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Basic Algebra

4. Linear Equations, Linear independence, Bases — Dimensions of vector spaces
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4.1. Let K be a division ring and le¥ be a non- zero vector space ovér Let® = (g;);c; be a
finite system of linear equations inunknowns inV over K. Use Gauss elimination to show that:

a). IfL (&) # ¥ andg € K" x V with g ¢ K®, then () # L(® U {g}).

b). Let $) be another finite system of linear equationa ianknowns inV over K . Suppose that
L(®)#PandL(H) #0@. Then (&) =L($H) ifandonlyif K& = K$.

4.2. LetK be afield and let be a subfield oK. Further, le® be a finite system of linear equations
in n unknowns ovek and let L (&) denote the solution set kf. The systen® is also a system of
linear equations ovek and let the solution set of this systemAit be denoted by k(&). Then
Esist L (®) = k" N Lg (&) and use Gauss elimination process to prove:

a). Ly(®) £ @ifand only if Lx (&) # 0.
b). If & homogeneous, thend(®) = K - L;(®).

c). If & homogeneous, the# has a non-trivial solution ovékr if and only if & has a non-trivial
solution overk .

4.3. LetV be afree module over a ring). Further, letz € A be not a left-zero divisor id. Then
the homothecy, : V — V, x > ax is injective. Deduce that: LeB be a ring and letA be a
subring of B such thatB is a freeA—module. Show that an elemeant A is a left-zero divisor in
A, if and only if a is a left-zero divisor inB. Further, show thataB) N A = a for all left-ideals
a C A.

4.4. a). Letxy,...,x,, x,01, n € N, be elements of a vector spateover a division ringk .
Show thaty;, 1 <i < n + 1, are linearly independent if and onlyxf with 1 < i < n are linearly
independent and,; does not belong to th&— subspace generated by, .. ., x,.

b). Let V be aK—vector space which is not finitely generated. Construct recursively a linearly
independent sequence,),.cn Of elements inv.

4.5. LetU, W be freeA-submodules of thd—moduleV. Further, letx;, i € I, resp.y;, j € J,
be a basis o resp.W. Show thaty;, y;, i € I, j € J together form a basis df + W, if and
onlyif Unw =0.

4.6. a). A basis of a free modul& over a non-zero ringl is a minimal generating system of the
A—moduleV.

b). Every basis of a finite free module over a non-zero ring is finite.

4.7. Let A be a non-zero commutative ring. Show tiais a principal ideal domain if and only if
every ideal inA is a freeA—submodule ofA. (Remark : In general this assertion is not true for
non-commutative rings. Counter example!)
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4.8. Let B be a ring and letA be a subring ofB such thatB is a free A—-module. Show that

A* = AN B*. Moreover, ifB is a division ring, then so id. (Hint: If a € AN B>, then use

B =aB.)

4.9. Let K be a division ring and le¥V be aK—vector space with basis, ..., x,. Further, let
yeV,y =ax1+- -+ ax, With q; € K. Give necessary and sufficient condition on the
coeficientsuy, ..., a, such thate; — y, ..., x, — y is a basis ol.

4.10. Generalisation of the Exercise 3.5: Let K be a division ring andi be a commutative subring
of K such thatK is a finite A—-module. Show that is a field. (Hint: Note thatk contains

a quotient fieldQ of A. Letx,..., x, be aA-generating system &f and letys, ..., y, be aQ—basis of

K with y; = 1. Thenyj(x1), ..., yi(x,) is anA— generating system @b, wherey; is the first coordinate
function with respect to the basys, ..., y,. Now use the Exercise 3.5.)

4.11. Let L be adivision ring and lek be a sub-division ring of.. Further, letV, be anL—vector
space with thd.—basisxy, ..., x, andV be theK—vector spac&x; + ---+ Kx, C V,. (For
example:V, ;= L"; x1, ..., x, is the standard basi¥: = K".)

a). Showthat:ys, ..., y, € V arelinearly independent ové&r (resp. form ak —generating system
of V resp. form aK—basis ofV) if and only if they are linearly independent over(resp. form a
L—generating system df; resp. form aL—basis ofV;).

b). LetU be aK—subspace of. LetU; denote thd.-subspace oV, generated by/. Show that:
Dimg U = Dim, U, andU = V N U,. If W is anotherK—subspace oV, thenU < W (resp.
U=W)ifandonlyifu, € W, (resp.U;, = Wp).

c). Prove the analogous assertions in the dgses not finite dimensional (ovet).

