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2. The Fundamental Theorem of Arithmetic — Divisibility in Monoids

E u c l i d o f A l e x a n d r i a †

(≈ 325 BC - ≈ 265 BC)

2.1. (Göde l i sa t i on ) Letp1 = 2, p2 = 3, p3 = 5, . . . be (infinite) sequence of the prime numbers.

a). Let A be a countable set with an enumerationA = {a1, a2, a3, . . .} , ai �= aj for i �= j . Then the
map

(ai1, . . . , ain ) �→ p
i1
1 · · · pin

n

is an injective map from the set W(A) := ⊎
n∈N

An of finite sequences (of arbitrary lengths) of elements
from A - such sequences are also calledw o r d s over the a l p h a b e tA - into the setN∗ of positive
natural numbers. ( Remark : Such a coding of the words overA is called a G ¨o d e l i s a t i o n(due to
K. Gödel). The natural number associated to a word is called the G ¨o d e l n u m b e r ofthis word.)
b). Let A be a finite alphabet{a1, a2, . . . , ag} with g letters, g ≥ 2 , and a0 �∈ A be another
letter. A word W = (ai1, . . . , ain ) over A can be identified by fillinga0 with the infinite sequence
(ai1, . . . ain , a0, a0, . . .) . Show that: the map(aiν )ν∈N∗ �→ ∑∞

ν=1 iνg
ν−1 is a bijective map from the set

of words overA onto the setN of the natural numbers and in particular, is a G¨odelisation. ( Remark :
This is a variant of theg-adic expansion (see T2.1 -13)).)

2.2. Let g ∈ N∗, g ≥ 2, n be a natural number with digit-sequence(ri)i∈N in the g-adic expansion of
n and letd ∈ N∗. (see T2.1 -13))

a). Suppose thatd is a divisor ofgα for someα ∈ N∗. Then n ≡ (rα−1, . . . , r0)g modd . In particular,
d divides the numbern if and only if d divides the number(rα−1, . . . , r0)g.

b). Suppose thatd is a divisor ofgα − 1 for someα ∈ N∗ and

S := (rα−1, . . . , r0)g + (r2α−1, . . . , rα)g + · · · .

Then n ≡ S modd . In particular,d divides the numbern if and only if d divides the sumS.

c). Suppose thatd is a divisor ofgα + 1 for someα ∈ N∗ and

W := (rα−1, . . . , r0)g − (r2α−1, . . . , rα)g + · · · .

Then n ≡ W modd . In particular,d divides the numbern if and only if d divides the alternating sum
W .

The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly inEuclids elements, although some
of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof seems to have
been given byGauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801). It was, of course, familier to earlier
mathmetaicains; but GAUSS was the first to develop arithmetic as a systematic science.

D. P. Patil / Exercise Set 2 aag05-e02 ; September 26, 2005 ; 11:54 a.m. 8



2.2 Algebra, Arithmetic and Geometry / 2005 2. The Fundamental Theorem of Arithmetic — Divisibility in Monoids

( Remark : With the help of this exercise one can find criterion, which one can decide on the basis the digit-
sequence of the natural numbern in the decimal system whetherd is a divisor ofn with 2 ≤ d ≤ 16. (withd = 3
andd = 9 one uses the simple checksum, withd = 11 the simple alternating sum. The divisibility by 7, 11 and
13 at the same time can be tested with the alternating sum of the 3- groupped together in view of the part c). See
T2.1 -14) for details.)

2.3. a). For a, m, n ∈ N∗ with a ≥ 2 andd := gcd(m, n) , show that gcd(am −1 , an −1) = ad −1 .
In particular,am − 1 andan − 1 are relatively prime if and only ifa = 2 andm and n are relatively
prime. ( Hint : By substituting ad by a one may assume thatd = 1 . Then show that
(am − 1)/(a − 1) = am−1 + · · · + a + 1 and (an − 1)/(a − 1) = an−1 + · · · + a + 1 are relatively prime.)
b). Suppose thata1, . . . , an ∈ N∗ are relatively prime. Show that there exists a natural numberf ∈ N

such that every natural numberb ≥ f ca be represented asb = u1a1+· · ·+anan with natural numbers
u1, . . . , un . In the casen = 2 , we havef := (a1 − 1)(a2 − 1) is the smallest such number; further
in this case there are exactlyf/2 natural numbersc , which donot have a representation of the form
u1a1 + u2a2, u1, u2 ∈ N . (Hint : For 0 ≤ c ≤ f − 1, exactly one of the numberc andf − 1 − c can be
represented in the above form.)
c). Let a, b ∈ N∗ and d := gcd(a, b) = sa + tb with s, t ∈ Z . Then d = s ′a + t ′b for s ′, t ′ ∈ Z if
and only if there existsk ∈ Z such thats ′ = s − k b

d
, t ′ = t + k a

d
.

2.4. a). Let x, y ∈ Q×
+ and y = c/d be the canonical representation ofy with c, d ∈ N∗ and

gcd(c, d) = 1 . Show thatxy is rational if and only ifx is the d-th power of a rational number.
b). Show that other than(2, 4) there is no pair(x, y) of positiverational numbers withx < y and
xy = yx . ( Hint : Prove that for eachreal positive number ofx with 1<x <e there exists exactly one real
numbery > x such thatxy = yx . (Note that necessarilyy >e .)

For the proof of the above assertion : Note thatxy = yx if and only if (ln x)/x = (ln y)/y and consider the
function (ln x)/x on R×

+ .)
c). Let x ∈ Q×

+ anda be a positive natural number which is not of the formbd with b, d ∈ N∗, d ≥ 2 .
Then show that loga x is either integer or irrational.

d). For which x, y ∈ Q×
+ , y �= 1 , the real number logy x rational ? For whichx ∈ Q×

+ , the real
number log10 x rational ?

e). Let n ∈ N∗ , n ≥ 2 and y ∈ Q×
+ \ N∗ . Then both the numbersn

√
n! and (n!)y are irrational.

( Hint : The natural numbern! has simple prime factors.)

2.5. Let m, n ∈ N∗ be relatively prime numbers and leta0, a1, . . . be the sequence defined recursively
as a0 = n, ai+1 = a0 · · · ai + m, i ∈ N . Then ai+1 = (ai − m)ai + m = a2

i − mai + m for every
i ≥ 1 .

a). gcd(ai, aj ) = 1 for all i, j ∈ N with i �= j . The prime divisors ofai, i ∈ N supply infinitely
many different prime numbers.( Remark : The ai are suitable well for testing prime factorizing procedures.)

b). For all i ∈ N , show that 1
a0

+ m
a1

+· · ·+ mi

ai
= m + 1

n
− mi+1

ai+1 − m
. Deduce that

∞∑
i=0

mi

ai
= m + 1

n
.

c). For m = 2 andn = 1 , from b) prove thatai+1 = Fi = 22i + 1, i ∈ N. In particular,
∞∑
i=0

2i

Fi

= 1 .
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2.6. Let M be a commutative monoid with cancellation law. Suppose that every elementx ∈ M is a
product of irreducible elements. Show that the following statements are equivalent :

(i) M is factorial. (ii) Every irreducible element ofM is prime. (iii) lcm(a, b) exists for every
a, b ∈ M . (iv) gcd(a, b) exists for everya, b ∈ M . ( Hint : Use 2.1-h) and 2.1-j).)

