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4. Linear Equations, Linear independence, Bases – Dimensions of vector spaces

J o h a n n C a r l F r i e d r i c h G a u s s †

(1777-1855)

In the exercises belowA denote a ring with unity 1A (not necessarily commutative).

4.1. Let K be a division ring and letV be a non- zero vector space overK. Let G = (gi)i∈I be a finite
system of linear equations inn unknowns inV overK. Use Gauss elimination to show that :

a). If L (G) �= ∅ andg ∈ Kn × V with g �∈ KG, then L(G) �= L(G ∪ {g}).
b). Let H be another finite system of linear equations inn unknowns inV over K . Suppose that
L(G) �= ∅ and L(H) �= ∅ . Then L(G) = L(H) if and only if KG = KH.

4.2. Let K be a field and letk be a subfield ofK. Further, letG be a finite system of linear equations
in n unknowns overk and let Lk(G) denote the solution set inkn. The systemG is also a system
of linear equations overK and let the solution set of this system inKn be denoted by LK(G). Then
Lk(G) = kn ∩ LK(G) and use Gauss elimination process to prove:

a). Lk(G) �= ∅ if and only if LK(G) �= ∅.

b). If G homogeneous, then LK(G) = K · Lk(G).

c). If G homogeneous, thenG has a non-trivial solution overk if and only if G has a non-trivial solution
overK.

4.3. Let V be a free module over a ringA. Further, leta ∈ A be not a left-zero divisor inA. Then the
homothecyϑa : V → V , x �→ ax is injective. Deduce that: LetB be a ring and letA be a subring ofB
such thatB is a freeA–module. Show that an elementa ∈ A is a left-zero divisor inA, if and only if a
is a left-zero divisor inB. Further, show that(aB) ∩ A = a for all left-idealsa ⊆ A.

4.4. a). Let x1, . . . , xn, xn+1, n ∈ N, be elements of a vector spaceV over a division ringK. Show
thatxi, 1 ≤ i ≤ n+1, are linearly independent if and only ifxi with 1 ≤ i ≤ n are linearly independent
andxn+1 does not belong to theK– subspace generated byx1, . . . , xn.

b). Let V be aK–vector space which is not finitely generated. Construct recursively a linearly indepen-
dent sequence(xn)n∈N of elements inV .

4.5. Let U, W be freeA-submodules of theA–moduleV . Further, letxi, i ∈ I , resp.yj , j ∈ J , be
a basis ofU resp.W . Show thatxi, yj , i ∈ I, j ∈ J together form a basis ofU + W if and only if
U ∩ W = 0.

4.6. a). A basis of a free moduleV over a non-zero ringA is a minimal generating system of the
A–moduleV .

b). Every basis of a finite free module over a non-zero ring is finite.
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4.2 Algebra, Arithmetic and Geometry / 2005 4. Linear Equations, Linear independence, ...

4.7. Let A be a non-zero commutative ring. Show thatA is a principal ideal domain if and only if every
ideal inA is a freeA–submodule ofA. (Remark : In general this assertion is not true for non-commutative
rings. Counter example!)

4.8. LetB be a ring and letA be a subring ofB such thatB is a freeA–module. Show thatA× = A∩B×.
Moreover, ifB is a division ring, then so isA. (Hint : If a ∈ A ∩ B×, then useB = aB.)

4.9. Let K be a division ring and letV be aK–vector space with basisx1, . . . , xn. Further, lety ∈
V, y = a1x1 + · · · + anxn with ai ∈ K. Give necessary and sufficient condition on the coeficients
a1, . . . , an such thatx1 − y, . . . , xn − y is a basis ofV .

4.10. Let K be a field and letA be a subring ofK such that every element ofK can be expressed as a
quotienta/b with a, b ∈ A, b �= 0. (i.e.K is the quotient field ofA). If K is a finiteA–module, then
prove thatA = K. In particular,Q is not a finiteZ–module. ( Hint : SupposeK = Ax1 + · · · + Axn and
b ∈ A, b �= 0, with bxi ∈ A for i = 1, . . . , n. Now, try to express 1/b2 as a linear combination ofxi .)

