n ≥ 1.

T1.6. Let fn , n ∈ N be the Fibonacci sequence (see exercise 1.5). Prove the following formulas :

a). fn + fn+1 + fn+3 = fn+4 . b). f2 + f4 + · · · + f2n = f2n+1 − 1 . c). f1 + f3 + · · · + f2n−1 = f2n .

d). f1 − f2 + f3 − · · · + (−1)nfn+1 = (−1)nfn + 1 . e). fn < (5/3)n . f). 2nfn < (
√

5 + 1)n .

g). fn = (an−bn)/
√

5 , wherea andb are the positive and negative zeros of the quadratic equationX2−X−1 = 0 .

h). An =
(

fn+1 fn

fn fn−1

)
, whereA :=

(
1 1
1 0

)
.

i). card(Fn) = fn+2 , whereFn := {A ∈ P({1, 2, . . . , n}) | A does not contain any consecutive integers} .

† G i u s e p p e P e a n o was born on 27 Aug 1858 in Cuneo, Piemonte, Italy and died on 20 April 1932 in Turin, Italy.
Giuseppe Peano’s parents worked on a farm and Giuseppe was born in the farmhouse ’Tetto Galant’ about 5 km from Cuneo.
He attended the village school in Spinetta then he moved up to the school in Cuneo, making the 5km journey there and back
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on foot every day. His parents bought a house in Cuneo but his father continued to work the fields at Tetto Galant with the
help of a brother and sister of Giuseppe, while his mother stayed in Cuneo with Giuseppe and his older brother.

Giuseppe’s mother had a brother who was a priest and lawyer in Turin and, when he realised that Giuseppe was a very
talented child, he took him to Turin in 1870 for his secondary schooling and to prepare him for university studies. Giuseppe
took exams at Ginnasio Cavour in 1873 and then was a pupil at Liceo Cavour from where he graduated in 1876 and, in that
year, he entered the University of Turin.

Among Peano’s teachers in his first year at the University of Turin was D’Ovidio who taught him analytic geometry and
algebra. In his second year he was taught calculus by Angelo Genocchi and descriptive geometry by Giuseppe Bruno.
Peano continued to study pure mathematics in his third year and found that he was the only student to do so. The others
had continued their studies at the Engineering School which Peano himself had originally intended to do. In his third year
Francesco Faà di Bruno taught him analysis and D’Ovidio taught geometry. Among his teachers in his final year were again
D’Ovidio with a further geometry course and Francesco Siacci with a mechanics course. On 29 September 1880 Peano
graduated as doctor of mathematics.

Peano joined the staff at the University of Turin in 1880, being appointed as assistant to D’Ovidio. He published his first
mathematical paper in 1880 and a further three papers the following year. Peano was appointed assistant to Genocchi for
1881-82 and it was in 1882 that Peano made a discovery that would be typical of his style for many years, he discovered an
error in a standard definition.

Genocchi was by this time quite old and in relatively poor health and Peano took over some of his teaching. Peano was
about to teach the students about the area of a curved surface when he realised that the definition in Serret’s book, which was
the standard text for the course, was incorrect. Peano immediately told Genocchi of his discovery to be told that Genocchi
already knew. Genocchi had been informed the previous year by Schwarz who seems to have been the first to find Serret’s
error.

In 1884 there was published a text based on Genocchi’s lectures at Turin. This book Course in Infinitesimal Calculus although
based on Genocchi’s lectures was edited by Peano and indeed it has much in it written by Peano himself. The book itself
states on the title page that it is:... published with additions by Dr Giuseppe Peano.

Genocchi seemed somewhat unhappy that the work came out under his name for he wrote:... the volume contains important
additions, some modifications, and various annotations, which are placed first. So that nothing will be attributed to me
which is not mine, I must declare that I have had no part in the compilation of the aforementioned book and that everything
is due to that outstanding young man Dr Giuseppe Peano ...

Peano received his qualification to be a university professor in December 1884 and he continued to teach further courses,
some for Genocchi whose health had not recovered sufficiently to allow him to return to the University.

