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Basic Algebra

4. Linear Equations, Linear independence, Bases – Dimensions of vector spaces

J o h a n n C a r l F r i e d r i c h G a u s s †

(1777-1855)

4.1. Let K be a division ring and letV be a non- zero vector space overK. Let G = (gi)i∈I be a
finite system of linear equations inn unknowns inV overK. Use Gauss elimination to show that :

a). If L (G) �= ∅ andg ∈ Kn × V with g �∈ KG, then L(G) �= L(G ∪ {g}).
b). Let H be another finite system of linear equations inn unknowns inV over K . Suppose that
L(G) �= ∅ and L(H) �= ∅ . Then L(G) = L(H) if and only if KG = KH.

4.2. LetK be a field and letk be a subfield ofK. Further, letG be a finite system of linear equations
in n unknowns overk and let Lk(G) denote the solution set inkn. The systemG is also a system of
linear equations overK and let the solution set of this system inKn be denoted by LK(G). Then
Es ist Lk(G) = kn ∩ LK(G) and use Gauss elimination process to prove:

a). Lk(G) �= ∅ if and only if LK(G) �= ∅.

b). If G homogeneous, then LK(G) = K · Lk(G).

c). If G homogeneous, thenG has a non-trivial solution overk if and only if G has a non-trivial
solution overK.

4.3. Let V be a free module over a ringA. Further, leta ∈ A be not a left-zero divisor inA. Then
the homothecyϑa : V → V , x �→ ax is injective. Deduce that: LetB be a ring and letA be a
subring ofB such thatB is a freeA–module. Show that an elementa ∈ A is a left-zero divisor in
A, if and only if a is a left-zero divisor inB. Further, show that(aB) ∩ A = a for all left-ideals
a ⊆ A.

4.4. a). Let x1, . . . , xn, xn+1, n ∈ N, be elements of a vector spaceV over a division ringK.
Show thatxi, 1 ≤ i ≤ n + 1, are linearly independent if and only ifxi with 1 ≤ i ≤ n are linearly
independent andxn+1 does not belong to theK– subspace generated byx1, . . . , xn.

b). Let V be aK–vector space which is not finitely generated. Construct recursively a linearly
independent sequence(xn)n∈N of elements inV .

4.5. Let U, W be freeA-submodules of theA–moduleV . Further, letxi, i ∈ I , resp.yj , j ∈ J ,
be a basis ofU resp.W . Show thatxi, yj , i ∈ I, j ∈ J together form a basis ofU + W , if and
only if U ∩ W = 0.

4.6. a). A basis of a free moduleV over a non-zero ringA is a minimal generating system of the
A–moduleV .

b). Every basis of a finite free module over a non-zero ring is finite.

4.7. Let A be a non-zero commutative ring. Show thatA is a principal ideal domain if and only if
every ideal inA is a freeA–submodule ofA. (Remark : In general this assertion is not true for
non-commutative rings. Counter example!)
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4.8. Let B be a ring and letA be a subring ofB such thatB is a freeA–module. Show that
A× = A ∩ B×. Moreover, ifB is a division ring, then so isA. (Hint : If a ∈ A ∩ B×, then use
B = aB.)

4.9. Let K be a division ring and letV be aK–vector space with basisx1, . . . , xn. Further, let
y ∈ V, y = a1x1 + · · · + anxn with ai ∈ K. Give necessary and sufficient condition on the
coeficientsa1, . . . , an such thatx1 − y, . . . , xn − y is a basis ofV .

4.10. Generalisation of the Exercise 3.5 : LetK be a division ring andA be a commutative subring
of K such thatK is a finiteA–module. Show thatA is a field. (Hint : Note thatK contains
a quotient fieldQ of A. Let x1, . . . , xm be aA-generating system ofK and lety1, . . . , yn be aQ–basis of
K with y1 = 1. Theny∗

1(x1), . . . , y
∗
1(xm) is anA– generating system ofQ, wherey∗

1 is the first coordinate
function with respect to the basisy1, . . . , yn. Now use the Exercise 3.5.)

4.11. LetL be a division ring and letK be a sub-division ring ofL. Further, letVL be anL–vector
space with theL–basisx1, . . . , xn andV be theK–vector spaceKx1 + · · · + Kxn ⊆ VL. (For
example:VL := Ln; x1, . . . , xn is the standard basis;V = Kn.)

a). Show that :y1, . . . , ym ∈ V are linearly independent overK (resp. form aK–generating system
of V resp. form aK–basis ofV ) if and only if they are linearly independent overL (resp. form a
L–generating system ofVL resp. form aL–basis ofVL).

b). Let U be aK–subspace ofV . LetUL denote theL-subspace ofVL generated byU . Show that:
DimK U = DimL UL andU = V ∩ UL. If W is anotherK–subspace ofV , thenU ⊆ W (resp.
U = W ) if and only if UL ⊆ WL (resp.UL = WL).

c). Prove the analogous assertions in the caseVL is not finite dimensional (overL).

