MA-302 Advanced Calculus

3. Directional Derivatives

3.1. a). Compute
$$\frac{\partial^{102}}{\partial y^2 \partial x^{100}} ((1+x^2)^x y)$$
.

b). Which directional derivatives and which partial derivatives exist for the following functions $f : \mathbb{R}^2 \to \mathbb{R}$ (at the origin all these functions are defined to be f(0, 0) := 0):

(i)
$$f(x, y) := xy/(x^2+y^2)$$
. (ii) $f(x, y) := x^3/(x^2+y^2)$. (iii) $f(x, y) := x^2y/(x^2+y^2)$.
(iv) $f(x, y) := x^3/(x^4+y^2)$. (v) $f(x, y) := x^2y/(x^4+y^2)$.

3.2. Let $G \subseteq \mathbb{R}^2$ and $f: G \to \mathbb{R}$ be partially differentiable function. If $D_2 f$ is continuous at the point $x_0 \in G$, then show that f is differentiable in all directions at x_0 .

3.3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function.

a). Suppose that the partial derivative $\partial f/\partial x$ exists and is identically 0. Then show that there exists a function $g: \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(y) for all $x, y \in \mathbb{R}$.

b). Suppose that the second partial derivative $\frac{\partial^2 f}{\partial x \partial y}$ exists and is identically 0. Then show that there exist functions $g, h : \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x) + h(y) for all $x, y \in \mathbb{R}$.

3.4. Let $G \subseteq V$ be a domain (open connected subset) and let $f : G \to W$ be partially differentiable with respect to a basis of V. Suppose that all partial derivatives of f are identically 0, then show that f is a constant function. (Hint: Reduce to the case $\mathbb{K} = \mathbb{R}$.)

3.5. Let v_1, \ldots, v_n be a basis of *V*. Suppose that for the map $f : G \to W$ all the partial derivatives $D_{v_i} f$, $i = 1, \ldots, n$, exist on *G* and are bounded in a neighbourhood of $x_0 \in G$. Show that *f* is continuous at x_0 .