4.11. Let K be a division ring andA be a commutative subring ofK such thatK is a finiteA–module.
Show thatA is a field. (Hint : Note thatK contains a quotient fieldQ of A. Let x1, . . . , xm be aA-generating
system ofK and lety1, . . . , yn be aQ–basis ofK with y1 = 1. Theny∗

1(x1), . . . , y
∗
1(xm) is anA– generating

system ofQ, wherey∗
1 is the first coordinate function with respect to the basisy1, . . . , yn. Now use the above

exercise 4.10.)

4.12. Let L be a division ring and letK be a sub-division ring ofL. Further, letVL be anL–vector
space with theL–basisx1, . . . , xn andV be theK–vector spaceKx1 + · · · + Kxn ⊆ VL. (For example:
VL := Ln; x1, . . . , xn is the standard basis;V = Kn.)

a). Show that :y1, . . . , ym ∈ V are linearly independent overK (resp. form aK–generating system ofV
resp. form aK–basis ofV ) if and only if they are linearly independent overL (resp. form aL–generating
system ofVL resp. form aL–basis ofVL).

b). Let U be aK–subspace ofV . Let UL denote theL-subspace ofVL generated byU . Show that:
DimK U = DimL UL andU = V ∩ UL. If W is anotherK–subspace ofV , thenU ⊆ W (resp.U = W )
if and only if UL ⊆ WL (resp.UL = WL).

c). Prove the analogous assertions in the caseVL is not finite dimensional (overL).

4.13. Let K be a divison ring and letM be a maximalK–linear independent subset in the set of 0-1–
sequences fromKN. Show that :M has the cardinality of the continuum.(Hint : (In view of the exercise
4.11, we may assume thatK is the quotient field of its prime ringZ · 1K . Using cardinality arguments show that
the dimension of the subspace generated by the 0-1–sequences inKN is the cardinality of the continuum.)

4.14. Let xi, i ∈ I , be a family ofn–tuples fromZn. For a prime numberp, let Kp denote a field with
p elements. Show that the following statements are equivalent:

(i) Thexi are linearly independent overZ.

(ii) The images ofxi, i ∈ I , in Qn, are linearly independent overQ.

(iii) There exists a prime numberp such that the images ofxi, i ∈ I , in Kn
p, are linearly independent

over Kp.

(iv) For almost all prime numbersp, the images ofxi, i ∈ I , in Kn
p, are linearly independent over Kp.

— If |I | = n , then the above statements are further equivalent to the following statement:

(v) There exists a non-zero integerm such thatmZn ⊆ ∑
i∈I Zxi .

4.15. Let xi, i ∈ I , be a family ofn–tuples fromZn. For every prime numberp let Kp denote a field
with p elements. Show that the following statements are equivalent:

(i) Thexi, i ∈ I , generate (theZ-module)Zn.
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(ii) For every prime numebrp, the images ofxi, i ∈ I , in Kn
p , generate the Kp-vector space Knp.

(Hint : ((ii) ⇒ (i): Let U := ∑
i∈I Zxi . Note that by exercise 4.13, there exists a non-zero integerm with

mZn ⊆ U . Further: to every prime numberp and everyx ∈ Zn there existx ′ ∈ U, y ∈ Zn such thatx = x ′ + py,
i.e. Zn ⊆ U + pZn for every prime numberp. From this deduce thatU = Zn.)

4.16. Let V be a vector space and letU1, U2 be subspaces ofV . Then there exists a basisxi, i ∈ I ,
of V satisfying the following property: for given subsetsI1, I2 of I , if xi, i ∈ I1 ∩ I2, is a basis
U1 ∩U2, xi, i ∈ I1, a basis ofU1 andxi, i ∈ I2, a basis ofU2, thenxi, i ∈ I1 ∪ I2, is a basis ofU1 +U2.
(Hint : Proceed as in the proof in the finite dimensional case. –Remark : Therefore the dimension formula also
holds for not finite dimensional subspacesU, W .)

