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Basic Algebra

5.A. Structure Constants of an algebra — Quaternion algebras

Sir William Rowan Hamilton'
(1805-1865)

Using the following theorem in this exersise set we shall contruct algebras explicitly.

5.A.1 Theorem LetA be a commutative ring a free A—-module withA-basisx;, i € I, and

e be an element iB. Suppose that the multiplication among basis elemens isfdefined and
extended t@ by using the distributive law. This multiplication @ghgives anA—algebra structure
on B with the unit element if and only if for alli, j, k € I we have

(xixj)xe = x;i(xjx), ex; =x; = xje.
Moreover, ifx;x; = x;x; forall i, j € I, thenB is a commutativel—algebra.
Proor The basis elements satisfy the desired associativity conditions. We have to show that the

associative law for arbitrary elements= ., ., a;xi, y = Yo bjxj, 2= ;; cxxi Of B. Then
using the distributive law, we have

(xy)z = (Z a;Xx; Z bjxj) chxk = Z a;b;(x;x;) Z CkXg = Z a;bjci((x;x;)xi)
J k i,j k

i i, J i,j.k

= Z aibjcr(x;(xjxr)) = Z a; x; Z bick(xjx) = Z a; x; (Z bjx; Z ckxk> =x(yz).
j .k i j k

i}j’k l
The element of B is the unit element oB3, since fromex; = x; = x;e it follows that:

ex=e<g (1,')6,')22 a,'exizg aixi:x:g a,-x,':E a,-x,'ez(g aixi)ezxe.
i i i i

i i

In particular, thex; is an algebra—generating system, the commutativity sfensured if the; are
pairwise commutative. °

5.A.2 Remark The proof of 5.A.1 shows that the following more general assertionAlet a commutative
ring and letB be an A —algebra in a general sensgwith an A-module—generating system

1) Algebras in general sense Let B be anA—algebra. ThemB is a ring and hence the multiplication is
associative. FurtheB has an unit element. Therefore more precisly we sayBhsta associative
A —algebra with unit elementEérlier such algebras were also calledpercomplex systems over
A (with unity.) Frequently the concept of algebra is used in more general sense andby-atgebra in
general sense waean amA—moduleB together with a multiplication o®, for which the distributive
laws(x + y)z = xz + yz, z(x +y) = zx + zy, x, ¥, z € B, hold and for which the compatibility condition
(ax)(by) = ab(xy), a,b € A, x,y € B is fulfilled.

In other words an algebra over a commutative ting anA—moduleB with an A-bilinear mapB x B — B.
The A-bilinear mapB x B — B is called the mutiplication of the A—algebraB and simply denoted
by (x, y) =~ xy. If the multiplication in theA—algebraB is commutative (resp. associative, has an identity
element (necessarily unique; this element is called the unit eleme)) othen theA—algebras is called
commutative(resp.associative, unital or unitary).

Let B be anA—algebra; the maps, y) — xy + yx and(x, y) — xy — yx (with the A— moduleB) define
two A—algebra structures aB, whihc are not in general associative; the first law is always commutative.
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x;, i € I. Further, lete € B. Suppose thatx;x;)x; = x;(x;x;) forall i, j, k € I andex; = x; = x;e for all
i € I,thenB is associative with the unit element

5.A.3 Structure Constants Let A be a commutative ring and I& be a freeA—algebra with
the A—-module basis;, i € I. There exists an uniquely determined family

vy, G j kel xIxI,
of elements fromA such that

XiXj = Z yi’j-xk, i,jel.

kel

For fixedi, j, yl.fj. = Oforalmostalk € I. Note that is an index and not a power. The coef|ficients
yi’;. are called thestructure constants of thie- algebraB with respect to the basis, i € I.

