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R3. Consequences of Completeness

B e r n a r d P l a c i d u s J o h a n n N e p o m u k B o l z a n o †

(1781-1848)

R3.1. 1). Determine all accumulation points, limit inferior and limit superior of the sequence :

(−1)n/2 + (−1)n(n+1)/2/3 .

2). Give an example of a sequence for which the set of all accumulation points is precisely the set of
natural numbers.

R3.2. 1). Let A ⊆ R, A �= ∅ , and −A := {−x | x ∈ A} . Then show thatA is bounded below if and
only if −A is bounded above. Moreover, in this case we have InfA = −Sup(−A) .

2). Let A, B ⊆ R, A �= ∅, B �= ∅ . We put

A + B := {x + y | x ∈ A, y ∈ B} and A · B := {xy | x ∈ A, y ∈ B} .

a). Show thatA + B is bounded above (resp. below) if and only if bothA and B are bounded above
(resp. below). Moreover, in this case

Sup(A + B) = SupA + SupB (resp. Inf (A + B) = Inf A + Inf B) .

b). If A �= {0} �= B , then show thatA · B is bounded if and only if bothA and B are bounded.

c). If A and B are bounded and ifA, B ⊆ R+ , then show that Sup(A · B) = (SupA) · (SupB) .

R3.3. Prove the following theorem onD e d e k i n d ’s C u t s : LetA and B be non-empty subsets of
R with a < b for all a ∈ A and all b ∈ B , then there exists a real numberx such thata ≤ x ≤ b for
all a ∈ A, b ∈ B . — Moreover, if A ∪ B = R , then this real numberx is uniquely determined and
x = SupA = Inf B . ( Remark : In this case the real numberx defines the well-known Dedekind’s Cut
(A, B) .)

R3.4. 1). Let A ⊆ R and x ∈ R . Then :

a). Show thatx is an accumulation point ofA if and ony if every neighbourhood ofx contains a point
of a different from x .

b). Show thatx is an accumulation point ofA if and ony if there exists a sequence(xn) in A with
pairwise distinct members, i.e.xn �= xm for n �= m and which converges tox .

c). Show thatx is a boundary point ofA if and ony if there exists a sequence(xn) in A which
converges tox .

2). The set of all accumulation points of a subsetA of R is closed.

3). Let A ⊆ R . Then show thatA is closed andÅ is open inR . ( Remark : The subsetA is called
the c l o s u r e ofA and the subset̊A is called the i n t e r i o r oro p e n - k e r ofA .)
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4). For A, B ⊆ R , show thatA ∪ B = A ∪ B , (A ∩ B)
◦ = Å ∩ B̊ , further, A ∩ B ⊆ A ∩ B and

(A ∪ B)
◦ ⊇ Å ∪ B̊ . Show by examples that both the last inclusions can be proper.

5). DetermineA and Å for the following subsetsA of R :

a). {1/n | n ∈ N∗}, N, Q, R\Q , b). [a, b], ]a, b[, [a, b[, ]a, b] mit a, b ∈ R, a < b ,

c). {a/gn | a ∈ Z, n ∈ N} mit g ∈ N, g ≥ 2 fest.

R3.5. 1). Every sequence of real numbers has an (infinite) monotone subsequence.

2). A sequence of real numbers is convergent if and only if it is bounded and has exactly one accumulation
point. ( Remark : This proves once again the Cauchy’s Convergence Criterion (using the theorem of
Weierstraß-Bolzano).)

3). Let (xn) be a bounded sequence of real numbers. Show that

lim sup xn = lim
n→∞

(
Sup{xm | m ≥ n}) and lim inf xn = lim

n→∞
(
Inf {xm | m ≥ n}) .

4). Let (xn) be a bounded sequence of real numbers. Show that:

lim sup xn = Inf {x ∈ R | x ≥ xn for almost alln} = Sup{x ∈ R | x ≤ xn for infinitely manyn} and

lim inf xn = Sup{x ∈ R | x ≤ xn for almost alln} = Inf {x ∈ R | x ≥ xn for infinitely manyn} .

5). Let (xn) and (yn) bounded sequences of real numbers. Show that

a).
lim inf xn + lim inf yn ≤ lim inf (xn + yn) ≤ lim sup xn + lim inf yn

≤ lim sup(xn + yn) ≤ lim sup xn + lim sup yn .

b). The inequalities in the part a) are also valid for all non- negativexn and yn if the plus sign is
replaced by the multiplication.

