MA-302 Advanced Calculus

2. Surface area and Length

2.1. a). (Plane Polar coordinates) Let $t \mapsto r(t)$ and $t \mapsto \varphi(t)$ be continuously differentiable functions on the interval $[a, b]$. The curve

$$
t \mapsto r(t)(\cos \varphi(t), \sin \varphi(t))
$$

in \mathbb{R}^{2}, with the Euclidean standard norm, has the length

$$
L_{a}^{b}=\int_{a}^{b}\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)^{1 / 2} d t
$$

In particular, if $\varphi(t)=t$ for all t, then $r(t)=r(\varphi)$, and the length of the curve between the angles φ_{1} and φ_{2} is equal to

$$
L_{\varphi_{1}}^{\varphi_{2}}=\int_{\varphi_{1}}^{\varphi_{2}}\left(\frac{d^{2} r}{d \varphi^{2}}+r^{2}\right)^{1 / 2} d \varphi
$$

b). (Space Polar coordinates) Let $t \mapsto r(t), t \mapsto \varphi(t)$ and $t \mapsto \lambda(t)$ be continuously differentiable functions on the interval $[a, b]$. The curve

$$
t \mapsto r(t)(\cos \varphi(t) \cos \lambda(t), \cos \varphi(t) \sin \lambda(t), \sin \varphi(t))
$$

in \mathbb{R}^{3}, with Euclidean standard norm, has the length

$$
L_{a}^{b}=\int_{a}^{b}\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}+r^{2} \dot{\lambda}^{2} \cos ^{2} \varphi\right)^{1 / 2} d t
$$

c). The graph $t \mapsto\left(t, g_{1}(t), \ldots, g_{n}(t)\right)$ of a continuously differentiable curve $g:[a, b] \rightarrow \mathbb{R}^{n}$ has (with respect to the Euclidean standard norm) the length

$$
L_{a}^{b}=\int_{a}^{b}\left(1+\dot{g}_{1}^{2}+\cdots+\dot{g}_{n}^{2}\right)^{1 / 2} d t
$$

d). Compute the length of the perimeter of the unit circle in \mathbb{R}^{2} with respect to the maximum norm and with respect to the sum-norm of \mathbb{R}^{2}.
e). Let $c \in \mathbb{R}^{\times}$and let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the logarithic spiral $\gamma(t):=\left(e^{c t} \cos t, e^{c t} \sin t\right)$. For $[a, b] \subseteq \mathbb{R}$, compute the arc-length $L_{a, b}:=L_{a}^{b}(\gamma \mid[a, b])$. Does the limit $\lim _{a \rightarrow-\infty} L_{a, 0}$ exists?
2.2. Compute the arc-length of the ellipse $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(a \cos t, b \sin t)$ with the help of the complete elliptic integral ${ }^{1}$)
2.3. Let V be a finite dimensional normed \mathbb{R}-vector space and let $f:[a, b] \rightarrow V$ be a rectifiable curve of the length L in V.
a). Show that the arc-length $t \mapsto s(t):=L_{a}^{t}(f)$ is a monotone increasing and surjective continuous function $[a, b] \rightarrow[0, L]$ and there exists a unique rectifiable curve $g:[0, L] \rightarrow V$ such that $f=g \circ s$, and $L_{0}^{s_{0}}(g)=s_{0}$ for every point $s_{0} \in[0, L]$. Further, the function s is strictly monotone increasing if and only if f is non-constant on every subinterval of $[a, b]$ with more than one point. In this case s defines a parametrisation of f, and $g=f \circ s^{-1}$ is the arc-length parametrised curve corresponding to f.
b). Let $\varphi:[\alpha, \beta] \rightarrow[a, b]$ be a monotone and surjective continuous function. Then the curve $f \circ \varphi$ ia also rectifiable and $L_{\alpha}^{\beta}(f \circ \varphi)=L=L_{a}^{b}(f)$.
c). Show that the continuous curve $g:[0,1] \rightarrow \mathbb{R}^{2}$ mit $g(t):=(t, t \cos (1 / t))$ for $t \neq 0$ and $g(0):=(0,0)$ and the differentiablle curve $h:[0,1] \rightarrow \mathbb{R}^{2}$ with $h(t):=\left(t, t^{2} \cos \left(1 / t^{2}\right)\right)$ für $t \neq 0$ and $h(0):=(0,0)$ are not rectifiable.
2.4. Let V be a finite dimensional normed \mathbb{R}-vector space with basis $v_{i}, i \in I$.
a). Show that a curve $f:[a, b] \rightarrow V$ with $t \mapsto \sum_{i \in I} f_{i}(t) v_{i}$ is rectifiable if and only if all the component functions $f_{i}:[a, b] \rightarrow \mathbb{R}$ are rectifiable.
(The length of a curve in \mathbb{R} is also called its variation. Therefore the concept of the Variation is defined for arbitrary function $h:[a, b] \rightarrow \mathbb{R}$ as the supremum over all sums $\sum_{j=0}^{m-1}\left|h\left(t_{j+1}\right)-h\left(t_{j}\right)\right|$, where t_{0}, \ldots, t_{m} runs over all finite sequences with $a \leq t_{0} \leq \cdots \leq t_{m} \leq b$.)
b). Show that if $h:[a, b] \rightarrow \mathbb{R}$ has a finite variation, then $h=f-g$ for some monotone increasing functions $f, g:[a, b] \rightarrow \mathbb{R}$, moreover, if h is continuous then one can choose both f and g continuous functions. (Hint: One can define $f(t)$ for $t \in[a, b]$ as the supremum over all sums $\left.\sum_{j=0}^{m-1} \operatorname{Max}\left(h\left(t_{j+1}\right)-h\left(t_{j}\right), 0\right), a \leq t_{0} \leq \cdots \leq t_{m} \leq t.\right)$
2.5. Let $\gamma: I \rightarrow \mathbb{C}$ be a closed continuous curve. Show that
a). The function $\mathrm{W}(\gamma,-): \mathbb{C} \backslash \operatorname{im}(\gamma) \rightarrow \mathbb{Z}, z \mapsto \mathrm{~W}(\gamma, z)$ is locally constant.
b). The sets Int $\gamma:=\{z \in \mathbb{C} \backslash \operatorname{im}(\gamma) \mid \mathbf{W}(\gamma, z) \neq 0\}$ and Ext $\gamma:=\{z \in \mathbb{C} \backslash \operatorname{im}(\gamma) \mid \mathbf{W}(\gamma, z)=0\}$ are open in \mathbb{C}. (These sets are called the inside or interior and the outside or exterior of γ, respectively. In particular, $C=\operatorname{Int} \gamma \cup \operatorname{im} \gamma \cup \operatorname{Ext} \gamma$ is a disjoint decomposition of \mathbb{C}.).
c). The set Int γ is bounded and the set Ext γ is never empty and always unbounded. More precisely, if $\operatorname{im}(\gamma) \subset \mathrm{B}(a ; r):=\{z \in \mathbb{C}| | z-a \mid<r\}$, then Int $\gamma \subset \mathrm{B}(a ; r)$ and $\mathbb{C} \backslash \mathrm{B}(a ; r) \subset$ Ext γ
${ }^{1}$) For every $k \in[0,1]$, the improper integral $E(k):=\int_{0}^{1} \frac{\sqrt{1-k^{2} t^{2}}}{\sqrt{1-t^{2}}} d t$ exists and is equal to the integral $\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \tau} d \tau$ and is called the complete elliptic integral.

