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Basic Algebra

5. Algebras, Free Algebras

A r t h u r C a y l e y †

(1821-1895)

5.1. Let B be an algebra over a field and letx ∈ B.

a). TheK–subalgebraK[x] ⊆ B is a finiteK–algebra if and only if the system of powersxν, ν ∈ N,
of x is linearly dependent overK. In this case DimKK[x] is the smallest natural numberr ∈ N such
thatx0, . . . , xr are linearly dependent overK. We say thatx is a l geb ra i c ove rK (of degreer)
if Dim KK[x] = r < ∞. If K[x] is not finite dimensional then we say thatx is t r a n s c e n d e n t a l
o v e r 1) K. If B is finite dimensional overK, then every element ofB is algebraic overK.

b). If x is nilpotent, then theK–subalgebraK[x] ⊆ B is finite and DimKK[x] is the smallest
natural numberr with xr = 0. (Hint : Fromxs + a1x

s+1 + · · · + ar−s−1x
r−1 = 0 with s < r and

a1, . . . , ar−s−1 ∈ K and soxs = 0.)

c). If x is unipotent, thenK[x] finite K–algebra. Ifs is an integer, which is not a multiple of
CharK, thenK[x] = K[xs ]. (Hint : Without loss of generality we may assume thats > 0. Then
x = 1 + x ′, x ′ is nilpotent, andxs = 1 + x ′e with e ∈ K[x]×. FromK[x] = K[x ′] andK[xs ] = K[x ′e] by
using b) deduce that DimKK[x] = DimKK[xs ].)

d). Let x be unipotent and lety ∈ B be arbitrary. Suppose thats ∈ Z is not a multiple of CharK
and thaty andxs commute, theny andx commute. (Hint : The elements which commute withy
form aK–subalgebra ofB!)

5.2. a). Let B be an algebra over a fieldk and letx be an element inB. Further, leta1, . . . , an

be pairwise distinct elements ofk such thatx − a1, . . . , x − an are units inB. Show that(x −
a1)

−1, . . . , (x − an)
−1 are linearly independent overk if and only if 1, x, . . . , xn−1 are linearly

independent overk. (Hint : Let yi := (x − ai)
−1 andy := ∏n

i=1 (x − ai). If the yi are linearly
independent, then theyyi are also linearly independent ink + k ·x +· · ·+ k ·xn−1. Conversely, suppose that
1, x, . . . , xn−1 are linearly independent and thatb1y1 + · · · + bnyn = 0 with bi ∈ k. Multiplying by y and
comparing the coefficient ofxn−1 on both sides we getb1+· · ·+bn = 0. Therefore 0= ∑n

i=1 bi(yi −yn) =∑n−1
i=1 bi(ai − an)yiyn. Now use induction.)

b). Let L be a field and letK be a subfield ofL. If x ∈ L is not algebraic overK then show that
the set{(x − a)−1 | a ∈ K} is linearly independent overK. In particular, ifK is uncountable then
DimKL is uncountable. (Hint : Use the part a).)

5.3. Let B be an algebra over a subringA. Further, letM be a subset ofB with B = A[M],
i.e. M is a set of generators for theA-algebraB. Suppose that eitherA or M is infinite. Then

1) In 1873Hermite, C. (1822-1901) proved that the real numbere := ∑∞
i=0

1
n! is transcendental overQ.

This proof was later simplified byHilbert, D. (1862-1943).

