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Algebra, Arithmetic and Geometry  —With a View Toward Applications /2005
Lectures: Tuesday/Thursday 18:15-19:15; LH-1, Department of Mathematics

3. Rings Y — Prime rings

Remember that all our rings are rings with unity! Usually the term “rng” is used for a ring without unity. This term
was suggested by Louis ROWEN and may be pronunced as “riing”.

Adolf Abraham Halevi Fraenkel T
(1891-1965)

In the exercises belowA denote a ring with unity 1 (not necessarily commutative).

3.1. 1). Let ¢ andb commuting elementsinaring and letn € N. Then:
a). (Binomial Theorem)(@+b)"=Y",(})a""'b'.

i=

b). (Polynomial formula) Ifas,...,a, are pairwise commuting elements in a ridg then for
everyn € N, we have the formula:

n! - .
n i1 i
(a1+"'+ar) = ‘l—ilal"'ar.
Z gy

c). a"—b" = (a—b)(@ *+a"2b+---+ab"?+b"1) = (@ T+a" b+ +ab" 2+ N (a—-Db).
In particular, for everya € A and everyn € N* we have:

" —1=@-D@" 4+ +a+) =@+ - +a+D@-1).
d). Foreverya € A andn € N*, showthat (1—a)?(1+2a+---+na" 1) = 1— m+1)a" +na"**.

2). Prove the following well-knowrpolarisation formula : Fon € N* and arbitrary pariwise
commuting elementas, ..., a, inaring A, we have

-1
2" n!al~~-an=§ g2+ ep(ar+ e2a2 + - - - + €a,)"
&

where the right hand sum runs throught all sign-tuples (e», ..., &,) € {1, —=1}"~%.  (Hint: Inthe
casen = 2 this is the formula diaz = (a1 + a2)? — (a1 — a2)?.)

In a similar way prove the following formula:

(~D'mlar---a, = ) (=DWlag =3 (=D a1 + -+ enan)”

HCA{1,...,n}
whereay = ),y a; for H € {1,...,n}) and the sum on the right side runs through all tuples
e=(e1,...,e;,) € {0, 1}". (Remark: This generalises the formulauii; = (a1 + az)? — a? — a3 .)

D For the first time the axioms of rings appear to have been formulatel. b} RAENKEL in an article inJournal
fur die angewandete Mathematikol. 145 (1914). Before this the term “Zahlring” (=number ring or ring of numbers)
had been used BMILBERT in “Die Theorie der algebraische Zabliger”, Jahresbericht der Deutschen Mathematiker
Vereiningungvol. 4, (1897).
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3.2 Algebra, Arithmetic and Geometry /2005 3. Rings — Prime rings

3.2. Let A bearing.
1). Let B;,i € I, be afamily of subrings ofdA . Then the intersectiom;¢; B; is again a subring ofA .

2). (Center of a ring) The set dflements ofA which commute with all elements ofl is a
commutative subring @A) of A;itis called thecenter ofA.

3). For afamilya;, i € I of elementsinA, thesetB .= {b e A | ba; = a;bforall i € I} isa
subring of A .

4). (Characteristic of a ring) Therder of the unity } of A inthe additive group ofA is called
the characteristic ofA and is denoted by Char. A natural numberm € N is the characteristic
CharA of A if and only if it generates the kernel of the canonical ring homomorphismZ — A,
mem-1yu. ( Remarks: (If n = CharA or a multiple of Chaw, thenna = 0 for alla € A;
becauseia = (n-1,) -a = 0-a = 0. Note that the characteristic df is determined by its prime ring. All
subrings of a ringd have the same characteristic as thatiofThe characteristics dZ and Q are 0. Aring A
has characteristic 1 if and only i is a zero ring. In the power-set rirf§(X) (see Exerxise T3.2-2)) we have
2- 1y =X+ X =(XUX)\ (XNX)=0, therefore, ifX # ¢ thenP(X) =2)

5). Let A be a ring of characteristip, where p is a prime number. For two commuting elements
a,b € A and everyn € N, show that (a + b)?" = a” + b”" .(Hint: Use binomial theorem (see Exercise
3.1-1)) and show thap divides the binomial coefficient§!), 1 <i < p—1.)

6). Forn € N*, let Z, be a (additively written) cyclic groups of order If N € N* is an infinite set
of positive natural numbers, then there is no ring (with unity), whose additive group is the direct sum

@neN Zn'

3.3. (Unit group of a ring) Tharoup of the invertible elements of the multiplicative monoid
of A is called theunit group of A and is denoted by > . Its elements are called thenits of
A. (Remarks: The units of Z are the numbers 1 andl. IneveryringA, 1 and—1 are units, since
1=1-1=(-1)(-1). The elements 1 and1 in A need not be distinct: In fact,1= —1, if and only if
2.1, =0,i.e.if CharA =2 or CharA = 1. Inpatrticular, this is the sitiuation for the power-set rifsgXx) of
asetX . In this ring the unit elementgx, = X is the only unit)

1). Let A;, i € I, be afamily of rings. An elementa;);c; of the direct productB := [],_, A; isa
unitif and only if a; € A forall i € I. ThereforeB* =[],., A .

2). Let B is a subring of aringA. Then B* is a subgroup ofA* . Inparticular, B* € BN A*.
(Remark: IngeneralB* # BN A*. ForexampleZNQ* =ZN (Q ~ {0}) = Z ~ {0}, but Z* = {1, -1} .)