2.7. Let n ∈ N∗ and letM ⊆ Nn be a submonoid of(Nn, +) . The dimension of the subspace of the
Q- vector space ofQn generated byM is called ther a n k of M and is denoted by rank(M) . Show
that :

a). Every element inM is a sum of irreducible elements. ( Hint : Let a = (a1, . . . , an) ∈ M and
|a| := a1 + · · · + an Use induction on|a| .)
b). The irreducible elements ofM form a smallest subset ofM which generatesM as a monoid, i.e.,
every generating setS ⊆ M contains the set of irreducible elements ofM .

c). M is factorial if and only ifM is generated byr := rank(M) elements. Moreover, in this caseM
is isomorphic to the monoid(Nr , +) . .

2.8. Let p be a prime number. Then

a). vp((2n)!/(n!)2) = ∑
k≥1

(
[2n/pk] − 2[n/pk]

)
and if n < p < 2n , then vp((2n)!/(n!)2) = 1 .

b). vp((pk − 1)!) = [pk − (p − 1)k − 1]/(p − 1) . ( Hint : Use the identity(pk − 1) =
(p − 1)(pk−1 + · · · + p2 + p + 1) .)
c). Find n ∈ N∗ such thatvp(n!) = 100 .

2.9. a). For anyn ∈ N∗, show that :∑
d|n

σ (d) =
∑
d|n

n

d
· τ(d) and

∑
d|n

n

d
· σ(d) =

∑
d|n

d · τ(d) .

( Hint : Since the functionsF(n) = ∑
d|n σ (d) and G(n) = ∑

d|n
n

d
τ (d) are both multiplicative, it is enough to

prove thatF(pm) = G(pm) for each primep and eachm ∈ N∗.)
b). For n ∈ N∗ and k ∈ N , let σk(n) denote the sum of thek-th positive divisors ofn , i.e, σk(n) =∑

d|n dk . Show that :

1). σ0 = τ and σ1 = σ .

2). σk is a multiplicative function. ( Hint : The arithmetic functionn �→ nk is multiplicative and use
T2.9-1)-e).)
3). If n ∈ N∗, n > 1 andn = p

m1
1 · · · pmr

r is the canonical prime factorisation ofn , then

σk(n) =
r∏

i=1

(pk(mi+1) − 1)

(pk
i − 1)

.

In particular,σk(p
m) = pk(m+1) − 1

pk − 1
. Therefore the arithmetic functionsσk are multiplicative.

2.10. Let m, n ∈ N∗. Show that

a). If n > 1 andn = p
m1
1 · · · pmr

r is the canonical prime factorisation ofn , then

σ(n) · ϕ(n) ≥ n2
r∏

i=1

(1 − 1/p2
i ) and τ(n)ϕ(n) ≥ n .

( Hint : Prove thatτ(n) · ϕ(n) ≥ 2r · n · (1/2r ) .)
b). If d|n , then ϕ(d)|ϕ(n) .

c). ϕ(m) · ϕ(n) = ϕ(mn) · ϕ(gcd(m, n))/ gcd(m, n) = ϕ(gcd(m, n)) · ϕ(lcm(m, n)) .

d). If p is prime andk ≥ 2 , thenϕ(ϕ(pk)) = pk−1ϕ((p − 1)2) .
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2.4 Algebra, Arithmetic and Geometry / 2005 2. The Fundamental Theorem of Arithmetic — Divisibility in Monoids

Below one can see (simple) test-exercises.

Test-Exercises

T2.1. ( D i v i s i b i l i t y i n N a n d Z / g c d / D i v i s i o n a l g o r i t h m / E u c l i d e a n a l g o r i t h m )

1). ( L e m m a o f B e z o u t ) Leta, b ∈ N be two natural numbers. Then there exists integerss, t ∈ Z such
that gcd(a, b) = sa + tb . In particular, if a and b are relatively prime positive natural numbers, then there
exist integersst ∈ Z such that 1= sa + tb . Deduce that : (i) For two non-zero integersab ∈ Z∗ , show
that the set{sa + tb | s, t ∈ Z} is precisely the set of all multiples ofd = gcd(a, b) . (ii) if d = gcd(a, b) ,
then gcd(a/d, b/d) = 1 , i.e., a/d and b/d are relatively prime. (iii) ifa, b, c ∈ Z and a|c and b|c with
gcd(a, b) = 1 , then ab|c . (iv) if a, b, c ∈ Z and a|bc and gcd(a, b) = 1 , then a|c . (v) ( E u c l i d ’s
l e m m a ) Letp be an irreducible element inN∗ (i.e. 1 andp are the only divisors ofp in N ). If p divides a
productb1 · · · br of positive natural numbers, thenp divides at least one of the factorbi .

2). For positive natural numbersa, b, c ∈ N∗ andm, n ∈ N∗ , show that : (i) if gcd(a, b) = 1 and gcd(a, c) = 1 ,
then gcd(a, bc) = 1 . (ii) if gcd(a, b) = 1 , then gcd(am, bn) = 1 . (iii) the relation an|bn implies thata|b .

(Hint : let d : gcd(a, b) and write a = rd and b = sd . Then gcd(r, s) = 1 and hence gcd(rn, sn) = 1 . Now
show thatr = 1 , whencea = d .) (iv) if gcd(a, b) divides lcm(a, b) and gcd(a, b) · lcm(a, b) = ab .
Moreover, gcd(a, b) = lcm(a, b) if and only if a = b . (v) gcd(a, b) = 1 if and only if lcm(a, b) = ab .

(vi) a|b ⇐⇒ gcd(a, b = a ⇐⇒ lcm(a, b) = b .

3). Let a1, . . . , an ∈ N∗ , n ≥ 1 and leta = a1 · · · an . Show that the following statements are equivalent:

(i) a1, . . . , an are pairwise relatively prime. (ii) If each of the numbersa1, . . . , an divide the natural numberc ,
then a also divide the numberc . (iii) lcm (a1, . . . , an) = a . (iv) The natural numbersb1 := a/a1, . . . , bn :=
a/an are relatively prime. (v) There exist integerss1, . . . , sn such that1

a
= s1

a1
+ · · · + sn

an
. (Remark : lcm

and gcd of finite many numbersa1, . . . , an are defined like in the casen = 2 . If gcd(a1, . . . , an) = 1 , then
a1, . . . , an are calledr e l a t i v e l y p r i m e . Note that this concept is different from that of pairwise relatively
prime.)
4). For a1, . . . , an ∈ N∗ , n ≥ 1 , show that there exist integersu1, . . . , un ∈ Z such that gcd(a1, . . . , an) =
u1a1 + · · · + unan . In particular, a1, . . . , an are relatively prime if and only if there exist integersu1, . . . , un

such that 1= u1a1 + · · · + unan . (Remark : One can find the coefficientsu1, . . . , un algorithmically by
succesive use of the lemma of Bezout (see T2.1-1)) and gcd(a1, . . . , an−1, an) = gcd(gcd(a1, . . . , an−1), an) . This
algorithm supplies frequently disproportionately large coefficientsu1, . . . , un. It is better to proceed as follows :
One nummeriere first so thata1 is minimal inai , and goes then to tuple(a1, r2, . . . , rn), whererj the remainder
of aj after dividing bya1, after removing the zeros amongrj , consider the new tuple as at the beginning. One has
to control, how the coefficients of the tuple constructed are represented as linear combinations of thea1, . . . , an,
beginning withai = ∑n

k=1 δikak .) Find integersu1, u2, u3 such that 1= u1 · 88+ u2 · 152+ u3 · 209.

