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Basic Algebra

5. Algebras, Free Algebras

Arthur Cayley’
(1821-1895)

5.1. Let B be an algebra over a field and ket B.

a). TheK—subalgebr& [x] € BisafiniteK—algebraifand onlyifthe system of powets v € N,
of x islinearly dependent ove¥ . Inthis case Ding K [x] is the smallest natural numbere N such
thatx?, ..., x” are linearly dependent ovér. We say thak is algebraic oveX (of degree’)
if Dim ¢ K[x] = r < oo. If K[x]is not finite dimensional then we say thais transcendental
over?l) K. If Bis finite dimensional ovek , then every element a8 is algebraic ovek .

b). If x is nilpotent, then the&kK—subalgebra& [x] C B is finite and Dinmk K[x] is the smallest

natural numberr with x” = 0. (Hint: Fromx® + a1x**t + ... 4 a,_,_1x"~1 = O with s < r and
ai,...,a,_s_1 € K and sax* =0.)

c). If x is unipotent, therkK[x] finite K—algebra. Ifs is an integer, which is not a multiple of
CharK, thenK[x] = K[x*]. (Hint: Without loss of generality we may assume that 0. Then

x =14/, x"is nilpotent, and®* = 1 4 x’e with e € K[x]*. FromK|[x] = K[x'] andK[x*] = K[x'e] by
using b) deduce that DigK [x] = Dimg K[x*].)

d). Letx be unipotent and let € B be arbitrary. Suppose thate Z is not a multiple of Chak
and thaty andx® commute, thery andx commute.  (Hint: The elements which commute with
form a K—subalgebra oB!)

5.2. a). Let B be an algebra over a fieldand letx be an element iB. Further, leta, ..., a,
be pairwise distinct elements éfsuch thatc — a;, ..., x — a, are units inB. Show that(x —
a1)7L, ..., (x — a,) ! are linearly independent ovérif and only if 1, x, ..., x"~* are linearly
independent ovet. (Hint: Lety := (x —a)~tandy := [['_; (x — a). Ifthe y, are linearly
independent, then they; are also linearly independentin- & - x + - - - + k - x"~1. Conversely, suppose that
1, x,...,x"Lare linearly independent and thaty; + - - - + b,y, = 0 with b; € k. Multiplying by y and
comparing the coefficient af'~ on both sides we gét +- - - + b, = 0. Therefore 0= Y_7_; b; (i —y,) =
Z::ll bi(a; — a,)y;y,. Now use induction.)

b). Let L be a field and leK be a subfield of.. If x € L is not algebraic ovek then show that

the set{(x —a)~! | a € K} is linearly independent ovet. In particular, ifK is uncountable then
Dimg L is uncountable. (Hint : Use the part a).)

5.3. Let B be an algebra over a subring Further, letM be a subset oB with B = A[M],
i.e. M is a set of generators for the-algebraB. Suppose that eithet or M is infinite. Then

1y In 1873HERMITE, C. (1822-1901) proved that the real numbee 3", n—l, is transcendental ovép.
This proof was later simplified b iLBERT, D. (1862-1943).

In 1882LINDEMANN, C. L. F. proved that the real numberis transcendental ové). This proof is more
difficult than that ofe. One of the important consequence of this fact is that it is impossible to square the
circle by using straightedge and compass only.
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|B| = Sup|Al, |IM|}. Moreover, if B is finitely generated oveA and if A is infinite, then
|B| = |A.

5.4. LetL be adivisionring and lét be a subdivision ring of.. Further, letM be a subset of and
K be the smallest subdivision ring bfwhich containf andk. Suppose that eithéror M is infinite.
Then |K| = Sup|k|, |M|}. (Hint: Considerdg := k[M], Mo := {x1:x € Ag~ {0}}, A1 := Ao[M1]

andsoon...)

5.5. Let I be a set and leX be a field.

a). The K—algebrak is cyclic, i.e. K! = K[x] for somex € K' if and only if I is finite and
x:1 — K injective. (see also exercise 5.6.)

b). Anelementr € K/ algebraic ovek (see exercise 5.1a)) if and only if the imag@) of x is
a finite subset oK. Moreover, in this case the degreexabver K is equal to the cardinalityx (1) |
of x(I).