3). For the center of a ring we have:(Z)* = Z(A) N A*. (Hint: If « € A* andb € A commute, then
a~t andb also commutg. ( Remark: In general ZA)* # Z(A*) = {a € A* | ab = ba forall b € A¥}.)

4). Leta,b € A, whereb is aunitin A which belongs to the center of . Thenab™! = b~a. This
elementis frequently written as — like arational number—assction @ a/b = § = abl=b"1a.

(Finite geometric series) Led be a commutative ring and, » € A elements ofA such that
a®—b"

a—b

a—bisaunitin A. Foreveryn e N*, wehave a" ' +a" b+ - - +ab" 2 +b" 1 =

In the special case, it € A anda — 1 isaunitin A, then for everyn € N* we have

a*—1

a—1"

5). (Rules of calculation for fractions) Let, b, ¢, d be elements of aring, whereb, d
are units inA and belong to the center of . Then:

At ta+l=

. a ¢ ad+bc .. a ¢ ac a ad . b\t da
0] 5 + 7= "7 (i) 5 1= 5a (iii) 5= 5" (iv) <E> =7
(v) % - 2 if and only if ad = be.
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Algebra, Arithmetic and Geometry /2005 3. Rings — Prime rings 3.3

6). Let A be aringwith Chard £ 1, # 2. If the unit groupA* of A is cyclic, thenA* is finite and
|A*| is an even number.

3.4. (Zero divisors and Non-zero divisors) Atementa is called aleft zero divisor
(resp.right zero divisor)inA, ifthere existsab € A, b # 0, such thatub = 0 (resp. if there
exists ac € A, ¢ # 0, such thata = 0.) We say thatz isa zero divisor, ifa is either a left—

or a right zero divisor inA ; otherwisea is called anon-zero divisor inA. The set of non-zero
divisors inA is denoted byA* .( Remarks: In a commutative ring the three concepts of zero divisors are the
same. IfA is nota zeroring, then @ A is a zero divisor inA . The unit element 1 of A is a non-zero divisor
inA.)

1). Let a, b be elementsinaringi. Then:

a). If a isaunitin A, thena is a non-zero divisor ilA . Inparticular, A* C A*.

b). If a, b are not left zero divisors (resp. not right zero divisors)dnthen ab is also not a left zero
divisor (resp. not a right zero divisor) iA . In particular,(A*, -) is a cancellative (see Exercise T3.1-7))
submonoid of the multiplicative monoi¢A, -) of A.

c). The left translatiom, : A — A, x — ax (resp. the right translatiop, : A —> A, x + xa) s
injective if and only if a is not a left zero divisor (resp. not a right zero divisor)4An

2). Let a be an elementin aring .

a). If a has a left inverse:’ and has a right inverse” , thena is a unit anda’ = a! = a” (see
Exercise T3.1-6)-b)).

b). Show that the following statements are equivalent:

(i) a isaunit. (i) a has a left inverse and it is not a right zero divisor. "(ila has a right
inverse and it is not a left zero divisor. (e has exactly one left inverse. (i a has
exactly one right inverse. (iv) The right translatigp : A — A, x — xa is bijective.

(iv") The left translation,, : A — A, x — ax is bijective.

3.5. (Integral domains and fields) Ang A issaidto be free from zeroigisors if
every non-zero element id is a non-zero divisor. AringA is called adomain if A # 0 and itis
free from zero divisors, or equivalently #* = A \ {0}. A commutaive domain is called amtegral
domain.

Arings A iscalledadivision ring ora skew-field ifA #20 andifeverya e A, a #0 isa
unitin A, or equivaletly if A* = A\ {0}, i.e., if set of all non-zero elements af form a group under
the ring multiplication ofA . A commutative division ring is called &ield.

1). Let A be aring which is free from zero divisors. Then the following cancellation laws hold in

If ae A, a#0 andifx,y € A are arbitrary, therux = ay (resp. xa = ya) implies the equality
x = y. Inparticular, if A is a domain, then'A \ {0}, -) is a monoid with cancellation law. —Z is an
integral domain.

2). Subrings of a ring which is free from zero divisors (resp. domain, integral domain) are also rings
which are free from zero divisors, (resp. domains, integral domains). If a sulitireg a ring A is a
division ring (resp. field), we say tha& isa subdivision ring(resp. subfield) of A. The
intersection of a non-empty family; , i € I of subdivision rings (resp. subfields) of a ringis again

a subdivision ring (resp. subfield) of . The center ZD) of a division ring D is a subfield ofD .

3). The characteristic of a ring which is free from zero divisors is either 0, or 1, or a prime number.
In particular, if A is a domain (resp. a division ring), then the characteristid aé either 0 or a prime
number.

4). (Quotient field) LetK be a field and letA be a subring ofK. Then A is an integral
domain. The smallest subfield Q & which containA ; this is well-defined and exists, since it is the
intersection of all subfields oK which containA, in fact, itis Q= {a/b | a,b € A,b # 0}. This
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3.4 Algebra, Arithmetic and Geometry /2005 3. Rings — Prime rings

subfield Q of K is called thequotient field of A in K (see Exercise 3.5-2)). If & K, then

K iscalledthequotient field of A. for example,Q is the quotient field ofZ in Q, orin R, or

in C, or more generally in any fiel& of charateristic O.