Conversely, suppose th&tis a freeA—module withA—basisx;, i € I. When can a familwi’;

of elements fromA, wherey/ = 0 for almost allk and fixedi, j, by x;x; ==Y, yl.’;.xk and by
extending using the distributive law, define a multiplicationBowhich give anA—algebra structure
onB? By 5.A.1we only need to ensure the associativity conditionps)x, = x; (x;xx), i, j, k € I,
and the existence of an element ) a;x; € B such thakx; = x; = x;e, i € 1. After a direct
computation, this mean that the famﬂ'g; satisfy the following conditions:

Y vivi=Y_vhyvi forall ijk.seland) aiyh =Y ayl =06y foral kiel,
r r J J
whereé;; is the Kronecker—Symbol. This algebra is commutative if and only if we further have

yl.’;:yj’; forall i,j,kel.

For the concrete construction of an algeBravith basisx; and structure constanyéj., we give the
multiplication of the basis elements in the form of the following table

Xj

k
Xi | Dy VijXk

and this table is called thetructure-table oB with respect tox;, i € 1.

5.A.4 Remark In this remark we shall indicate a generalisation of 5.A.1 which is useful for the construction
of rings if the ground ring is not commutative. Latbe an arbitrary ringB be a freeA—(left—) module

with A—Basisx;, i € I, and lete be an element oB. Suppose that a multiplication among basis elements
of B is defined and extended Bby using the distributive law. By usingx; = ), yl-';xk define structuire

constants%’; which are the elements of tleenterof A. Further, suppose that;x;)x; = x;(x;x;) and
ex; = x; = x;e forall i, j,k € I. Then there is a multiplication i such thatB is a ring with the unit
elemente. The fact that is the unit element is not that trivial as in 5.A.1. Let= 3 ¢;x;. For every

i, we haver; = ex; Y, &j(xjx;) = ), & VX Therefore}; &y} = i (Kroneckersymbol). Now, for
everya € A, we havee(ax;) = Y, gja(x;x;) = Y, giayjxe = Y, (3 &y))axy = ax;. Therefore bu
uning distributivity, it follows that is a left unit element. It is trivial that is a right element. The proof of
associativity of the multiplication is similar to that of the proof in, since the elemdjwts)mmute with the

elements ofA. The details are left to the reader.

5.11. (Monoid algebras) LeM be a (multiplicatively written) monoid with the unit element
1. Further, letd be a commutative ring. For evesye M, lete, denote the canonical basis element
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(81.0)rem Of AM  wheres, , is the Kronecker symbol. Far,t € M, we definee e, = e,;.

The structure table in this case is nothing but the binary-operation-taBleiofwhicho € M is
replaced by, . Itis clear that the hypothesis of 5.A.1 for the basis o € M, and the element

e = ey are fulfilled. Therefore the structure constants are 0 or 1 and hence belong to the center of
A. Therefore, by 5.A.1 or 5.A.4 there is a ring structureA) with the unit element,. The
algebra so defined is called tMonoid algebra oM overA and is dnoted bA[M]. If M isa

group, then this algebra is called t&roup algebra oM ovr A. Special cases of the monoid
algebras are polynomial rings. These are the algebras of the mbifidjdvhere! is an indexed

set and the binary operation dhis the usual addition.

5.12. (Generalised quaternions over a commutative ring)Abe a commutative
ring and leta, b € A*, we shall construct theA —algebra(a,b), the (generalised)
quaternions of typéda, b). We consider the fred—moduleA?, the canonical basis of* is
denoted by 1i, j, k and a multiplication om* is defined by the structure-table

1 i k
11 i k
| a k q

ilj -k b —bi
K|k —aj bi —ab

and extend by using distributive law. We leave the verification of the associativity conditions to the
reader. Clearly 1 is the unit element of this multiplication. We shall idemifyith A - 1. The
elements = cg + c1i + ¢2] + c3k of (a, b)4 are calledquaternions. Theuaternions with

co = 0 are calledpure. For gure quaternions, w we have:zw = —wz. Therefore(a, b) 4 is
commutative if and only if eitheA = 0 or CharA = 2.