R3.6. 1). A subset ofR is calledp e r f e c t if it isequal to the set of all of its accumulation points. A
perfect set is necessarily closed. Show that every non-empty perfect set is uncountable.( Remark :
One can show that every non-empty perfect subsetA ⊆ R has the cardinality of the continuum. One can also
use a similar argument to that given in the example 4.F.8.)

2). Let A ⊆ R . A point x ∈ R is called ac o n d e n s a t i o n p o i n t ofA if every neighbourhood of
x contains uncountabley many points ofA .

a). Every uncountable subsetA of R has at least one condensation point.( Hint : Reduced to the case
when A is bounded and then complete as in 4.G.3.)
b). The set of all condensation points ofA is perfect. In particular, it is uncountable ifA itself is
uncountable. ( Hint : See exercise 1) above.)
c). Every closed subset ofR is the disjoint union of a countable perfect sets. Moreover, this decompo-
sition is unique.( Hint : Every point of a perfect set inR is a condensation point of this set.)

R3.7. 1). A subsetA ⊆ R is an interval if and only ifA contains all the numbers between any two of
its elements.

2). Let A ⊆ R .

a). Define a relation∼ on A by a ∼ b , a, b ∈ A if the closed interval with end pointsa and b

is completely contained inA . Show that∼ is an equivalence relation onA ; its equivalence classes
are intervals and are called thec o n n e c t e d c o m p o n e n t s ofA . If all these components ofA are
singletons, thenA is calledto ta l l y d i sconnec ted . For example, the setsR\Q and Q (and hence
every countable subset ofR ) are totally disconnected. Every subsetA ⊆ R has at most countably many
connected components with more than one point.
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b). If A is open, thenA disjoint union of countably many open intervals (namely, the connected
components ofA ).

c). If A is closed, then all connected components ofA are closed intervals.( Remark : there might be
uncountably many connected components, see the part d) below.)
d). ( C a n t o r ’s D i s c o n t i n u u m ) LetC0 := [0, 1] and C1 := C0\ ]1/3, 2/3[ . More generally,
Cn+1 is obtained fromCn by removing the open middle third from every connected component ofCn ,
n ∈ N.

The subsetC := ⋂∞
n=0 Cn is called theC a n t o r ’s D i s c o n t i n u u m or the C a n t o r ’s w i p i n g -

s e t . Showthat : (1) A numberx ∈ [0, 1] belongs toC if and only if there exists a ternary expansion
of x which does not contain the digit 1 (see Example 4.F.12).1) (2) C is a perfect (closed) totally
disconnected subset ofR and hence has cardinality of the continuum.

3). Let A be a non-empty subset ofR which is closed as well as open. Show thatA = R . ( Hint :
Consider the connected components ofA .)

R3.8. a). R cannot be represented as disjoint union of countably many bounded closed intervals.

( Hint : Suppose thatR = ⊎
n∈N

[an, bn] . Then R \ ⊎
n∈N

]an, bn[ is a perfect subset ofR a contradiction to
Exercise R3.6-1). — For an illustration consider the following example : LetI0, I1, I2, . . . be the list of all open
intervals with their boundary points which were removed from the subsetsCn , n ∈ N , in the construction of the
Cantor’s discontinuum in Exercise R3.7-2)-d). Then

⋃
n∈N

I n is not the full (open) unit interval ]0, 1[ . Which
points are missing ?)
b). More generally than the part a) we have :R cannot be represented as disjoint union of countably
many closed and bounded (i.e., compact) subsets ofR . ( Hint : One attributes this to a) : Suppose
that R = ⊎

n∈N
Kn with bounded closed subsetsKn . We may assume that eachKn �= ∅ and is contained in a

connected component of the open subsetR \ ⋃n−1
k=0 Kk , sinceKn intersects with only finitely many connected

components by the theorem of Weierstrass-Bolzano. Letan := Inf Kn and bn := SupKn . Now, we recursively
construct a closed bounded intervalsIn in the following way : I0 = [a0, b0] ; In := In−1 , if Kn ⊆ ⋃n−1