In 1882Lindemann, C. L. F. proved that the real numberπ is transcendental overQ. This proof is more
difficult than that ofe. One of the important consequence of this fact is that it is impossible to square the
circle by using straightedge and compass only.
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|B| = Sup{|A|, |M|}. Moreover, if B is finitely generated overA and if A is infinite, then
|B| = |A|.
5.4. LetL be a division ring and letk be a subdivision ring ofL. Further, letM be a subset ofL and
K be the smallest subdivision ring ofL which containM andk. Suppose that eitherk orM is infinite.
Then |K| = Sup{|k|, |M|}. (Hint : ConsiderA0 := k[M], M0 := {x−1 : x ∈ A0 � {0}}, A1 := A0[M1]
and so on ... )

5.5. Let I be a set and letK be a field.

a). TheK–algebraKI is cyclic, i.e. KI = K[x] for somex ∈ KI if and only if I is finite and
x :I → K injective. (see also exercise 5.6.)

b). An elementx ∈ KI algebraic overK (see exercise 5.1a)) if and only if the imagex(I ) of x is
a finite subset ofK. Moreover, in this case the degree ofx overK is equal to the cardinality|x(I )|
of x(I ).

5.6. Let I be a finite set,K be a field and letB be aK-subalgebra of the function algebraKI .
ThenB = KI if and only if it separates the elements ofI , i.e. if for every pairi, j ∈ I with i �= j

there exists a functionx : I → K in B such thatx(i) �= x(j). (Hint : For a fixedi ∈ I , let
xj ∈ B, j �= i be the function such thataj := xj (j) �= xj (i). Then

∏
j∈I, j �=i (xj − aj ) ∈ B is a function

which vanishes onI \ {i} and �= 0 ati. — Using this exercise give another proof of the exercise 5.5 a).)

5.7. Let I be a finite set,K be a field and letB be aK–subalgebra of the function algebraKI .

a). Let RB be a relation onI defined by “(i, j) ∈ RB if and only if f (i) = f (j) for all f ∈ B ”.
Show thatRB is an equivalence relation onI .

b). The mapB �→ RB is a bijective map from the set of subalgebras ofKI onto the set of all
equivalence relations onI . (Hint : For an equivalence relationR on I , let BR := {f ∈ KI |
f is constant on each equivalence class ofR}. ThenBR is aK–subalgebra ofKI and the mapR �→ BR is
the inverse of the mapB �→ RB .) In paricular, the number ofK–subalgebras ofKI is the B e l l ’s
n u m b e r1) βn, wheren := |I |.
5.8. A cyclic algebraB over a fieldK is a principal ideal ring. (Hint : Let B = K[x]. Either
the powersxi, i ∈ N, are linearly independent overK or there exists a natural numberr ∈ N such that
x0, . . . , xr−1 is aK–basis ofB, see exercise 5.1a). Iff = ∑m

i=0 aix
i ∈ B with am �= 0 (andm < r in the

second case), thenm is called the degree off resp.x. Let b be an ideal inB, b �= 0, and letf ∈ b be an
element�= 0 with minimal degreem. Then thexif, i ∈ N, resp. thexif, 0 ≤ i < r − m, in the second case
forms aK–basis ofb. Thereforeb = Bf .) If Dim KB is not finite, thenB is a principal ideal domain.

5.9. ( B o o l e a n f u n c t i o n s ) LetA be a non-zero Boolean ring and letK = {0, 1} ⊆ A be the
prime ring ofA. Letn ∈ N. A polynomial functionf : An → A is called aBoo lean func t i on

1) Bell’s numbers. ( B e l l , E . T . ( 1 8 8 3 - 1 9 6 0 ) ) LetI be a finite set with card(I ) = n. The number
of equivalence relations onI is called then-th B e l l n u m b e r and and isdenoted byβn.

a). β0 = 1 andβn+1 = ∑n

k=0

(
n

k

)
βk for everyn ∈ N.

b). Let m, n ∈ N with m ≤ n and letβm,n := ∑m

i=0

(
m

i

)
βn−i . Then

i). β0,n = βn andβ0,n+1 = βn,n.

ii). βm+1,n+1 = βm,n + βm,n+1 for everym, n ∈ N with m ≤ n.

iii). The power series expansion of the analytic functioneez−1 at 0 is
∞∑

n=0

βn

zn

n!
. In particular,βn = 1

e

∞∑

k=0

kn

k!
.