4.17. Let I be a non-empty open interval inR and let Cω
R(I ) (respectively, C0R(I ) ) be theR-vector

space of all real-analytic1) (respectively, continuous) real-valued functions onI . Then Cω
R(I ) ⊆ C0

R(I )

and if U is a R-subspace of C0R(I ) with Cω
R(I ) ⊆ U , then show that DimR U is the cardinality of

the continuum. (Hint : Without loss of generality letI =] − 1, 1[. Let (aij )i∈N, j ∈ J , be a linearly
independent family of 0-1–sequences inRN, where|J | = ℵ := |R|, see Exercise 4.13. Then the functions
t �→ ∑

i≥0 aij t
i , j ∈ J , in Cω

R(I ) are linearly independent overR. Alternative hint : the family of the functions
t �→ exp(at), a ∈ R, onI is linearly independent. Similarly, the rational functionst �→ 1/(t−a), a ∈ R, |a| ≥ 1,
are linearly independent in CωR(] − 1, 1[).) Prove the analogous results for the complex vector space H(U)

of holomorphic functions defined on a domainU ⊆ C.

4.18. For a givenn ∈ N, let a1, . . . , an ∈ K ben distinct elements in a fieldK. Then the sequences
gi := (aν

i )ν∈N ∈ KN, i = 1, . . . , n, are linearly independent overK. (Hint : Suppose that thegi are linearly
dependent. Without loss of generality we may assume that DimK(RelK(g1, . . . , gn)) = 1, see exercise T4.7. Let
(b1, . . . , bn) be a basis element of relations. Then the element(b1a1, . . . , bnan) is also a relation of thegi . This
is a contradiction.)

4.19. Let K be a field and letI be an infinite set. Then DimK(KI ) = |KI |. ( Hint : (In view
of2), it is enough to prove that|K| ≤ DimKKI . Let σ : N → I be injective and fora ∈ K, let ga denote the
I–tuple with(ga)σ(ν) := aν for ν ∈ N and(ga)i := 0 for i ∈ I � im σ . Then by exercise 4.18,(ga)a∈K are linearly
independent.) Deduce that DimKKI > DimKK(I). – Remark : This dimension formula forKI is also valid for
division ringsK. Proof!.)

4.20. Let K be a division ring. Further, letxi = (ai1, . . . , ain) ∈ Kn, i = 1, . . . , n. With thej–th
components of thisn–tuple we form the newn–tuplesyj := (a1j , . . . , anj ), j = 1, . . . , n. Show that
: the elementsx1, . . . , xn of the K–Left-vector spaceKn are linearly independent if and only if the
elementsy1, . . . , yn of theK–right-vector spaceKn are linearly independent. (Hint : Suppose that
x1, . . . , xn are linearly independent andy1b1 + · · ·+ ynbn = 0, bj ∈ K. Thenx1, . . . , xn ∈ RelK(b1, . . . , bn), and
a dimension argument shows that RelK(b1, . . . , bn) = Kn, this meansb1 = · · · = bn = 0.)

4.21. Let K be a division ring,I be a set and letf1, . . . , fn ∈ KI , n ∈ N. The following statements
are equivalent:

(i) Thef1, . . . , fn are linearly independent overK.

(ii) There exists a subsetJ ⊆ I such that|J | = n and that the restrictionsf1|J, . . . , fn|J ∈ KJ are
linearly independent (and hence form a basis ofKJ ).

(iii) The value –n–tuples(f1(i), . . . , fn(i)) ∈ Kn, i ∈ I , generateKn as aK–right-vector space.