Construction of the quotient field Q(A) of an integral domain A : On the setA x (A \ {0}) the
relation ~ defined by (a, b) ~ (c,d) if ad = bc is an equivalence relation; its equivalence classes
are denoted bjractions a/b . then the addition and multiplicationa /b + ¢/d = (ad + bc)/bd and
a/b)-(c¢/d) ;= (ac)/(bd), a,b,c,d € A, b #0,d # 0, resp. are well-defined binary operations onthe
guotientset QA) := A x (A\{0})/ ~. With thgese definitiongQ(A), +, -) is a coomutative ring with
unity 1/1, moreover, a field and the map— A x (A \ {0}) — Q(A) defined bya — (a,1) — a/1

is an injective ring homomorphism. Therefore via this natural injective ring homomorpHAissan be
identified with a subring of Q). Moreover, QA) is the quotient field ofA and every fieldK which
conatin A, also contain @A) . Inparticular, QA) is the smallest field containing .

Let D be adivison ring and led be a commutative subring dd. Then D contains a subfield which
containsA . Inparticular, D contains a quotient field oA .

5). Let Q(A) be the quotient field of the integral domaifi. Then cardQ(A)) = card A).  (Hint:
For an infinite setX , card X x X) = card X) —this can be easily proved by using Zorn’s lemjna.

6). (Vieta’'s root theorem) Le# be anintegral domain and let, a, € A two distinct elements
andb, c € A. Suppose that? + ba; +c = 0 anda3 + ba, +c = 0. Then show thab = —(a; + ay)
and ¢ = aia, . Deduce that: for given elements ¢ € A, there are at most two elemenise A such
that a® + ba + ¢ = 0. (Remark: In general this assertion is true onlyf is commutative. For example in
the division rings of quaternion there are infinitely many elementsth > +1=0.)

7). Let A be a finite commutative ring. Then

a). Show that every non-zero divisor is a unit. In particular, a non-zero domain is a divison ring.

( Remark: A famous theorem oWV e dderbur nstates that every finite division ring is commutative and hence
a field)

b). Let a be the product of all non-zero elements4f Show that:

-1, if Aisafield;
a= { 2, if Aisa prime ring with 4 elements;
0, otherwise.

(Hint: Use the Exercise T3.1-9)-g) and the par) a).

3.6. (Nilpotent, Unipotent and Idempotent elements) keb, e, u, v be elements in
aring A.

1). Anelementa of aring A iscallednilpotent, ifthere exists a natural number € N such that
a™ = 0. Show that:

a). If a is nilpotent and ifa and b commute, therub is nilpotent.
b). If a and b are nilpotent and iz and » commute, theru + b is nilpotent.
c). If a is nilpotent ande is a unit und ifa and e commute, there — « is a unit.

2). An elementu ofaring A iscalledunipotent, if 1— u is nilpotent. Show that:

a). If u is unipotent, then: isaunitin A,i.e. u € A*. Moreover,u~! is also unipotent.

b). If u,v € A are unipotent and commute, tham is also unipotent.

c). If A iscommutative, then the set of unipotent elementd irs a subgroup of the unit group™ of
A.

3). Let A be aring of characteristip”, where p is a prime number. An elemente A is unipotent if
and only if u isaunitin A and the order ofx in A* is a power ofp. If A has no non-zero nilpotent
elements and iz € A* is an element of finite order, then ggd Orda) = 1.

23 aag05-e03.tex ; November 2, 2005 ; 10:33a.m. D. P. Patil/ Exercise Set 3



Algebra, Arithmetic and Geometry /2005 3. Rings — Prime rings 35

4). An elementa of aring A is calledidempotent,ifa®?=a.

a). If a € A isidempotent, them” = a forall n € N*. The elements 0 and 1 are clearly idempotent;
they are called thérivial idempotent elementsNon-trivial idempotent elements are clearly
zero divisors, since® = a anda(1l — a) = 0 are equivalent.

b). In anintegral domain O and 1 are the only idempotent elements.

c). If a € A isidempotent, then sois-a. Two idempotent elements, b of A with a+b =1 are
calledcomplementary.

d). Let A;, i € I, be a family of rings with the identity elements & A; and the zero elements
0; € A;. Inthe product ringB := [],., Ai, an element(q;);c; is idempotent if and only if all;

are idempotent iM4; . In particular,e; := (a;;)ic; , Wherea;; are defined byg;; := 0; for i # j and
a;; ‘= 1;, are idempotent elements iB , which are contained in the centre 8f. If none of 4; is a
zeroring then alle;, j € I, are distinct; further if|7| > 2 then none of themis 0 or 1, therefore they
are non-trivial idempotent elements.

e). (Boolean rings) Aing A in which every element is idempotent, is calleBaolean ring.
Let A be a non-zero Boolean ring. Then Chae= 2. Moreover,A commutative andd™ = {1,}. In
the power-set ringB(X) (see Exercise T3.2-2)) of any s&t, every element is idempotent, and so the
ring P(X) and every subring of3(X) is a Boolean ring. ( Remark: Every Boolean ring is a subring of
BX).)

f). Let a, b be idempotent elements in a rivgy. Then:

(i) a+ b isidempotent if and only itzb = ba and 2i1b = 0. Further,a — b idempotent if and only
if ab=ba and 41— a)b =0.

(i) If ab =ba,thenab, a+b —ab and (a — b)> = a + b — 2ab are idempotent.
(i) If ab = ba anda — b nilpotent, thena = b .

g). Let A be a commutative ring and Idg) be the set of all idempotent elements . Then
(Idp(A), A, -) is a Boolean ring, with the additionAb := (a — b)?> and the multiplication induced
from the multiplication fromA . Moreover, the ringgldp(A), A, -) and (A, +, -) are equal if and only
if A is aBooleanring.

