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3. Rings 1) — Prime rings

Remember that all our rings are rings with unity! Usually the term “rng” is used for a ring without unity. This term
was suggested by Louis Rowen and may be pronunced as “rŭng”.

A d o l f A b r a h a m H a l e v i F r a e n k e l †

(1891-1965)

In the exercises belowA denote a ring with unity 1A (not necessarily commutative).

3.1. 1). Let a and b commuting elements in a ringA and letn ∈ N . Then :

a). ( B i n o m i a l T h e o r e m ) (a + b)n = ∑n
i=0

(
n

i

)
an−ibi .

b). ( P o l y n o m i a l f o r m u l a ) Ifa1, . . . , ar are pairwise commuting elements in a ringA , then for
every n ∈ N , we have the formula:

(a1 + · · · + ar)
n =

∑
(i1,...,ir )∈N

r

i1+···+ir=n

n!

i1! · · · ir ! a
i1
1 · · · airr .

c). an−bn = (a−b)(an−1+an−2b+· · ·+abn−2+bn−1) = (an−1+an−2b+· · ·+abn−2+bn−1)(a−b) .
In particular, for everya ∈ A and everyn ∈ N∗ we have:

an − 1 = (a − 1)(an−1 + · · · + a + 1) = (an−1 + · · · + a + 1)(a − 1) .

d). For everya ∈ A andn ∈ N∗ , show that (1−a)2(1+2a+· · ·+nan−1) = 1− (n+1)an+nan+1 .

2). Prove the following well-knownp o l a r i s a t i o n f o r m u l a : Forn ∈ N∗ and arbitrary pariwise
commuting elementsa1, . . . , an in a ring A , we have

2n−1n! a1 · · · an =
∑
ε

ε2 · · · εn(a1 + ε2a2 + · · · + εnan)
n ,

where the right hand sum runs throught all sign-tuplesε = (ε2, . . . , εn) ∈ {1,−1}n−1 . ( Hint : In the
casen = 2 this is the formula 4a1a2 = (a1 + a2)

2 − (a1 − a2)
2 .)

In a similar way prove the following formula :

(−1)nn! a1 · · · an =
∑

H⊆{1,...,n}
(−1)|H |a nH =

∑
e

(−1)e1+···+en (e1a1 + · · · + enan)
n

where aH := ∑
i∈H ai for H ⊆ {1, . . . , n} ) and the sum on the right side runs through all tuples

e = (e1, . . . , en) ∈ {0 , 1}n . ( Remark : This generalises the formula 2a1a2 = (a1 + a2)
2 − a2

1 − a2
2 .)

1) For the first time the axioms of rings appear to have been formulated byA. Fraenkel in an article inJournal
für die angewandete Mathematik, vol. 145 (1914). Before this the term “Zahlring” (=number ring or ring of numbers)
had been used byHilbert in “Die Theorie der algebraische Zahlk¨orper”,Jahresbericht der Deutschen Mathematiker
Vereiningung, vol. 4, (1897).
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3.2 Algebra, Arithmetic and Geometry / 2005 3. Rings — Prime rings

3.2. Let A be a ring.

1). Let Bi, i ∈ I , be a family of subrings ofA . Then the intersection∩i∈IBi is again a subring ofA .

2). ( C e n t e r o f a r i n g ) The set ofelements ofA which commute with all elements ofA is a
commutative subring Z(A) of A ; it is called thec e n t e r ofA .

3). For a family ai, i ∈ I of elements inA , the setB := { b ∈ A | bai = aib for all i ∈ I } is a
subring ofA .

4). (Charac te r i s t i c o f a r ing ) Theorder of the unity 1A of A in the additive group ofA is called
the c h a r a c t e r i s t i c o fA and is denoted by CharA . A natural numbern ∈ N is the characteristic
CharA of A if and only if it generates the kernel of the canonical ring homomorphismχA : Z → A ,
m �→ m · 1A . ( Remarks : (If n = CharA or a multiple of CharA, thenna = 0 for all a ∈ A;
becausena = (n · 1A) · a = 0 · a = 0. Note that the characteristic ofA is determined by its prime ring. All
subrings of a ringA have the same characteristic as that ofA. The characteristics ofZ and Q are 0 . A ringA
has characteristic 1 if and only ifA is a zero ring. In the power-set ringP(X) (see Exerxise T3.2-2)) we have
2 · 1P(X) = X +X = (X ∪X)� (X ∩X) = ∅ , therefore, ifX 	= ∅ thenP(X) = 2 .)

5). Let A be a ring of characteristicp , wherep is a prime number. For two commuting elements
a, b ∈ A and everyn ∈ N , show that (a+ b)pn = ap

n + bpn .( Hint : Use binomial theorem (see Exercise
3.1-1)) and show thatp divides the binomial coefficients

(
p

i

)
, 1 ≤ i ≤ p − 1 .)

6). For n ∈ N∗, letZn be a (additively written) cyclic groups of ordern. If N ⊆ N∗ is an infinite set
of positive natural numbers, then there is no ring (with unity), whose additive group is the direct sum⊕

n∈N Zn.

3.3. ( U n i t g r o u p o f a r i n g ) Thegroup of the invertible elements of the multiplicative monoid
of A is called theu n i t g r o u p ofA and is denoted byA× . Its elements are called theu n i t s of
A . ( Remarks : The units ofZ are the numbers 1 and−1 . In every ringA , 1 and−1 are units, since
1 = 1 · 1 = (−1)(−1) . The elements 1 and−1 in A need not be distinct: In fact 1A = −1A if and only if
2 · 1A = 0 , i.e. if CharA = 2 or CharA = 1 . In particular, this is the sitiuation for the power-set ringP(X) of
a setX . In this ring the unit element 1P(X) = X is the only unit.)

1). Let Ai, i ∈ I , be a family of rings. An element(ai)i∈I of the direct productB := ∏
i∈I Ai is a

unit if and only if ai ∈ A×
i for all i ∈ I . ThereforeB× = ∏

i∈I A
×
i .

2). Let B is a subring of a ringA . Then B× is a subgroup ofA× . In particular,B× ⊆ B ∩ A× .
( Remark : In generalB× 	= B ∩ A× . For example,Z ∩ Q× = Z ∩ (Q � {0}) = Z � {0} , but Z× = {1,−1} .)