(Hint : The implication (i)⇒ (ii) can be proved by induction onn: Suppose that there exists a subsetJ ′ ⊆ I with
(n − 1)–elements is found forf1, . . . , fn−1 such thatf1|J ′, . . . , fn−1|J ′ are linearly independent overK and so

1) A function f : I → R is called r e a l - a n a l y t i c a ta ∈ I , if there exist a open neighbourhoodU of a

and a convergent power series
∑∞

i=0 ai(x − a)i such thatf (x) = ∑∞
i=0 ai(x − a)i for all x ∈ U ∩ I . A function

f : I → R is called r e a l -a n a l y t i c if it is real-analytic at everya ∈ I .
2) LetA be a ring and letV be a freeA–module of infinite rank. Then|V | = |A| · rankA V = Sup{|A|, rankA V }.
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form a basis ofKJ ′
. Thenfn|J ′ = a1(f1|J ′) + · · · + an−1(fn−1|J ′) with a1, . . . , an−1 ∈ K. Now, by (i) there

exists an elementj ∈ I � J ′ such thatfn(j) �= a1f1(j) + · · · + an−1fn−1(j). Now, chooseJ := J ′ ∪ {j}. — For
the equivalence (ii)⇔ (iii) use the exercise 4.20.)

4.22. Let K be a division ring and leta1, . . . , an ∈ K. Let gi := (aν
i )ν∈N ∈ KN and fi :=

(1, ai, . . . , a
n−1
i ) ∈ Kn, i = 1, . . . , n. Theng1, . . . , gn are linearly independent overK if and only

if f1, . . . , fn are linearly independent overK. (Hint : Let hj := (a
j

1, . . . , a
j
n) ∈ Kn, j ∈ N. Note

thatfi = gi |{0, . . . , n − 1} and(f1(j), . . . , fn(j)) = (g1(j), . . . , gn(j)) = hj for all j = 1, . . . , n. Therefore
by exercise 4.21,g1, . . . , gn are linearly independent if and only ifhj , j = 1, . . . , n generates theright-vector
spaceKn.Suppose that the elementsh0, . . . hm are linearly independent in theK–right - vector spaceKn, but
the elementsh0, . . . , hm+1 are not linearly independent, sohm+1 and hencehj for everyj ≥ m + 1 is a linear
combination ofh0, . . . , hm. Now again use the exercise 4.21.)

4.23. Let K be a field and letb0, . . . , bm be elements ofK, all of which are not equal to 0. Then there
exist atmostm distinct elementsx ∈ K, which satisfy the equation

0 = b0 · 1 + b1x + · · · + bmxm .

(Hint : If x1, . . . , xm+1 are distinct elements inK, then by exercises 4.18 and 4.22, the elementshj :=
(x

j

1, . . . , x
j

m+1), 0 ≤ j ≤ m , are linearly independent overK. — Remark : The same result is also true for
integral domains, since every integral domain is contained in a field, for example, in its quotient field. With the
help of concept of polynomials the above assertion can be formulated as :A non-zero polynomial of degree ≤ m

over a field (or an integral domain) K has atmost m zeros in K .)

Below one can see (simple) test-exercises.

Test-Exercises

T4.1. Let A be a ring. The elementa ∈ A is a basis of theA–moduleA, if and only if a is a unit inA.

T4.2. For every natural numberm ≥ 1, give a minimal generating system for theZ–moduleZ consisting ofm
elements.T4.3. a). The elements 1,a ∈ R are linearly independent overQ, if and only if a is irrational (i.e.
not rational). (Remark : Two real numbersb, c, which are linearly independent overQ are called
i n c o m m e n s u r a b l e .Classical example: the length of the side and the length of the diagonal of a square are
incommensurable, since the real number

√
2 ∈ R is irrational.)

b). Let P be the set of all prime numbersp ∈ N∗. Show that the family(logp)p∈P is linearly independent over
Q.

T4.4. Let a, b ∈ N∗ and d := gcd(a, b). Then the relation submodule RelZ(a, b) of Z2 is generated by
(bd−1, −ad−1) ∈ Z2.

T4.5. In the subspaceU of theR–vector spaceRR of all funktions fromR into itself, generated by the functions
x �→ sin(x + a), a ∈ R, show that the two functionsx �→ sinx, x �→ cosx(= sin(x + π/2)) form a basis ofU .