5). Let a1, . . . , an ∈ N∗ , n ≥ 1 . For J ∈ P({1, . . . , n}) , put ε(J ) := (−1)|J |+1 , dJ := gcd(aj | j ∈ J )

and mJ := lcm(aj | j ∈ J ) . Then dI = gcd(a1, . . . , an) =
∏

J∈P({1,...,n}) ,
J �=∅

d
ε(J )

J and mI = lcm(a1, . . . , an) =
∏

J∈P({1,...,n}) ,
J �=∅

m
ε(J )

J . In particular, gcd(a, b) lcm(a, b) = ab for a, b ∈ N∗ .

6). Show that there are no positive natural numbersa, b ∈ N∗ and n ∈ N with n > 1 and an − bn divides
an + bn .(Hint : We may assume thatb < a and gcd(a, b) = 1 .)
7). Show that fora, b ∈ N∗ , b > 2 , 2a + 1 is not divisible by 2b − 1 .

8). For m, n ∈ N , m > n , show thata2n + 1 divides a2m − 1 . Moreover, if m, n, a ∈ N∗ , m �= n , then

gcd(a2m + 1, a2n + 1) =
{ 1, if a is even,

2, if a is odd.
9). Suppose that 2n + 1 = xy , wherex, y ∈ N∗ , x > 1, y > 1 andn ∈ N∗ . Show that 2a divides x − 1 if and
only if 2a divides y − 1 .

10). Show that gcd(n! + 1, (n + 1)! + 1) = 1 .

11). ( G a u s s - b r a c k e t ) For areal numberx ∈ R , let [x] denote the largest integerleqx , i.e., [x] is the
unique integer satisfying [x] ≤ x < [x] + 1 . The integer [x] is called thei n t e g r a l p a r t ofx . It is also
useful to put{x} := x − [x] . This is thef r a c t i o n a l p a r t ofx . Many of the basic properties of the function
x �→ [x] are included below :
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Let x and y be real numbers. Then we have

a). x − 1 < [x] ≤ x < [x] + 1 , 0≤ {x} = x − [x] < 1 and−[−x] is the least integer≥ x .

b). [x] = ∑
1≤i≤x 1 if x ≥ 0 . c). [x + n] = [x] + n for every integern ∈ Z .

d). [x] + [y] ≤ [x + y] ≤ [x] + [y] + 1 , [x] + [y] + [x + y] ≤ [2x] + [2y] and if x , y, are positive, then
[x][y[≤ [xy] .

e). [x] + [−x] =
{

0, if x is an integer,
−1, if x is not an integer. f).

[
[x]
m

]
= [

x

m

]
for any positive integerm .

g). For m, n, k ∈ N∗, [n/k] = card({a ∈ {1, 2, . . . , n} | k|a}) and [nm/k] ≥ n[m/k] .

12). Show that (2n)!
n!·(n+1)! is an integer.(Hint :

(2n

n

) · (2n + 1) = (2n+1
n+1

) · (n + 1) .)
13). ( g - a d i c e x p a n s i o n ) Letg ∈ N∗, g ≥ 2. For every natural numbern ∈ N , there exists a
uniquely determined sequence(ri)i∈N of natural numbers almost all of which are 0 such thatn = ∑∞

i=0 rig
i

and 0 ≤ ri < g for all i ∈ N . (Remark : This unique representation ofn is called the g - a d i c
e x p a n s i o n ofn and theri , i ∈ N, are called thed i g i t s ofn in the g - a d i c s y s t e m . Ifri = 0 for i > t ,
then we writen = (rt , . . . , r0)g and say that t h eg-adic expansionn = ∑t

i=0 rig
i of n, which can lead to no

misunderstandings. Moreover, ifrt �= 0, thenrt , . . . , r0 are called thee s s e n t i a l d i g i t s ofn. — Forg = 2
resp.g = 10 we also use the termsd u a l –resp.d e c i m a l s y s t e m .)
14). Let n ∈ N∗ and letam10m + am−110m−1 + · · · + a110+ a0 , m ∈ N and aj ∈ {0, 1, . . . , 9} be the decimal
expansion ofn . Then

(i) 3|n ⇐⇒ 3|(a0 + a1 + · · · + am) ; 5|n ⇐⇒ 5|a0 ; 9|n ⇐⇒ 9|(a0 + a1 + · · · + am) ;
11|n ⇐⇒ 11|(a0 − a1 + · · · + (−1)mam) .

(ii) 7|n ⇐⇒ 7|(a2, a1, a0)10− (a5, a4, a3)10+· · · ; 11|n ⇐⇒ 11|(a2, a1, a0)10− (a5, a4, a3)10+· · · ;
13|n ⇐⇒ 13|(a0 + 2a1 + · · · + 2mam) ;

T2.2. ( P r i m e s ) LetP denote the set of all prime numbers. Then

1). ( E u c l i d ) P is an infinite set. Moreover, ifpn denote then-th prime (in the natural order≤ ), then show
that : (i) pn ≤ 22n−1

. (Hint : Note thatpn+1 ≤ p1 · p2 · · · pn + 1 .) (ii) pn > 2n − 1 for n ≥ 5 .
(iii) none of the natural numberPn := p1 · p2 · · · pn + 1 is a perfect square. (Hint : Each Pn is of
the form 4m + 3 .) (iv) the sum 1

p1
+ 1

p2
+ · · · = 1

pn
is never an integer. (v) Give another proof of

infiniteness ofP by assuming that there are only finitely many primes, say,p1, . . . , pn and using the natural
numberN = p2 · p3 · · · pn + p1 · p3 · · · pn + · · · + p2 · p3 · · · pn−1 .

(vi) ( C o n j e c t u r e s / O p e n q u e s t i o n s ) (a)If qn is the smallest prime which is > Pn = p1 · p2 · · · pn + 1 ,
then the difference (p1 · p2 · · · pn) − qn is always a prime. Verify this for first 5 values ofn . (b) Let
dn = pn+1 − pn . An open question is :whether the equation dn = dn+1 has infinitely many solutions. Give 5
solutions.

2). Let n ∈ N∗ . Show that (i) ifn > 2 , then there exists a prime numberp with n < p < n! .(Hint : Consider a
prime divisorp of n! −1 .) (ii) if n > 1 , then every prime divisor ofn! +1 is an odd integer> n . (Remark :
This shows again that there are infinitely many prime numbers infinitely. It is unknown whether infinitely many
of n! + 1 are prime.)
3). Forn ∈ N∗, none of then natural numbers(n+1)! + 2, . . . , (n+1)! + n+1 are prime.(Remark : Therefore
there are gaps of any size between prime numbers.)
4). For a = 3, 4, 6, show that in the sequencean + (a − 1), n ∈ N , there are infinitely many prime numbers.
(Hint : Make an argument withap1 · · · pr + (a − 1).) (Remark : More generally, ifa, b are relatively prime
positive natural numbers, then there are infinitely many prime numbers of the forman + b, n ∈ N (Dirichlet’s
Theorem).)
5). Let n, r ∈ N∗, n ≥ 2 . If n has no prime divisor≤ r+1√n, thenn is a product of at the mostr (not necessarily
different) prime numbers. In particular, ifn has no prime divisor≤ √

n, thenn is prime.