5.6. Let I be a finite setk be a field and leB be aK -subalgebra of the function algeb .
ThenB = K if and only if it separates the elementsiqfi.e. if for every pairi, j € I withi # j
there exists a functiom : 7 — K in B such thatc(i) # x(j). (Hint: For a fixedi € I, let
x; € B, j # i be the function such that := x;(j) # x;@@). Then[],., ,; (x; —a;) € B is a function
which vanishes or \ {i} ands 0 ati. — Using this exercise give another proof of the exercise 5.5 a).)
5.7. Let I be afinite setk be a field and leB be aK—subalgebra of the function algebkd.

a). Let Rp be a relation o defined by “(i, j) € Rg ifand only if f(i) = f(j) forall f € B”.
Show thatR is an equivalence relation dn

b). The mapB — Rj is a bijective map from the set of subalgebraskdf onto the set of all
equivalence relations oh (Hint: For an equivalence relatioR on I, let By = {f € K! |
f is constant on each equivalence clas®pf ThenB; is a K—subalgebra ok’ and the maRR — By is
the inverse of the map +— Ry.) Inparicular, the number ok —subalgebras ok’ is the Bell’s
number? B,, wheren := |I].

5.8. A cyclic algebraB over a fieldK is a principal ideal ring. (Hint: Let B = K[x]. Either
the powerst’, i € N, are linearly independent ovéf or there exists a natural number € N such that
x9, ..., x"tis ak-basis ofB, see exercise5.1a). ff = Y", a;x' € B with a,, # 0 (andm < r in the
second case), then is called the degree of resp.x. Letb be an ideal inB, b # 0, and letf € b be an
element# 0 with minimal degreen. Thenthex' £, i € N, resp. thes’ f, 0 <i < r —m, in the second case

forms aK—basis ofb. Thereforeb = Bf.) If Dim g B is not finite, thenB is a principal ideal domain.

5.9. (Boolean functions) Le# be a non-zero Boolean ring and Iit= {0, 1} C A be the
prime ring ofA. Letn € N. A polynomial functionf : A — AiscalledaBoolean function

D Bell's numbers. (Bell, E. T. (1883-1960)) Lef be a finite set with card) = n. The number
of equivalence relations ohis called thez-th Bell number and and denoted byg,,.

a). fo=1andB,1 =) ;o (;)B for everyn € N.
b). Letm,n € Nwithm < n and letB,,, := Y1~ (7)B—i- Then

') /30,11 = /811 and/go,n+l = ,Bn,n-
ii). Butdnsl = Bmn + Bmni1 for everym, n € Nwithm < n.

n o0

: . : . - _ 1
iii). The power series expansion of the analytic funcéon® at 0 is E /Snz—'. In particular,8, = - R
n: e H
n=0 k=0

n

c). Using the above formulas we have the following table:

n|012345678 9 10
B, 11 1 2 5 15 52 203 877 4140 21147 115975
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in n variables overd. We want to show that thid—algebra of these functions, is itself a Boolean
ring, which is denoted here by,BA). Further, for 1< i < n thei—th projection(as, ..., a,) — a;
is denoted byp; € B,(A). Show that : B(A) is a free A—algebra of rank’2 The elements
pu = [ljey pi» H € {1, ..., n}, form anA—(module-) basis of §A). The map
B,(4) — AX" mit f— fIK"
is a bijetive map (and hence a-algebra—isomorphism). The inverse map
g Z bypy mit by = Z g(er),
HC{l,...,n} FCH

where for a subsetef] C {1, ..., n}, er € K" denote thei—tuple, which has the value at F is
1 and the value at¢ F is 0. (Thisistheinverse formula foBoolean functions)The algebra
B, (A) is equal to the algebra of all—valued functions oa” ifand only if A = K.

5.10. Let K be a field and letd be aK—algebra. Fox € A, leti, : A — A (respectively
pox - A — A) be the left (respectively right) multiplication — xy (respectively ¢ — yx) by x
onA. Then

a). Ay, px € Endg(A), buti,, py & Endg—ag(A), if x # 1, i.e., 1, andp, are notK-algebra
endomomorphisms if # 1.

b). The mapr : A — Endkx A defined byx — A, is an injectiveA—algebra homomorphism.

c). Suppose thad is finite dimensional oveK. Then show that the following statements are
equivalent:

(i) x isaunitinA. (i) A, Is bijective. (iii) p is bijective. (iv)A, is injective.
(V) p, is injective. (vi)A, is surjective. (vii)p, is surjective.
(For the equivalence of the (i), (ii) and (iii) the assumption finite dimensional is not necessary.)

d). Suppose tha# is finite dimensional oveK. Then show that the following statements are
equivalent:

(i) A is a division ring.
(ii) A, isinjective for everyx # 0, i.e. the left cancellation law holds .
(i) p, isinjective for everye £ 0, i.e. the right cancellation law holds i

Below one can see (simple) test-exercises.