a). ((quaternion-)conjugation) Feach quaternion = co + c1i + c2j + c3K € (a, b) 4,
the quaterniory := co — c1i — ¢ — c3k is called theconjugate quaternion of For
a pure quaternion we have :z7 = —z. Further, forz, w € (a, b)s, we havez + w = 7 + w,
zw =wzandz =z. If 2 € A*, thenz =z ifand only ifz € A. In particular, the map — z is an
anti-automorphism of thd-algebra(a, ), and is called th quaternion—)conjugation.
(Proof. Clearlycz = ¢z = zc for everyc € A. In view of the given compatibility with addition, it is
enough to prove the assertion farw e {i,j,k}. For exampld -i =@ = a = (—i) - (—i) =1i-iund
i-j=k=—k=j-i=(—j)- (=) =] -i. The remaining part is left to the reader.)

b). ((Reduced) Norm) Foeach quaternion € (a, b) 4, the element k) := zz is called the
(reduced) norm of. Forz = cog + ci1i + co] + c3K, co, c1, 2, c3 € A, we have

N(z) = ¢5 — ac? — bcs + abcs

Forz, w € (a, b)4, we have Nz) = N(z) and Nzw) = N(z)N(w). Inparticular, the norm is a
multiplicative map N :(a, b)4 — A. ( Proof. We have Nzw) = zwzw = zwwz = zN(w)Z =
N(z)N(w). This where we have used the fact thauN is contained in the center ¢f, b)4.)

c). A quaternionz € (a, b)4 is a unitin(a, b), if and only if N(z) is a unit in A. In this case
71 =N(z)"'z. (Proof. Sincezw = wz = 1, we have = N(1) = N(zw) = N(z)N(w). Conversely,
suppose that i) is a unit inA. Then Nz)~1 commutes with all quaternions and2y~17 is the inverse of
z, since 1= z(N(z)12) = (N(z)12)z.)

d). TheA-algebrdaa, b) 4 isadivisionringifandonlyifAisafieldandNz) = 0, z € (a, b) 4, only

for z = 0. The last condition means that the only solution of the equafien:c? — bc +abc3 = 0

in A is the trivial solutioncg = ¢1 = ¢ = 3 =0.

e). The A-algebra(1, 1), is not a division ring, since the reduced norm igN= c3 — ¢5 — ¢ +c3

and Nz) = 0 has the non-trivial solutiol, 1, 1, 1). Similarly, the A-algebras(1, —1), and

(—1, 1), are not division rings.
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f). For an algebraically closed field the generalised quaternion algebras are not division rings.
In particular, H(C) := (-1, —1)¢ is not a division ring. (Hint: Forc =i € C and

0 # z := 1+ ci € H(C), the norm Nz) = 0. More precisely, we have the following interesting theorem
(which need some more preparation!)

5.A.5Theorem Letk be afield ofChark # 2 and leta, b € k*. Then

a). (a, b); is a simplek—algebra with centek.

b). If (a, b), is not a division ring, thera, b), is isomorphic to th&—algebraM, (k) of (2 x 2)—matrices
overk.

c). If kis algebraically closed, thefu, b), is isomorphic to thé—algebraM, (k) of (2x2)—matrices ovek.

g). Let K be a finite field. Then the quaternion algelab)k, a, b € K* is not a divison ring.
(Hint: Itis enough to prove that: for givan b, c € K*, there exisk, y € K such thatix? + by? = c. Let

g =1|K|, M :={ax?:x € K}andN := {c — by?: y € K}. Then|M| = ¢, if ¢ is odd (use the exerci®g

and|M| = (¢ + 1)/2, if g even (use the exerci¥g. In any caseéM| = |N| and soM N N # .)

h). ((Reduced) Trace) Forquaterniory € H(A), A commutative ring, the elemen#-z € A

is called the(reduced) trace aof and is denoted by Tt). Fora,b € A, z, w € (a, b)4, we
have Tiz) = Tr(z) and Traz + bw) = aTr(z) + bTr(w). Inparticular, the trace is A—linear
Tr: (a,b)4 — A. Furtherz? — Tr(z)z + N(z) = 0 for all z € H(A).

5.13. For a commutative ringi, in the special case = » = —1, we denote thei-algebra
(-1, —1), by H(A). %) This is the classical quaternion algebra odeits structure-table is:
1 i j Kk
1(1 i j k
i [P -1 k —j
i 1] -k =1 i
k [k j —i —1.

