

Basic Algebra

4 .A. — Continued — Free modules with rank

4.17. For a given $n \in \mathbb{N}$, let $a_1, \dots, a_n \in K$ be n distinct elements in a field K . Then the sequences $g_i := (a_i^\nu)_{\nu \in \mathbb{N}} \in K^{\mathbb{N}}$, $i = 1, \dots, n$, are linearly independent over K . (Hint: Suppose that the g_i are linearly dependent. Without loss of generality we may assume that $\text{Dim}_K(\text{Rel}_K(g_1, \dots, g_n)) = 1$, see exercise T4.6. Let (b_1, \dots, b_n) be a basis element of relations. Then the element $(b_1 a_1, \dots, b_n a_n)$ is also a relation of the g_i . This is a contradiction.)

4.18. Let K be a field and let I be an infinite set. Then $\text{Dim}_K(K^I) = |K^I|$. (Hint: (In view of¹), it is enough to prove that $|K| \leq \text{Dim}_K K^I$. Let $\sigma : \mathbb{N} \rightarrow I$ be injective and for $a \in K$, let g_a denote the I -tuple with $(g_a)_{\sigma(\nu)} := a^\nu$ for $\nu \in \mathbb{N}$ and $(g_a)_i := 0$ for $i \in I \setminus \text{im } \sigma$. Then by exercise 4.17, $(g_a)_{a \in K}$ are linearly independent.) Deduce that $\text{Dim}_K K^I > \text{Dim}_K K^{(I)}$. — Remark: This dimension formula for K^I is also valid for division rings K . Proof!).

4.19. Let K be a division ring. Further, let $x_i = (a_{i1}, \dots, a_{in}) \in K^n$, $i = 1, \dots, n$. With the j -th components of this n -tuple we form the new n -tuples $y_j := (a_{1j}, \dots, a_{nj})$, $j = 1, \dots, n$. Show that: the elements x_1, \dots, x_n of the K -Left-vector space K^n are linearly independent if and only if the elements y_1, \dots, y_n of the K -right-vector space K^n are linearly independent. (Hint: Suppose that x_1, \dots, x_n are linearly independent and $y_1 b_1 + \dots + y_n b_n = 0$, $b_j \in K$. Then $x_1, \dots, x_n \in \text{Rel}_K(b_1, \dots, b_n)$, and a dimension argument shows that $\text{Rel}_K(b_1, \dots, b_n) = K^n$, this means $b_1 = \dots = b_n = 0$.)

4.20. Let K be a division ring, I be a set and let $f_1, \dots, f_n \in K^I$, $n \in \mathbb{N}$. The following statements are equivalent:

- (i) The f_1, \dots, f_n are linearly independent over K .
- (ii) There exists a subset $J \subseteq I$ such that $|J| = n$ and that the restrictions $f_1|J, \dots, f_n|J \in K^J$ are linearly independent (and hence form a basis of K^J).
- (iii) The value $-n$ -tuples $(f_1(i), \dots, f_n(i)) \in K^n$, $i \in I$, generate K^n as a K -right-vector space.

(Hint: The implication (i) \Rightarrow (ii) can be proved by induction on n : Suppose that there exists a subset $J' \subseteq I$ with $(n-1)$ -elements is found for f_1, \dots, f_{n-1} such that $f_1|J', \dots, f_{n-1}|J'$ are linearly independent over K and so form a basis of $K^{J'}$. Then $f_n|J' = a_1(f_1|J') + \dots + a_{n-1}(f_{n-1}|J')$ with $a_1, \dots, a_{n-1} \in K$. Now, by (i) there exists an element $j \in I \setminus J'$ such that $f_n(j) \neq a_1 f_1(j) + \dots + a_{n-1} f_{n-1}(j)$. Now, choose $J := J' \cup \{j\}$. — For the equivalence (ii) \Leftrightarrow (iii) use the exercise 4.19.)

4.21. Let K be a division ring and let $a_1, \dots, a_n \in K$. Let $g_i := (a_i^\nu)_{\nu \in \mathbb{N}} \in K^{\mathbb{N}}$ and $f_i := (1, a_i, \dots, a_i^{n-1}) \in K^n$, $i = 1, \dots, n$. Then g_1, \dots, g_n are linearly independent over K if and only if f_1, \dots, f_n are linearly independent over K . (Hint: Let $h_j := (a_1^j, \dots, a_n^j) \in K^n$, $j \in \mathbb{N}$. Note that $f_i = g_i| \{0, \dots, n-1\}$ and $(f_1(j), \dots, f_n(j)) = (g_1(j), \dots, g_n(j)) = h_j$ for all $j = 1, \dots, n$. Therefore by exercise 4.20, g_1, \dots, g_n are linearly independent if and only if h_j , $j = 1, \dots, n$ generates the right-vector space K^n . Suppose that the elements h_0, \dots, h_m are linearly independent in the K -right - vector space K^n , but the elements h_0, \dots, h_{m+1} are not linearly independent, so h_{m+1} and hence h_j for every $j \geq m+1$ is a linear combination of h_0, \dots, h_m . Now again use the exercise 4.20.)

