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Basic Algebra

1. Rings1)

Remember that all our rings are rings with unity! Usually the term “rng” is used for a ring without unity. This term was
suggested by Louis Rowen and may be pronunced as “rŭng”.

A d o l f A b r a h a m H a l e v i F r a e n k e l †

(1891-1965)
1.1. Forn ∈ N

∗, let Zn denote a cyclic (additively written) group of ordern. If N ⊆ N
∗ is an infinite subset

of the set of positive natural numbers, then the additive group
⊕

n∈N Zn is not a ring (with unity) with any
multiplication.

1.2. ( R i n g o f n u m e r i c a l f u n c t i o n s ) LetA be a commutative ring. On the set of sequencesAN
∗

let the addition be defined componentwise by(f + g)(n) := f (n)+ g(n), f, g ∈ AN
∗
, n ∈ N

∗. Further, let
the multiplication be defined by the formula :

(f ∗ g)(n) :=
∑
d|n

f (d)g
(n
d

)
.

(This binary operation is called the( D i r i c h l e t ’s ) c o n v o l u t i o n onAN
∗
. The elements ofAN

∗
are called

n u m e r i c a l f u n c t i o n s w i t h v a l u e s i n i nA .)

a). ZF(A) := (AN
∗
, +, ∗) is a commutative ring. (This ring is called the r ing o fnumer ica l func t ions

w i t h v a l u e s i n A .) The unity (multiplicative identity) of this ring is the functionε, whereε(1) := 1
andε(n) := 0 for n ≥ 2. An elemente of ZF(A) is a unit if and only ife(1) a unit inA. (e−1 can be
recursively determined bye.)

b). A numerical functionf ∈ ZF(A) is calledm u l t i p l i c a t i v e , iff (1) = 1 andf (mn) = f (m)f (n) for
all m, n ∈ N

∗ with gcd(m, n) = 1. If f ∈ ZF(A) is multiplicative andg ∈ ZF(A) is arbitrary, thenf ∗ g is
multiplicative if and only ifg is multiplicative. The unit-elementε is multiplicative. In particular, the set of
multiplicative numerical functions in ZF(A) is a subgroup of the unit group of ZF(A).

c). Letζ ∈ ZF(A) be the numerical function defined byζ(n) = 1 for alln ∈ N
∗. Thenζ is multiplicative and

for f ∈ ZF(A) the functionζ ∗f is called theSummator - func t ion off , since(ζ ∗f )(n) = ∑
d|n f (d) .

Therefore (see b) above)f is multiplicative if and only ifζ ∗ f is multiplicative. Further, in this casef can
be recovered fromζ ∗ f through the followingi n v e r s i o n f o r m u l a :

f (n) =
∏

p prime, p|n
((ζ ∗ f )(pvp(n))− (ζ ∗ f )(pvp(n)−1)) .

d). In the special caseA = Z, in addition to the numerical functionsε andζ , the important Euler’sϕ-function
ϕ, is a multiplicative numerical function. Further, the numerical functionψ : n �→ n is multiplicative and
ζ ∗ ϕ = ψ . Let T(n) (respectively S(n)) denote the number of (respectively the sum of) positive integer-
divisors ofn ∈ N

∗. Then the numerical functions T and S are also multiplicative. (This can be deduced
from the following identities:ζ ∗ ζ = T, ζ ∗ ψ = S.)

e). ( M ö b i u s i n v e r s o n f o r m u l a ) LetA be an arbitrary commutative ring. The numerical function
µ := ζ−1 is called the M ¨o b i u s f u n c t i o n .Then

f (n) =
∑
d|n

µ
(n
d

)
· (ζ ∗ f )(d) for everyf ∈ ZF(A) .

1) For the first time the axioms of rings appear to have been formulated byA. Fraenkel in an article inJournal
für die angewandete Mathematik, vol. 145 (1914). Before this the term “Zahlring” (=number ring or ring of numbers)
had been used byHilbert in “Die Theorie der algebraische Zahlk¨orper”,Jahresbericht der Deutschen Mathematiker
Vereiningung, vol. 4, (1897).
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(This is immediate fromf = µ∗(ζ ∗f ). Using this formula and c) one can show easily that:µ(1) = 1,µ(n) = (−1)r ,
if n is a product of distinct prime numbers andµ(n) = 0 otherwise.)

1.3. ( I n v o l u t i o n s ) Anelementa in a (multiplicatively written) monoid is calledi n v o l u t o r y or an
i n v o l u t i o n , if a2 is equal to the identity element of the monoid. The involutory elements are precisely
those invertible elements with self inverses. If the monoid is commutative, then the involutory elements form
a subgroup of the group of the invertible elements. The product of two involutory elements is involutory if
and only if these elements commute.