The multiplication of the elements j, k is listed according to the following scheme : First write

these elements in the form )
[

/N

j — k
Then, ifx, y, z are arbitrary succesive three elementdiin, k}, thenxy = z, in the case the

diagramm contains — y andxy = —z otherwise. Further, ik? = —1 for x € {i,j, k}. For
7 = co + c1l + ¢o] + c3K, we have Nz) = cg + c% + c% + c%.

2) Exercise Let G be a finite group of order and letn € Z. Then gcdm, n) = 1 if and only if the map

G — G defined byx — x" is bijective.

3) Exercise Let G be a finite group of even order = 21. Then there are exactlyelements ofz which

are squares i. (Hint: Look at the bibers of the ma@ — G, x > x°.

4 The letter H” is used to denote this quaternion algebra as this algebra was first discovéiadioyron

in 1843. This was one of the first non-commutative ring discovered. Further, this is is a division ring, was
extremely influential in the subsequent developemnet of mathematics and it continues to play an important
role in certain areas of mathematics and physics; However, it believed that the quaternions were known to
EULER, GAuss and others before. LatéiurwiTz, A. (1859-1919) had considered quaternion algebra
over the ringZ of integers. This algebra was used to prove the famous classical theofemRANGE, J.

L. (1736-1813) on the sum of four square theorervery integer can be expressed as the sum of squares

of four integers This theorem was the starting point of a large research area in number theory, so called
Waring problem This askdf every integer can be expressed as a sum of fixed numbeihgfowers

For instance it can be ashown that every integer is a sum of nine cubes (resp. nineteen 4-th powers, etc...).
HiLBERT had shown that the Waring problem have an affirmative answer.
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a). If Ais asubfield oR, then clearly Nz) = O is equivalentt@g = ¢; = ¢ = c3 = 0 andH(A)

is a division ring. In particulaffl(Q) and the “usual” quaterniori§ := H(R) are division rings.

b). In the quaternion algebii(Z) overZ the unitsz = co + c1i + ¢2] + c3k are determined by the
condition Nz) = ¢§ + ¢§ + ¢5 + ¢5 € Z* = {1, —1}. Therefore the unit grouH(Z)* the group

of eight elementst1, +i, 4j, £k. This very interesting unit group is called tlguaternion
group.

c). In the quaternion algebié(A), the quaternions of norm 1 forms a subgroup of the unit group
H(A)* of HA. In the cased = R this group is called th&pin—Group.

5.14. In this we list many interesting results with out proofs. First the two interesting theorems
5.A.6 and 5.A.7 (which need some more preparation!) are dW€H#opERBURN, H. M. (1882-
1948) andFroBENIUS, G. (1849-1917) respectively.

5.A.6 Theorem (Wedderburn, 1905 Every finite division ring is commutative and hence a field.

5.A.7 Theorem (Frobenius, 1877)R, C andH are the only non-isomorphic divisidR—algebras
which are finite dimensional ovét.

5.A.8 Octonions Leta, b be non-zero elements of a fiekland letH := (a, b)x be the quaternion algebra
of type(a, b) overK (see exercise 5.12) with the standard basis 1, i,3,ik.

For an arbitrary elemente K, on O := H x H define aK -bilinear multiplication by

(w1, m) (02, 12) = (@102 + ¢ 201, N2w1 + N102)
and the conjugation by
(@, ) =@, -n).
We identify H with H x {0} in O, and hence the multiplication oft can be restricted té/, this multi-
plication is in genearhot associative. The elementd H < O is also the unit element fap. Further,
(w1, 1) - (@2, n2) = (02, 12) (w1,n1). The quadratic form

N(w,n) = (o,n) (w,n) =ww—cin=N@) —cN(@)
on O is called the Norm. This norm is multiplicative:

N((w1,m) (@2, 72)) = N(w1, n1) - N(@2, 1n2) .