6). For n ∈ N , n ≥ 2 , the natural number 4n + n4 is never prime. (Hint : For oddn, we haven4 + 4n =
(n2 − 2

n+1
2 · n + 2n)(n2 + 2

n+1
2 · n + 2n) .)

T2.3. 1). ( M e r s e n n e N u m b e r s ) Leta, n∈ N with a, n≥2. If an−1 is prime, thena = 2 andn is prime.
(Hint : Use geometric series.) The natural numbers of the formap−1 , p ∈ P prime, are calledMersenne numbers.
For p = 2, 3, 5, 7 the corresponding Mersenne numbers are prime, but corresponding top = 11 , it is not prime.
(Remark : Every two distinct Mersenne numbers are relatively prime. It is not known whether there are infinitely
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2.6 Algebra, Arithmetic and Geometry / 2005 2. The Fundamental Theorem of Arithmetic — Divisibility in Monoids

many Mersenne numbers that are prime. The biggest known1) prime is the Mersenne numberMp corresponding
to p = 25, 964, 951 ; this prime number has [log10(2

25,964,951)] + 1 = [25, 964, 951· log10 2] + 1 = 7816230
digits!)
2). ( F e r m a t N u m b e r s ) Leta, n ∈ N∗ with a ≥ 2 . If an + 1 is prime, thena is even andn is a power
of 2 . The natural number of the form 2q + 1 , q = 2n , n ∈ N is called the n - t h F e r m a t n u m b e r and
is denoted byFn(:= 22n + 1 , n ∈ N . The Fermat numbersF0, F1, F2, F3, F4 are prime, butF5 is not prime.
( 641= 54 + 24 = 5 · 27 + 1 divides 54 · 228 + 23 and 54 · 228 − 1 and hence the difference 232 + 1 = F5 . Any
two distinct Fermat numbers are relatively prime, sinceFm+1 = 2 + F0 · · · Fm. (Remark : Whether or not there
are more Fermat numbers which are prime is unknown.)
3). ( P e r f e c t n u m b e r s ) Anatural numbern ∈ N∗ is called p e r f e c t if σ(n) = 2n . ( T h e o r e m o f
E u c l i d - E u l e r )An even number n ∈ N∗ is perfect if and only if n is of the form 2s (2s+1 − 1) with s ∈ N∗

and 2s+1 − 1 prime. ( Hint : Suppose thatn is perfect, n = 2sb s, b ∈ N∗ and b odd. Then
2s+1b = 2n = σ(n) = (2s+1 − 1)σ (b) and so there existsc ∈ N∗ such thatσ(b = 2s+1c , b = (2s+1 − 1)c ,
σ(b) = b + c .)

T2.4. Let M be a commutative monoid with cancellation law and letab, c ∈ M . Let ∼ be the relation onM
defined bya ∼ b if a and b are associates inM , i.e., b = ua for someu ∈ M× . Then :

1). ∼ is an equivalence relation onM and a ∼ b if and only if a
∣∣b and b

∣∣a .

2). The quotient setM := M/ ∼ of M with respect to∼ is a monoid with (well-defined) multiplication defined
by a · b := ab and M

× = {e} , i.e, M is a pointed monoid. Moreover,a
∣∣b if and only if a

∣∣b .

3). The elementa ∈ M is irreducible (resp. prime) if and only ifa ∈ M is irreducible (resp. prime).

4). Show that the following statements are equivalent : (i)M is factorial (or a unique factorisation monoid).
(ii) M is factorial. (iii) M is isomorphic to the monoid(N(I ), +) for some setI . Moreover, in this case
the monoidM is isomorphic to the product monoidM× × M .

5). Show that divisibility defines an order onM .

6). If inf (a, b) ∈ M exists, then any of its representative inM is called theg r e a t e s t c o m m o n d i v i s o r
of a and b and is denoted by gcd(a, b) . Similarly, if sup(a, b) ∈ M exists, then any of its representative in
M is called thel e a s t c o m m o n m u l t i p l e ofa and b and is denoted by lcm(a, b) . Prove the formula :
gcd(a, b) lcm(a, b) = ab if both gcd(a, b) and lcm(a, b) exist.

7). Show that if gcd(ac, bc) exists, then gcd(a, b) exists. and gcd(ac, bc) = gcd(a, b) · c . Similarly, show that
if lcm(ac, bc) exists, then lcm(a, b) exists and lcm(ac, bc) = lcm(a, b) · c .

8). Show that the following statements are equivalent : (i) lcm(a, b) exists (ii) lcm(ax, bx) exists for all
x ∈ M . (iii) gcd(ax, bx) exists for allx ∈ M .

9). Give an example to show that gcd(a, b) exists, but lcm(a, b) does not.

10). Show that the following statements are equivalent : (i) lcm(x, y) exists for allx, y ∈ M .

(ii) gcd(x, y) exists for allx, y ∈ M . (iii) M is a lattice with respect to the divisibility order.(Remark : An
ordered set(X, ≤) is called al a t t i c e if x � y := sup(x, y) and x � y := Inf (x, y) exist for all x, y ∈ M . In
this case the binary operations� and � on M are associative, commutative and fullfill the followingmerging
rules : x � (x � y) = x and x � (x � y) = x for all x, y ∈ M . Conversely, if� and � are binary operations
on a setX , then X is lattice with respect to the order on≤ on X defined by “x ≤ y if and only if x � y = x ”
and the operations(x, y) �→ sup(x, y) and (x, y) �→ inf (x, y) are given binary operations� and � .)

T2.5. The uniqueness of the decomposition of a positive natural number into product of irreducible elements is
less obvious than the existence of such a decomposition. This can be seen in the following example :

Let q ∈ N∗ be an arbitrary prime number (e.g.q := 2 or q := 12345678912) ) andN := N∗ − {q} . ThenN is
a multiplicatively closed and every element inN is a product of irreducible elements ofN ; such a decomposition

1) On February 18, 2005, Dr.Martin Nowak, an eye surgeon from Germany, found the new largest known prime
number, 225,964,951− 1 . This prime number has 7816230 digits! It took more than 50 days of calculations on Dr.
Nowak’s 2.4 GHz Pentium 4 computer. This discovery was part of the Great Internet Mersenne Prime Search
(GIMPS) project in which more than 60, 000 volunteers from around the world took part. Such huge numbers
are used in problems related to Cryptography.
2) One can check this with a small computer programm that this number is really a prime number. Is the number
12345678901 also prime?
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is not any more, in general unique. More precisely, prove that: The irreducible elements inN are usual prime
numbersp �= q and their productspq with q and both the elementsq2 := q2 and q3 := q3 . The element
n := q6 ∈ N has two essentially different decompositionsn = q2 · q2 · q2 = q3 · q3 as product of irreducible
elements ofN . The irreducible elementq3 divides (inN ) the productq2 ·q2 ·q2 , but none of its factor. Similarly,
q2 divides (in N ) the productq3 · q3 , but not q3 . Similarly, m := pq3 = (pq)q2 has (in N ) two essentaily
different decompositions (p prime number�= q).