4.12. Let K be a divison ring and letM be a maximalK–linear independent subset in the set of
0-1–sequences fromKN. Show that :M has the cardinality of the continuum. (Hint : (In view
of the exercise 4.10, we may assume thatK is the quotient field of its prime ringZ · 1K . Using cardinality
arguments show that the dimension of the subspace generated by the 0-1–sequences inKN is the cardinality
of the continuum.)

4.13. Let xi, i ∈ I , be a family ofn–tuples fromZn. For a prime numberp, let Kp denote a field
with p elements. Show that the following statements are equivalent:

(i) Thexi are linearly independent overZ.

(ii) The images ofxi, i ∈ I , in Qn, are linearly independent overQ.

(iii) There exists a prime numberp such that the images ofxi, i ∈ I , in Kn
p, are linearly independent

over Kp.

(iv) For almost all prime numbersp, the images ofxi, i ∈ I , in Kn
p, are linearly independent over

Kp.

— If |I | = n , then the above statements are further equivalent to the following statement:

(v) There exists a non-zero integerm such thatmZn ⊆ ∑
i∈I Zxi .

4.14. Let xi, i ∈ I , be a family ofn–tuples fromZn. For every prime numberp let Kp denote a
field with p elements. Show that the following statements are equivalent:

(i) Thexi, i ∈ I , generate (theZ-module)Zn.

(ii) For every prime numebrp, the images ofxi, i ∈ I , in Kn
p , generate the Kp-vector space Knp.

(Hint : ((ii) ⇒ (i): Let U := ∑
i∈I Zxi . Note that by exercise 4.12, there exists a non-zero integerm with

mZn ⊆ U . Further: to every prime numberp and everyx ∈ Zn there existx ′ ∈ U, y ∈ Zn such that
x = x ′ + py, i.e. Zn ⊆ U + pZn for every prime numberp. From this deduce thatU = Zn.)

4.15. LetV be a vector space and letU1, U2 be subspaces ofV . Then there exists a basisxi, i ∈ I ,
of V satisfying the following property: for given subsetsI1, I2 of I , if xi, i ∈ I1 ∩ I2, is a basis
U1 ∩ U2, xi, i ∈ I1, a basis ofU1 andxi, i ∈ I2, a basis ofU2, thenxi, i ∈ I1 ∪ I2, is a basis of
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U1 + U2. (Hint : Proceed as in the proof in the finite dimensional case. –Remark : Therefore
the dimension formula also holds for not finite dimensional subspacesU, W .)

4.16. Let I be a non-empty open interval inR and let Cω
R(I ) (respectively, C0R(I ) ) be theR-

vector space of all real-analytic1) (respectively, continuous) real-valued functions onI . Then
Cω

R(I ) ⊆ C0
R(I ) and if U is a R-subspace of C0R(I ) with Cω

R(I ) ⊆ U , then show that DimR U is
the cardinality of the continuum.(Hint : Without loss of generality letI =] − 1, 1[. Let (aij )i∈N, j ∈ J ,
be a linearly independent family of 0-1–sequences inRN, where|J | = ℵ := |R|, see Exercise 4.11. Then
the functionst �→ ∑

i≥0 aij t
i , j ∈ J , in Cω

R(I ) are linearly independent overR. Alternative hint : the
family of the functionst �→ exp(at), a ∈ R, onI is linearly independent. Similarly, the rational functions
t �→ 1/(t − a), a ∈ R, |a| ≥ 1, are linearly independent in Cω

R(] − 1, 1[).) Prove the analogous results
for the complex vector space H(U) of holomorphic functions defined on a domainU ⊆ C.

Below one can see (simple) test-exercises.

Test-Exercises
T4.1. Let A be a ring. The elementa ∈ A is a basis of theA–moduleA, if and only if a is a unit inA.

T4.2. a). The elements 1,a ∈ R are linearly independent overQ, if and only if a is irrational (i.e. not
rational). (Remark : Two real numbersb, c, which are linearly independent overQ are called
i n c o m m e n s u r a b l e .Classical example: the length of the side and the length of the diagonal of a square
are incommensurable, since the real number

√
2 ∈ R is irrational.)

b). Let P be the set of all prime numbersp ∈ N∗. Show that the family(logp)p∈P is linearly independent
overQ.