c). Using the above formulas we have the following table :

n 0 1 2 3 4 5 6 7 8 9 10

βn 1 1 2 5 15 52 203 877 4140 21147 115975.
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in n variables overA. We want to show that thisA–algebra of these functions, is itself a Boolean
ring, which is denoted here by Bn(A). Further, for 1≤ i ≤ n thei–th projection(a1, . . . , an) �→ ai

is denoted bypi ∈ Bn(A). Show that : Bn(A) is a freeA–algebra of rank 2n. The elements
pH := ∏

i∈H pi, H ⊆ {1, . . . , n}, form anA–(module–) basis of Bn(A). The map

Bn(A) → AKn

mit f �→ f |Kn

is a bijetive map (and hence anA–algebra–isomorphism). The inverse map

g �→
∑

H⊆{1,...,n}
bHpH mit bH :=

∑

F⊆H

g(eF ) ,

where for a subseteqF ⊆ {1, . . . , n}, eF ∈ Kn denote then–tuple, which has the value ati ∈ F is
1 and the value ati /∈ F is 0. ( This is thei n v e r s e f o r m u l a forBoolean functions).The algebra
Bn(A) is equal to the algebra of allA–valued functions onAn if and only if A = K.

5.10. Let K be a field and letA be aK–algebra. Forx ∈ A, let λx : A → A (respectively
ρx : A → A) be the left (respectively right) multiplicationy �→ xy (respectively (y �→ yx) by x

onA. Then

a). λx , ρx ∈ EndK(A), but λx , ρx �∈ EndK–alg(A), if x �= 1, i.e.,λx andρx are notK-algebra
endomomorphisms ifx �= 1.

b). The mapλ : A → EndK A defined byx �→ λx is an injectiveA–algebra homomorphism.

c). Suppose thatA is finite dimensional overK. Then show that the following statements are
equivalent :

(i) x is a unit inA. (ii) λx is bijective. (iii) ρx is bijective. (iv)λx is injective.

(v) ρx is injective. (vi)λx is surjective. (vii)ρx is surjective.

(For the equivalence of the (i), (ii) and (iii) the assumption finite dimensional is not necessary.)

d). Suppose thatA is finite dimensional overK. Then show that the following statements are
equivalent :

(i) A is a division ring.

(ii) λx is injective for everyx �= 0, i.e. the left cancellation law holds inA.

(iii) ρx is injective for everyx �= 0, i.e. the right cancellation law holds inA.

Below one can see (simple) test-exercises.

Test-Exercises
T5.1. Let A be a commutative ring and letB be anA–algebra. OnC := B × B the multiplication
(a, x)(b, y) := (ab, ay + xb) defines anA–algebra strukture such thatV := {0} × B is a two sided ideal in
C with V 2 = 0.

T5.2. Let A be a commutative ring,V be anA–module and letB := A × V be the idealisation ofV .

a). The following statements are equivalent: (i)V is a finiteA–module. (ii)B is a finiteA–algebra. (iii)B
is a finitely generatedA–algebra.

b). Let V be a finitely generatedA–module and letW ⊆ V be not finitely generatedA–submodule ofV .
Then the idealisationA × W of W is anA–subalgebra of the finiteA–algebraA × V , which is neither finite
nor finitely generated.

T5.3. LetK be a finite field withq elements. The polynomial functionst �→ t i , 0 ≤ i < q, form aK–basis
of all polynomial functions onK into itself. (considertq = t for all t ∈ K.) Every function onK into itself
is a polynomial function.

T5.4. Let A be an algebra over an infinite fieldK, which has only finitely manyK–subalgebras. ThenA
is a finite monogeneK–algebra and in particular, commutative. (IfA1, . . . , Ar are all proper subalgebras
of A, then everyx ∈ A �

⋃r

�=1 A� is a primitive element ofA over K. Such an elementx exists! see
exercise 3.6.)
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T5.5. Q is not a finitely generatedZ–algebra.