T4.6. EveryQ–vector spaceV �= 0 is not free over the subringZ of Q.

T4.7. Let n ∈ N and let x1, . . . , xn+1 ∈ V be linearly independent elements of a vector spaceV over the
division ring K. Suppose thatn elements amongx1, . . . , xn+1 are linearly independent overK. Show that
DimK(RelK(x1, . . . , xn+1)) = 1.

T4.8. LetK be a divison ring,V be a finite dimensionalK–vector space and letVi, i ∈ I , be a family of subspaces
of V . Then there exists a finite subsetJ of I such that

⋂
i∈I Vi = ⋂

i∈J Vi and
∑

i∈I Vi = ∑
i∈J Vi .

T4.9. LetK be a division ring and letV be not finite dimensionalK–vector space. Construct an infinite sequences
U0 ⊂ U1 ⊂ · · · ⊂ Ui ⊂ · · · andW0 ⊃ W1 ⊃ · · · ⊃ Wi ⊃ · · · of subspaces ofV .

T4.10. Let I be a non-empty open interval inR and let C0
R(I ) be theR-vector space of all continuous real-

valued functions onI . Show that|C0
R(I )| = |R| . (Hint : The map C0R(I ) → RQ defined byf �→ f |Q is

injective.)
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T4.11. Let A be a ring�= 0 with finitely many elements and letV be anA–module with a generating system ofn

elements,n ∈ N. Show that everyn + 1 elements ofV are linearly dependent. (Hint : Proceed as in the Example
given in the class which uses only cardinality argument.)

T4.12. What is the rank ofQ as an abelian group?

T4.13. Let A be an integral domain (which is contained in a fieldQ). Further, letU be a subgroup of the unit
groupA× of A with an e x p o n e n t3) m �= 0. ThenU is cyclic (and finite). In particular, every finite subgroup of
A× is cyclic; further, the unit group of every finite field (for example, the unit group of a prime ring of characteristic
p, p prime, is cyclic.) (Hint : The equationxm = 1 has atmostm solutions inA by exercise 4.23. Now use4).)

T4.14. Let K be a field,I be a set and letg ∈ KI be a function onI into K, such that the image im(g) is an
infinite subset ofK. Then the powersgν, ν ∈ N of g are linearly independent ovwerK. (For example from this
it follows that: the functionst �→ cosν t, ν ∈ N, from R to itself are linearly independent; similarly, the functions
x �→ xν, ν ∈ N, from K to itself for an arbitrary infinite fieldK, are linearly independent.)

T4.15. Let L be a division ring,K be a subdivision ring ofL andI be a set. For an arbitrary family(fj )j∈J

of functionsfj ∈ KI show that: thefj , j ∈ J , are linearly independent overK if and only if they are linearly
independent overL as a family of functions inLI . (Use the exercise 6 and and exercise 4.12(a).)

T4.16. Let A be a ring and letJ be an indexed set with cardinality of the continuum. Then there exists a family
xj , j ∈ J , of A–linearly independent 0-1–sequences inAN. (Hint : ( H. B r e n n e r ) Let P be the set ofprime
numbers. For a subsetR ⊆ P, let N(R) be the set of those positive natural numbers whose prime divisors belong
to R, i.e. N(R) = {n ∈ N∗ | prime divisors ofn ⊆ R}. Then the familyxR, R ∈ P(P), is linearly independent,
wherexR denote the indicator function of N(R).)

† J o h a n n C a r l F r i e d r i c h G a u s s ( 1 7 7 7 - 1 8 5 5 ) was born on 30 April 1777 in Brunswick, Duchy of
Brunswick (now Germany) and died on 23 Feb 1855 in Göttingen, Hanover (now Germany).

At the age of seven, Carl Friedrich Gauss started elementary school, and his potential was noticed almost immediately. His
teacher, Büttner, and his assistant, Martin Bartels, were amazed when Gauss summed the integers from 1 to 100 instantly
by spotting that the sum was 50 pairs of numbers each pair summing to 101.