3). For the center of a ring we have: Z(A)× = Z(A) ∩ A× . ( Hint : If a ∈ A× andb ∈ A commute, then
a−1 andb also commute.) ( Remark : In general Z(A)× 	= Z(A×) = {a ∈ A× | ab = ba for all b ∈ A×} .)

4). Let a, b ∈ A , whereb is a unit inA which belongs to the center ofA . Then ab−1 = b−1a . This
element is frequently written as — like a rational number— as af rac t ion : a/b := a

b
:= ab−1 = b−1a .

( F i n i t e g e o m e t r i c s e r i e s ) LetA be a commutative ring anda, b ∈ A elements ofA such that

a − b is a unit inA . For everyn ∈ N∗ , we have an−1 + an−2b + · · · + abn−2 + bn−1 = an − bn

a − b
.

In the special case, ifa ∈ A and a − 1 is a unit inA , then for everyn ∈ N∗ we have

an−1 + · · · + a + 1 = an − 1

a − 1
.

5). (Ru les o f ca l cu l a t i on fo r f r ac t i ons ) Leta, b, c, d be elements of a ringA, whereb, d
are units inA and belong to the center ofA . Then :

(i)
a

b
+ c

d
= ad + bc

bd
. (ii)

a

b
· c
d

= ac

bd
. (iii)

a

b
= ad

bd
. (iv)

(
b

d

)−1

= d

b
.

(v)
a

b
= c

d
if and only if ad = bc .
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Algebra, Arithmetic and Geometry / 2005 3. Rings — Prime rings 3.3

6). Let A be a ring with CharA 	= 1, 	= 2 . If the unit groupA× of A is cyclic, thenA× is finite and
|A×| is an even number.

3.4. (Ze ro d i v i so r s and Non -ze ro d i v i so r s ) Anelementa is called ale f t ze ro d i v i so r
(resp. r i g h t z e r o d i v i s o r ) inA , if there exists ab ∈ A, b 	= 0 , such thatab = 0 (resp. if there
exists ac ∈ A, c 	= 0, such thatca = 0.) We say thata is a z e r o d i v i s o r , ifa is either a left–
or a right zero divisor inA ; otherwisea is called an o n - z e r o d i v i s o r inA . The set of non-zero
divisors inA is denoted byA∗ .( Remarks : In a commutative ring the three concepts of zero divisors are the
same. IfA is not a zero ring, then 0∈ A is a zero divisor inA . The unit element 1A of A is a non-zero divisor
in A .)
1). Let a, b be elements in a ringA . Then:

a). If a is a unit inA , then a is a non-zero divisor inA . In particular,A× ⊆ A∗ .

b). If a, b are not left zero divisors (resp. not right zero divisors) inA , then ab is also not a left zero
divisor (resp. not a right zero divisor) inA . In particular,(A∗, ·) is a cancellative (see Exercise T3.1-7))
submonoid of the multiplicative monoid(A, ·) of A .

c). The left translationλa : A → A , x �→ ax (resp. the right translationρa : A → A , x �→ xa ) is
injective if and only if a is not a left zero divisor (resp. not a right zero divisor) inA .

2). Let a be an element in a ringA .

a). If a has a left inversea′ and has a right inversea′′ , then a is a unit anda′ = a−1 = a′′ (see
Exercise T3.1-6)-b)).

b). Show that the following statements are equivalent :

(i) a is a unit. (ii) a has a left inverse and it is not a right zero divisor. (ii′) a has a right
inverse and it is not a left zero divisor. (iii)a has exactly one left inverse. (iii′) a has
exactly one right inverse. (iv) The right translationρa : A → A , x �→ xa is bijective.

(iv ′) The left translationλa : A → A , x �→ ax is bijective.

3.5. ( I n t e g r a l d o m a i n s a n d f i e l d s ) Aring A is said to be f r e e f r o m z e r o di v i s o r s if
every non-zero element inA is a non-zero divisor. A ringA is called ad o m a i n if A 	= 0 and it is
free from zero divisors, or equivalently ifA∗ = A \ {0} . A commutaive domain is called an in t e g r a l
d o m a i n .

A rings A is called ad i v i s i o n r i n g or a s k e w - f i e l d ifA 	= 0 and if everya ∈ A , a 	= 0 is a
unit in A , or equivaletly ifA× = A \ {0} , i.e., if set of all non-zero elements ofA form a group under
the ring multiplication ofA . A commutative division ring is called af i e l d .

1). Let A be a ring which is free from zero divisors. Then the following cancellation laws hold inA :

If a ∈ A , a 	= 0 and if x, y ∈ A are arbitrary, thenax = ay (resp. xa = ya ) implies the equality
x = y . In particular, ifA is a domain, then(A \ {0}, ·) is a monoid with cancellation law. —Z is an
integral domain.

2). Subrings of a ring which is free from zero divisors (resp. domain, integral domain) are also rings
which are free from zero divisors, (resp. domains, integral domains). If a subringK of a ring A is a
division ring (resp. field), we say thatK is a s u b d i v i s i o n r i n g(resp. s u b f i e l d ) of A . The
intersection of a non-empty familyKi , i ∈ I of subdivision rings (resp. subfields) of a ringA is again
a subdivision ring (resp. subfield) ofA . The center Z(D) of a division ringD is a subfield ofD .

3). The characteristic of a ring which is free from zero divisors is either 0 , or 1 , or a prime number.
In particular, ifA is a domain (resp. a division ring), then the characteristic ofA is either 0 or a prime
number.

4). ( Q u o t i e n t f i e l d ) LetK be a field and letA be a subring ofK . Then A is an integral
domain. The smallest subfield Q ofK which containA ; this is well-defined and exists, since it is the
intersection of all subfields ofK which containA , in fact, it is Q= {a/b | a, b ∈ A , b 	= 0} . This
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3.4 Algebra, Arithmetic and Geometry / 2005 3. Rings — Prime rings

subfield Q ofK is called theq u o t i e n t f i e l d o f A in K (see Exercise 3.5-2)). If Q= K , then
K is called theq u o t i e n t f i e l d ofA . for example,Q is the quotient field ofZ in Q , or in R , or
in C , or more generally in any fieldK of charateristic 0 .