4.12. Let K be a divison ring and let be a maximalk —linear independent subset in the set of
0-1-sequences fro Y. Show that :M has the cardinality of the continuum. (Hint: (In view

of the exercise 4.10, we may assume tkias the quotient field of its prime ring - 1x. Using cardinality
arguments show that the dimension of the subspace generated by the 0-1-sequéidesia cardinality

of the continuum.)

4.13. Letx;, i € I, be afamily ofn—tuples fromZ". For a prime numbep, let K, denote a field
with p elements. Show that the following statements are equivalent:

() Thex; are linearly independent ovér.
(i) The images of;, i € I,in Q", are linearly independent over.

(i) There exists a prime numbersuch thattheimagesof, i € 1,inK”, are linearly independent
over K,.

(iv) Foralmost all prime numbers, the images of;, i € 7, in K7, are linearly independent over
K,.

— If |I| = n , then the above statements are further equivalent to the following statement:

(v) There exists a non-zero integersuch thainZ" C ). _, Zx;.

4.14. Letyx;, i € I, be a family ofn—tuples fromZ". For every prime numbep let K, denote a
field with p elements. Show that the following statements are equivalent:

(i) Thex;, i € I, generate (th&-module)Z”.
(if) For every prime numebp, the images of;, i € 1, in K, generate the j<vector space K

(Hint: ((ii)) = (i): LetU := .., Zx;. Note that by exercise 4.12, there exists a non-zero integeith
mZ" < U. Further: to every prime number and everyx € Z" there exist’ € U, y € Z" such that
x =x'+ py,i.e.Z" C U + pZ" for every prime numbep. From this deduce thdl = 7".)

4.15. LetV be avector space and gt, U, be subspaces &f. Then there existsabasis i € I,
of V satisfying the following property: for given subsdts I, of I, if x;, i € I N I, is a basis
Ui NUs, x;, i € 11, abasis oU; andx;, i € I, a basis o, thenx;, i € I, U I, is a basis of
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Ui+ Us,. (Hint: Proceed as in the proof in the finite dimensional cag&emark : Therefore
the dimension formula also holds for not finite dimensional subspEc®s.)

4.16. Let I be a non-empty open interval iR and let G (/) (respectively, %(1)) be the R-
vector space of all real-analytic(respectively, continuous) real-valued functions bn Then
Cep(l) < Cl%(l) and if U is a R-subspace of @(1) with C¢ (1) € U, then show that Dim U is
the cardinality of the continuungHint: Without loss of generality let =] — 1, 1[. Let (a;;)ien, j € J,

be a linearly independent family of 0-1-sequenceRinwhere|J| = R := |R|, see Exercise 4.11. Then
the functionsr > ", o a;;t', j € J, in Cg(I) are linearly independent ové@. Alternative hint: the
family of the functions — exp(ar), a € R, onI is linearly independent. Similarly, the rational functions
t+ 1/(t —a), a € R, |a| > 1, are linearly independent i@ — 1, 1]).) Prove the analogous results
for the complex vector space(H) of holomorphic functions defined on a domaincC C.

Below one can see (simple) test-exercises.

Test-Exercises
T4.1. Let A be aring. The elemete A is a basis of thet—moduleA, if and only ifa is a unitinA.

T4.2. a). The elements 1g € R are linearly independent ové}, if and only if a is irrational (i.e. not
rational). Remark: Two real numbers, ¢, which are linearly independent ov@r are called
incommensurableClassical example: the length of the side and the length of the diagonal of a square
are incommensurable, since the real numiggre R is irrational.)

b). Let P be the set of all prime numberse N*. Show that the familylog p),p is linearly independent
overQ.

T4.3. Leta, b € N* andd = gcd(a, b). Then the relation submodule Rét, b) of Z2 is generated by
(bd™1, —ad™') € 72.

T4.4. In the subspac® of the R—vector spac®® of all funktions fromR into itself, generated by the

functionsx — sin(x + a), a € R, show that the two functions — sinx, x — cosx(= sin(x + 7/2))
form a basis of/.

T4.5. EveryQ-vector spac& # 0 is not free over the subririg of Q.

