MA-302 Advanced Calculus

1. Differentiable curves and functions

1.1. a). Let A be a finite dimensional \mathbb{K} - algebra and let $g: I \to A$ be a differentiable curve in A such that the image of g is contained in the unit group A^{\times} of A^{1}). Show that the curve $g^{-1}: I \to A$ defined by $g^{-1}(t) := (g(t))^{-1}$ is differentiable and the derivative of g^{1-} is $(g^{-1})' = -g^{-1}g'g^{-1}$. Moreover, for any differentiable curve $f: I \to A$, prove the quotient rules :

$$(fg^{-1})' = (f' - fg^{-1}g')g^{-1}$$
 and $(g^{-1}f)' = g^{-1}(f' - g'g^{-1}f)$.

b). Let Δ be a determinant function on the *n*-dimensional K-vector space V and let $f_j : I \to V$ be differentiable curves in V, j = 1, ..., n. Show that the function $\Delta(f_1, ..., f_n) : I \to \mathbb{K}$, is differentiable with $\Delta(f_1, ..., f_n)' = \sum_{j=1}^n \Delta(f_1, ..., f_j', ..., f_n)$.

1.2. Let $f: I \to V$ be a differentiable curve in the Euclidean vector space V. If f is differentiable at $t_0 \in I$ and $f(t_0) \neq 0$, then the curve $||f||: I \to \mathbb{R}$, $t \mapsto ||f(t)||$, is also differentiable at t_0 and

$$||f||'(t_0) = \frac{\langle f'(t_0), f(t_0) \rangle}{||f(t_0)||}$$

1.3. Let $f: I \to V$ be a *k*-times differentiable curve in a finite dimensional K-vector space V. Suppose that $f^{(k)}(t) = a_{k-1}(t) f^{(k-1)}(t) + \cdots + a_1(t) f'(t)$, where $a_1, \ldots, a_{k-1}: I \to \mathbb{K}$ are continuous functions. Then the trajectory of f is contained in the atmost (k-1)-dimensional affine subspace $\sum_{i=1}^{k-1} \mathbb{K} f^{(i)}(t_0) + f(t_0)$, where $t_0 \in I$ is fixed (but arbitrary).

1.4. Let g be a continuous real-valued function on the unit circle $S^1 := \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ such that g((0, 1)) = g((1, 0)) = 0 and g(-x) = -g(x) and let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} ||x|| \cdot g\left(\frac{x}{||x||}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

a). For a fixed $x \in \mathbb{R}^2$, show that the function $h : \mathbb{R} \to \mathbb{R}$ defined by h(t) := f(tx) is differentiable.

b). Show that f is not differentiable at (0, 0) unless g = 0.

1.5. a). Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) := \sqrt{|xy|}$. Show that f is not differentiable at 0. b). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \le ||x||^2$ for all $x \in \mathbb{R}^n$. Show that f is differentiable at 0.

¹) For example, $A = M_n(\mathbb{K})$ or $\operatorname{End}_{\mathbb{K}}(V)$, V finite dimensional \mathbb{K} -vector space; $A^{\times} = \operatorname{Gl}_n(\mathbb{K})$ or $\operatorname{Aut}_{\mathbb{K}}(V)$.