Therefore it follows that if the normN(w, n) = N(w) — ¢ N(5) on O is anisotrop, then the corresponding
multiplication of O is free from zero divisorsThis K—algebraO = Ok (a, b, ¢) is (which is in general not
associative) the well-knowalgebra of Cayley-numbers orthe octonion algebra of type
(a, b, ¢) over K; this is 8-dimensional algebra ov&r. The algebrad(K) := Ox(—1, —1, —1) is called

the octonion algebra. InthemseKk = R, this algebra is simply denoted ). Its norm is positive
definite. ThereforeQ is free from zero divisorand hence a division algebra in general sense (see footnote
D), in which the equationsy = z for giveny, z with y £ 0 resp. for giverx, z with x # 0 has exactly one
solutionx resp.y.

5.A.9Theorem (Adam, Bott-Milnor, Kervaire)fn #0,1, 2, 4,8, then there does not exist an
n—dimensional real division algebra in general sense.

This is a very deep theorem and was first provedAimams by usingTopological K -theory Nowadays
thereis a proof byBoTT, MILNOR and KERVAIRE. (seeMilnor, J.: Some Consequences of a Theorem
of Bott. Ann. Math.68 (1958) 444-449.)

5.A.10 Real Clifford algebras®) The sequence of real division algebisC, H can be extended by
introducing the(real) Clifford algebras Glforn > 0.

5) The study of real Clifford algebras have become centrahaudern geometry and topolagthey also
appear imMQuantum Theorin connection with théirac operator The groups of units in Clifford algebras
contain thespinor groupsthey provide double coverings of tispecial orthogonal groupsWe have only
given definition of real Clifford algebras associated to positive definite inner prodults. drhere are also
complex and indefinite Clifford algebras.
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For each integern > 0, the Clifford algebré) Cl, is the associative algebra ov&rthat

is generated (as dR—algebrra) by a unity 1 and elementse,, ..., ¢,, subject only to relations

el? = —1, ejej = —eje; fori # j,1<i, j <n. Itisevidentthat = R viewed as 1-dimensional
algebra over it self. The algebra;G$ generated by 1 and subject only to relatioa? = —1. But

this is just the way that the complex numbers are described when viewed as a 2-dimensional algebra
overR. Therefore if we set; = i, then Ch = C. The quternion algebré is a 4-dimensional
algebra oveR generated by 1, j, k with relations = j2 = k> = —1,ij = —ji =k, jk = —kj =i

and ki= —ik = . Therefore if we set; = i, e; = jandeie, = K, itis easy to cheak that €& H.

All of the Clifford algebras have been explicitly computedy Atrvan, Bort andSuapiro. For

0 < n < 7 the Clifford algebras are given in the following table and all other Clifford algebras can
now be computed by using the isomorphism. Gl = M16(Cl,). The mysterious numbers 1

in the 4-th row of the table are similarly defined for all indices by setting)+s = 16a,,1. For
eachn > 0, the Clifford algebra Glhas a representation @f-. All these results can be proved
by usingtensor products of algebrathe prrofs are given in [loc.cit.] and are quite accessible and
elegant. The first few real Clifford algebras are summarised in the following table :

n |ol1]2] 3 4 5 6 7 8
Cl, |R|cC|H[HxH|[MH)|MiC)[Ms®R)|Mag@®) x Mg(R) | M16(R)
DimgCl,| 1| 2] 4| 8 | 16 | 32 | 64 128 256

a1 | 1] 2] 4] 4 8 8 8 8 8

5.15. OnC", n € N, n > 2, there does not exist a divisidi+-algebra structure in general sense.

(Proof This follows very easily from théundamental theorem of algelStaand hence its proof works
for any algebraically closed) field K. For the proof we shall use the determinant theory. In view of
the exercise 5.10c), it is enough to show that there exists K" such that the left multiplication map
A, © K" — K" which is aK-linear endomorphism ok”, is not bijective, i.e. the determinant Detof

A, is equal to 0. For this let andv be two linearly independent elementsAri (e.g.u := e1, v := ep).

We may assume that, is bijectiv; otherwise take := u. Then we consider far € K the determinant of
At o g = A7 (0 +tA,) = id + ¢ A 1A,. This is a polynomial function of degreein ¢ (namely, the
value of the characteristic polynomial ®f 11, at —¢. Now, sincek is algebraically closed, there exists
to € K such that Deid + toxglkv) = 0. But then\, for z := u + rgv is not bijective.)