3.7. (Involutions) Anelement in a (multiplicatively written) monoid is calledhvolutory oran
involution, ifa? is equal to the identity element of the monoid. The involutory elements are precisely
those invertible elements with self inverses. If the monoid is commutative, then the involutory elements
form a subgroup of the group of the invertible elements. The product of two involutory elements is
involutory if and only if these elements commute.

Let A be a ring and let In¢A) denote the set of all (with respect to the multiplicationddfinvolutory
elements, IdpA) be the set of all idempotent elementsaf Then the map

y 1dp(A) — Inv(A), a+—> 1—2a

is injective, if 2- 1, is a non-zero divisor il and is bijective, if 21, isa unitinA. (If A is commutative,
theny is a group homomorphism of the additive group (djp (see Exercise 3.6-4)-g)), into the multiplicative
group InWA).)

3.8. Let A bearingandletr, o’ : A — A be the maps defined hy(x) 1= x —x?, o/(x) :=1—2x
respectively. Ifa(x) is nilpotent, then(a’(x))? is unipotent and in particulary’ (x) is a unitin A .

Let a € A be such thate(a) is nilpotent. Then there exist unique elements € A with the following
properties : (a=s+t. (i) sisidempotentand is nilpotent.  (iii) s ands commute.

Moreover, these uniquely determined elementand ¢ belong to the smallest subring’ of A con-
taining a. (Note thatifa = s + ¢ is an elementofd ands, ¢t € A satisfy the conditions (ii) and (iii), then
a(a) must be nilpotent.) (Hint: Existence The recursively defined sequeneg, i € N, with ag := a
anda; 1 = a; — a"‘,((‘;_)) = — % is well-defined. Theny; € A, 4; = a + c;a(a) and a(a) = d;(a(a))? with
¢, di € A’. Now takes := a; with large i . —This process remind thidgewton’s procesto construct a zere
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3.6 Algebra, Arithmetic and Geometry /2005 3. Rings — Prime rings

of the functiona by approximating zeros of real differentiable functioliqueness The above construction
show that to arbitrary decompositian= s + ¢ , wheres andr satisfy the conditions (ii) and (iii), one can apply
Exercise 3.6-4)-f) and conclude thatand ¢ are unique.

3.9. (Ring of numerical functions) Let be a commutative ring. On the set of sequences
AN let the addition be defined componentwise(fy+ g)(n) := f(n) + g(n), f,g € AN, n e N*.
Further, let the multiplication be defined by the formula:

n
(frm =Y fg(5) -
f ) de:f 2(7
(This binary operation is called thgDirichlet’s) convolution ondY'. The elements oA are called
numerical functions with values in ind))

a). ZF(A) := (AY', 4, %) is a commutative ring. (This ring is called théng of numerical
functions with values inA .) The unity (multiplicative identity) of this ring is the functian
wheree(1) := 1 ande(n) := 0 forn > 2. An element of ZF(A) is a unit if and only ife(1) a unit in
A. (e~ can be recursively determined by

b). A numerical functionf € ZF(A) is calledmultiplicative,if f(1) = 1andf(mn) = f(m)f(n)
for all m, n € N* with gcd(m, n) = 1. If f € ZF(A) is multiplicative andg € ZF(A) is arbitrary, then
f *g is multiplicative if and only ifg is multiplicative. The unit-elementis multiplicative. In particular,
the set of multiplicative numerical functions in ZF) is a subgroup of the unit group of ZR).

c). Let¢ € ZF(A) be the numerical function defined byn) = 1 foralln € N*. Then¢ is multiplicative
and for f € ZF(A) the functionz x f is called theSSummator-function off, since (¢ * f)(n) =

de f(d) . Therefore (see b) above)is multiplicative if and only if¢ = f is multiplicative. Further,
in this casef can be recovered froms* f through the followinginversion formula:

fmy= T] @*HE"") =@ HpT™™).

p_prime, pin
d). In the special casd = Z, in addition to the numerical functionsand¢, the important Euler’s

@-function ¢, is a multiplicative numerical function. Further, the numerical function n +— n is
multiplicative and; * ¢ = . Let T(n) (respectively $1)) denote the number of (respectively the sum
of) positive integer-divisors of € N*. Then the numerical functions T and S are also multiplicative.
(This can be deduced from the following identitiesx ¢ =T, ¢ x ¢ = S.)

e). (Modbius inverson formula) Let be an arbitrary commutative ring. The numerical function
w:= ¢ tis called the Mobius function.Then

n
fy =Y u (2> L x f)(d) foreveryf e ZF(A).
d|n
(This is immediate fromf = w * (¢ * f). Using this formula and c) one can show easily thatl) = 1,

w(n) = (=1)", if nis a product of distinct prime numbers aa¢:) = 0 otherwise.)
f). Thering ZKA) is an integral domain if and only ifA is an integral domain.

3.10. (Prime rings) Thesubsét -1, :={n-14 | n € Z} ofaring A is the smallest subring of
A. Thisring is called theprime ring of A. The prime ring of a ringA, is also the prime ring of
each of its subring. The prime ring & is itself. Inparticular,Z has no other subring than itself. A
ring which is its prime ring is called prime ring. Inparticular, every prime ring is commutative and
has proper subrings. Moreover, a ridgis a prime ring if and only if its additive group is cyclic.

1). (Structure of prime rings) Le# be a prim ring of the characteristig .