In 1788 Gauss began his education at the Gymnasium with the help of Büttner and Bartels, where he learnt High German and
Latin. After receiving a stipend from the Duke of Brunswick- Wolfenbüttel, Gauss entered Brunswick Collegium Carolinum
in 1792. At the academy Gauss independently discovered Bode’s law, the binomial theorem and the arithmetic- geometric
mean, as well as the law of quadratic reciprocity and the prime number theorem.

In 1795 Gauss left Brunswick to study at Göttingen University. Gauss’s teacher there was Kaestner, whom Gauss often
ridiculed. His only known friend amongst the students was Farkas Bolyai. They met in 1799 and corresponded with each
other for many years.

Gauss left Göttingen in 1798 without a diploma, but by this time he had made one of his most important discoveries - the
construction of a regular 17-gon by ruler and compasses This was the most major advance in this field since the time of
Greek mathematics and was published as Section VII of Gauss’s famous work, Disquisitiones Arithmeticae.

Gauss returned to Brunswick where he received a degree in 1799. After the Duke of Brunswick had agreed to continue
Gauss’s stipend, he requested that Gauss submit a doctoral dissertation to the University of Helmstedt. He already knew
Pfaff, who was chosen to be his advisor. Gauss’s dissertation was a discussion of the fundamental theorem of algebra.

With his stipend to support him, Gauss did not need to find a job so devoted himself to research. He published the book
Disquisitiones Arithmeticae in the summer of 1801. There were seven sections, all but the last section, referred to above,
being devoted to number theory.

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously, published the orbital
positions of Ceres, a new "small planet" which was discovered by G Piazzi, an Italian astronomer on 1 January, 1801.
Unfortunately, Piazzi had only been able to observe 9 degrees of its orbit before it disappeared behind the Sun. Zach
published several predictions of its position, including one by Gauss which differed greatly from the others. When Ceres was
rediscovered by Zach on 7 December 1801 it was almost exactly where Gauss had predicted. Although he did not disclose
his methods at the time, Gauss had used his least squares approximation method.

3) Exponent of a group. Let G be a group with neutral elemente. Then the set of integersn with an = e for
all a ∈ G forms a subgroupUG of the additive group ofZ, i.e. UG := {n ∈ Z | an = e for all a ∈ G} and hence
there is a uniquem ∈ N such thatUG = Z m . This natural numberm is called thee x p o n e n t o f G and
usually denoted by ExpG. For example, ifG is a finite cyclic group, then ExpG = OrdG ; ExpS3 = OrdS3 ; In
general : ExpG and OrdG have the same prime divisors. (proof!).
4) Exercise on groups. Let G be a finite group with neutral elementse. Suppose that for every divisord ∈ N∗

of the order OrdG there are atmostd elementsx ∈ G such thatxd = e. ThenG is a cyclic group.
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In June 1802 Gauss visited Olbers who had discovered Pallas in March of that year and Gauss investigated its orbit. Olbers
requested that Gauss be made director of the proposed new observatory in Göttingen, but no action was taken. Gauss began
corresponding with Bessel, whom he did not meet until 1825, and with Sophie Germain.

Gauss married Johanna Ostoff on 9 October, 1805. Despite having a happy personal life for the first time, his benefactor,
the Duke of Brunswick, was killed fighting for the Prussian army. In 1807 Gauss left Brunswick to take up the position
of director of the Göttingen observatory. Gauss arrived in Göttingen in late 1807. In 1808 his father died, and a year later
Gauss’s wife Johanna died after giving birth to their second son, who was to die soon after her. Gauss was shattered and
wrote to Olbers asking him give him a home for a few weeks, to gather new strength in the arms of your friendship - strength
for a life which is only valuable because it belongs to my three small children.

Gauss was married for a second time the next year, to Minna the best friend of Johanna, and although they had three children,
this marriage seemed to be one of convenience for Gauss.