Construction of the quotient field Q(A) of an integral domain A : On the setA × (A \ {0}) the
relation ∼ defined by(a, b) ∼ (c, d) if ad = bc is an equivalence relation; its equivalence classes
are denoted byfractions a/b . then the addition and multiplication :a/b + c/d := (ad + bc)/bd and
a/b)·(c/d) := (ac)/(bd) , a, b, c, d ∈ A , b 	= 0, d 	= 0 , resp. are well-defined binary operations on the
quotient set Q(A) := A× (A\{0})/ ∼ . With thgese definitions(Q(A),+, ·) is a coomutative ring with
unity 1/1 , moreover, a field and the mapA → A× (A \ {0}) → Q(A) defined bya �→ (a,1) �→ a/1
is an injective ring homomorphism. Therefore via this natural injective ring homomorphismA can be
identified with a subring of Q(A) . Moreover, Q(A) is the quotient field ofA and every fieldK which
conatinA , also contain Q(A) . In particular, Q(A) is the smallest field containingA .

Let D be a divison ring and letA be a commutative subring ofD . ThenD contains a subfield which
containsA . In particular,D contains a quotient field ofA .

5). Let Q(A) be the quotient field of the integral domainA . Then card(Q(A)) = card(A). ( Hint :
For an infinite setX , card(X ×X) = card(X) —this can be easily proved by using Zorn’s lemma.)
6). (V ie ta ’s roo t t heo rem) LetA be an integral domain and leta1, a2 ∈ A two distinct elements
and b, c ∈ A . Suppose thata2

1 + ba1 + c = 0 anda2
2 + ba2 + c = 0 . Then show thatb = −(a1 + a2)

and c = a1a2 . Deduce that : for given elementsb, c ∈ A , there are at most two elementsa ∈ A such
that a2 + ba + c = 0 . ( Remark : In general this assertion is true only ifA is commutative. For example in
the division rings of quaternion there are infinitely many elementsa sith a2 + 1 = 0 .)

7). Let A be a finite commutative ring. Then

a). Show that every non-zero divisor is a unit. In particular, a non-zero domain is a divison ring.

( Remark : A famous theorem ofW e d d e r b u r nstates that :every finite division ring is commutative and hence
a field.)
b). Let a be the product of all non-zero elements ofA . Show that :

a =
{ −1, if A is a field ;

2, if A is a prime ring with 4 elements ;
0, otherwise .

( Hint : Use the Exercise T3.1-9)-g) and the part a).)

3.6. ( N i l p o t e n t , U n i p o t e n t a n d I d e m p o t e n t e l e m e n t s ) Leta, b, e, u, v be elements in
a ring A .

1). An elementa of a ring A is calledn i l p o t e n t , if there exists a natural numberm ∈ N such that
am = 0 . Show that :

a). If a is nilpotent and ifa and b commute, thenab is nilpotent.

b). If a and b are nilpotent and ifa and b commute, thena + b is nilpotent.

c). If a is nilpotent ande is a unit und ifa and e commute, thene − a is a unit.

2). An elementu of a ring A is calledu n i p o t e n t , if 1− u is nilpotent. Show that :

a). If u is unipotent, thenu is a unit inA , i.e. u ∈ A× . Moreover,u−1 is also unipotent.

b). If u, v ∈ A are unipotent and commute, thenuv is also unipotent.

c). If A is commutative, then the set of unipotent elements inA is a subgroup of the unit groupA× of
A .

3). Let A be a ring of characteristicpn, wherep is a prime number. An elementu ∈ A is unipotent if
and only if u is a unit inA and the order ofu in A× is a power ofp . If A has no non-zero nilpotent
elements and ifa ∈ A× is an element of finite order, then gcd(p,Orda) = 1 .
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Algebra, Arithmetic and Geometry / 2005 3. Rings — Prime rings 3.5

4). An elementa of a ring A is called i d e m p o t e n t , ifa2 = a .

a). If a ∈ A is idempotent, thenan = a for all n ∈ N∗ . The elements 0 and 1 are clearly idempotent;
they are called thet r i v i a l i d e m p o t e n t e l e m e n t s .Non-trivial idempotent elements are clearly
zero divisors, sincea2 = a and a(1 − a) = 0 are equivalent.

b). In an integral domain 0 and 1 are the only idempotent elements.

c). If a ∈ A is idempotent, then so is 1− a . Two idempotent elementsa, b of A with a+ b = 1 are
called c o m p l e m e n t a r y .

d). Let Ai, i ∈ I , be a family of rings with the identity elements 1i ∈ Ai and the zero elements
0i ∈ Ai . In the product ringB := ∏

i∈I Ai , an element(ai)i∈I is idempotent if and only if allai
are idempotent inAi . In particular,ej := (aij )i∈I , whereaij are defined byaij := 0i for i 	= j and
ajj := 1j , are idempotent elements inB , which are contained in the centre ofB . If none of Ai is a
zero ring then allej , j ∈ I , are distinct; further if|I | ≥ 2 then none of them is 0 or 1 , therefore they
are non-trivial idempotent elements.

e). ( B o o l e a n r i n g s ) Aring A in which every element is idempotent, is called aB o o l e a n r i n g .
Let A be a non-zero Boolean ring. Then CharA = 2 . Moreover,A commutative andA× = {1A} . In
the power-set ringP(X) (see Exercise T3.2-2)) of any setX , every element is idempotent, and so the
ring P(X) and every subring ofP(X) is a Boolean ring. ( Remark : Every Boolean ring is a subring of
P(X) .)
f). Let a, b be idempotent elements in a ringA . Then :

(i) a + b is idempotent if and only ifab = ba and 2ab = 0 . Further,a − b idempotent if and only
if ab = ba and 2(1 − a)b = 0 .

(ii) If ab = ba , then ab, a + b − ab and (a − b)2 = a + b − 2ab are idempotent.

(iii) If ab = ba and a − b nilpotent, thena = b .

g). Let A be a commutative ring and Idp(A) be the set of all idempotent elements inA . Then
(Idp(A),�, ·) is a Boolean ring, with the additiona�b := (a − b)2 and the multiplication induced
from the multiplication fromA . Moreover, the rings(Idp(A),�, ·) and (A,+, ·) are equal if and only
if A is a Boolean ring.

3.7. ( I nvo lu t i ons ) Anelementa in a (multiplicatively written) monoid is calledinvo lu to ry or an
invo lu t i on , if a2 is equal to the identity element of the monoid. The involutory elements are precisely
those invertible elements with self inverses. If the monoid is commutative, then the involutory elements
form a subgroup of the group of the invertible elements. The product of two involutory elements is
involutory if and only if these elements commute.