T4.3. Let a, b ∈ N∗ andd := gcd(a, b). Then the relation submodule RelZ(a, b) of Z2 is generated by
(bd−1, −ad−1) ∈ Z2.

T4.4. In the subspaceU of the R–vector spaceRR of all funktions fromR into itself, generated by the
functionsx �→ sin(x + a), a ∈ R, show that the two functionsx �→ sinx, x �→ cosx(= sin(x + π/2))

form a basis ofU .

T4.5. EveryQ–vector spaceV �= 0 is not free over the subringZ of Q.

T4.6. Let x1, . . . , xn+1, n ∈ N, be linearly independent elements of a vector spaceV over the division
ring K. Suppose thatn elements amongx1, . . . , xn+1 are linearly independent overK. Then show that
DimK(RelK(x1, . . . , xn+1)) = 1.

T4.7. Let K be a divison ring,V be a finite dimensionalK–vector space and letVi, i ∈ I , be a family of
subspaces ofV . Then there exists a finite subsetJ of I such that

⋂
i∈I Vi = ⋂

i∈J Vi and
∑

i∈I Vi = ∑
i∈J Vi .

T4.8. Let K be a division ring and letV be not finite dimensionalK–vector space. Construct an infinite
sequencesU0 ⊂ U1 ⊂ · · · ⊂ Ui ⊂ · · · andW0 ⊃ W1 ⊃ · · · ⊃ Wi ⊃ · · · of subspaces ofV .

T4.9. Let I be a non-empty open interval inR and let C0
R(I ) be theR-vector space of all continuous

real-valued functions onI . Show that|C0
R(I )| = |R| . (Hint : The map C0R(I ) → RQ defined byf �→ f |Q

is injective.)

† J o h a n n C a r l F r i e d r i c h G a u s s ( 1 7 7 7 - 1 8 5 5 ) was born on 30 April 1777 in Brunswick, Duchy of
Brunswick (now Germany) and died on 23 Feb 1855 in Göttingen, Hanover (now Germany).

At the age of seven, Carl Friedrich Gauss started elementary school, and his potential was noticed almost immediately. His teacher,
Büttner, and his assistant, Martin Bartels, were amazed when Gauss summed the integers from 1 to 100 instantly by spotting that
the sum was 50 pairs of numbers each pair summing to 101.

In 1788 Gauss began his education at the Gymnasium with the help of Büttner and Bartels, where he learnt High German and Latin.
After receiving a stipend from the Duke of Brunswick- Wolfenbüttel, Gauss entered Brunswick Collegium Carolinum in 1792. At the
academy Gauss independently discovered Bode’s law, the binomial theorem and the arithmetic- geometric mean, as well as the law
of quadratic reciprocity and the prime number theorem.

1) A function f : I → R is called r e a l - a n a l y t i c a ta ∈ I , if there exist a open neighbourhoodU
of a and a convergent power series

∑∞
i=0 ai(x − a)i such thatf (x) = ∑∞

i=0 ai(x − a)i for all x ∈ U ∩ I .
A function f : I → R is called r e a l -a n a l y t i c if it is real-analytic at everya ∈ I .

D. P. Patil May 19, 2003 ,9:39 a.m.



4 Basic Algebra ; May-July 2003 ; 4. Linear Equations, Linear independence, Bases – Dimensions of vector spaces

In 1795 Gauss left Brunswick to study at Göttingen University. Gauss’s teacher there was Kaestner, whom Gauss often ridiculed.
His only known friend amongst the students was Farkas Bolyai. They met in 1799 and corresponded with each other for many years.

Gauss left Göttingen in 1798 without a diploma, but by this time he had made one of his most important discoveries - the construction
of a regular 17-gon by ruler and compasses This was the most major advance in this field since the time of Greek mathematics and
was published as Section VII of Gauss’s famous work, Disquisitiones Arithmeticae.

Gauss returned to Brunswick where he received a degree in 1799. After the Duke of Brunswick had agreed to continue Gauss’s
stipend, he requested that Gauss submit a doctoral dissertation to the University of Helmstedt. He already knew Pfaff, who was
chosen to be his advisor. Gauss’s dissertation was a discussion of the fundamental theorem of algebra.

With his stipend to support him, Gauss did not need to find a job so devoted himself to research. He published the book Disquisitiones
Arithmeticae in the summer of 1801. There were seven sections, all but the last section, referred to above, being devoted to number
theory.

