MA-302 Advanced Calculus

3. Directional Derivatives

3.1. a). Compute $\frac{\partial^{102}}{\partial y^{2} \partial x^{100}}\left(\left(1+x^{2}\right)^{x} y\right)$.
b). Which directional derivatives and which partial derivatives exist for the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (at the origin all these functions are defined to be $\left.f(0,0):=0\right)$:
(i) $f(x, y):=x y /\left(x^{2}+y^{2}\right)$. (ii) $f(x, y):=x^{3} /\left(x^{2}+y^{2}\right)$. (iii) $f(x, y):=x^{2} y /\left(x^{2}+y^{2}\right)$.
(iv) $f(x, y):=x^{3} /\left(x^{4}+y^{2}\right)$. (v) $f(x, y):=x^{2} y /\left(x^{4}+y^{2}\right)$.
3.2. Let $G \subseteq \mathbb{R}^{2}$ and $f: G \rightarrow \mathbb{R}$ be partially differentiable function. If $\mathrm{D}_{2} f$ is continuous at the point $x_{0} \in G$, then show that f is differentaible in all directions at x_{0}.
3.3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function.
a). Suppose that the partial derivative $\partial f / \partial x$ exists and is identically 0 . Then show that there exsits a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(y)$ for all $x, y \in \mathbb{R}$.
b). Suppose that the second partial derivative $\partial^{2} f / \partial x \partial y$ exists and is identically 0 . Then show that there exist functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)+h(y)$ for all $x, y \in \mathbb{R}$.
3.4. Let $G \subseteq V$ be a domain (open connected subset) and let $f: G \rightarrow W$ be partially differentiable with respect to a basis of V. Suppose that all partial derivatives of f are identically 0 , then show that f is a constant function.
(Hint : Reduce to the case $\mathbb{K}=\mathbb{R}$.)
3.5. Let v_{1}, \ldots, v_{n} be a basis of V. Suppose that for the map $f: G \rightarrow W$ all the partial derivatives $\mathrm{D}_{v_{i}} f, i=1, \ldots, n$, exist on G and are bounded in a neighbourhood of $x_{0} \in G$. Show that f is continuous at x_{0}.