Let A be a ring and let Inv(A) denote the set of all (with respect to the multiplication ofA) involutory
elements, Idp(A) be the set of all idempotent elements ofA. Then the map

γ : Idp(A) → Inv(A) , a �→ 1 − 2a

is injective, if 2· 1A is a non-zero divisor inA and is bijective, if 2· 1A is a unit inA. (If A is commutative,
thenγ is a group homomorphism of the additive group Idp(A) (see Exercise 3.6-4)-g)), into the multiplicative
group Inv(A).)

3.8. Let A be a ring and letα , α′ : A → A be the maps defined byα(x) := x− x2 , α′(x) := 1− 2x
respectively. Ifα(x) is nilpotent, then(α′(x))2 is unipotent and in particular,α′(x) is a unit inA .

Let a ∈ A be such thatα(a) is nilpotent. Then there exist unique elementss, t ∈ A with the following
properties : (i) a = s+ t . (ii) s is idempotent andt is nilpotent. (iii) s and t commute.

Moreover, these uniquely determined elementss and t belong to the smallest subringA′ of A con-
taining a . (Note that if a = s + t is an element ofA and s , t ∈ A satisfy the conditions (ii) and (iii), then
α(a) must be nilpotent.) ( Hint : Existence: The recursively defined sequenceai , i ∈ N , with a0 := a

and ai+1 := ai − α(ai )

α′(ai ) = − a2
i

1−2ai
is well-defined. Thenai ∈ A′, ai = a + ciα(a) and α(ai) = di(α(a))

2i with
ci, di ∈ A′ . Now take s := ai with large i . —This process remind theNewton’s processto construct a zeros
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3.6 Algebra, Arithmetic and Geometry / 2005 3. Rings — Prime rings

of the functionα by approximating zeros of real differentiable functions.Uniqueness: The above construction
show that to arbitrary decompositiona = s+ t , wheres and t satisfy the conditions (ii) and (iii), one can apply
Exercise 3.6-4)-f) and conclude thats and t are unique.)

3.9. ( R i n g o f n u m e r i c a l f u n c t i o n s ) LetA be a commutative ring. On the set of sequences
AN

∗
let the addition be defined componentwise by(f + g)(n) := f (n) + g(n), f, g ∈ AN

∗
, n ∈ N∗.

Further, let the multiplication be defined by the formula :

(f ∗ g)(n) :=
∑
d|n

f (d)g
(n
d

)
.

(This binary operation is called the( D i r i c h l e t ’s ) c o n v o l u t i o n onAN
∗
. The elements ofAN

∗
are called

n u m e r i c a l f u n c t i o n s w i t h v a l u e s i n i nA .)

a). ZF(A) := (AN
∗
, +, ∗) is a commutative ring. (This ring is called ther i n g o f n u m e r i c a l

f u n c t i o n s w i t h v a l u e s i nA .) The unity (multiplicative identity) of this ring is the functionε,
whereε(1) := 1 andε(n) := 0 for n ≥ 2. An elemente of ZF(A) is a unit if and only ife(1) a unit in
A. (e−1 can be recursively determined bye.)

b). A numerical functionf ∈ ZF(A) is calledmu l t i p l i ca t i ve , iff (1) = 1 andf (mn) = f (m)f (n)

for all m, n ∈ N∗ with gcd(m, n) = 1. If f ∈ ZF(A) is multiplicative andg ∈ ZF(A) is arbitrary, then
f ∗g is multiplicative if and only ifg is multiplicative. The unit-elementε is multiplicative. In particular,
the set of multiplicative numerical functions in ZF(A) is a subgroup of the unit group of ZF(A).

c). Letζ ∈ ZF(A) be the numerical function defined byζ(n) = 1 for alln ∈ N∗. Thenζ is multiplicative
and forf ∈ ZF(A) the functionζ ∗ f is called theS u m m a t o r - f u n c t i o n off , since(ζ ∗ f )(n) =∑

d|n f (d) . Therefore (see b) above)f is multiplicative if and only ifζ ∗ f is multiplicative. Further,
in this casef can be recovered fromζ ∗ f through the followingi n v e r s i o n f o r m u l a :

f (n) =
∏

p prime, p|n
((ζ ∗ f )(pvp(n))− (ζ ∗ f )(pvp(n)−1)) .

d). In the special caseA = Z, in addition to the numerical functionsε andζ , the important Euler’s
ϕ-function ϕ, is a multiplicative numerical function. Further, the numerical functionψ : n �→ n is
multiplicative andζ ∗ ϕ = ψ . Let T(n) (respectively S(n)) denote the number of (respectively the sum
of) positive integer-divisors ofn ∈ N∗. Then the numerical functions T and S are also multiplicative.
(This can be deduced from the following identities:ζ ∗ ζ = T, ζ ∗ ψ = S.)

e). (M öb i us i nve rson fo rmu la ) LetA be an arbitrary commutative ring. The numerical function
µ := ζ−1 is called the M ¨o b i u s f u n c t i o n .Then

f (n) =
∑
d|n

µ
(n
d

)
· (ζ ∗ f )(d) for everyf ∈ ZF(A) .

(This is immediate fromf = µ ∗ (ζ ∗ f ). Using this formula and c) one can show easily that:µ(1) = 1,
µ(n) = (−1)r , if n is a product of distinct prime numbers andµ(n) = 0 otherwise.)

f). The ring ZF(A) is an integral domain if and only ifA is an integral domain.

3.10. ( P r i m e r i n g s ) The subsetZ · 1A := {n · 1A | n ∈ Z} of a ring A is the smallest subring of
A . This ring is called thep r i m e r i n g of A . The prime ring of a ringA, is also the prime ring of
each of its subring. The prime ring ofZ is itself. In particular,Z has no other subring than itself. A
ring which is its prime ring is called ap r i m e r i n g . Inparticular, every prime ring is commutative and
has proper subrings. Moreover, a ringA is a prime ring if and only if its additive group is cyclic.

1). ( S t r u c t u r e o f p r i m e r i n g s ) LetA be a prim ring of the characteristicm .

(i) If m > 0 , then |A| = m and A = {n · 1A | 0 ≤ n < m} . Two elementsr · 1A, s · 1A ∈ A with
r, s ∈ Z are equal if and only ifr ≡ s modulom . An elementr · 1A ∈ A with r ∈ Z is a non-zero
divisor if and only if it is a unit; more over, equivalently ggT(r,m) = 1 .

(ii) If m = 0 , thenA = {n · 1A | n ∈ Z} , where the elementsn · 1A are distinct for distinct inetegers
n ∈ Z and soA is an integral domain with exactly two units 1A and −1A .