T4.6. Let x1,...,x,41, n € N, be linearly independent elements of a vector spacaver the division
ring K. Suppose that elements amongs, ..., x,.1 are linearly independent ovéf. Then show that
DimK(ReIK(X]_, ey .X'n_;,_]_)) =1.

T4.7. Let K be a divison ringV be a finite dimensionat —vector space and l&f, i € I, be a family of
subspaces df. Then there exists afinite subgedf 7 suchthaf),_, Vi =, Viand)_,., Vi=> .., Vi.
T4.8. Let K be a division ring and le¥ be not finite dimensionak—vector space. Construct an infinite
sequencetyc Uy C---CcU; Cc---andWg D> W1 D --- D W, D --- of subspaces of.

T4.9. Let I be a non-empty open interval it and let @ (7) be the R-vector space of all continuous

real-valued functions o . Show that|C9R(1)| = |R|. (Hint: The map (%(1) — RQdefined byf — £|Q
is injective.)

T Johann Carl Friedrich Gauss (1777-1855) was born on 30 April 1777 in Brunswick, Duchy of
Brunswick (now Germany) and died on 23 Feb 1855 in Géttingen, Hanover (now Germany).

At the age of seven, Carl Friedrich Gauss started elementary school, and his potential was noticed almost immediately. His teacher,
Buttner, and his assistant, Martin Bartels, were amazed when Gauss summed the integers from 1 to 100 instantly by spotting that
the sum was 50 pairs of numbers each pair summing to 101.

In 1788 Gauss began his education at the Gymnasium with the help of Bittner and Bartels, where he learnt High German and Latin.
After receiving a stipend from the Duke of Brunswick- Wolfenbiittel, Gauss entered Brunswick Collegium Carolinum in 1792. At the
academy Gauss independently discovered Bode’s law, the binomial theorem and the arithmetic- geometric mean, as well as the law
of quadratic reciprocity and the prime number theorem.

1) Afunction f: I — R iscalledreal-analytic ata € I, if there exist a open neighbourhodd
of a and a convergent power serigs.”ya;(x —a)" suchthatf(x) = Y ~qa;(x —a) forall x e UNTI.
Afunction f: I — R iscalled realanalytic ifitisreal-analytic at every: € I .
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In 1795 Gauss left Brunswick to study at Gottingen University. Gauss's teacher there was Kaestner, whom Gauss often ridiculed.
His only known friend amongst the students was Farkas Bolyai. They met in 1799 and corresponded with each other for many years.

Gauss left Géttingen in 1798 without a diploma, but by this time he had made one of his most important discoveries - the construction
of a regular 17-gon by ruler and compasses This was the most major advance in this field since the time of Greek mathematics and
was published as Section VIl of Gauss’s famous work, Disquisitiones Arithmeticae.

Gauss returned to Brunswick where he received a degree in 1799. After the Duke of Brunswick had agreed to continue Gauss's
stipend, he requested that Gauss submit a doctoral dissertation to the University of Helmstedt. He already knew Pfaff, who was
chosen to be his advisor. Gauss’s dissertation was a discussion of the fundamental theorem of algebra.

With his stipend to support him, Gauss did not need to find a job so devoted himself to research. He published the book Disquisitiones
Arithmeticae in the summer of 1801. There were seven sections, all but the last section, referred to above, being devoted to number
theory.

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously, published the orbital positions
of Ceres, a new "small planet” which was discovered by G Piazzi, an Italian astronomer on 1 January, 1801. Unfortunately, Piazzi
had only been able to observe 9 degrees of its orbit before it disappeared behind the Sun. Zach published several predictions of
its position, including one by Gauss which differed greatly from the others. When Ceres was rediscovered by Zach on 7 December
1801 it was almost exactly where Gauss had predicted. Although he did not disclose his methods at the time, Gauss had used his
least squares approximation method.

In June 1802 Gauss visited Olbers who had discovered Pallas in March of that year and Gauss investigated its orbit. Olbers requested
that Gauss be made director of the proposed new observatory in Géttingen, but no action was taken. Gauss began corresponding
with Bessel, whom he did not meet until 1825, and with Sophie Germain.