T2.6. Let n ∈ N∗ and letp be a prime number. Then show that

1). The multiplicity of p in n ! is [
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ · · · .

(Remark : Since [x/m] = [ [x]/m] for all x ∈ R and all m ∈ N∗ one can compute the sum on the right hand
side easily by recursion. It is easy to prove the equality :

∑
i≥1[n/gi ] = (

n−∑
i≥0 ai

)/
(g−1) for every g ∈ N∗ ,

g ≥ 2 , where ai are the digits in the g-adic expansion of n . In particular, n ≡ ∑
i≥0 ai modulo g − 1 . The

sum c h e c k - s u m
∑

i≥0 ai of n. In the caseg=10, one speaks of then i n e p r o o f . –More generally : Ifni ,
i ∈ I , is a finite family of positive natural numbers, then the prime numberp occurs in the product

∏
i∈I ni with

the multiplicity
∑

k∈N∗ νk , where for eachk ∈ N∗ , νk is the numberi ∈ I for which ni is divisible by pk . )
2). Let n, k ∈ N∗ , k ≤ n . Show that every prime power divisor of

(
n

k

)
is ≤n . (Hint : Use part 1).)

3). Find the canonical prime factorisation of : (i) 81 057 226 635 000. (ii) 50! and 100!. (iii) the product
1 · 3 · 5 · · · 99 of the first 50 odd numbers. (iv) the least common mulptiple lcm(1, 2, 3, . . . , 50) of the first
50 positive natural numbers.

4). Let n, k ∈ N∗ be relatively prime numbers. Show that
(

n

k

)
is divisible by n and

(
n−1
k−1

)
is divisible by k .

(Hint : Use the formulak
(
n

k

) = n
(
n−1
k−1

)
.)

5). For r, k ∈ N with r < k < p , show that
(
p+r

k

)
is divisible by p . In particular,

(
p

k

)
is divisible by p for

0 < k < p .

6). Prove (by induction onn ) the F e r m a t ’s l i t t l e t h e o r e m :For every natural number n , np − n is
divisible by p , i.e., np ≡ n modulo p .(Hint : Use part 5).)
7). For every natural numbern , n8 − n2 is divisible by 4· 7 · 9 = 252 . (Hint : Use induction.)
8). Let r ∈ N∗ , m = (m1, . . . , mr) ∈ Nr and n := ∑r

i=1 mi . All prime numbersp with Max (m1, . . . , mr) <

p ≤ n divide
(

n

m

) = n!/m1! · · · mr ! .

9). The product of two relatively prime natural numbersa andb is then-the power of a natural number(n ∈ N∗)
if and only if botha andb are n-th power of a natural number.

T2.7. 1). Let p1, . . . , pm be prime numbers≤ n+1 and letx = p1 · · · pm . Then none of then natural numbers
x + 1, x + 3, . . . , x + (n + 1) is prime.

2). Let m, n ∈ N∗ . Then m has no divisor which isn-th power except 1 if and only ifvp(m) < n for every
prime numberp . (Remark : In the casen = 2 , we say thatm is s q u a r e - f r e e .)
3). Let n ∈ N∗ , n > 2 . Then both

∑n

k=1 1/k and
∑n

k=1 1/(2k − 1) are not integers.(Hint : Find 2-exponents.)
4). Let a ∈ R , a > 0 anda �= 1 . Then the real numbers loga p , p ∈ P , are linearly independent overQ .

5). Let n ∈ N∗ be an odd number,n ≥ 3 . Suppose thatn has no prime divisors≤ m , m ∈ N∗ , m ≥ 3 . Then

n is prime if and only if none of the natural numbern + k2 , k = 0, 1, . . . ,
(n − m)2

2m
is square free. (Hint :(

x+y

2

)2 − (
x−y

2

)2 = xy .)

6). Show thatv2

(
[(1 + √

3)2m+1]
)

= m + 1 for everym ∈ N∗ .

7). Let p1, . . . , pr be prime numbers and letn ∈ N∗ . Let N(n) denote the number of positive natural num-
bers≤ n whose prime divisors are contained in{p1, . . . , pr} , i.e., N(n) = |{m ∈ N∗ | m ≤ n andm =
p

α1
1 · · · pαr

r , α1, . . . , αr ∈ N} . Show that

a). N(n) ≤ ([log2 n]+r

r

) ≤ (
[log2 n] + 1

)r
.(Hint : Use 2α1+···+αr ≤ p

α1
1 · · · pαr

r ≤ n .)

b). N(n) ≤ 2r [
√

n] . (Hint : Every m ∈ N∗ can be expressed asm = m2
1 · m2 with m1, m2 ∈ N∗ and m2

square-free.)
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T2.8. ( I r r a t i o n a l n u m b e r s ) Areal number which is not rational is called ani r r a t i o n a l number.

1). Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or division; The
sum, difference, product and quotient of two real numbers, one irrational and the other a non-zero rational, are
irrational.

2). Let n ∈ N∗ , y ∈ Q , y > 0 and lety = p
m1
1 · · · pmr

r be the canonical prime factorisation ofy . Show that the
following statements are equivalent : (i) There exists a positive rational numberx with xn = y . (ii) n divides
all the exponentsmi , i = 1, . . . , r .

3). (Lemma of Gauss ) Letx := a/b ∈ Q be anormalised fraction, i.e.,a, b ∈ Z, b > 0 and gcd(a, b) = 1 .
Suppose thatanx

n + · · · + a1x + a0 = 0 with a0, . . . , an ∈ Z and an �= 0 , n ≥ 1 , i.e., x is a zero of the
polynomial functionant

n + · · · + a0 . Then a is a divisior of a0 and b is a divisor ofan . Deduce that :

(i) if the leading coefficientan = 1 , thenx ∈ Z . (ii) For any integera ∈ Z and a natural numbern ∈ N∗ ,
every rational solution ofxn − a is an integer, in particular,xn − a has a rational solution if and only ifa is
the n- th power of an integer. (Remark : It follows at once that

√
2 (Phythagoras)3)

√
3,

√
5 are irrational

numbers.) More generally : (iii) Letr ∈ N∗ , p1, . . . , pr be distinct prime numbers and letm2, . . . , mr ∈ N∗

Then for everyn ∈ N∗ , n > 1 , the real number
√

p1p
m2
2 · · · pmr

r is an irrational number. (iv) Fora, b ∈ Z ,
a > 0, b > 0 with gcd(a, b) = 1 and a natural numbern ∈ N∗ , the equationxn − a/b has a rational solution if
and only if botha and b are n- th power of integers.

4). Let a1, . . . , ar ∈ Q×
+ be positive rational numbers. Show that

√
a1 + · · · + √

ar is rational if and only if each
ai , i = 1, . . . , r is a square of rational number.

5). Determine all rational zeros of the polynomial functionst3+ 3
4 t2+ 3

2 t+3 and 3t7+4t6−t5+t4+4t3+5t2−4 .