( Remark : By the above theorem all prime rings of charateristicm ∈ N have the same structure. In fact, ifA is
a prime ring of characteristicm ∈ N , then the mapA → Z/Zm defined byr · 1A �→ [r] = the residue class of
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r modulom , is well-defined and is an isomorphism of rings. Therefore for concrete calculation in prime ring,
we may choose the prime ringAm = Z/Zm , m ∈ N . In particular,A0 = Z .)

2). For a prime ring of charateristicm > 0 , the following statements are equivalent :

(i) A is a field. (ii) A is an integral domain. (iii)m is a prime number.

3). Let A be a prime ring of charateristicm > 0 . Then the order of the unit groupA× is ϕ(m) , where
ϕ is the Euler’s totient function. Deduce that :

a). ( E u l e r ’s t h e o r e m ) Form ∈ N∗ and r ∈ Z with gcd(r,m) = 1 , we haverϕ(m) ≡ 1 modm .

b). ( F e r m a t ’s L i t t l e t h e o r e m ) Letp be a prime number and letr ∈ Z which is not divisible
by p . Then rp−1 ≡ 1 modp . ( Hint : Proof-variant: Since Zp is an integral domain, it is
enough to prove thatrp ≡ r modp . For this it is enough to prove that : for every elementa in a prime ring of
charateristicp , we haveap = a . Therefore leta = s · 1 for somes ∈ N and hence by Exercise ??? we have
ap = (∑s

i=1 1
)p = ∑s

i=1 1p = ∑s

i=1 1 = a .)

3.11. In the following exercises let Am denote a prime ring of characteristicm ∈ N , for example
Am = Z/Zm .

1). a). A Mersenne number 2p − 1 with p prime andp > 2 can have only prime divisors of the form
2np + 1 with n ∈ N∗. (Hint : If q is a prime divisor of 2p − 1, p prime, then the order of 2· 1Aq

in the
unit group of Aq is equal top .)

b). Every two distinct Mersenne numbers are relatively prime.

2). A Fermat-number 22
t + 1 with t ∈ N can have only prime divisors of the formn2t+1 + 1 with

n ∈ N∗ . (Hint : Use a method of proof as in 1).

3). Let A be a ring of characteristicm > 0 . For an integerr , the following statements are equivalent :

(i) r · 1A is a unit inA . (ii) r · 1A is a unit in the prime ring ofA . (iii) gcd(r,m) = 1 .

4). Let m1, . . . , mr be non-zero pairwise relatively prime natural numbers andm := m1 · · ·mr . Then
A := ∏r

i=1 Ami is a prime ring of the characteristicm (see Exercise 3.10-1)). The unit group ofA is
the direct product of the unit groups of the prime rings Ami . What can you now conclude for the Euler’s
ϕ-function ?

5). Let m ∈ N∗, and letm = p
α1
1 · · ·pαrr be the (normalised) prime factorisation ofm .

a). For s ∈ Z the following statements are equivalent :

(i) s · 1Am
is nilpotent in Am . (ii) s is a multiple ofp1 · · ·pr .

b). Am has exactly 2r idempotent elements. ( Hint : The natural numberse with 0 ≤ e < m and
e ≡ e2 modm can be calculated (by using exercise 4)) in the direct product of prime rings of characteristicpαi ,
i = 1, . . . , r and hence one can reduce the problem to the caser = 1 .)

6). Let p be a prime number≥ 3 .

a). In the unit group A×p , the element−1 is the only element of order 2 .

b). (W i l s o n ’s T h e o r e m ) (p − 1)! ≡ −1 modp . ( Hint : Apply ??? to the prime ring Ap .)
c). ( E u l e r ’s c r i t e r i o n f o r t h e q u a d a r t i c r e s i d u e s ) Leta ∈ Z be not divisible byp . If
there existsb ∈ Z with b2 ≡ a mod p , then a(p−1)/2 ≡ 1 modp . Further, if there is nob ∈ Z with
b2 ≡ a modp , then a(p−1)/2 ≡ −1 modp . ( Hint : Apply Exercise 3.1-9)-g)-(ii) to the group A×p .)

d). If p ≡ 1 mod 4 , then
((

p−1
2

)
!
)2

≡ −1 modp and if p ≡ 3 mod 4 , then there exists nob ∈ Z

with b2 ≡ −1 modp .

e). (Conve rse o f the Wi l son ’s theo rem) Ifn ∈ N, n > 1 , and if (n−1)! ≡ −1 modn , then
n is a prime number.( Hint : Apply Exercise 3.5-7)-b) to the ring Ap . Another Proof ( P r a n e s a c h a r ): Note
that either ifn has two distinct prime factorsp and q or if n has a square factorp2 with p odd prime, thenn
divides (n−1)! . In the remaining casen = 22 = 4 and(n−1)! mod n = 3! ≡ mod 4≡ 2 mod 4	≡ 1 mod 4 .)
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( Remark : We can use the above exercise to give a proof of the t w os q u a r e t h e o r e m :Every prime number
p . The solution of the congruenceb2 + 1 ≡ 0 modp for a prime numberp ≡ 1 mod 4 gives the solution of
the equationc2 + d2 = p with c, d ∈ N∗.)

7). Let m, n ∈ N∗ andm ≥ 2 . Then show thatn divides ϕ(mn − 1) and 2n divides ϕ(mn + 1) .

( Hint : Compute the order ofm in the prime rings Amn−1 and Amn+1 .)

Below one can see definitions and (simple) test-exercises.

Definitions and Test-Exercises

T3.1. (Mono ids and Groups ) Let(M, ·) be a monoid withneutral elemente , i.e. e ·a = a ·e = a for every
a ∈ M . (This neutral element is uniquely determined : ife, e′ ∈ M are neutral elements, thene = e · e′ = e′ .)

1). ( G e n e r a l i s e d a s s o c i a t i v e l a w ) Leta1, . . . , an ∈ M and letp = a1 · a2 · · · · · an be recursively
defined byp0 := e , pi+1 = pi · ai+1 , i = 0,1, . . . , n− 1 andp := pn . Then the value ofp does not change if
we choose another arbitrary brackets instead of the left- brackets that are used in the definition ofp . Therefore
in the multiplicative (resp. additive) notation this product is simply denoted by

∏n

i=1 ai = a1 · · · · · an (resp.∑n

i=1 a1 = a1 + · · · + an . (Hint : Prove the independance of the bracket by induction.)