5.16. (Hurwitz’s quaternions) TheguaternionZ—algebraH(Z) is a Z—subalgebra of
H(Q). An elementz = a + bj + ¢j + dk € H(Q) is called aHurwitz’s quaternion if
a=d/2,b=0b"/2,c=c'/2,d =d /2,wherethe numbets, b', ¢/, d’ are either all even integers
(in this case; € H(Z)) or all odd intgers. The Hurwitz’s Quaternions form a non-commutative
Z—algebraH’ betweenH(Z) andH(Q), it is a freeZ—-algebra of rank 4. Find Z-basis ofH’. If

z € H',thenN(z) € Z. Further,z € H' isa unitinH’ if and only if N(z) = 1. The unit group

6) Clifford algebra were introduce@.Liam KINGDON CLIFFORD (1845-1879). Clifford generalised

the quaternions (introduced by Hamilton two years before Clifford’s birth) to what he called the biquaternions
and he used them to study motion in non-euclidean spaces and on certain surfaces. These are now known as
'Clifford-Klein spaces’. He showed that spaces of constant curvature could have several different topological
structures.

7y See [Atiyah, M.F., Bott, R. and Shapiro, Alifford modules Topology3 (1964), 3-38.]

8 Fundamental theorem of algeb Exery non-constant polynomial with coefficient€ihas a

zero inC. The fundamental theorem of algebra was stated first by a French mathematicime-ROND
D’ALEMBERT 91717-1855), who gave imcomplete proof. The first correct proof of this theorem was
given byGauss in 1799.

9 Afield K is calledalgebraically closed if theundamental theorem of algebra holds foyi.e.

every polynomial of positive degree ovkrhas a zero irk. For example( is algebraically closed, b

andR are not algebraically closed.
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H'* contains 24 elements, namely
. 1 . . .
e, €l, g, €K, 5(80+81I + e2] + 3Kk, mit g, &g, &1, &2, €3 € {1, —1}.

For every Hurwitz’'s quaternion € H' there exists an unit € H'* such thatz € H(Z).  (Hint:
If z ¢ H(Z), then there exists & € H'* such that + f = 27’ andz’ € H(Z). Now multiply by £ =1 on the
left.)

5.17. Let K be afield and leB be a non-zero finit&K—algebra which is free from zero divisors.
ThenB and everyK—subalgebra oB is a division ring. (Proof Since allK—subalgebras ab are
finite and free from zero divisors, it is enough to prove tBas a division ring. Lety, ..., x,, be aK—basis
of B. For an arbitrary elemente B, x # 0, xx1, ..., xx, resp.xix, ..., x,x are bases oB. For thisitis
enough to prove that these elements are linearly independemtoguppose thatyxx1 +- - - +a,xx, =0
withay, ..., a, € K. Thenx(aix1 +-- - +a,x,) = 0and henceix; + - - - +a,x,, = 0, sincex # 0 andB

is free from zero divisors. Therefotg = --- = a, = 0, similarly, x1x, ..., x,x are linearly independent
over K. Now, letz € B be arbitrary. Then there exist elements.. ., b,, resp.ci, ..., ¢, in K such that
z2=bixx1+ -+ bypxx, = x(brx1+ -+ byux,) 1€Sp.z = c1x1x + - - - + XX = (c1X1+ -+ - + CuXm) X.
This shows that the equations = z resp.vx = z have solutions irB. Now use the exercise 5.10c).)

5.18. Let K be a field of Chak # 2 and leta, b € K*. Then the following statements are
equivalent:

(i) There existe, c1, ¢2, c3 € K, not all zero such thafy — a ¢ — b ¢3 + abc3 = 0.
(i) There existco, c1, c2 € K, not all zero such thag — acf — bcs = 0.
(iii) There existey, ¢z, c3 € K, not all zero such thatac? — bes + abes = 0.

Below one can see (simple) test-exercises.