) If m>0,then|Al]=m andA ={n-1, |0<n <m}. Two elements - 1,, s - 1, € A with
r,s € Z are equal if and only ifr = s modulom . An elementr - 1, € A with r € Z is a non-zero
divisor if and only if it is a unit; more over, equivalently ggTm) = 1.

(i) If m=0,thenA ={n-14 | n € Z}, where the elements - 1, are distinct for distinct inetegers
n € Z and soA is an integral domain with exactly two unitsy Jand —1, .

(Remark: By the above theorem all prime rings of charaterisiic= N have the same structure. In factAf is
a prime ring of characteristie: € N, then the mapA — Z/Zm defined byr - 1, — [r] = the residue class of
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r modulo m , is well-defined and is an isomorphism of rings. Therefore for concrete calculation in prime ring,
we may choose the prime ring,, = Z/Zm , m € N. In particular, Ag = Z.)

2). For a prime ring of charateristia > 0, the following statements are equivalent :

(i) A isafield. (i) A is anintegral domain. (iifym is a prime number.

3). Let A be a prime ring of charateristi@ > 0. Then the order of the unit group™ is ¢(m) , where
¢ Is the Euler’s totient function. Deduce that:

a). (Euler’s theorem) Form € N* andr € Z with gcd(r, m) = 1, we haver¢™ = 1 modm .

b). (Fermat’s Little theorem) Lep be a prime number and let € Z which is not divisible
by p. Thenr? = 1 modp. ( Hint: Proof-variant. Since Z, is an integral domain, it is
enough to prove that” = r mod p . For this it is enough to prove that: for every elemenin a prime ring of
charateristicp , we havea? = a. Therefore leta = s - 1 for somes € N and hence by Exercise ??? we have

a’ = (Y1) =Y, 1r=Y}1=a.)
3.11. In the following exercises let A denote a prime ring of characteristic € N, for example
Am - Z/Zm .

1). a). AMersenne number”2— 1 with p prime andp > 2 can have only prime divisors of the form
2np +1 with n € N*.  (Hint: If ¢ is a prime divisor of 2 — 1, p prime, then the order of 21,  in the
unit group of A is equal top.)

b). Every two distinct Mersenne numbers are relatively prime.

2). A Fermat-number 2 + 1 with r € N can have only prime divisors of the form2'+1 4+ 1 with

n € N*. (Hint: Use a method of proof as in 1).

3). Let A be aring of characteristim: > 0. For an integer , the following statements are equivalent :
(i) r-1yisaunitinA. (i) r-14 isaunitinthe prime ring ofA . (i) ged(r,m)=1.

4). Let m1, ..., m, be non-zero pairwise relatively prime natural numbers ang= mq - - -m, . Then

A :=T[_; An, is aprime ring of the characteristiz (see Exercise 3.10-1)). The unit group 4fis
the direct product of the unit groups of the prime rings, AWhat can you now conclude for the Euler’s
@-function ?

5). Let m € N*, and letm = p7*--- p* be the (normalised) prime factorisation @f.

a). For s € Z the following statements are equivalent :

(i) s-1a, isnilpotentin A, . (i) s isamultiple of py--- p,.

b). A, has exactly 2 idempotent elements.  ( Hint: The natural numbers with 0 < ¢ < m and

e = e¢? modm can be calculated (by using exercise 4)) in the direct product of prime rings of charactgtistic
i =1,...,r and hence one can reduce the problem to the casd. .)

6). Let p be a prime number 3.

a). Inthe unit group 4, the element-1 is the only element of order 2.

b). (Wilson’s Theorem)(p —1!=—-1modp. (Hint: Apply ??? to the prime ring A)

c). (Euler’s criterion for the quadartic residues) Let Z be not divisible byp . If
there existsh € Z with b> = a mod p, thena?~Y/2 =1 modp . Further, if there is nd € Z with
b?>=amodp,thena” /2= —1modp. (Hint: Apply Exercise 3.1-9)-g)-(ii) to the group }A)

2
d). If p=1mod4,then((Z)!) = —1modp andif p = 3 mod 4, then there exists Mo Z
2

with > = —1 modp.

e). (Converse of the Wilson’s theorem) dfe N, n > 1,andif (n —1)! = —1 modn, then
n is a prime number( Hint: Apply Exercise 3.5-7)-b) to the ring A Another Proof (Pranesachar)Note
that either ifn _has two distinct prime factorg andg orif n has a square factgs? with p odd prime, them

divides (n — 1)!. In the remaining case = 2° = 4 and(n —1)! modn = 3! = mod 4= 2 mod 4= 1 mod 4)
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(Remark: We can use the above exercise to give a proof of the tsgaiare theoremEvery prime number
p . The solution of the congruende + 1 = 0 mod p for a prime numberp = 1 mod 4 gives the solution of
the equationc? + d2 = p with ¢, d € N*.)

7). Let m,n € N* andm > 2. Then show that divides ¢(m" — 1) and 21 divides p(m" +1).
(Hint: Compute the order of: in the prime rings A._1 and A,.,1.)

Below one can see definitions and (simple) test-exercises.

Definitions and Test-Exercises

T3.1. (Monoids and Groups) LetM, -) be amonoid witmeutral elemene , i.e. e-a = a-e = a forevery
a € M . (This neutral element is uniquely determined ejfe’ € M are neutral elements, then=ec¢-¢' =¢'.)

1). (Generalised associative law) Let,...,a, € M andletp =aj -az-----a, be recursively
defined bypo :=¢, piy1=pi-ai;1,i=0,1,...,n—1 and p := p,. Then the value ofp does not change if
we choose another arbitrary brackets instead of the left- brackets that are used in the definitionhafrefore
in the multiplicative (resp. additive) notation this product is simply denoted By; a; = a1 - --- - a, (resp.
> ia1=ai+---+a,. (Hint: Prove the independance of the bracket by inducfion.