6). Let t be a rational multiple ofπ 4), i.e. t = rπ with r ∈ Q . Then cost , sint , and tant are irrational number
apart from the cases where tant is undefined and the exceptions cost = 0, ±1/2, ±1 ; sint = 0, ±1/2, ±1 ;
tant = 0, ±1 ,

7). The real numbers log6 9 and log 3/ log 2 are irrational numbers.

8). Let z be a real number. Show that the following statments are equivalent : (i)z is rational. (ii) There
exists a positive integerk such that [kz] = kz . (iii) There exists a positive integerk such that [(k!)z] = (k!)z .

9). Use the above part to prove that the numbere is irrational. (Hint : The numbere = ∑∞
i=0

1
i! is called the

Euler’s number. For any positive integerk , we have [(k!)e] = k!
∑k

i=0 1/i! < (k!)e .) (Remark : The proof of
irrationality of the numberπ is not quite so easy; we shall prove this later.)

T2.9. (A r i t h m e t i c f u n c t i o n s ) Anyfunction defined on the set of positive natural numbers is called a
n u m b e r - t h e o r e t i c or ( a r i t h m e t i c ) f u n c t i o n . Thecodomain of an arithmetic function need not beN∗

or, for that matter, even an integer; it is very interesting to study arithmetic functions with values in a fixed ring.
An arithmetic functionf is said to bem u l t i p l i c a t i v e if f (mn) = f (m)f (n) whenever gcd(m, n) = 1 .
Multiplicative arithmetic functions are uniquely determined by their values at prime powers. The constant function
1 and the identity function onN∗ are clearly multiplicative arithmetic functions.

1). Show that : a). For a fixed integerk , the function n �→ nk is multiplicative. b). If f and g are
multiplicative arithmetic functions andf (pk) = g(pk) for each primep and eachk ∈ N∗ , then f = g . c).
If f and g are multiplicative arithmetic functions, then so is their productfg and the quotientf/g (whenever
the quotient function is defined). d). The functionρ : N∗ → N by ρ(1) = 1 andρ(n) = 2r , if the canonical
prime factorisation ofn > 1 is n = p

m1
1 · · · pmr

r is multiplicative. e). If f is a multiplicative arithmetic
function, then the arithmetic functionF defined byF(n) = ∑

d|n f (d) is also multiplicative. Iff = ρ (see the
part d) above), then what down the formula forF(n) in terms of the canonical prime factorisation ofn .

2). For n ∈ N∗, let τ(n) denote the number of positive divisors ofn and let σ(n) denote the sum of positive
divisors of n . Then :

a). If n ∈ N∗, n > 1 andn = p
m1
1 · · · pmr

r is the canonical prime factorisation ofn , then τ(n) = ∏r

i=1(mi + 1)

and σ(n) =
r∏

i=1

(pmi+1 − 1)

(pi − 1)
. In particular, τ(pm) = (m + 1) and σ(pm) = pm+1 − 1

p − 1
. Therefore both the

arithmetic functionsτ andσ are multiplicative.

3) Phythagoras (569-500 B. C.) deserve the credit for being the first to classify numbers into odd and even,
prime and composite.
4) What is the definition of the numberπ ?,
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b). For anyn ∈ N∗, τ(n) ≤ 2
√

n . (Hint : If d|n then one ofd or n/d is ≤ √
n .)

c). If n ∈ N∗ is a square-free, thenτ(n) = 2r , wherer is the number of prime divisors ofn .

d). τ(n) is and odd integer if and only ifn is a perfect square.

e). σ(n) is and odd integer if and only ifn is a perfect square or twice a perfect square.(Hint : If p is an odd
prime, then 1+ p + p2 + · · · + pk is odd only whenk is even.)
f). Find the form of alln ∈ N∗ satisfyingτ(n) = 10 (resp.σ(n) = 10 ). What is the samllest positive integern

for which this is true?(Hint : For n > 1 , σ(n) > n .)
g). Find the smallest natural numbern ∈ N which has exatly (respectively, at least) 60 divisors.

h). Let n ∈ N∗. Prove that : (i)
∑

d|n 1/d = σ(n)/n . (ii) If n = p
m1
1 · · · pmr

r is the canonical prime

factorisation ofn , then 1>
n

σ(n)
>

(
1 − 1

p1

) (
1 − 1

p2

)
· · ·

(
1 − 1

pr

)
. (iii)

σ(n!)
n!

≥ 1+ 1
2

+ · · · + 1
n

.

(Hint : Use the part a).) (iv) If n is a composite number, thenσ(n) > n + √
n .(Hint : If d|n with 1 < d < n

and d ≤ √
n , then 1< n/d < n and n/d ≥ √

n .)
i). Given k ∈ N∗, with n > 1 , there are infinitely manyn ∈ N∗ for which τ(n) = k , but at most finitely many
n ∈ N∗ with σ(n) = k . (Hint : Use the part b).)
j). Let f is a multiplicative arithmetic function and letF be the multiplicative (see 1)-e)) arithmetic functionF

defined byF(n) = ∑
d|n f (d) . Then for anyk ∈ N∗, we have

∑N

n=1 F(n) = ∑N

k=1 f (k)[N/k] .

k). If N is a positive integer, then :
∑N

n=1 τ(n) = ∑N

n=1[N/n] and
∑N

n=1 σ(n) = ∑N

n=1 n · [N/n] . (Hint : Use
τ(n) = ∑

d|n 1 , σ(n) = ∑
d|n d and the part j).)

l). If N is a positive integer, then :N = ∑2N

n=1 τ(n) = ∑N

n=1[2N/n] and τ(N) = ∑N

n=1 ([N/n] − [(N − 1)/n]) .
(Hint : Use the part k).)
3). ( L i o u v i l l e ’s λ - f u n c t i o n ) Let λ be the arithmetic function defined byλ(1) = 1 and λ(n) =
(−1)m1+m2+···+mr , wheren ∈ N∗, n > 1 andn = p

m1
1 · · · pmr

r is the canonical prime factorisation ofn . Then λ

is multiplicative and
∑

d|n λ(d) =
{

1, if n is a square, i.e.,n = m2 for somem ∈ N∗,
0, otherwise.

4). ( E u l e r ’s ϕ - f u n c t i o n ) Forn ∈ N∗, let ϕ(n) denote the number of positive natural numbers≤ n that
are relatively prime ton , i.e., ϕ(n) = card(k ∈ {1, 2, , . . . , n} | gcd(k, n) = 1}) . Then

a). If p is prime andm ∈ N∗, then ϕ(pm) = pm − pm−1 = pm(1 − 1
p
) .

b). ϕ is multiplicative.

c). If n ∈ N∗, n > 1 andn = p
m1
1 · · · pmr

r is the canonical prime factorisation ofn , then

ϕ(n) =
r∏

i=1

(
p

mi

i − p
mi−1
i

)
= n ·

(
1 − 1

p1

) (
1 − 1

p2

)
· · ·

(
1 − 1

pr

)
.

d). For n ∈ N∗, show that : (i) if n > 2 , thenϕ(n) is an even integer.

(ii) if n is odd, thenϕ(2n) = ϕ(n) .

(iii) if n > 2 is even, thenϕ(2n) = 2ϕ(n) .

(iv) if ϕ(3n) = 3ϕ(n) ⇐⇒ 3|n .

