

MA-302 Advanced Calculus

3. Directional Derivatives

3.1. a). Compute $\frac{\partial^{102}}{\partial y^2 \partial x^{100}} ((1+x^2)^x y)$.

b). Which directional derivatives and which partial derivatives exist for the following functions $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ (at the origin all these functions are defined to be $f(0, 0) := 0$):

- (i) $f(x, y) := xy/(x^2+y^2)$.
- (ii) $f(x, y) := x^3/(x^2+y^2)$.
- (iii) $f(x, y) := x^2y/(x^2+y^2)$.
- (iv) $f(x, y) := x^3/(x^4+y^2)$.
- (v) $f(x, y) := x^2y/(x^4+y^2)$.

3.2. Let $G \subseteq \mathbb{R}^2$ and $f : G \rightarrow \mathbb{R}$ be partially differentiable function. If $D_2 f$ is continuous at the point $x_0 \in G$, then show that f is differentiable in all directions at x_0 .

3.3. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function.

a). Suppose that the partial derivative $\partial f / \partial x$ exists and is identically 0. Then show that there exists a function $g : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y) = g(y)$ for all $x, y \in \mathbb{R}$.

b). Suppose that the second partial derivative $\partial^2 f / \partial x \partial y$ exists and is identically 0. Then show that there exist functions $g, h : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y) = g(x) + h(y)$ for all $x, y \in \mathbb{R}$.

3.4. Let $G \subseteq V$ be a domain (open connected subset) and let $f : G \rightarrow W$ be partially differentiable with respect to a basis of V . Suppose that all partial derivatives of f are identically 0, then show that f is a constant function. (Hint: Reduce to the case $\mathbb{K} = \mathbb{R}$.)

3.5. Let v_1, \dots, v_n be a basis of V . Suppose that for the map $f : G \rightarrow W$ all the partial derivatives $D_{v_i} f$, $i = 1, \dots, n$, exist on G and are bounded in a neighbourhood of $x_0 \in G$. Show that f is continuous at x_0 .