T5.6. Let A be a commutative ring amd letB �= 0 be a freeA–algebra. Letxi, i ∈ I , be anA–basis ofB.
Then 1B = ∑

i∈I aixi , ai ∈ A and
∑

i∈I Aai = A. (Hint : Let a := ∑
i∈I Aai . ThenB = 1B · B ⊆ aB.)

T5.7. Let K be a field. EveryK–algebraB with DimKB ≤ 2 is commutative.

T5.8. Let p be a prime number and letA be a finite ring withp2 elements. ThenA is commutative. (Hint :
ConsiderA as an algebra overZ · 1A.)

T5.9. Let L be a finite dimensional division algebra over a fieldK with DimKL = p a prime number.
ThenK · 1L andL are the onlyK-subalgebras ofL andL = K[x] for all x ∈ L \ K. In particular,L is
commutative.

T5.10. LetA be a commutative ring and letB be a finite freeA–algebra. Further, letI be a set. ThenBI is a
finite free algebra overAI . If B �= 0 andI �= ∅, then every freeBI –module has a rank. (Hint : If x1, . . . , xm

is anA–basis ofB, then consider the corresponding coordinate functionsx∗
i : B → A and to everyF ∈ BI

the elementsx∗
i ◦ F ∈ AI . — Repeat the footstep in the caseA := R, B := C, x1 := 1, x2 := i.)

T5.11. LetB be theC–subalgebraC[F, F ] of theC–algebra of all complex valued functions onR, generated
by the functionsF := exp(it) = cost + i sin t andF = F −1 = cost − i sin t . Further, letA be theR–algebra
R[cost, sint ].

a). The functionsF n, n ∈ Z, form aC–vector space basis ofB. (Hint : It is enough to show that the
F n, n ∈ Z, are linearly independent.)

b). A is theR–algebra of the real valued functions fromB. The functions cosnt, n ∈ N, together with the
functions sinnt, n ∈ N∗, form aR–basis ofA and aC–basis ofB.

c). The monogeneR–algebraR[cost ] has theR–vector space basis cosnt, n ∈ N, resp. cosnt, n ∈ N.
Deduce that

∑m

n=0 Rcosnt = ∑m

n=0 R cosnt for all m ∈ N.

† A r t h u r C a y l e y ( 1 8 2 1 - 1 8 9 5 ) Arthur Cayley was born on 16 Aug 1821 in Richmond, Surrey, England and died on
26 Jan 1895 in Cambridge, Cambridgeshire, England. Arthur Cayley’s father Henry Cayley, although from a family who had lived for
many generations in Yorkshire, England, lived in St Petersburg, Russia. It was in St Petersburg that Arthur spent the first eight years
of his childhood before his parents returned to England and settled near London. Arthur showed great skill in numerical calculations
at school and, after he moved to King’s College School in 1835, his aptitude for advanced mathematics became apparent. His
mathematics teacher advised that Arthur be encouraged to pursue his studies in this area rather than follow his father’s wishes to
enter the family business as merchants.

In 1838 Arthur began his studies at Trinity College, Cambridge from where he graduated in 1842. While still an undergraduate he
had three papers published in the newly founded Cambridge Mathematical Journal edited by Duncan Gregory. Cayley graduated
as Senior Wrangler and won the first Smith’s prize. For four years he taught at Cambridge having won a Fellowship and, during this
period, he published 28 papers in the Cambridge Mathematical Journal.

A Cambridge fellowship had a limited tenure so Cayley had to find a profession. He chose law and was admitted to the bar in 1849.
He spent 14 years as a lawyer but Cayley, although very skilled in conveyancing (his legal speciality), always considered it as a
means to make money so that he could pursue mathematics.