Test-Exercises

T5.1. Let A be a commutative ring and |&®# be anA-algebra. OnC := B x B the multiplication
(a, x)(b, y) .= (ab, ay + xb) defines am—algebra strukture such thét:= {0} x B is a two sided ideal in
C with V2 = 0.

T5.2. Let A be a commutative ring/ be anA—module and leB := A x V be the idealisation o¥ .

a). The following statements are equivalent: Xi)s a finite A—-module. (ii)B is a finite A—algebra. (iii)B
is a finitely generated—algebra.

b). Let V be a finitely generated—module and leWw < V be not finitely generated—submodule o#/'.
Then the idealisatiod x W of W is anA—subalgebra of the finita—algebraA x V, which is neither finite
nor finitely generated.

T5.3. LetK be afinite field withy elements. The polynomial functions- ¢/, 0 < i < ¢, form aK-basis
of all polynomial functions orK into itself. (consider? = ¢ for all t € K.) Every function ork into itself
is a polynomial function.

T5.4. Let A be an algebra over an infinite fiekd, which has only finitely man)X —subalgebras. The#

is a finite monogen& —algebra and in particular, commutative. A, ..., A, are all proper subalgebras
of A, then everyx € A \ U;zl A, Is a primitive element oA over K. Such an element exists! see
exercise 3.6.)
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T5.5. Qis not a finitely generated—algebra.

T5.6. Let A be a commutative ring amd I&t # O be a freeA—algebra. Lek;, i € I, be anA—basis ofB.
Then ]B = Zie] a;x;, a; € A andziel Aai = A. (Hlnt Leta:= Ziel Aai. ThenB = lB -B C ClB)

T5.7. Let K be a field. Everyk—algebraB with Dimg B < 2 is commutative.

T5.8. Let p be a prime number and It be a finite ring withp? elements. Ther is commutative. Klint :
ConsiderA as an algebra oveéf - 1,.)

T5.9. Let L be a finite dimensional division algebra over a fi&gldwith DimgL = p a prime number.
ThenkK -1, andL are the onlyK-subalgebras of. andL = K[x] forall x € L \ K. Inparticular,L is
commutative.

T5.10. Let A be acommutative ring and I8tbe a finite freeA—algebra. Further, ldtbe a set. The®’ is a
finite free algebra ovet’. If B # 0 andl # @, then every free8’—module has a rankH(nt: If x1, ..., x,,
is anA—basis ofB, then consider the corresponding coordinate functignsB — A and to everyF € B’
the elements; o F € A’. — Repeat the footstep in the case=R, B :=C, x1:=1, xp :=1.)

T5.11. Let B betheC—subalgebr&[F, F]of theC-algebra of all complex valued functions®ngenerated
by the functions” := exp(ir) = cost +isint andF = F~! = cost —isinz. Further, letA be theR—algebra
R[cost, sing].

a). The functionsF”, n € Z, form aC—vector space basis . (Hint: It is enough to show that the
F", n € Z, are linearly independent.)

b). A is theR—algebra of the real valued functions fragn The functions cost, n € N, together with the
functions sims, n € N*, form aR-basis ofA and aC—basis ofB.

c). The monogen&—algebraR[cos?] has theR—vector space basis ¢osn € N, resp. coat, n € N.
Deduce thad "' Rcogt =)' Rcosn: for allm € N.

TArthur C ayley (1821-1895) Arthur Cayley was born on 16 Aug 1821 in Richmond, Surrey, England and died on
26 Jan 1895 in Cambridge, Cambridgeshire, England. Arthur Cayley’s father Henry Cayley, although from a family who had lived for
many generations in Yorkshire, England, lived in St Petersburg, Russia. It was in St Petersburg that Arthur spent the first eight years
of his childhood before his parents returned to England and settled near London. Arthur showed great skill in numerical calculations
at school and, after he moved to King's College School in 1835, his aptitude for advanced mathematics became apparent. His
mathematics teacher advised that Arthur be encouraged to pursue his studies in this area rather than follow his father’s wishes to
enter the family business as merchants.

In 1838 Arthur began his studies at Trinity College, Cambridge from where he graduated in 1842. While still an undergraduate he
had three papers published in the newly founded Cambridge Mathematical Journal edited by Duncan Gregory. Cayley graduated
as Senior Wrangler and won the first Smith’s prize. For four years he taught at Cambridge having won a Fellowship and, during this
period, he published 28 papers in the Cambridge Mathematical Journal.