Gauss’s work never seemed to suffer from his personal tragedy. He published his second book, Theoria motus corporum
coelestium in sectionibus conicis Solem ambientium, in 1809, a major two volume treatise on the motion of celestial bodies.
In the first volume he discussed differential equations, conic sections and elliptic orbits, while in the second volume, the
main part of the work, he showed how to estimate and then to refine the estimation of a planet’s orbit. Gauss’s contributions
to theoretical astronomy stopped after 1817, although he went on making observations until the age of 70.

Much of Gauss’s time was spent on a new observatory, completed in 1816, but he still found the time to work on other
subjects. His publications during this time include Disquisitiones generales circa seriem infinitam, a rigorous treatment
of series and an introduction of the hypergeometric function, Methodus nova integralium valores per approximationem
inveniendi, a practical essay on approximate integration, Bestimmung der Genauigkeit der Beobachtungen, a discussion
of statistical estimators, and Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodus nova
tractata. The latter work was inspired by geodesic problems and was principally concerned with potential theory. In fact,
Gauss found himself more and more interested in geodesy in the 1820s.

Gauss had been asked in 1818 to carry out a geodesic survey of the state of Hanover to link up with the existing Danish grid.
Gauss was pleased to accept and took personal charge of the survey, making measurements during the day and reducing them
at night, using his extraordinary mental capacity for calculations. He regularly wrote to Schumacher, Olbers and Bessel,
reporting on his progress and discussing problems.

Because of the survey, Gauss invented the heliotrope which worked by reflecting the Sun’s rays using a design of mirrors
and a small telescope. However, inaccurate base lines were used for the survey and an unsatisfactory network of triangles.
Gauss often wondered if he would have been better advised to have pursued some other occupation but he published over
70 papers between 1820 and 1830.

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the idea of mapping one
surface onto another so that the two are similar in their smallest parts. This paper was published in 1825 and led to the
much later publication of Untersuchungen über Gegenstände der Höheren Geodäsie (1843 and 1846). The paper Theoria
combinationis observationum erroribus minimis obnoxiae (1823), with its supplement (1828), was devoted to mathematical
statistics, in particular to the least squares method.

From the early 1800s Gauss had an interest in the question of the possible existence of a non-Euclidean geometry. He
discussed this topic at length with Farkas Bolyai and in his correspondence with Gerling and Schumacher. In a book review
in 1816 he discussed proofs which deduced the axiom of parallels from the other Euclidean axioms, suggesting that he
believed in the existence of non-Euclidean geometry, although he was rather vague. Gauss confided in Schumacher, telling
him that he believed his reputation would suffer if he admitted in public that he believed in the existence of such a geometry.

In 1831 Farkas Bolyai sent to Gauss his son János Bolyai’s work on the subject. Gauss repliedto praise it would mean to
praise myself . Again, a decade later, when he was informed of Lobachevsky’s work on the subject, he praised its "genuinely
geometric" character, while in a letter to Schumacher in 1846, states that he had the same convictions for 54 years indicating
that he had known of the existence of a non-Euclidean geometry since he was 15 years of age (this seems unlikely).

Gauss had a major interest in differential geometry, and published many papers on the subject. Disquisitiones generales circa
superficies curva (1828) was his most renowned work in this field. In fact, this paper rose from his geodesic interests, but it
contained such geometrical ideas as Gaussian curvature. The paper also includes Gauss’s famous theorema egregrium:If
an area in R3 can be developed (i.e. mapped isometrically) into another area of R3 , the values of the Gaussian curvatures
are identical in corresponding points.

The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in 1817, who stayed until
her death in 1839, while he was arguing with his wife and her family about whether they should go to Berlin. He had been
offered a position at Berlin University and Minna and her family were keen to move there. Gauss, however, never liked
change and decided to stay in Göttingen. In 1831 Gauss’s second wife died after a long illness.