In 1886 Peano proved that iff (x, y) is continuous then the first order differential equationdy/dx = f (x, y) has a solution.
The existence of solutions with stronger hypothesis on f had been given earlier by Cauchy and then Lipschitz. Four years
later Peano showed that the solutions were not unique, giving as an example the differential equationdy/dx = 3y2/3, with
y(0) = 0.

In addition to his teaching at the University of Turin, Peano began lecturing at the Military Academy in Turin in 1886. The
following year he discovered, and published, a method for solving systems of linear differential equations using successive
approximations. However Emile Picard had independently discovered this method and had credited Schwarz with discovering
the method first. In 1888 Peano published the book Geometrical Calculus which begins with a chapter on mathematical
logic. This was his first work on the topic that would play a major role in his research over the next few years and it was
based on the work of Schröder, Boole and Charles Peirce. A more significant feature of the book is that in it Peano sets out
with great clarity the ideas of Grassmann which certainly were set out in a rather obscure way by Grassmann himself. This
book contains the first definition of a vector space given with a remarkably modern notation and style and, although it was
not appreciated by many at the time, this is surely a quite remarkable achievement by Peano.

In 1889 Peano published his famous axioms, called Peano axioms, which defined the natural numbers in terms of sets. These
were published in a pamphlet Arithmetices principia, nova methodo exposita which, according to Kennedy were:... at once
a landmark in the history of mathematical logic and of the foundations of mathematics.

The pamphlet was written in Latin and nobody has been able to give a good reason for this, other than:... it appears to be
an act of sheer romanticism, perhaps the unique romantic act in his scientific career.

Genocchi died in 1889 and Peano expected to be appointed to fill his chair. He wrote to Casorati, who he believed to be
part of the appointing committee, for information only to discover that there was a delay due to the difficulty of finding
enough members to act on the committee. Casorati had been approached but his health was not up to the task. Before the
appointment could be made Peano published another stunning result.

He invented ’space-filling’curves in 1890, these are continuous surjective mappings from[0, 1] onto the unit square. Hilbert,
in 1891, described similar space-filling curves. It had been thought that such curves could not exist. Cantor had shown that
there is a bijection between the interval[0, 1] and the unit square but, shortly after, Netto had proved that such a bijection
cannot be continuous. Peano’s continuous space-filling curves cannot be 1-1 of course, otherwise Netto’s theorem would be
contradicted. Hausdorff wrote of Peano’s result in Grundzüge der Mengenlehre in 1914:This is one of the most remarkable
facts of set theory.

In December 1890 Peano’s wait to be appointed to Genocchi’s chair was over when, after the usual competition, Peano was
offered the post. In 1891 Peano founded Rivista di matematica, a journal devoted mainly to logic and the foundations of
mathematics. The first paper in the first part is a ten page article by Peano summarising his work on mathematical logic up
to that time.
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Peano had a great skill in seeing that theorems were incorrect by spotting exceptions. Others were not so happy to have
these errors pointed out and one such was his colleague Corrado Segre. When Corrado Segre submitted an article to Rivista
di matematica Peano pointed out that some of the theorems in the article had exceptions. Segre was not prepared to just
correct the theorems by adding conditions that ruled out the exceptions but defended his work saying that the moment of
discovery was more important than a rigorous formulation. Of course this was so against Peano’s rigorous approach to
mathematics that he argued strongly:I believe it new in the history of mathematics that authors knowingly use in their
research propositions for which exceptions are known, or for which they have no proof...

It was not only Corrado Segre who suffered from Peano’s outstanding ability to spot lack of rigour. Of course it was the
precision of his thinking, using the exactness of his mathematical logic, that gave Peano this clarity of thought. Peano pointed
out an error in a proof by Hermann Laurent in 1892 and, in the same year, reviewed a book by Veronese ending the review
with the comment:We could continue at length enumerating the absurdities that the author has piled up. But these errors,
the lack of precision and rigour throughout the book take all value away from it.