Let A be a ring and let Inv(A) denote the set of all (with respect to the multiplication ofA) involutory
elements, Idp(A) be the set of all idempotent elements ofA. Then the map

γ : Idp(A) → Inv(A) , a �→ 1 − 2a

is injective, if 2·1A is a non-zero divisor inA and is bijective, if 2·1A is a unit inA. (If A is commutative, then
γ is a group homomorphism of the additive group Idp(A) (see T1.5 below), into the multiplicative group Inv(A).)

1.4. Let A be a ring and letα, α′ : A → A be the maps defined byα(x) := x − x2, α′(x) := 1 − 2x
respectively. Ifα(x) is nilpotent, then(α′(x))2 is unipotent and in particular,α′(x) is a unit inA.

Let a ∈ A be such thatα(a) is nilpotent. Then there exist unique elementss, t ∈ A with the following
properties: 1.a = s + t . 2. s is idempotent,t is nilpotent. 3.s andt commute.

Moreover, these uniquely determined elementss and t belong to the smallest subringA′ of A containing
a. (Note that ifa = s + t is an element ofA ands,t ∈ A satisfy the conditions (2) and (3), thenα(a) must be

nilpotent.) (Existence : The recursively defined sequenceai , i ∈ N, with a0 := a andai+1 := ai − α(ai )

α′(ai ) = − a2
i

1−2ai
is

well-defined. Thenai ∈ A′, ai = a + ciα(a) andα(ai) = di(α(a))
2i with ci, di ∈ A′. Now takes := ai with large

i. –This process remind the Newton’s process to construct a zeros of the functionα by approximating zeros of real
differentiable functions.Uniqueness : The above construction show that to arbitrary decompositiona = s+ t , where
s andt satisfy the conditions (2) and (3), one can apply T1.4 and conclude thats andt are unique.)

Below one can see (simple) test-exercises.

Test-Exercises
T1.1. LetA be a ring with CharA �= 1, �= 2. If the unit groupA× of A is cyclic, thenA× is finite and|A×| is an even
number.
T1.2. LetA be a ring. Ifu ∈ A is unipotent, then so isu−1. If u, v ∈ A are unipotent and commute, thenuv is also
unipotent. IfA is commutative, then the set of unipotent elements inA is a subgroup ofA×.
T1.3. LetA be a ring of characteristicpn, wherep is a prime number. An elementu ∈ A is unipotent if and only ifu
is a unit inA and the order ofu in A× is a power ofp. If A has no non-zero nilpotent elements and ifa ∈ A× is an
element of finite order, then gcd(p,Orda) = 1.
T1.4. Let a, b be idempotent elements in a ringA.
a). a + b is idempotent if and only ifab = ba and 2ab = 0. Further,a − b idempotent if and only ifab = ba and
2(1 − a)b = 0.
b). If ab = ba, thenab, a + b − ab and(a − b)2 = a + b − 2ab are idempotent.
c). If ab = ba anda − b nilpotent, thena = b.
T1.5. Let A be a commutative ring and Idp(A) be the set of all idempotent elements inA. Then(Idp(A),	, ·) is a
Boolean ring, with the additiona	b := (a − b)2 and the multiplication induced from the multiplication fromA. (the
rings(Idp(A),	, ·) and(A,+, ·) are equal if and only ifA if A is a Boolean ring).

† A d o l f A b r a h a m H a l e v i F r a e n k e l ( 1 8 9 1 - 1 9 6 5 ) was born on 17 Feb 1891 in Munich, Germany and died on 15
Oct 1965 in Jerusalem, Israel. Adolf Fraenkel, in common with most students in Germany in his time, studied for periods at different universities.
He spent some time at the University of Munich, the University of Marburg, the University of Berlin and the University of Breslau. From 1916 he
lectured at the University of Marburg, being promoted to professor there in 1922. In 1928 Fraenkel left Marburg and spent one year teaching at
the University of Kiel. He was a fervent Zionist and, after leaving Kiel, he taught at the Hebrew University of Jerusalem from 1929. Fraenkel was
to spend the rest of his career at the Hebrew University.

Fraenkel’s first work was on Hensel’s p-adic numbers and on the theory of rings. However he is best known for his work on set theory, writing his
first major work on the topic Einleitung in die Mengenlehre in 1919. He made two attempts, in 1922 and 1925, to put set theory into an axiomatic
setting that avoided the paradoxes. He tried to improve the definitions of Zermelo and, within his axiom system, he proved the independence of
the axiom of choice. His system of axioms was modified by Skolem in 1922 to give what is today known as the ZFS system. This is named after
Zermelo, Fraenkel and Skolem. Within this system it is harder to prove the independence of the axiom of choice and this was not achieved until
the work of Cohen in 1963.

Fraenkel was also interested in the history of mathematics and wrote a number of important works on the topic. He wrote on Gauss’s work in
algebra in 1920, then in 1930, he published an important biography of Cantor. In 1960 he published Jewish mathematics and astronomy. A
number of Fraenkel’s students have made important contributions to mathematics including Robinson who succeeded him when he retired from
his chair at the Hebrew University.
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