2). (Generalised commutative lawJuppose that the binary operatioon M is commutative. Then
the productay - - - - - a, i1s independent of the order of the elemeatis. . ., a, . In this case for arbitrary family
a;, i € I, of element of M, the product is simply denoted bjy|!_; a; (in the multiplicative notation) and by
Y i1 a; (inthe additive notation).

3). If a;;, i €1,je J,isfamily of elements in a monoid/ and if I and J are finite indexed sets, then we

have: Y a; = Z(Za,-j) = Z(Zaé,‘) Inparticular, > a;; = il:(]ilza,,) = i(iaii)'

(i,j)elxJ iel “jelJ jeJ “iel ::II.-SiSm j=1 Yi=1
<j<n
(Hint: The prrof is clear from the following scheme:
ail1 + a2 +---+ aun Z;l:lalj
+ a1+ azx +---+ az +27:1a21
+ ap1+ ap2 +- -+ X + Z;l:l Apj = Z:'lzj_(z;:l aij)
Y@t t Y lg @i+ e+ D0 di
n m
= Zj:l(zz‘:l a;j) )

4). Anelementa’ € M iscalleda nverse ofarelementa e M if a-a'=d'-a=e¢. Anelementa € M is
called invertible or unit ifa has inverse inM . The set of invertible elements in is denoted byM *.

a). If an elementa € M is invertible, then there is only one inverse®f (Hint: if a’,a” € M are two inverses
of a,thena’ =e-a'=(a"-a)-a’ =a"-(a-a’) =a”-e=a".) Inthe multiplicative notation the inverse of a
invertible elementz € M is denoted by 1. In the additive notation the inverse of a invertible elemernt M

is also called thenegative and islenoted by—a .

b). In the monoids(Z, +), (Q, +) every element is invertible and in the mondid +) the only element which
is invertible is 0,i.e.(Z, H)* =7Z (Q,+)* = Q and (N, +)* = {0}. For the multiplicative monoidsZ, -) ,
@Q, ) and (N, -), we have(Z, )* = {1, -1} (@Q,)*=Q\ {0} and (N, )* = {1}.

c). Let X be asetandleX* be the monoid of the set of all maps froi into itself with - = o the composition
of maps. An elemenp € X* is invertible if and only if there existg’ € X* such thatp o ¢’ = ¢’ 0 ¢ = idy,

or equivaletly, if and only ify is bijective; in this case thep’ = ¢! is the inverse function of . In particular,

(XX)X = 6(X) = the set of all permutations of the sit.

d. (Rules for invertible elements ) ()ee M* ande !t =e¢ (i) If a e M*, thenat e M*
and (@) =a. (i) If a1.....a, € M*, thenay-----a, € M*and(ay-----a,) t=a;l-- a
In particular, ifa, b € M*, thenab € M* and (ab) 1 = b1a" 1.
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e). The binary operation of M induces a binary operation aif * , i.e. M* is a submonoid of\/ . Moreover,
in this submonoid every element is invertible. In particukde >, -) is a group; this group is called thgroup
of invertible elements ofM, -). For example, for the monoidx*, o), the group of invertible elements

((XX)X , o) is thepermutation groupS(X) on X .

5. (Powers of elements) Far e M andn € N, the n -power ofa is the n-fold product of a
with itself. If a € M*, then we definez™ := (a~1)" = (¢”)~1. In the additive notation this correspond to the
multiples na of a. We have the following rules for the@owers:

For all a € M and for allm,n € N (in the case of group for all:, n € Z), we have:

@i a™m=am-a". (i) (@")"=a™. (i) Moreover,ifa,b € M are commute, thea™ -b" = b" -a™
and (a-b)" =a™ - b".

In the additive notation, we have: ())(m +n)a =ma +na. (i) n(ma) = (mn)a = (nm)a.

(i)  ma+nb=nb+ma and m(a + b) = ma + mb . (In the additive notation one usually assume thats
commutative.

6). Let (M, -) be a monoid with neutral elemeat Then:
a). For an element: in a monoid M , the following statements are equivalent :

(i) a isinvertible. (i) The left translatiork, : M — M, x — a - x is bijective. (i) The right
translationg, : M — M, x — x - a is bijective.

b). If ae M hasa left-inverses (i.e.a’-a=e¢)andhasaright-inverse” (i.e. a-a” =¢), then
a is invertible witha=! = 4’ = ¢” . Deduce that: ifa has more than one right-inverse (resp. left-inverse), then
a has no left-inverse (resp. right-inverse).

c). Let ¢, € NV be defined byp(0) := 0, ¢(n) :=n—1if n > 1, andy(n) := n + 1 respectively. Then
in the monoid (N, o) , the elementy is a left- inverse ofyy and the element) is a right-inverse ofyp, ie.,
¢ o = idy and the element/y has infinitely many left-inverses it and in particular,s is not invertible.
Further, in the submonoid df", generated by and ¢ (i.e., the smallest submonoid &f' containingy and
@) ¥ is notinvertible, even ifyy has exactly one left-inverse (namepy).

7). (Cancellative Monoid) Anonoid M issaidto beregular or cancellative ifforalk, b,c e M,
both the implications hold : ()ab=ac=b=c. (i) ba=ca=b=c.