k=0 Ik , resp.
In := [an, bn] otherwise. ThenR is the disjoint union of the distinct intervals in the sequenceI0, I1, I2, . . . .)
( Remark : An appropriate corresponding statement also holds forRm , m ≥ 2 . A decomposition ofRm into
closed bounded subsets induces a similar decomposition of every line inRm . For further generalisation see ????.
Since the times of Zenon of Elea, the result of the present problem is readily used as an argument against atomism.
If you want to describe the continuum in an atomistic way, you have necessarily to admit uncountable sets. This is
one of the great discoveries of Cantor. In 1884 he writes (in a letter to Mittag-Leffler) : “I believe that the entirety
of the body atoms is of the first cardinality, whereas the entirety of the Aether atoms is of the second cardinality”.
— By first cardinality Cantor denotes the cardinalityℵ0 of the natural numers and byℵ1 the smallest uncountable
cardinality. Thatℵ1 is the cardinality of the real numbers, is the so calledc o n t i n u u m h y p o t h e s i s ,which
was not proved by Cantor and — as we know today — can neither be disproved nor be proved in the context of
the usual axiomatic set theory (T h e o r e m o f G ¨o d e l resp. T h e o r e m o f C o h e n ).)

R3.9. a). Let x = a/b with relatively prime integersa, b , b > 0 . Show that the sequencenx− [nx] ,
n ∈ N has exactlyb accumulation points 0, 1/b, . . . , (b − 1)/b .

b). Let x ∈ R be irrational. Show that the set of all accumulation points of the sequencexn := nx−[nx] ,
n ∈ N , is the closed unit interval [0, 1] . ( Hint : Use the following steps : (1)(xn) has an accumulation
point in [0, 1] . (2) Either 0 or 1 is an accumulation point of(xn) . (3) Every point of [0, 1] is an accumulation
point of (xn) . – Using the continued fractions ofx , see Example 4.F.13, one can give a constructive proof of this
exercise. Forϕ = (1 + √

5)/2 in R2.3-7) give as small as possiblen∈ N with |nϕ − [nϕ] − 1
2 | ≤ 10−6 .)

1) Therefore starting from a place all digits ofx in a ternary expansion are equal to 2 , e.g. 1/3 = (0, 1)3 =
(0, 0222. . .)3 ∈ C .
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R3.10. In the power setP(N) of N there are uncountable chains and hence there are uncountable
subsets which are totally ordered with respect to the natural inclusion.( Remark : (B. K a u p —This is
surprisingly simple perhaps surprising and in any case to prove, remember thatQ is also countable.) Moreover,
there are uncountable subsets inP(N) whose elements arealmost disjoint, i.e. their intersection is finite.

( Remark : In this connection we also mention thecons t ruc t i on o f the rea l numbers due to R.Dedekind,
which also solves the first part of the above problem and the ideas of the Dedekind cuts follows, see Exercise
R3.3. Each real numberα determines the well-known Dedekind’s cutAα := {x ∈ Q | x <α } in Q, where by
a D e d e k i n d ’s c u t (inQ) we mean a non-empty, bounded above subset ofQ without the greatest element
and which contains with each element all smaller elements ofQ . On the other hand each such a cutA in Q the
cut corresponding to a real number, namelyA = ASupA , see 4.G.9. The setR of the real numbers can therefore
be identified with the set of the Dedekind cuts inQ . One can define thus following Dedekind turned around the
set R as the set of the Dedekind cuts, which is possible to describe alone byQ . Then R ⊆ P(Q) and the order
on R is induced by the natural inclusion fromP(Q) . Theorem 4.G.9 on the existence of the least upper bound
SupA for a non-empty bounded above subsetA ⊆ R is then clear : SupA = ⋃

A∈AA , in particular, also the
validity of the completenesss axiom 4.F.2 of Carathéodory : IfA0 ⊆ A1 ⊆ A2 ⊆ · · · is a monotone increasing
sequence inR which is bounded above, then limn→∞ An = ⋃

n∈N
An . (These “simple” proofs become possible

since Cantor had prepared to define infinite unions of sets.) The addition inR is simply the Minkowski-Sum

A + B = {x + y | x ∈ A, y ∈ B } , A, B ∈ R .

Only the multiplication is some what more laborious. Perhaps it is best to define it first only forpositive real
numbers by

A · B = Q− ∪ {xy | x ∈ A ∩ Q×
+, y ∈ B ∩ Q×

+ } , A, B ∈ R×
+ ,

and then extend canonically. The details of this are left to the reader.)