From around 1892, Peano embarked on a new and extremely ambitious project, namely the Formulario Mathematico. He
explained in the March 1892 part of Rivista di matematica his thinking:Of the greatest usefulness would be the publiction
of collections of all the theorems now known that refer to given branches of the mathematical sciences ... Such a collection,
which would be long and difficult in ordinary language, is made noticeably easier by using the notation of mathematical
logic ...

In many ways this grand idea marks the end of Peano’s extraordinary creative work. It was a project that was greeted with
enthusiasm by a few and with little interest by most. Peano began trying to convert all those around him to believe in the
importance of this project and this had the effect of annoying them. However Peano and his close associates, including his
assistants, Vailati, Burali-Forti, Pieri and Fano soon became deeply involved with the work.

When describing a new edition of the Formulario Mathematico in 1896 Peano writes:Each professor will be able to adopt
this Formulario as a textbook, for it ought to contain all theorems and all methods. His teaching will be reduced to showing
how to read the formulas, and to indicating to the students the theorems that he wishes to explain in his course.

When the calculus volume of the Formulario was published Peano, as he had indicated, began to use it for his teaching.
This was the disaster that one would expect. Peano, who was a good teacher when he began his lecturing career, became
unacceptable to both his students and his colleagues by the style of his teaching. One of his students, who was actually a
great admirer of Peano, wrote:But we students knew that this instruction was above our heads. We understood that such a
subtle analysis of concepts, such a minute criticism of the definitions used by other authors, was not adapted for beginners,
and especially was not useful for engineering students. We disliked having to give time and effort to the "symbols" that in
later years we might never use.

The Military Academy ended his contract to teach there in 1901 and although many of his colleagues at the university would
have also liked to stop his teaching there, nothing was possible under the way that the university was set up. The professor
was a law unto himself in his own subject and Peano was not prepared to listen to his colleagues when they tried to encourage
him to return to his old style of teaching. The Formulario Mathematico project was completed in 1908 and one has to admire
what Peano achieved but although the work contained a mine of information it was little used.

However, perhaps Peano’s greatest triumph came in 1900. In that year there were two congresses held in Paris. The first was
the International Congress of Philosophy which opened in Paris on 1 August. It was a triumph for Peano and Russell, who
attended the Congress, wrote in his autobiography:The Congress was the turning point of my intellectual life, because there
I met Peano. I already knew him by name and had seen some of his work, but had not taken the trouble to master his notation.
In discussions at the Congress I observed that he was always more precise than anyone else, and that he invariably got the
better of any argument on which he embarked. As the days went by, I decided that this must be owing to his mathematical
logic. ... It became clear to me that his notation afforded an instrument of logical analysis such as I had been seeking for
years ...

The day after the Philosophy Congress ended the Second International Congress of Mathematicians began. Peano remained
in Paris for this Congress and listened to Hilbert’s talk setting out ten of the 23 problems which appeared in his paper aimed
at giving the agenda for the next century. Peano was particularly interested in the second problem which asked if the axioms
of arithmetic could be proved consistent.

Even before the Formulario Mathematico project was completed Peano was putting in place the next major project of his
life. In 1903 Peano expressed interest in finding a universal, or international, language and proposed an artificial language
"Latino sine flexione" based on Latin but stripped of all grammar. He compiled the vocabulary by taking words from English,
French, German and Latin. In fact the final edition of the Formulario Mathematico was written in Latino sine flexione which
is another reason the work was so little used.

Peano’s career was therefore rather strangely divided into two periods. The period up to 1900 is one where he showed great
originality and a remarkable feel for topics which would be important in the development of mathematics. His achievements
were outstanding and he had a modern style quite out of place in his own time. However this feel for what was important
seemed to leave him and after 1900 he worked with great enthusiasm on two projects of great difficulty which were enormous
undertakings but proved quite unimportant in the development of mathematics.

Of his personality Kennedy writes:... I am fascinated by his gentle personality, his ability to attract lifelong disciples, his
tolerance of human weakness, his perennial optimism. ... Peano may not only be classified as a 19th century mathematician
and logician, but because of his originality and influence, must be judged one of the great scientists of that century.

Although Peano is a founder of mathematical logic, the German mathematical philosopher Gottlob Frege is today considered
the father of mathematical logic.
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