An elementa € M is calledregular if theleft- translation maph, : M — M and the right-transaltion map
pa - M — M are injective. LetM* := {a € M | a is regular inM} of regular elements i is a submonoid of
M . ThereforeM is a cancellative monoid if and only if every elementan is regular, i.e.,M* = M .

8). Let M be a monoid and letq, ..., a, be elements il be such that the produet; - - - - - a, invertible. In
the following cases all ofiy, . . ., a, are invertible:
(i) The ay, ..., a, are pairwise commute. (iM is finite. (i) M is cancellative.

9). (Groups) Amonoid (M, -) iscalledagroup if (M*,.) = (M, -),i.e. every element iV is invertible.
Therefore a group is a s&t together with an associative binary operation togethand an elemen¢ such
that the following conditions are satisfied :

(i) e isaneutral element,i.eea =ae =a forall a € G. (i) Foreverya € G, there exists an inverse,
i.e., an element’ € G such thataa’ =d'a =e.

a). For asemi-group(M, -) (i.e. the binary operation on the setM is associative) with an elemeiat, the
following statements are equivalent:

(i) e isaright-neutral element,i.eae = a forall a e M. (i) Forall a € M, there exists a right-inverse,
i.e., there exists an elemeat € M such thataa’ = e.

Then show that(M, -) is a group. (Hint: e is a neutral elementinV : Let a € M be an arbitrary element
and leta’,a” € M (these elements exist by the assumption (ii)) be suchdhat= ¢ and a’'a” = 1. Then

a =ae =a(a'a") = (aa’)a” = ea” and henceu = ea” = (ee)a” = e(ea”) = ea . Further, sincena’ = e, we
need only to prove that'a = e; this follows froma = ea” = a” which is proved abovg. (Remark: Naturally,

the above assertion is true if we replace “right-neutral” and “right- inverse” by “left-neutral” and “left-inverse”
respectively).

b). Let (G, ) be a semi-group with the following two properties:

(i) Foreverya € G, the left-translation map., : G — G, x — ax, IS surjective. (i) There exist an
elementb € G, the right-translation map, : G — G, x — xb, is surjective.
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Then show that G, -) is a group(Hint: Use exercise a) aboye.

c). Construct a semi-groupH, -) with an elemente € H, which isnota group and satisfies the following
properties: (i)ea =a forall a € H. (ii) forevery a € H there exists an element € H with aa’ =e.

d). If every equation of the formu - x = b with a,b € M has a solution inM , i.e. there exists and element
x € M such thate - x = b, then (M, -) is a group.

e). Fora,b e R,let f,, : R — R bedefined byf, ,(x) =ax+b, x e R. ThenG :={f,, | a,b € R, a # 0}
with the binary operatioro of composition of maps. Show th&G, o) is a group which is not commutative.
(Remark: This is the well-knownaffine group ofR usually denoted by AR) and is used to studgffine
geometry)

f). Let G be afinite group with: elementsandletas, ..., a,) € G*. Showthatthereexist s with L <r,s <n
suchthata, 1 -----a;, = eg. (Hint: Then + 1 productsay - - - - - as;, s =0,...,n cannot be distinc}.

g). Let G be a finite abelian group with identity elementand with only one elemeny of order 2. Then
OrdG = 2n with n € N*. Further,

() [legx=1-
(i) Let a € G. Ifthere exists an elemertte G with b? = a, thena” = ¢, in the other case” = f. (Hint: If

a is not a square irG , then the relation: ¢ ~ d ifand only if ¢ = d or ¢d = a is an equivalence relation in
G, all the equivalence classes contain exactly two elementsKki(gj, ..., K(n) be these equivalence classes.

Thena" = H?:l(nyeK(i) V=[lecx=1")
10). Let N be amonoida € N and letM = {a" | n € N} be a submonoid oV generated by: . Suppose that

the powersa” , n € N are not distinct. Letn € N be the smallest natural number wiittt1 € {a°, a, ..., a™}
and letr be an integer with-1 < r < m anda™*! = o'+, ThenH :={a" | n > r} = {a’*},...,a"} isa
cyclic subgroup ofN of orderm — r. (Hint: Fors,t > r,we havea* =a' <= s = tmod(m —r).

It follows that every element® with s = 0mod(m — r) is the neutral element and every elemehtwith
t > r and gcdr, m —r) = 1 generates every element &f.) Other than{a°}, the subgroups oH are the only
semi-groups of\/ which are groupgHint: The equations:® = xa’, t > s have solutions iV only if s > r.)

11). A finite monoid N with neutral element is a group if and only if the only element € N which satisfies
a? = a is the neutral element, i.éa € N | a2 = a} = {e} .

T3.2. (Rings) LetA = (A, +,-) be aring. The grougA, +) is called theadditive group ofA and
the monoid (4, -) is called themonoid of A. The neutral element oA with repsect to the addition (resp.
multiplication) is called thezero-elemen{resp. theunity orthe unit-element) ofA and is denoted
by 04 orjustby O (resp. 1 orjustby 1).

1). (Rule for calculation) Foralu,b € A andm,n € Z we have :

() a-0=0.a=0. (i) a(=b)=(—a)b=—ab. (i) (—a)(—=b)=ab. (V) (m+n)a=ma+na.
v) m(@+b)=ma+mb. (Vi) (mn)a=mna). (Vi) (ma)(nb)= (mn)(ab).

(Remarks: By the rule (vii) above, the integral multiplea of an elementz in aring A, can be identified with
the product(ml,)a of the multiplem1, of the identity element A1 of A with «. Inparticular, ifml, =0,
thenma = 0 forall a € A. If there is no misunderstanding, one writes justfor the elementnl, of A.)