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously, published the orbital positions
of Ceres, a new "small planet" which was discovered by G Piazzi, an Italian astronomer on 1 January, 1801. Unfortunately, Piazzi
had only been able to observe 9 degrees of its orbit before it disappeared behind the Sun. Zach published several predictions of
its position, including one by Gauss which differed greatly from the others. When Ceres was rediscovered by Zach on 7 December
1801 it was almost exactly where Gauss had predicted. Although he did not disclose his methods at the time, Gauss had used his
least squares approximation method.

In June 1802 Gauss visited Olbers who had discovered Pallas in March of that year and Gauss investigated its orbit. Olbers requested
that Gauss be made director of the proposed new observatory in Göttingen, but no action was taken. Gauss began corresponding
with Bessel, whom he did not meet until 1825, and with Sophie Germain.

Gauss married Johanna Ostoff on 9 October, 1805. Despite having a happy personal life for the first time, his benefactor, the Duke of
Brunswick, was killed fighting for the Prussian army. In 1807 Gauss left Brunswick to take up the position of director of the Göttingen
observatory. Gauss arrived in Göttingen in late 1807. In 1808 his father died, and a year later Gauss’s wife Johanna died after giving
birth to their second son, who was to die soon after her. Gauss was shattered and wrote to Olbers asking him give him a home for
a few weeks, to gather new strength in the arms of your friendship - strength for a life which is only valuable because it belongs to
my three small children.

Gauss was married for a second time the next year, to Minna the best friend of Johanna, and although they had three children, this
marriage seemed to be one of convenience for Gauss.

Gauss’s work never seemed to suffer from his personal tragedy. He published his second book, Theoria motus corporum coelestium
in sectionibus conicis Solem ambientium, in 1809, a major two volume treatise on the motion of celestial bodies. In the first volume
he discussed differential equations, conic sections and elliptic orbits, while in the second volume, the main part of the work, he
showed how to estimate and then to refine the estimation of a planet’s orbit. Gauss’s contributions to theoretical astronomy stopped
after 1817, although he went on making observations until the age of 70.

Much of Gauss’s time was spent on a new observatory, completed in 1816, but he still found the time to work on other subjects.
His publications during this time include Disquisitiones generales circa seriem infinitam, a rigorous treatment of series and an
introduction of the hypergeometric function, Methodus nova integralium valores per approximationem inveniendi, a practical essay
on approximate integration, Bestimmung der Genauigkeit der Beobachtungen, a discussion of statistical estimators, and Theoria
attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodus nova tractata. The latter work was inspired by geodesic
problems and was principally concerned with potential theory. In fact, Gauss found himself more and more interested in geodesy in
the 1820s.

Gauss had been asked in 1818 to carry out a geodesic survey of the state of Hanover to link up with the existing Danish grid. Gauss
was pleased to accept and took personal charge of the survey, making measurements during the day and reducing them at night,
using his extraordinary mental capacity for calculations. He regularly wrote to Schumacher, Olbers and Bessel, reporting on his
progress and discussing problems.

Because of the survey, Gauss invented the heliotrope which worked by reflecting the Sun’s rays using a design of mirrors and a
small telescope. However, inaccurate base lines were used for the survey and an unsatisfactory network of triangles. Gauss often
wondered if he would have been better advised to have pursued some other occupation but he published over 70 papers between
1820 and 1830.

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the idea of mapping one surface onto
another so that the two are similar in their smallest parts. This paper was published in 1825 and led to the much later publication
of Untersuchungen über Gegenstände der Höheren Geodäsie (1843 and 1846). The paper Theoria combinationis observationum
erroribus minimis obnoxiae (1823), with its supplement (1828), was devoted to mathematical statistics, in particular to the least
squares method.

From the early 1800s Gauss had an interest in the question of the possible existence of a non-Euclidean geometry. He discussed this
topic at length with Farkas Bolyai and in his correspondence with Gerling and Schumacher. In a book review in 1816 he discussed
proofs which deduced the axiom of parallels from the other Euclidean axioms, suggesting that he believed in the existence of non-
Euclidean geometry, although he was rather vague. Gauss confided in Schumacher, telling him that he believed his reputation would
suffer if he admitted in public that he believed in the existence of such a geometry.

In 1831 Farkas Bolyai sent to Gauss his son János Bolyai’s work on the subject. Gauss replied to praise it would mean to praise
myself . Again, a decade later, when he was informed of Lobachevsky’s work on the subject, he praised its "genuinely geometric"
character, while in a letter to Schumacher in 1846, states that he had the same convictions for 54 years indicating that he had known
of the existence of a non-Euclidean geometry since he was 15 years of age (this seems unlikely).