† B e r n a r d P l a c i d u s J o h a n n N e p o m u k B o l z a n o ( 1 7 8 1 - 1 8 4 8 ) Bernard Placidus Johann
Nepomuk Bolzano was born on 5 Oct 1781 in Prague, Bohemia, Austrian Habsburg domain (now Czech Republic) and died
on 18 Dec 1848 in Prague, Bohemia (now Czech Republic). Bernard Bolzano was a Czech philosopher, mathematician,
and theologian who made significant contributions to both mathematics and the theory of knowledge. Bolzano entered the
Philosophy Faculty of the University of Prague in 1796, studying philosophy and mathematics. Bolzano wrote :My special
pleasure in mathematics rested therefore particularly on its purely speculative parts, in other words I prized only that part
of mathematics which was at the same time philosophy.

In the autumn of 1800 he began 3 years of theological study. While pursuing his theological studies he prepared a doctoral
thesis on geometry. He received his doctorate in 1804 writing a thesis giving his view of mathematics, and what constitutes
a correct mathematical proof. In the preface he wrote:I could not be satisfied with a completely strict proof if it were not
derived from concepts which the thesis to be proved contained, but rather made use of some fortuitous, alien, intermediate
concept, which is always an erroneous transition to another kind.

Two days after receiving his doctorate Bolzano was ordained a Roman Catholic priest. However, as Russ points out that :
He came to realise that teaching and not ministering defined his true vocation.

Also in 1804, Bolzano was appointed to the chair of philosophy and religion at the University of Prague. Because of his
pacifist beliefs and his concern for economic justice, Bolzano was suspended from his position in 1819 after pressure from
the Austrian government. Bolzano had not given up without a fight but once he was suspended on a charge of heresy he was
put under house arrest and forbidden to publish. Although some of his books had to be published outside Austria because of
government censorship, he continued to write and to play an important role in the intellectual life of his country.

Bolzano wrote “Beyträge zu einer begründeteren Darstellung der Mathematik, Erste Lieferung (1810)”, the first of an
intended series on the foundations of mathematics. Bolzano wrote the second of his series but did not publish it. Instead he
decided to :... make myself better known to the learned world by publishing some papers which, by their titles, would be
more suited to arouse attention.

Pursuing this strategy he published “Der binomische Lehrsatz ... (1816)” and “Rein analytischer Beweis... (Pure Analytical
Proof) (1817)”, which contain an attempt to free calculus from the concept of the infinitesimal. He is clear in his intention
stating in the preface of the first that the work is :a sample of a new way of developing analysis.

Although Bolzano did achieve exactly what he set out to achieve, he did not do this in the short term, his ideas only becoming
well known after his death. Russ describes Bolzano’s aims in the 1817 paper :In this work ... Bolzano ... did not wish only to
purge the concepts of limit, convergence, and derivative of geometrical components and replace them by purely arithmetical
concepts. He was aware of a deeper problem : the need to refine and enrich the concept of number itself.

The paper gives a proof of the intermediate value theorem with Bolzano’s new approach and in the work he defined what
is now called a Cauchy sequence. The concept appears in Cauchy’s work four years later but it is unlikely that Cauchy had
read Bolzano’s work. After 1817, Bolzano published no further mathematical works for many years. However, in 1837, he
published “Wissenschaftslehre”, an attempt at a complete theory of science and knowledge.
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Between sometime before 1830 and the 1840s, Bolzano worked on a major work “Grössenlehre”. This attempt to put the
whole of mathematics on a logical foundation was published in parts, while Bolzano hoped that his students would finish
and publish the complete work.

His work on paradoxes “Paradoxien des Unendlichen”, a study of paradoxes of the infinite, was published in 1851, three
years after his death, by one of his students. The word set appears here for the first time. In this work Bolzano gives examples
of 1-1 correspondences between the elements of an infinite set and the elements of a proper subset.

Most of Bolzano’s works remained in manuscript and did not become noticed and therefore did not influence the development
of the subject. Many of his works were not published until 1862 or later. Bolzano’s theories of mathematical infinity
anticipated Georg Cantor’s theory of infinite sets. It is also remarkable that he gave a function which is nowhere differentiable
yet everywhere continuous.
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