2). (Power-set ring) Letx be any set. Show that: X # ¢, then the power set3(X), U, N) with union

U as addition and the intersectiom as multiplication not a ring. But3(X), A, N) with the symmetric
difference AAB:=(AUB)~(ANB)=(A~B)U(B~\A), A, B €*B(X), as addition and the intersection
N as multiplication is a ring; this ring is called thpower-set ring ofX . Further, it is a commutative ring
and the zero element is the empty geénd the identity element is the s&t. If X is finite, then3(X) is aring
with 21XI elements. FoitX| = 1 the operation tables of the addition and the multiplicatiofgitx) are :

+19 X -9 X
|19 X b9 v
XX 9 X9 X .

3. (Opposite ring) LetA be aring. If one defines the opposite multiplicationAnby using the given
multiplication on A by (a, b) — ba, then one obtains a ring , and this ring is called the ring waithposite
multiplication orthe opposite ring. Itidenoted byA°P or by A°. We have(A°P)P = A. If A is
commutative, therd = A°P.

4). (Direct product of rings) LetA;, i € I, be afamily of rings with zero elements € A; and identity
elements le A;. The product of multiplications ir4; defines a multiplication in the product groJd,., A;.
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With this multiplication [],_, A; is a ring with the zero elemen®;);c; and the identity elementl,);.; . This
ring is called thedirect product oftheings A;, i € I. The directsund,_;, A;(C [];., A/) ofthe additive
groupsA; is closed with respect to the above multiplication. Butifthe ridgs i € I, are non-zero for infinitely
manyi € I ,then,_, A; with the operations induced frofi[,_, A; is notaring: there is no identity element
for the multiplication!

iel

5). (Rings without unity) In oudefinition of ring, we assume the existence of a neutral element with
respect to the multiplication. One can extend this definition by assuming only, that a ring with respect to the
multiplication form only a semigroup. Then we can consider rings mettessarily with unityFrom
aring A, which is not necessarily with unit element, one can easily construct a ring with unity. For example, on
the setZ x A, define addition and multiplication by

(m,a)+ (n,b) ;== +n, a+b) and (m, a) - (n, b) := (mn, mb + na + ab)
for m,n € Z anda, b € A. With these binary operatiorig x A is a ring with the unity(1, 0) . With this passage
from A to Z x A the assertions, which hold in a ring, frequently hold in rings, which does not have unity.

6). (General distributivity theorem) I&, i € I,andb;, j € J, are two families of elements in
aring A and if a; = 0 for almost alli € 7 and b, = 0 for almost all j € J, thenqa;b; = 0 for almost all

m

(i,j)elxJ,andwe have(Za,-><ij) = > ab;.In particular,(Zai)(gbj) = Y ab;

iel jeJ (i,j)elxJ i=1 l<i<m

l<jzn

(Hint: Proof follows from the following scheme:

aib1 + aiby +---+ aib, ai Z;:1 b;
+ azb1 + agby +---+ agb, |+az > 1b;

+ amwb1+ anby +---+ Xm Yn +am Z_;l:lb/
=(Xia) (X b)) - )

T3.3. 1). Determine the last digit in the decimal expansion of 777

2). Determine the last two digit in the decimal expansion 8t .9

3). For everyn € Z, show thatn® — n? is divisble by 252 (Hint: n® —»n? = 0 in all prime rings A for every
prime divisor of 252).

4). Leta andb be non-zero relatively prime integers. Then the s’ + p¢1¢) =1 mod ab.

5). Determine all natural multiples of the number 17 for which the digits in the decimal expansion are all equal
to 1.(Hint: Make calculation in the unit group 4.)

T Adolf Abraham Halevi Fraenkel (1891-1965) wasbornon 17 Feb 1891 in Munich, Germany and

died on 15 Oct 1965 in Jerusalem, Israel. Adolf Fraenkel, in common with most students in Germany in his time, studied for
periods at different universities. He spent some time at the University of Munich, the University of Marburg, the University
of Berlin and the University of Breslau. From 1916 he lectured at the University of Marburg, being promoted to professor
there in 1922. In 1928 Fraenkel left Marburg and spent one year teaching at the University of Kiel. He was a fervent Zionist
and, after leaving Kiel, he taught at the Hebrew University of Jerusalem from 1929. Fraenkel was to spend the rest of his
career at the Hebrew University.

Fraenkel’s first work was on “Henselg-adic numbers” and on the “theory of rings”. However he is best known for

his work on set theory, writing his first major work on the topic “Einleitung in die Mengenlehre” in 1919. He made two
attempts, in 1922 and 1925, to put set theory into an axiomatic setting that avoided the paradoxes. He tried to improve the
definitions of Zermelo and, within his axiom system, he proved the independence of the axiom of choice. His system of
axioms was modified by Skolem in 1922 to give what is today known as the ZFS system. This is named after Zermelo,
Fraenkel and Skolem. Within this system it is harder to prove the independence of the axiom of choice and this was not
achieved until the work of Cohen in 1963.

Fraenkel was also interested in the history of mathematics and wrote a hnumber of important works on the topic. He wrote

on Gauss’s work in algebra in 1920, then in 1930, he published an important biography of Cantor. In 1960 he published

“Jewish mathematics and astronomy”. A number of Fraenkel’s students have made important contributions to mathematics
including Robinson who succeeded him when he retired from his chair at the Hebrew University.
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