Gauss had a major interest in differential geometry, and published many papers on the subject. Disquisitiones generales circa
superficies curva (1828) was his most renowned work in this field. In fact, this paper rose from his geodesic interests, but it contained
such geometrical ideas as Gaussian curvature. The paper also includes Gauss’s famous theorema egregrium: If an area in R3

can be developed (i.e. mapped isometrically) into another area of R3 , the values of the Gaussian curvatures are identical in
corresponding points.
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The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in 1817, who stayed until her death
in 1839, while he was arguing with his wife and her family about whether they should go to Berlin. He had been offered a position
at Berlin University and Minna and her family were keen to move there. Gauss, however, never liked change and decided to stay in
Göttingen. In 1831 Gauss’s second wife died after a long illness.

In 1831, Wilhelm Weber arrived in Göttingen as physics professor filling Tobias Mayer’s chair. Gauss had known Weber since 1828
and supported his appointment. Gauss had worked on physics before 1831, publishing Über ein neues allgemeines Grundgesetz
der Mechanik, which contained the principle of least constraint, and Principia generalia theoriae figurae fluidorum in statu aequilibrii
which discussed forces of attraction. These papers were based on Gauss’s potential theory, which proved of great importance in his
work on physics. He later came to believe his potential theory and his method of least squares provided vital links between science
and nature.

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander von Humboldt attempted to obtain
Gauss’s assistance in making a grid of magnetic observation points around the Earth. Gauss was excited by this prospect and by
1840 he had written three important papers on the subject: Intensitas vis magneticae terrestris ad mensuram absolutam revocata
(1832), Allgemeine Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse
des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskräfte (1840). These papers all dealt with the current theories
on terrestrial magnetism, including Poisson’s ideas, absolute measure for magnetic force and an empirical definition of terrestrial
magnetism. Dirichlet’s principle was mentioned without proof.

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove an important theorem, which
concerned the determination of the intensity of the horizontal component of the magnetic force along with the angle of inclination.
Gauss used the Laplace equation to aid him with his calculations, and ended up specifying a location for the magnetic South pole.

Humboldt had devised a calendar for observations of magnetic declination. However, once Gauss’s new magnetic observatory
(completed in 1833 - free of all magnetic metals) had been built, he proceeded to alter many of Humboldt’s procedures, not pleasing
Humboldt greatly. However, Gauss’s changes obtained more accurate results with less effort.

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff’s laws, as well as building a primitive telegraph
device which could send messages over a distance of 5000 ft. However, this was just an enjoyable pastime for Gauss. He was more
interested in the task of establishing a world-wide net of magnetic observation points. This occupation produced many concrete
results. The Magnetischer Verein and its journal were founded, and the atlas of geomagnetism was published, while Gauss and
Weber’s own journal in which their results were published ran from 1836 to 1841.

In 1837, Weber was forced to leave Göttingen when he became involved in a political dispute and, from this time, Gauss’s activity
gradually decreased. He still produced letters in response to fellow scientists’ discoveries usually remarking that he had known the
methods for years but had never felt the need to publish. Sometimes he seemed extremely pleased with advances made by other
mathematicians, particularly that of Eisenstein and of Lobachevsky.

Gauss spent the years from 1845 to 1851 updating the Göttingen University widow’s fund. This work gave him practical experience
in financial matters, and he went on to make his fortune through shrewd investments in bonds issued by private companies.

Two of Gauss’s last doctoral students were Moritz Cantor and Dedekind. Dedekind wrote a fine description of his supervisor ...
usually he sat in a comfortable attitude, looking down, slightly stooped, with hands folded above his lap. He spoke quite freely,
very clearly, simply and plainly: but when he wanted to emphasise a new viewpoint ... then he lifted his head, turned to one of those
sitting next to him, and gazed at him with his beautiful, penetrating blue eyes during the emphatic speech. ... If he proceeded from
an explanation of principles to the development of mathematical formulas, then he got up, and in a stately very upright posture he
wrote on a blackboard beside him in his peculiarly beautiful handwriting: he always succeeded through economy and deliberate
arrangement in making do with a rather small space. For numerical examples, on whose careful completion he placed special
value, he brought along the requisite data on little slips of paper.

Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted by Hemstedt University. It was
appropriately a variation on his dissertation of 1799. From the mathematical community only Jacobi and Dirichlet were present, but
Gauss received many messages and honours.

From 1850 onwards Gauss’s work was again of nearly all of a practical nature although he did approve Riemann’s doctoral thesis
and heard his probationary lecture. His last known scientific exchange was with Gerling. He discussed a modified Foucalt pendulum
in 1854. He was also able to attend the opening of the new railway link between Hanover and Göttingen, but this proved to be his
last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning of 23 February, 1855.
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