(v) if ϕ(3n) = 2ϕ(n) ⇐⇒ 3 � |n .

(vi) if ϕ(n) = n/2 ⇐⇒ n = 2k for somek ∈ N∗.

(vii) 1
2

√
n ≤ ϕ(n) ≤ n .

(viii) if n > 1 and hasr distinct prime factors, thenn/2r ≤ ϕ(n) .

(ix) if n > 1 is a composite number, thenϕ(n) ≤ n − √
n . (Hint : If p is the smallest prime divisor ofn with

p ≤ √
n , then ϕ(n) ≤ n(1 − 1/p) .)

(x) if n > 1 and hasr distinct odd prime factors, then 2r |ϕ(n) .

(xi) if m ∈ N∗ and every prime divisor ofn also dividesm , then ϕ(nm) = nϕ(m) . In particular, ϕ(n2) =
nϕ(n) .
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† E u c l i d o f A l e x a n d r i a was born about 325 BC and died about 265 BC in Alexandria, Egypt. Euclid of
Alexandria is the most prominent mathematician of antiquity best known for his treatise on mathematics The Elements. The
long lasting nature of The Elements must make Euclid the leading mathematics teacher of all time. However little is known
of Euclid’s life except that he taught at Alexandria in Egypt. Proclus, the last major Greek philosopher, who lived around
450 AD wrote :

Not much younger than these [pupils of Plato] is Euclid, who put together the "Elements", arranging in order many of
Eudoxus’s theorems, perfecting many of Theaetetus’s, and also bringing to irrefutable demonstration the things which had
been only loosely proved by his predecessors. This man lived in the time of the first Ptolemy; for Archimedes, who followed
closely upon the first Ptolemy makes mention of Euclid, and further they say that Ptolemy once asked him if there were
a shorted way to study geometry than the Elements, to which he replied that there was no royal road to geometry. He
is therefore younger than Plato’s circle, but older than Eratosthenes and Archimedes; for these were contemporaries, as
Eratosthenes somewhere says. In his aim he was a Platonist, being in sympathy with this philosophy, whence he made the
end of the whole "Elements" the construction of the so-called Platonic figures.

There is other information about Euclid given by certain authors but it is not thought to be reliable. Two different types of
this extra information exists. The first type of extra information is that given by Arabian authors who state that Euclid was
the son of Naucrates and that he was born in Tyre. It is believed by historians of mathematics that this is entirely fictitious
and was merely invented by the authors.

The second type of information is that Euclid was born at Megara. This is due to an error on the part of the authors who
first gave this information. In fact there was a Euclid of Megara, who was a philosopher who lived about 100 years before
the mathematician Euclid of Alexandria. It is not quite the coincidence that it might seem that there were two learned men
called Euclid. In fact Euclid was a very common name around this period and this is one further complication that makes it
difficult to discover information concerning Euclid of Alexandria since there are references to numerous men called Euclid
in the literature of this period.

Returning to the quotation from Proclus given above, the first point to make is that there is nothing inconsistent in the dating
given. However, although we do not know for certain exactly what reference to Euclid in Archimedes’ work Proclus is
referring to, in what has come down to us there is only one reference to Euclid and this occurs in On the sphere and the
cylinder. The obvious conclusion, therefore, is that all is well with the argument of Proclus and this was assumed until
challenged by Hjelmslev in [48]. He argued that the reference to Euclid was added to Archimedes book at a later stage, and
indeed it is a rather surprising reference. It was not the tradition of the time to give such references, moreover there are
many other places in Archimedes where it would be appropriate to refer to Euclid and there is no such reference. Despite
Hjelmslev’s claims that the passage has been added later, Bulmer-Thomas writes :

Although it is no longer possible to rely on this reference, a general consideration of Euclid’s works ... still shows that he
must have written after such pupils of Plato as Eudoxus and before Archimedes.

This is far from an end to the arguments about Euclid the mathematician. The situation is best summed up by Itard who
gives three possible hypotheses.

(i) Euclid was an historical character who wrote the Elements and the other works attributed to him.

(ii) Euclid was the leader of a team of mathematicians working at Alexandria. They all contributed to writing the ’complete
works of Euclid’, even continuing to write books under Euclid’s name after his death.

(iii) Euclid was not an historical character. The ’complete works of Euclid’ were written by a team of mathematicians at
Alexandria who took the name Euclid from the historical character Euclid of Megara who had lived about 100 years earlier.

It is worth remarking that Itard, who accepts Hjelmslev’s claims that the passage about Euclid was added to Archimedes,
favours the second of the three possibilities that we listed above. We should, however, make some comments on the three
possibilities which, it is fair to say, sum up pretty well all possible current theories.

There is some strong evidence to accept (i). It was accepted without question by everyone for over 2000 years and there
is little evidence which is inconsistent with this hypothesis. It is true that there are differences in style between some of
the books of the Elements yet many authors vary their style. Again the fact that Euclid undoubtedly based the Elements on
previous works means that it would be rather remarkable if no trace of the style of the original author remained.

Even if we accept (i) then there is little doubt that Euclid built up a vigorous school of mathematics at Alexandria. He
therefore would have had some able pupils who may have helped out in writing the books. However hypothesis (ii) goes
much further than this and would suggest that different books were written by different mathematicians. Other than the
differences in style referred to above, there is little direct evidence of this.

Although on the face of it (iii) might seem the most fanciful of the three suggestions, nevertheless the 20th century example of
Bourbaki shows that it is far from impossible. Henri Cartan, André Weil, Jean Dieudonné, Claude Chevalley, and Alexander
Grothendieck wrote collectively under the name of Bourbaki and Bourbaki’s Eléments de mathématiques contains more
than 30 volumes. Of course if (iii) were the correct hypothesis then Apollonius, who studied with the pupils of Euclid in
Alexandria, must have known there was no person ’Euclid’ but the fact that he wrote :.... Euclid did not work out the
syntheses of the locus with respect to three and four lines, but only a chance portion of it ...

certainly does not prove that Euclid was an historical character since there are many similar references to Bourbaki by
mathematicians who knew perfectly well that Bourbaki was fictitious. Nevertheless the mathematicians who made up the
Bourbaki team are all well known in their own right and this may be the greatest argument against hypothesis (iii) in that
the ’Euclid team’ would have to have consisted of outstanding mathematicians. So who were they?
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We shall assume in this article that hypothesis (i) is true but, having no knowledge of Euclid, we must concentrate on his
works after making a few comments on possible historical events. Euclid must have studied in Plato’s Academy in Athens
to have learnt of the geometry of Eudoxus and Theaetetus of which he was so familiar.

None of Euclid’s works have a preface, at least none has come down to us so it is highly unlikely that any ever existed, so we
cannot see any of his character, as we can of some other Greek mathematicians, from the nature of their prefaces. Pappus
writes that Euclid was :... most fair and well disposed towards all who were able in any measure to advance mathematics,
careful in no way to give offence, and although an exact scholar not vaunting himself.

Some claim these words have been added to Pappus, and certainly the point of the passage (in a continuation which we have
not quoted) is to speak harshly (and almost certainly unfairly) of Apollonius. The picture of Euclid drawn by Pappus is,
however, certainly in line with the evidence from his mathematical texts. Another story told by Stobaeus is the following :
... someone who had begun to learn geometry with Euclid, when he had learnt the first theorem, asked Euclid "What shall I
get by learning these things?" Euclid called his slave and said "Give him threepence since he must make gain out of what
he learns".