Gauss married Johanna Ostoff on 9 October, 1805. Despite having a happy personal life for the first time, his benefactor, the Duke of
Brunswick, was killed fighting for the Prussian army. In 1807 Gauss left Brunswick to take up the position of director of the Géttingen
observatory. Gauss arrived in Gottingen in late 1807. In 1808 his father died, and a year later Gauss’s wife Johanna died after giving
birth to their second son, who was to die soon after her. Gauss was shattered and wrote to Olbers asking him give him a home for
a few weeks, to gather new strength in the arms of your friendship - strength for a life which is only valuable because it belongs to
my three small children.

Gauss was married for a second time the next year, to Minna the best friend of Johanna, and although they had three children, this
marriage seemed to be one of convenience for Gauss.

Gauss’s work never seemed to suffer from his personal tragedy. He published his second book, Theoria motus corporum coelestium
in sectionibus conicis Solem ambientium, in 1809, a major two volume treatise on the motion of celestial bodies. In the first volume
he discussed differential equations, conic sections and elliptic orbits, while in the second volume, the main part of the work, he
showed how to estimate and then to refine the estimation of a planet’s orbit. Gauss’s contributions to theoretical astronomy stopped
after 1817, although he went on making observations until the age of 70.

Much of Gauss’s time was spent on a new observatory, completed in 1816, but he still found the time to work on other subjects.
His publications during this time include Disquisitiones generales circa seriem infinitam, a rigorous treatment of series and an
introduction of the hypergeometric function, Methodus nova integralium valores per approximationem inveniendi, a practical essay
on approximate integration, Bestimmung der Genauigkeit der Beobachtungen, a discussion of statistical estimators, and Theoria
attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodus nova tractata. The latter work was inspired by geodesic
problems and was principally concerned with potential theory. In fact, Gauss found himself more and more interested in geodesy in
the 1820s.

Gauss had been asked in 1818 to carry out a geodesic survey of the state of Hanover to link up with the existing Danish grid. Gauss
was pleased to accept and took personal charge of the survey, making measurements during the day and reducing them at night,
using his extraordinary mental capacity for calculations. He regularly wrote to Schumacher, Olbers and Bessel, reporting on his
progress and discussing problems.

Because of the survey, Gauss invented the heliotrope which worked by reflecting the Sun'’s rays using a design of mirrors and a
small telescope. However, inaccurate base lines were used for the survey and an unsatisfactory network of triangles. Gauss often
wondered if he would have been better advised to have pursued some other occupation but he published over 70 papers between
1820 and 1830.

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the idea of mapping one surface onto
another so that the two are similar in their smallest parts. This paper was published in 1825 and led to the much later publication
of Untersuchungen Uber Gegenstande der Hoheren Geodasie (1843 and 1846). The paper Theoria combinationis observationum
erroribus minimis obnoxiae (1823), with its supplement (1828), was devoted to mathematical statistics, in particular to the least
squares method.

From the early 1800s Gauss had an interest in the question of the possible existence of a non-Euclidean geometry. He discussed this
topic at length with Farkas Bolyai and in his correspondence with Gerling and Schumacher. In a book review in 1816 he discussed
proofs which deduced the axiom of parallels from the other Euclidean axioms, suggesting that he believed in the existence of non-
Euclidean geometry, although he was rather vague. Gauss confided in Schumacher, telling him that he believed his reputation would
suffer if he admitted in public that he believed in the existence of such a geometry.

In 1831 Farkas Bolyai sent to Gauss his son Janos Bolyai's work on the subject. Gauss replied to praise it would mean to praise
myself . Again, a decade later, when he was informed of Lobachevsky's work on the subject, he praised its "genuinely geometric"
character, while in a letter to Schumacher in 1846, states that he had the same convictions for 54 years indicating that he had known
of the existence of a non-Euclidean geometry since he was 15 years of age (this seems unlikely).

Gauss had a major interest in differential geometry, and published many papers on the subject. Disquisitiones generales circa
superficies curva (1828) was his most renowned work in this field. In fact, this paper rose from his geodesic interests, but it contained
such geometrical ideas as Gaussian curvature. The paper also includes Gauss's famous theorema egregrium: If an areain RS
can be developed (i.e. mapped isometrically) into another area of R3 , the values of the Gaussian curvatures are identical in
corresponding points.
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The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in 1817, who stayed until her death
in 1839, while he was arguing with his wife and her family about whether they should go to Berlin. He had been offered a position
at Berlin University and Minna and her family were keen to move there. Gauss, however, never liked change and decided to stay in
Gottingen. In 1831 Gauss'’s second wife died after a long illness.

