MA-302 Advanced Calculus

1. Differentiable curves and functions

1.1. a). Let A be a finite dimensional \mathbb{K} - algebra and let $g: I \rightarrow A$ be a differentiable curve in A such that the image of g is contained in the unit group A^{\times}of A^{1}). Show that the curve $g^{-1}: I \rightarrow A$ defined by $g^{-1}(t):=(g(t))^{-1}$ is differentiable and the derivative of g^{1-} is $\left(g^{-1}\right)^{\prime}=-g^{-1} g^{\prime} g^{-1}$. Moreover, for any differentiable curve $f: I \rightarrow A$, prove the quotient rules:

$$
\left(f g^{-1}\right)^{\prime}=\left(f^{\prime}-f g^{-1} g^{\prime}\right) g^{-1} \quad \text { and } \quad\left(g^{-1} f\right)^{\prime}=g^{-1}\left(f^{\prime}-g^{\prime} g^{-1} f\right)
$$

b). Let Δ be a determinant function on the n-dimensional \mathbb{K}-vector space V and let $f_{j}: I \rightarrow V$ be differentiable curves in $V, j=1, \ldots, n$. Show that the function $\Delta\left(f_{1}, \ldots, f_{n}\right): I \rightarrow \mathbb{K}$, is differentiable with $\Delta\left(f_{1}, \ldots, f_{n}\right)^{\prime}=\sum_{j=1}^{n} \Delta\left(f_{1}, \ldots, f_{j}^{\prime}, \ldots f_{n}\right)$.
1.2. Let $f: I \rightarrow V$ be a differentiable curve in the Euclidean vector space V. If f is differentiable at $t_{0} \in I$ and $f\left(t_{0}\right) \neq 0$, then the curve $\|f\|: I \rightarrow \mathbb{R}, t \mapsto\|f(t)\|$, is also differentiable at t_{0} and

$$
\|f\|^{\prime}\left(t_{0}\right)=\frac{\left\langle f^{\prime}\left(t_{0}\right), f\left(t_{0}\right)\right\rangle}{\left\|f\left(t_{0}\right)\right\|}
$$

1.3. Let $f: I \rightarrow V$ be a k-times differentiable curve in a finite dimensional \mathbb{K}-vector space V. Suppose that $f^{(k)}(t)=a_{k-1}(t) f^{(k-1)}(t)+\cdots+a_{1}(t) f^{\prime}(t)$, where $a_{1}, \ldots, a_{k-1}: I \rightarrow \mathbb{K}$ are continuous functions. Then the trajectory of f is contained in the atmost ($k-1$)-dimensional affine subspace $\sum_{i=1}^{k-1} \mathbb{K} f^{(i)}\left(t_{0}\right)+f\left(t_{0}\right)$, where $t_{0} \in I$ is fixed (but arbitrary).
1.4. Let g be a continuous real-valued function on the unit circle $S^{1}:=\left\{x \in \mathbb{R}^{2} \mid\|x\|=1\right\}$ such that $g((0,1))=g((1,0))=0$ and $g(-x)=-g(x)$ and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x):= \begin{cases}\|x\| \cdot g\left(\frac{x}{\|x\|}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

a). For a fixed $x \in \mathbb{R}^{2}$, show that the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(t):=f(t x)$ is differentiable.
b). Show that f is not differentiable at $(0,0)$ unless $g=0$.
1.5. a). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y):=\sqrt{|x y|}$. Show that f is not differentiable at 0 . b). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that $|f(x)| \leq\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$. Show that f is differentiable at 0 .

[^0]
[^0]: ${ }^{1}$) For example, $A=\mathrm{M}_{n}(\mathbb{K})$ or $\operatorname{End}_{\mathbb{K}}(V), V$ finite dimensional \mathbb{K}-vector space ; $A^{\times}=\mathrm{Gl}_{n}(\mathbb{K})$ or $\operatorname{Aut}_{\mathbb{K}}(V)$.