4.22. Let K be a field and let b_0, \dots, b_m be elements of K , all of which are not equal to 0. Then there exist atmost m distinct elements $x \in K$, which satisfy the equation

$$0 = b_0 \cdot 1 + b_1 x + \dots + b_m x^m.$$

(Hint: If x_1, \dots, x_{m+1} are distinct elements in K , then by exercises 4.17 and 4.21, the elements $h_j := (x_1^j, \dots, x_{m+1}^j)$, $0 \leq j \leq m$, are linearly independent over K . — Remark: the same result is also true for integral domains, since every integral domain is contained in a field, for example, in its quotient field. With

¹) Let A be a ring and let V be a free A -module of infinite rank. Then $|V| = |A| \cdot \text{rank}_A V = \text{Sup}\{|A|, \text{rank}_A V\}$.

the help of concept of polynomials the above assertion can be formulated as : *A non-zero polynomial of degree $\leq m$ over a field (or an integral domain) K has atmost m zeros in K .)*

Below one can see (simple) test-exercises.

Test-Exercises

T4.10. Let A be a ring $\neq 0$ with finitely many elements and let V be an A –module with a generating system of n elements, $n \in \mathbb{N}$. Show directly (without using the theorem) that every $n+1$ elements of V are linearly dependent. (**Hint :** Proceed as in the Example given in the class which uses only cardinality argument.)

T4.11. What is the rank of \mathbb{Q} as an abelian group?

T4.12. Let A be an integral domain (which is contained in a field Q). Further, let U be a subgroup of the unit group A^\times of A with an exponent²⁾ $m \neq 0$. Then U is cyclic (and finite). In particular, every finite subgroup of A^\times is cyclic; further, the unit group of every finite field (for example, the unit group of a prime ring of characteristic p , p prime, is cyclic.) (**Hint :** The equation $x^m = 1$ has atmost m solutions in A by exercise 4.22. Now use³⁾.)

T4.13. Let K be a field, I be a set and let $g \in K^I$ be a function on I into K , such that the image $\text{im}(g)$ is an infinite subset of K . Then the powers g^v , $v \in \mathbb{N}$ of g are linearly independent over K . (For example from this it follows that: the functions $t \mapsto \cos^v t$, $v \in \mathbb{N}$, from \mathbb{R} to itself are linearly independent; similarly, the functions $x \mapsto x^v$, $v \in \mathbb{N}$, from K to itself for an arbitrary infinite field K , are linearly independent.)

T4.14. Let L be a division ring, K be a subdivision ring of L and I be a set. For an arbitrary family $(f_j)_{j \in J}$ of functions $f_j \in K^I$ show that: the f_j , $j \in J$, are linearly independent over K if and only if they are linearly independent over L as a family of functions in L^I . (Use the exercise 6 and exercise 4.11(a).)

T4.15. Let A be a ring and let J be an indexed set with cardinality of the continuum. Then there exists a family x_j , $j \in J$, of A –linearly independent 0-1–sequences in $A^{\mathbb{N}}$. (**Hint :** (H. Brenner) Let P be the set of prime numbers. For a subset $R \subseteq P$, let $N(R)$ be the set of those positive natural numbers whose prime divisors belong to R , i.e. $N(R) = \{n \in \mathbb{N}^* \mid \text{prime divisors of } n \subseteq R\}$. Then the family x_R , $R \in \mathfrak{P}(P)$, is linearly independent, where x_R denote the indicator function of $N(R)$.)

²⁾ **Exponent of a group.** Let G be a group with neutral element e . Then the set of integers n with $a^n = e$ for all $a \in G$ forms a subgroup U_G of the additive group of \mathbb{Z} , i.e. $U_G := \{n \in \mathbb{Z} \mid a^n = e \text{ for all } a \in G\}$ and hence there is a unique $m \in \mathbb{N}$ such that $U_G = \mathbb{Z}m$. This natural number m is called the exponent of G and usually denoted by $\text{Exp}G$. For example, if G is a finite cyclic group, then $\text{Exp}G = \text{Ord}G$; $\text{Exp}\mathfrak{S}_3 = \text{Ord}\mathfrak{S}_3$; In general : $\text{Exp}G$ and $\text{Ord}G$ have the same prime divisors. (proof!).

³⁾ **Exercise on groups.** Let G be a finite group with neutral elements e . Suppose that for every divisor $d \in \mathbb{N}^*$ of the order $\text{Ord}G$ there are atmost d elements $x \in G$ such that $x^d = e$. Then G is a cyclic group.