2). ( G e n e r a l i s e d c o m m u t a t i v e l a w )Suppose that the binary operation· on M is commutative. Then
the producta1 · · · · · an is independent of the order of the elementsa1, . . . , an . In this case for arbitrary family
ai , i ∈ I , of element ofM , the product is simply denoted by

∏n

i=1 ai (in the multiplicative notation) and by∑n

i=1 ai (in the additive notation).

3). If aij , i ∈ I, j ∈ J , is family of elements in a monoidM and if I and J are finite indexed sets, then we

have :
∑

(i,j)∈I×J
aij =

∑
i∈I

(∑
j∈J

aij

)
=

∑
j∈J

(∑
i∈I
aij

)
In particular,

∑
1≤i≤m
1≤j≤n

aij =
m∑
i=1

( n∑
j=1

aij

)
=

n∑
j=1

( m∑
i=1

aij

)
.

(Hint : The prrof is clear from the following scheme :

a11 + a12 + · · · + a1n
∑n

j=1 a1j

+ a21 + a22 + · · · + a2n + ∑n

j=1 a2j

...
...

+ am1 + am2 + · · · + xmn + ∑n

j=1 amj = ∑m

i=1(
∑n

j=1 aij )∑m

i=1 ai1 + ∑m

i=1 ai2 + · · · + ∑m

i=1 ain

= ∑n

j=1(
∑m

i=1 aij ) )

4). An elementa′ ∈ M is called a in v e r s e of anelementa ∈ M if a · a′ = a′ · a = e . An elementa ∈ M is
called in v e r t i b l e or u n i t if a has inverse inM . The set of invertible elements inm is denoted byM×.

a). If an elementa ∈ M is invertible, then there is only one inverse ofa . (Hint : if a′, a′′ ∈ M are two inverses
of a , then a′ = e · a′ = (a′′ · a) · a′ = a′′ · (a · a′) = a′′ · e = a′′ .) In the multiplicative notation the inverse of a
invertible elementa ∈ M is denoted bya−1 . In the additive notation the inverse of a invertible elementa ∈ M
is also called then e g a t i v e and isdenoted by−a .

b). In the monoids(Z,+), (Q,+) every element is invertible and in the monoidN,+) the only element which
is invertible is 0 , i.e. (Z,+)× = Z (Q,+)× = Q and (N,+)× = {0} . For the multiplicative monoids(Z, ·) ,
(Q, ·) and (N, ·) , we have(Z, ·)× = {1,−1} (Q, ·)× = Q \ {0} and (N, ·)× = {1} .

c). Let X be a set and letXX be the monoid of the set of all maps fromX into itself with · = ◦ the composition
of maps. An elementϕ ∈ XX is invertible if and only if there existsϕ′ ∈ XX such thatϕ ◦ ϕ′ = ϕ′ ◦ ϕ = idX ,
or equivaletly, if and only ifϕ is bijective; in this case thenϕ′ = ϕ−1 is the inverse function ofϕ . In particular,(
XX

)× = S(X) = the set of all permutations of the setX .

d). ( R u l e s f o r i n v e r t i b l e e l e m e n t s ) (i) e ∈ M× and e−1 = e (ii) If a ∈ M×, thena−1 ∈ M×

and
(
a−1

)−1 = a . (iii) If a1, . . . , an ∈ M×, then a1 · · · · · an ∈ M× and (a1 · · · · · an)−1 = a−1
n · · · · · a−1

1 .
In particular, if a, b ∈ M×, then ab ∈ M× and (ab)−1 = b−1a−1 .
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e). The binary operation· of M induces a binary operation onM× , i.e. M× is a submonoid ofM . Moreover,
in this submonoid every element is invertible. In particular,(M×, ·) is a group; this group is called theg r o u p
o f i n v e r t i b l e e l e m e n t s of(M, ·) . For example, for the monoid(XX, ◦) , the group of invertible elements((
XX

)×
, ◦

)
is thepermutation groupS(X) on X .

5). ( P o w e r s o f e l e m e n t s ) Fora ∈ M and n ∈ N , the n - p o w e r of a is the n-fold product of a
with itself. If a ∈ M×, then we definea−n := (a−1)n = (an)−1 . In the additive notation this correspond to the
m u l t i p l e s na of a . We have the following r u l e s f o r t h ep o w e r s :

For all a ∈ M and for allm, n ∈ N (in the case of group for allm, n ∈ Z ), we have :

(i) am+n = am · an . (ii) (am)n = amn . (iii) Moreover, if a, b ∈ M are commute, thenam · bn = bn · am
and (a · b)m = am · bm .

In the additive notation, we have : (i) (m+ n)a = ma + na . (ii) n(ma) = (mn)a = (nm)a .

(iii) ma + nb = nb+ma and m(a + b) = ma +mb . (In the additive notation one usually assume thatM is
commutative.

6). Let (M, ·) be a monoid with neutral elemente . Then :

a). For an elementa in a monoidM , the following statements are equivalent :

(i) a is invertible. (ii) The left translationλa : M → M , x �→ a · x is bijective. (iii) The right
translation
a : M → M , x �→ x · a is bijective.

b). If a ∈ M has a l e f t - i n v e r s ea′ (i.e. a′ · a = e ) and has a r i g h t - i n v e r s ea′′ (i.e. a · a′′ = e ), then
a is invertible with a−1 = a′ = a′′ . Deduce that : ifa has more than one right-inverse (resp. left-inverse), then
a has no left-inverse (resp. right-inverse).

c). Let ϕ,ψ ∈ NN be defined byϕ(0) := 0, ϕ(n) := n − 1 if n ≥ 1 , andψ(n) := n + 1 respectively. Then
in the monoid(NN, ◦) , the elementϕ is a left- inverse ofψ and the elementψ is a right-inverse ofϕ , i,e.,
ϕ ◦ ψ = idN and the elementψ has infinitely many left-inverses inNN and in particular,ψ is not invertible.
Further, in the submonoid ofNN , generated byψ andϕ ( i.e., the smallest submonoid ofNN containingψ and
ϕ ) ψ is not invertible, even ifψ has exactly one left-inverse (namelyϕ ).

7). ( C a n c e l l a t i v e M o n o i d ) AmonoidM is said to ber e g u l a r or c a n c e l l a t i v e if for alla, b, c ∈ M ,
both the implications hold : (i)ab = ac ⇒ b = c . (ii) ba = ca ⇒ b = c .