In 1831, Wilhelm Weber arrived in Göttingen as physics professor filling Tobias Mayer’s chair. Gauss had known Weber
since 1828 and supported his appointment. Gauss had worked on physics before 1831, publishing Über ein neues allgemei-
nes Grundgesetz der Mechanik, which contained the principle of least constraint, and Principia generalia theoriae figurae
fluidorum in statu aequilibrii which discussed forces of attraction. These papers were based on Gauss’s potential theory,
which proved of great importance in his work on physics. He later came to believe his potential theory and his method of
least squares provided vital links between science and nature.

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander von Humboldt attempted
to obtain Gauss’s assistance in making a grid of magnetic observation points around the Earth. Gauss was excited by this
prospect and by 1840 he had written three important papers on the subject: Intensitas vis magneticae terrestris ad mensuram
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absolutam revocata (1832), Allgemeine Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsätze in Beziehung auf
die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskräfte (1840). These
papers all dealt with the current theories on terrestrial magnetism, including Poisson’s ideas, absolute measure for magnetic
force and an empirical definition of terrestrial magnetism. Dirichlet’s principle was mentioned without proof.

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove an important theorem,
which concerned the determination of the intensity of the horizontal component of the magnetic force along with the angle
of inclination. Gauss used the Laplace equation to aid him with his calculations, and ended up specifying a location for the
magnetic South pole.

Humboldt had devised a calendar for observations of magnetic declination. However, once Gauss’s new magnetic observatory
(completed in 1833 - free of all magnetic metals) had been built, he proceeded to alter many of Humboldt’s procedures, not
pleasing Humboldt greatly. However, Gauss’s changes obtained more accurate results with less effort.

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff’s laws, as well as building a primitive
telegraph device which could send messages over a distance of 5000 ft. However, this was just an enjoyable pastime for
Gauss. He was more interested in the task of establishing a world-wide net of magnetic observation points. This occupation
produced many concrete results. The Magnetischer Verein and its journal were founded, and the atlas of geomagnetism was
published, while Gauss and Weber’s own journal in which their results were published ran from 1836 to 1841.

In 1837, Weber was forced to leave Göttingen when he became involved in a political dispute and, from this time, Gauss’s
activity gradually decreased. He still produced letters in response to fellow scientists’ discoveries usually remarking that
he had known the methods for years but had never felt the need to publish. Sometimes he seemed extremely pleased with
advances made by other mathematicians, particularly that of Eisenstein and of Lobachevsky.

Gauss spent the years from 1845 to 1851 updating the Göttingen University widow’s fund. This work gave him practical
experience in financial matters, and he went on to make his fortune through shrewd investments in bonds issued by private
companies.

Two of Gauss’s last doctoral students were Moritz Cantor and Dedekind. Dedekind wrote a fine description of his supervisor
... usually he sat in a comfortable attitude, looking down, slightly stooped, with hands folded above his lap. He spoke quite
freely, very clearly, simply and plainly: but when he wanted to emphasise a new viewpoint ... then he lifted his head, turned
to one of those sitting next to him, and gazed at him with his beautiful, penetrating blue eyes during the emphatic speech.
... If he proceeded from an explanation of principles to the development of mathematical formulas, then he got up, and
in a stately very upright posture he wrote on a blackboard beside him in his peculiarly beautiful handwriting: he always
succeeded through economy and deliberate arrangement in making do with a rather small space. For numerical examples,
on whose careful completion he placed special value, he brought along the requisite data on little slips of paper.

Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted by Hemstedt University.
It was appropriately a variation on his dissertation of 1799. From the mathematical community only Jacobi and Dirichlet
were present, but Gauss received many messages and honours.

From 1850 onwards Gauss’s work was again of nearly all of a practical nature although he did approve Riemann’s doctoral
thesis and heard his probationary lecture. His last known scientific exchange was with Gerling. He discussed a modified
Foucalt pendulum in 1854. He was also able to attend the opening of the new railway link between Hanover and Göttingen,
but this proved to be his last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning of 23
February, 1855.
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