While still training to be a lawyer Cayley went to Dublin to hear Hamilton lecture on quaternions. He sat next to Salmon during these
lectures and the two were to exchange mathematical ideas over many years. Another of Cayley’s friends was Sylvester who was
also in the legal profession. The two both worked at the courts of Lincoln’s Inn in London and they discussed deep mathematical
questions during their working day. During these 14 years as a lawyer Cayley published about 250 mathematical papers - how many
full time mathematicians could compare with the productivity of this ’amateur’?

In 1863 Cayley was appointed Sadleirian professor of Pure Mathematics at Cambridge. This involved a very large decrease in income
for Cayley who now had to manage on a salary only a fraction of that which he had earned as a skilled lawyer. However Cayley was
very happy to have the chance to devote himself entirely to mathematics. As Sadleirian professor of Pure Mathematics his duties
were to explain and teach the principles of pure mathematics and to apply himself to the advancement of that science. Cayley was to
more than fulfil these conditions. He published over 900 papers and notes covering nearly every aspect of modern mathematics. The
most important of his work is in developing the algebra of matrices, work in non-euclidean geometry and n-dimensional geometry.

As early as 1849 Cayley a paper linking his ideas on permutations with Cauchy’s. In 1854 Cayley wrote two papers which are
remarkable for the insight they have of abstract groups. At that time the only known groups were permutation groups and even this
was a radically new area, yet Cayley defines an abstract group and gives a table to display the group multiplication. He gives the
’Cayley tables’ of some special permutation groups but, much more significantly for the introduction of the abstract group concept,
he realised that matrices and quaternions were groups.

Cayley developed the theory of algebraic invariance, and his development of n-dimensional geometry has been applied in physics to
the study of the space-time continuum. His work on matrices served as a foundation for quantum mechanics, which was developed
by Werner Heisenberg in 1925. Cayley also suggested that euclidean and non-euclidean geometry are special types of geometry.
He united projective geometry and metrical geometry which is dependent on sizes of angles and lengths of lines.

In 1881 he was invited to give a course of lectures at Johns Hopkins University in the USA, where his friend Sylvester was professor
of mathematics. He spent January to May in 1882 at Johns Hopkins University where he lectured on Abelian and Theta Functions.
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In 1883 Cayley became President of the British Association for the Advancement of Science. In his presidential address Cayley gave
an elementary account of his own views of mathematics. His views of geometry were

It is well known that Euclid’s twelfth axiom, even in Playfair’s form of it, has been considered as needing demonstration: and that
Lobachevsky constructed a perfectly consistent theory, wherein this axiom was assumed not to hold good, or say a system of non-
Euclidean plane geometry. My own view is that Euclid’s twelfth axiom in Playfair’s form of it does not need demonstration, but is part
of our experience - the space, that is, which we become acquainted with by experience, but which is the representation lying at the
foundation of all external experience. Riemann’s view ... is that, having ’in intellectu’ a more general notion of space (in fact a notion
of non-Euclidean space), we learn by experience that space (the physical space of our experience) is, if not exactly, at least to the
highest degree of approximation, Euclidean space. But suppose the physical space of our experience to be thus only approximately
Euclidean space, what is the consequence which follows? Not that the propositions of geometry are only approximately true, but
that they remain absolutely true in regard to that Euclidean space which has been so long regarded as being the physical space of
our experience. Two descriptions of Cayley, both of him as an old man, are interesting. Macfarlane says : ... I attended a meeting
of the Mathematical Society of London. The room was small, and some twelve mathematicians were assembled round a table,
among them was Prof. Cayley ... At the close of the meeting Cayley gave me a cordial handshake and referred in the kindest terms
to my papers which he had read. He was then about 60 years old, considerably bent, and not filling his clothes. What was most
remarkable about him was the active glance of his grey eyes and his peculiar boyish smile.

Thomas Hirst, one of his friends, wrote: ... a thin weak-looking individual with a large head and face marked with small-pox: he
speaks with difficulty and stutters slightly. He never sits upright on his chair but with his posterior on the very edge he leans one
elbow on the seat of the chair and throws the other arm over the back.
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