In 1831, Wilhelm Weber arrived in Géttingen as physics professor filling Tobias Mayer’s chair. Gauss had known Weber since 1828
and supported his appointment. Gauss had worked on physics before 1831, publishing Uber ein neues allgemeines Grundgesetz
der Mechanik, which contained the principle of least constraint, and Principia generalia theoriae figurae fluidorum in statu aequilibrii
which discussed forces of attraction. These papers were based on Gauss'’s potential theory, which proved of great importance in his
work on physics. He later came to believe his potential theory and his method of least squares provided vital links between science
and nature.

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander von Humboldt attempted to obtain
Gauss’s assistance in making a grid of magnetic observation points around the Earth. Gauss was excited by this prospect and by
1840 he had written three important papers on the subject: Intensitas vis magneticae terrestris ad mensuram absolutam revocata
(1832), Aligemeine Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsétze in Beziehung auf die im verkehrten Verhaltnisse
des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskrafte (1840). These papers all dealt with the current theories
on terrestrial magnetism, including Poisson’s ideas, absolute measure for magnetic force and an empirical definition of terrestrial
magnetism. Dirichlet’s principle was mentioned without proof.

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove an important theorem, which
concerned the determination of the intensity of the horizontal component of the magnetic force along with the angle of inclination.
Gauss used the Laplace equation to aid him with his calculations, and ended up specifying a location for the magnetic South pole.

Humboldt had devised a calendar for observations of magnetic declination. However, once Gauss’s new magnetic observatory
(completed in 1833 - free of all magnetic metals) had been built, he proceeded to alter many of Humboldt's procedures, not pleasing
Humboldt greatly. However, Gauss’s changes obtained more accurate results with less effort.

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff's laws, as well as building a primitive telegraph
device which could send messages over a distance of 5000 ft. However, this was just an enjoyable pastime for Gauss. He was more
interested in the task of establishing a world-wide net of magnetic observation points. This occupation produced many concrete
results. The Magnetischer Verein and its journal were founded, and the atlas of geomagnetism was published, while Gauss and
Weber’s own journal in which their results were published ran from 1836 to 1841.

In 1837, Weber was forced to leave Gottingen when he became involved in a political dispute and, from this time, Gauss's activity
gradually decreased. He still produced letters in response to fellow scientists’ discoveries usually remarking that he had known the
methods for years but had never felt the need to publish. Sometimes he seemed extremely pleased with advances made by other
mathematicians, particularly that of Eisenstein and of Lobachevsky.

Gauss spent the years from 1845 to 1851 updating the Gottingen University widow’s fund. This work gave him practical experience
in financial matters, and he went on to make his fortune through shrewd investments in bonds issued by private companies.

Two of Gauss's last doctoral students were Moritz Cantor and Dedekind. Dedekind wrote a fine description of his supervisor ...
usually he sat in a comfortable attitude, looking down, slightly stooped, with hands folded above his lap. He spoke quite freely,
very clearly, simply and plainly: but when he wanted to emphasise a new viewpoint ... then helifted hishead, turned to one of those
sSitting next to him, and gazed at himwith his beautiful, penetrating blue eyes during the emphatic speech. ... If he proceeded from
an explanation of principles to the development of mathematical formulas, then he got up, and in a stately very upright posture he
wrote on a blackboard beside himin his peculiarly beautiful handwriting: he always succeeded through economy and deliberate
arrangement in making do with a rather small space. For numerical examples, on whose careful completion he placed special
value, he brought along the requisite data on little slips of paper.

Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted by Hemstedt University. It was
appropriately a variation on his dissertation of 1799. From the mathematical community only Jacobi and Dirichlet were present, but
Gauss received many messages and honours.

From 1850 onwards Gauss'’s work was again of nearly all of a practical nature although he did approve Riemann’s doctoral thesis
and heard his probationary lecture. His last known scientific exchange was with Gerling. He discussed a modified Foucalt pendulum
in 1854. He was also able to attend the opening of the new railway link between Hanover and Géttingen, but this proved to be his
last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning of 23 February, 1855.
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