Euclid’s most famous work is his treatise on mathematics The Elements. The book was a compilation of knowledge that
became the centre of mathematical teaching for 2000 years. Probably no results in The Elements were first proved by Euclid
but the organisation of the material and its exposition are certainly due to him. In fact there is ample evidence that Euclid
is using earlier textbooks as he writes the Elements since he introduces quite a number of definitions which are never used
such as that of an oblong, a rhombus, and a rhomboid.

The Elements begins with definitions and five postulates. The first three postulates are postulates of construction, for example
the first postulate states that it is possible to draw a straight line between any two points. These postulates also implicitly
assume the existence of points, lines and circles and then the existence of other geometric objects are deduced from the fact
that these exist. There are other assumptions in the postulates which are not explicit. For example it is assumed that there
is a unique line joining any two points. Similarly postulates two and three, on producing straight lines and drawing circles,
respectively, assume the uniqueness of the objects the possibility of whose construction is being postulated.

The fourth and fifth postulates are of a different nature. Postulate four states that all right angles are equal. This may seem
"obvious" but it actually assumes that space in homogeneous - by this we mean that a figure will be independent of the
position in space in which it is placed. The famous fifth, or parallel, postulate states that one and only one line can be drawn
through a point parallel to a given line. Euclid’s decision to make this a postulate led to Euclidean geometry. It was not until
the 19th century that this postulate was dropped and non- euclidean geometries were studied.

There are also axioms which Euclid calls ’common notions’. These are not specific geometrical properties but rather general
assumptions which allow mathematics to proceed as a deductive science. For example : Things which are equal to the same
thing are equal to each other.

Zeno of Sidon, about 250 years after Euclid wrote the Elements, seems to have been the first to show that Euclid’s propositions
were not deduced from the postulates and axioms alone, and Euclid does make other subtle assumptions.

The Elements is divided into 13 books. Books one to six deal with plane geometry. In particular books one and two set out
basic properties of triangles, parallels, parallelograms, rectangles and squares. Book three studies properties of the circle
while book four deals with problems about circles and is thought largely to set out work of the followers of Pythagoras.
Book five lays out the work of Eudoxus on proportion applied to commensurable and incommensurable magnitudes. Heath
says : Greek mathematics can boast no finer discovery than this theory, which put on a sound footing so much of geometry
as depended on the use of proportion.

Book six looks at applications of the results of book five to plane geometry. Books seven to nine deal with number theory.
In particular book seven is a self-contained introduction to number theory and contains the Euclidean algorithm for finding
the greatest common divisor of two numbers. Book eight looks at numbers in geometrical progression but van der Waerden
writes that it contains :... cumbersome enunciations, needless repetitions, and even logical fallacies. Apparently Euclid’s
exposition excelled only in those parts in which he had excellent sources at his disposal.

Book ten deals with the theory of irrational numbers and is mainly the work of Theaetetus. Euclid changed the proofs of
several theorems in this book so that they fitted the new definition of proportion given by Eudoxus.

Books eleven to thirteen deal with three-dimensional geometry. In book thirteen the basic definitions needed for the three
books together are given. The theorems then follow a fairly similar pattern to the two- dimensional analogues previously
given in books one and four. The main results of book twelve are that circles are to one another as the squares of their
diameters and that spheres are to each other as the cubes of their diameters. These results are certainly due to Eudoxus.
Euclid proves these theorems using the "method of exhaustion" as invented by Eudoxus. The Elements ends with book
thirteen which discusses the properties of the five regular polyhedra and gives a proof that there are precisely five. This book
appears to be based largely on an earlier treatise by Theaetetus.

Euclid’s Elements is remarkable for the clarity with which the theorems are stated and proved. The standard of rigour
was to become a goal for the inventors of the calculus centuries later. As Heath writes :This wonderful book, with all its
imperfections, which are indeed slight enough when account is taken of the date it appeared, is and will doubtless remain
the greatest mathematical textbook of all time. ... Even in Greek times the most accomplished mathematicians occupied
themselves with it: Heron, Pappus, Porphyry, Proclus and Simplicius wrote commentaries; Theon of Alexandria re-edited
it, altering the language here and there, mostly with a view to greater clearness and consistency...

It is a fascinating story how the Elements has survived from Euclid’s time and this is told well by Fowler. He describes
the earliest material relating to the Elements which has survived :Our earliest glimpse of Euclidean material will be the
most remarkable for a thousand years, six fragmentary ostraca containing text and a figure ... found on Elephantine Island
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in 1906/07 and 1907/08... These texts are early, though still more than 100 years after the death of Plato (they are dated
on palaeographic grounds to the third quarter of the third century BC); advanced (they deal with the results found in the
"Elements" [book thirteen]... on the pentagon, hexagon, decagon, and icosahedron); and they do not follow the text of the
Elements. ... So they give evidence of someone in the third century BC, located more than 500 miles south of Alexandria,
working through this difficult material... this may be an attempt to understand the mathematics, and not a slavish copying
...

The next fragment that we have dates from 75 - 125 AD and again appears to be notes by someone trying to understand the
material of the Elements.

More than one thousand editions of The Elements have been published since it was first printed in 1482. Heath discusses
many of the editions and describes the likely changes to the text over the years.

B L van der Waerden assesses the importance of the Elements :Almost from the time of its writing and lasting almost to the
present, the Elements has exerted a continuous and major influence on human affairs. It was the primary source of geometric
reasoning, theorems, and methods at least until the advent of non-Euclidean geometry in the 19th century. It is sometimes
said that, next to the Bible, the "Elements" may be the most translated, published, and studied of all the books produced in
the Western world.

Euclid also wrote the following books which have survived: Data (with 94 propositions), which looks at what properties
of figures can be deduced when other properties are given; On Divisions which looks at constructions to divide a figure
into two parts with areas of given ratio; Optics which is the first Greek work on perspective; and Phaenomena which is an
elementary introduction to mathematical astronomy and gives results on the times stars in certain positions will rise and
set. Euclid’s following books have all been lost: Surface Loci (two books), Porisms (a three book work with, according
to Pappus, 171 theorems and 38 lemmas), Conics (four books), Book of Fallacies and Elements of Music. The Book of
Fallacies is described by Proclus :

Since many things seem to conform with the truth and to follow from scientific principles, but lead astray from the principles
and deceive the more superficial, [Euclid] has handed down methods for the clear- sighted understanding of these matters
also ... The treatise in which he gave this machinery to us is entitled Fallacies, enumerating in order the various kinds,
exercising our intelligence in each case by theorems of all sorts, setting the true side by side with the false, and combining
the refutation of the error with practical illustration.

Elements of Music is a work which is attributed to Euclid by Proclus. We have two treatises on music which have survived,
and have by some authors attributed to Euclid, but it is now thought that they are not the work on music referred to by
Proclus.

Euclid may not have been a first class mathematician but the long lasting nature of The Elements must make him the leading
mathematics teacher of antiquity or perhaps of all time.

19 aag05-e02 ; September 26, 2005 ; 11:54 a.m. D. P. Patil / Exercise Set 2