An elementa ∈ M is called r e g u l a r if theleft- translation mapλa : M → M and the right-transaltion map
ρA : M → M are injective. LetM∗ := {a ∈ M | a is regular inM} of regular elements inM is a submonoid of
M . ThereforeM is a cancellative monoid if and only if every element inM is regular, i.e.,M∗ = M .

8). Let M be a monoid and leta1, . . . , an be elements inM be such that the producta1 · · · · · an invertible. In
the following cases all ofa1, . . . , an are invertible :

(i) The a1, . . . , an are pairwise commute. (ii)M is finite. (iii) M is cancellative.

9). ( G r o u p s ) Amonoid (M, ·) is called ag r o u p if (M×, ·) = (M, ·) , i.e. every element inM is invertible.
Therefore a g r o u p is a setG together with an associative binary operation together· and an elemente such
that the following conditions are satisfied :

(i) e is a neutral element, i.e.,ea = ae = a for all a ∈ G . (ii) For every a ∈ G , there exists an inverse,
i.e., an elementa′ ∈ G such thataa′ = a′a = e .

a). For asemi-group(M, ·) (i.e. the binary operation· on the setM is associative) with an elemente , the
following statements are equivalent :

(i) e is a right-neutral element, i.e.,ae = a for all a ∈ M . (ii) For all a ∈ M , there exists a right-inverse,
i.e., there exists an elementa′ ∈ M such thataa′ = e .

Then show that(M, ·) is a group. (Hint : e is a neutral element inM : Let a ∈ M be an arbitrary element
and let a′, a′′ ∈ M (these elements exist by the assumption (ii)) be such thataa′ = e and a′a′′ = 1 . Then
a = ae = a(a′a′′) = (aa′)a′′ = ea′′ and hencea = ea′′ = (ee)a′′ = e(ea′′) = ea . Further, sinceaa′ = e , we
need only to prove thata′a = e ; this follows from a = ea′′ = a′′ which is proved above.) (Remark : Naturally,
the above assertion is true if we replace “right-neutral” and “right- inverse” by “left-neutral” and “left-inverse”
respectively.)
b). Let (G, ·) be a semi-group with the following two properties :

(i) For every a ∈ G , the left-translation mapλa : G → G , x �→ ax , is surjective. (ii) There exist an
elementb ∈ G , the right-translation mapρb : G → G , x �→ xb , is surjective.
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Then show that(G, ·) is a group.(Hint : Use exercise a) above.)
c). Construct a semi-group(H, ·) with an elemente ∈ H , which is not a group and satisfies the following
properties : (i) ea = a for all a ∈ H . (ii) for every a ∈ H there exists an elementa′ ∈ H with aa′ = e .

d). If every equation of the forma · x = b with a, b ∈ M has a solution inM , i.e. there exists and element
x ∈ M such thata · x = b , then (M, ·) is a group.

e). For a, b ∈ R , let fa,b : R → R be defined byfa,b(x) = ax+b , x ∈ R . ThenG := {fa,b | a, b ∈ R, a 	= 0}
with the binary operation◦ of composition of maps. Show that(G, ◦) is a group which is not commutative.
(Remark : This is the well-knowna f f i n e g r o u p ofR usually denoted by A1(R) and is used to studyaffine
geometry.)
f). Let G be a finite group withn elements and let(a1, . . . , an) ∈ Gn . Show that there existr, s with 1 ≤ r, s ≤ n

such thatar+1 · · · · · as = eG . (Hint : The n+ 1 productsa1 · · · · · as , s = 0, . . . , n cannot be distinct.)
g). Let G be a finite abelian group with identity elemente and with only one elementf of order 2 . Then
OrdG = 2n with n ∈ N∗ . Further,

(i)
∏

x∈G x = f .

(ii) Let a ∈ G . If there exists an elementb ∈ G with b2 = a , thenan = e , in the other casean = f . (Hint : If
a is not a square inG , then the relation : c ∼ d if and only if c = d or cd = a is an equivalence relation in
G , all the equivalence classes contain exactly two elements. LetK(1), . . . , K(n) be these equivalence classes.
Then an = ∏n

i=1(
∏

y∈K(i) y) = ∏
x∈G x = f .)

10). Let N be a monoid,a ∈ N and letM = {an | n ∈ N} be a submonoid ofN generated bya . Suppose that
the powersan , n ∈ N are not distinct. Letm ∈ N be the smallest natural number witham+1 ∈ {a0, a, . . . , am}
and let r be an integer with−1 ≤ r < m and am+1 = ar+1. ThenH := {an | n > r} = {ar+1, . . . , am} is a
cyclic subgroup ofN of orderm − r . (Hint : For s, t > r , we haveas = at ⇐⇒ s ≡ t mod(m − r ).
It follows that every elementas with s ≡ 0 mod(m − r ) is the neutral element and every elementat with
t > r and gcd(t, m− r) = 1 generates every element ofH .) Other than{a0} , the subgroups ofH are the only
semi-groups ofM which are groups.(Hint : The equationsas = xat , t > s have solutions inM only if s > r .)

11). A finite monoidN with neutral elemente is a group if and only if the only elementa ∈ N which satisfies
a2 = a is the neutral element, i.e.{a ∈ N | a2 = a} = {e} .

T3.2. ( R i n g s ) LetA = (A,+, ·) be a ring. The group(A,+) is called thea d d i t i v e g r o u p ofA and
the monoid(A, ·) is called them o n o i d of A . The neutral element ofA with repsect to the addition (resp.
multiplication) is called thez e r o - e l e m e n t(resp. theu n i t y or the u n i t - e l e m e n t ) ofA and is denoted
by 0A or just by 0 (resp. 1A or just by 1 ).

1). ( R u l e f o r c a l c u l a t i o n ) For alla, b ∈ A andm, n ∈ Z we have :

(i) a ·0 = 0·a = 0 . (ii) a(−b) = (−a)b = −ab . (iii) (−a)(−b) = ab . (iv) (m+n)a = ma+na .
(v) m(a + b) = ma +mb . (vi) (mn)a = m(na) . (vii) (ma)(nb) = (mn)(ab) .

(Remarks : By the rule (vii) above, the integral multiplema of an elementa in a ring A , can be identified with
the product(m1A)a of the multiplem1A of the identity element 1A of A with a . In particular, ifm1A = 0 ,
thenma = 0 for all a ∈ A . If there is no misunderstanding, one writes justm for the elementm1A of A .)