A Cambridge fellowship had a limited tenure so Cayley had to find a profession. He chose law and was admitted to the bar in 1849.
He spent 14 years as a lawyer but Cayley, although very skilled in conveyancing (his legal speciality), always considered it as a
means to make money so that he could pursue mathematics.

While still training to be a lawyer Cayley went to Dublin to hear Hamilton lecture on quaternions. He sat next to Salmon during these
lectures and the two were to exchange mathematical ideas over many years. Another of Cayley’s friends was Sylvester who was
also in the legal profession. The two both worked at the courts of Lincoln’s Inn in London and they discussed deep mathematical
questions during their working day. During these 14 years as a lawyer Cayley published about 250 mathematical papers - how many
full time mathematicians could compare with the productivity of this 'amateur’?

In 1863 Cayley was appointed Sadleirian professor of Pure Mathematics at Cambridge. This involved a very large decrease in income
for Cayley who now had to manage on a salary only a fraction of that which he had earned as a skilled lawyer. However Cayley was
very happy to have the chance to devote himself entirely to mathematics. As Sadleirian professor of Pure Mathematics his duties
were to explain and teach the principles of pure mathematics and to apply himself to the advancement of that science. Cayley was to
more than fulfil these conditions. He published over 900 papers and notes covering nearly every aspect of modern mathematics. The
most important of his work is in developing the algebra of matrices, work in non-euclidean geometry and n-dimensional geometry.

As early as 1849 Cayley a paper linking his ideas on permutations with Cauchy’s. In 1854 Cayley wrote two papers which are
remarkable for the insight they have of abstract groups. At that time the only known groups were permutation groups and even this
was a radically new area, yet Cayley defines an abstract group and gives a table to display the group multiplication. He gives the
'Cayley tables’ of some special permutation groups but, much more significantly for the introduction of the abstract group concept,
he realised that matrices and quaternions were groups.

Cayley developed the theory of algebraic invariance, and his development of n-dimensional geometry has been applied in physics to
the study of the space-time continuum. His work on matrices served as a foundation for quantum mechanics, which was developed
by Werner Heisenberg in 1925. Cayley also suggested that euclidean and non-euclidean geometry are special types of geometry.
He united projective geometry and metrical geometry which is dependent on sizes of angles and lengths of lines.

In 1881 he was invited to give a course of lectures at Johns Hopkins University in the USA, where his friend Sylvester was professor
of mathematics. He spent January to May in 1882 at Johns Hopkins University where he lectured on Abelian and Theta Functions.
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In 1883 Cayley became President of the British Assaociation for the Advancement of Science. In his presidential address Cayley gave
an elementary account of his own views of mathematics. His views of geometry were

It is well known that Euclid’s twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration: and that
Lobachevsky constructed a perfectly consistent theory, wherein this axiom was assumed not to hold good, or say a system of non-
Euclidean plane geometry. My own view is that Euclid’s twelfth axiom in Playfair's form of it does not need demonstration, but is part
of our experience - the space, that is, which we become acquainted with by experience, but which is the representation lying at the
foundation of all external experience. Riemann’s view ... is that, having 'in intellectu’ a more general notion of space (in fact a notion
of non-Euclidean space), we learn by experience that space (the physical space of our experience) is, if not exactly, at least to the
highest degree of approximation, Euclidean space. But suppose the physical space of our experience to be thus only approximately
Euclidean space, what is the consequence which follows? Not that the propositions of geometry are only approximately true, but
that they remain absolutely true in regard to that Euclidean space which has been so long regarded as being the physical space of
our experience. Two descriptions of Cayley, both of him as an old man, are interesting. Macfarlane says : ... | attended a meeting
of the Mathematical Society of London. The room was small, and some twelve mathematicians were assembled round a table,
among themwas Prof. Cayley ... At the close of the meeting Cayley gave me a cordial handshake and referred in the kindest terms
to my papers which he had read. He was then about 60 years old, considerably bent, and not filling his clothes. What was most
remarkable about him was the active glance of his grey eyes and his peculiar boyish smile.

Thomas Hirst, one of his friends, wrote: ... a thin weak-looking individual with a large head and face marked with small-pox: he
speaks with difficulty and stutters slightly. He never sits upright on his chair but with his posterior on the very edge he leans one
elbow on the seat of the chair and throws the other arm over the back.
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