2). ( P o w e r - s e t r i n g ) LetX be any set. Show that : ifX 	= ∅ , then the power set(P(X),∪,∩) with union
∪ as addition and the intersection∩ as multiplication not a ring. But(P(X),�,∩) with the s y m m e t r i c
d i f f e r e n c eA�B := (A∪B)� (A∩B) = (A�B)∪ (B�A) , A,B ∈ P(X) , as addition and the intersection
∩ as multiplication is a ring; this ring is called thep o w e r - s e t r i n g ofX . Further, it is a commutative ring
and the zero element is the empty set∅ and the identity element is the setX . If X is finite, thenP(X) is a ring
with 2|X| elements. For|X| = 1 the operation tables of the addition and the multiplication inP(X) are :

+ ∅ X

∅ ∅ X
X X ∅

· ∅ X

∅ ∅ ∅
X ∅ X .

3). ( O p p o s i t e r i n g ) LetA be a ring. If one defines the opposite multiplication inA by using the given
multiplication onA by (a, b) �→ ba , then one obtains a ring , and this ring is called the ring witho p p o s i t e
m u l t i p l i c a t i o n or the o p p o s i t e r i n g . It isdenoted byAop or by Ao. We have(Aop)op = A . If A is
commutative, thenA = Aop.

4). ( D i r e c t p r o d u c t o f r i n g s ) LetAi, i ∈ I , be a family of rings with zero elements 0i ∈ Ai and identity
elements 1i ∈ Ai . The product of multiplications inAi defines a multiplication in the product group

∏
i∈I Ai .
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With this multiplication
∏

i∈I Ai is a ring with the zero element(0i )i∈I and the identity element(1i )i∈I . This
ring is called thed i r e c t p r o d u c t of theringsAi, i ∈ I . The direct sum

⊕
i∈I Ai(⊆

∏
i∈I Ai) of the additive

groupsAi is closed with respect to the above multiplication. But if the ringsAi , i ∈ I , are non-zero for infinitely
many i ∈ I , then

⊕
i∈I Ai with the operations induced from

∏
i∈I Ai is not a ring: there is no identity element

for the multiplication!

5). ( R i n g s w i t h o u t u n i t y ) In ourdefinition of ring, we assume the existence of a neutral element with
respect to the multiplication. One can extend this definition by assuming only, that a ring with respect to the
multiplication form only a semigroup. Then we can consider r i n g s n o tn e c e s s a r i l y w i t h u n i t y .From
a ring A , which is not necessarily with unit element, one can easily construct a ring with unity. For example, on
the setZ × A , define addition and multiplication by

(m, a)+ (n, b) := (m+ n, a + b) and (m, a) · (n, b) := (mn, mb + na + ab)

for m, n ∈ Z anda, b ∈ A . With these binary operationsZ×A is a ring with the unity(1,0) . With this passage
from A to Z × A the assertions, which hold in a ring, frequently hold in rings, which does not have unity.

6). ( G e n e r a l d i s t r i b u t i v i t y t h e o r e m ) Ifai, i ∈ I , and bj , j ∈ J , are two families of elements in
a ring A and if ai = 0 for almost all i ∈ I and bj = 0 for almost all j ∈ J , then aibj = 0 for almost all

(i, j) ∈ I × J , and we have
( ∑
i∈I
ai

)( ∑
j∈J

bj

)
=

∑
(i,j)∈I×J

aibj . In particular,
( m∑
i=1

ai

)( n∑
j=1

bj

)
=

∑
1≤i≤m
1≤j≤n

aibj

(Hint : Proof follows from the following scheme :

a1b1 + a1b2 + · · · + a1bn a1
∑n

j=1 bj

+ a2b1 + a2b2 + · · · + a2bn + a2
∑n

j=1 bj

...
...

+ amb1 + amb2 + · · · + xmyn + am
∑n

j=1 bj

= ( ∑n

i=1 ai
)( ∑n

j=1 bj
)
. )

T3.3. 1). Determine the last digit in the decimal expansion of 7777 .

2). Determine the last two digit in the decimal expansion of 999
.

3). For everyn ∈ Z , show thatn8 − n2 is divisble by 252 .(Hint : n8 − n2 = 0 in all prime rings Aq for every
prime divisor of 252 .)

4). Let a andb be non-zero relatively prime integers. Then the sumaϕ(|b|) + bϕ(|a|) ≡ 1 mod ab.

5). Determine all natural multiples of the number 17 for which the digits in the decimal expansion are all equal
to 1 .(Hint : Make calculation in the unit group A×17 .)

† A d o l f A b r a h a m H a l e v i F r a e n k e l ( 1 8 9 1 - 1 9 6 5 ) was born on 17 Feb 1891 in Munich, Germany and
died on 15 Oct 1965 in Jerusalem, Israel. Adolf Fraenkel, in common with most students in Germany in his time, studied for
periods at different universities. He spent some time at the University of Munich, the University of Marburg, the University
of Berlin and the University of Breslau. From 1916 he lectured at the University of Marburg, being promoted to professor
there in 1922. In 1928 Fraenkel left Marburg and spent one year teaching at the University of Kiel. He was a fervent Zionist
and, after leaving Kiel, he taught at the Hebrew University of Jerusalem from 1929. Fraenkel was to spend the rest of his
career at the Hebrew University.
Fraenkel’s first work was on “Hensel’sp-adic numbers” and on the “theory of rings”. However he is best known for
his work on set theory, writing his first major work on the topic “Einleitung in die Mengenlehre” in 1919. He made two
attempts, in 1922 and 1925, to put set theory into an axiomatic setting that avoided the paradoxes. He tried to improve the
definitions of Zermelo and, within his axiom system, he proved the independence of the axiom of choice. His system of
axioms was modified by Skolem in 1922 to give what is today known as the ZFS system. This is named after Zermelo,
Fraenkel and Skolem. Within this system it is harder to prove the independence of the axiom of choice and this was not
achieved until the work of Cohen in 1963.
Fraenkel was also interested in the history of mathematics and wrote a number of important works on the topic. He wrote
on Gauss’s work in algebra in 1920, then in 1930, he published an important biography of Cantor. In 1960 he published
“Jewish mathematics and astronomy”. A number of Fraenkel’s students have made important contributions to mathematics
including Robinson who succeeded him when he retired from his chair at the Hebrew University.
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