Test-Exercises

T5.12. Let K be a field. Construct a non-commutatie-algebra of dimension 3 with basiszZl w and
the structure-table

1 zw

111z w
Z |z z w
wlw 0 0.

(Remark: This is the only non-commutativ€—algebra of dimension 3.)
T5.13. The center of(R) is R. — What is the center dfi(A) for an arbitray commutative ring?

T5.14. a). Find allz € H = H(R) with z2 = —1. b). Let B be aR—subalgebra off with R ¢ B ¢ H.
Show that : there existszae H with z2 = —1 andB = R[z]. What is the dimensio® overR? Compare
the R—algebraB with the R—algebraC of the complex numbers. Let w € H with z2 = w? = —1. Show
thatR[z] = R[w] ifand only if w =z orw = —z.

T5.15. Let A commutative ring and let € H(A) be a quaternion. Show that the follwoing statements are
equivalent:

(i) z is a left zero-divisor irH(A). (ii) z is a right zero-divisor ifH(A).

(iii) z is a zero-divisor irfH(A). (iv) N(z) is a zero-divsior inA.

T5.16. Let z € H(R). the non-negative square rogfN(z) of the norm ofz is called theabsolute
value of thequaternionz. Forz,w € H, we have|zw| = |z||lw| and the triangle inequality

|z +w| < |z| + |w].

T5.17. Generalise 5.18 as follows : L& be a ring which is free from zero-divisors. Suppose Bas
finite as a left-vector spaaa as a right-vector space finite over a sub-divison khgThenB and every
subring betweelX andB is a division ring.
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T5.18. Generalise 5.18 as follows : L&t be a field and leB # 0 be aK—algebra in the general sense
(see footnotd). If Dim B is finite and if B is free from zero-divisors (i.eiz # 0 if 0 # z), thenB is a
division algebra in the general sense (see footeHptee. for givenu, v € B, u # 0, the equatiomw = v
resp.xu = v has exactly one solutiom resp.x.

T5.19. Let K be a field and let be a monoid generated by one elementThenK[M] = K|e,] is a
monogeneK —algebra and& [M] is a principal ideal ring. (see exercise 5.8)

T5.20. LetG beagroup and lgt € G be an element of finite order > 1. Thenthe elementdg = e¢1—e,

in the group ringA[G] is a zero divisor. Klint: (1—g)(1+g+---+g" H=1-g"=1—-1=0inthe
ring A[G].)

T5.21. Let Qg := {*1, +i, £/, £k} be the quaternion (multiplicatively written) group. Then the group
ring R[Qg] of Qg overR is not same all even though later conatin a copy of the quaternion grogip Q

T'Sir william Rowan Hamilton (1805-1865) was born on 4 Aug 1805 in Dublin, Ireland and died
on 2 Sept 1865 in Dublin, Ireland. William Rowan Hamilton’s father, Archibald Hamilton, did not have time to teach William as he
was often away in England pursuing legal business. Archibald Hamilton had not had a university education and it is thought that
Hamilton’s genius came from his mother, Sarah Hutton. By the age of five, William had already learned Latin, Greek, and Hebrew.
He was taught these subjects by his uncle, the Rev James Hamilton, who William lived with in Trim for many years. James was a fine
teacher. William soon mastered additional languages but a turning point came in his life at the age of 12 when he met the American
Zerah Colburn. Colburn could perform amazing mental arithmetical feats and Hamilton joined in competitions of arithmetical ability
with him. It appears that losing to Colburn sparked Hamilton’s interest in mathematics. Hamilton’s introduction to mathematics came
at the age of 13 when he studied Clairaut’'s Algebra, a task made somewhat easier as Hamilton was fluent in French by this time.
At age 15 he started studying the works of Newton and Laplace. In 1822 Hamilton found an error in Laplace’s Méchanique céleste
and, as a result of this, he came to the attention of John Brinkley, the Astronomer Royal of Ireland, who said: This young man, | do
not say will be, but is, the first mathematician of his age.

Hamilton entered Trinity College, Dublin at the age of 18 and in his first year he obtained an 'optime’ in Classics, a distinction only
awarded once in 20 years. He achieved this merit despite spending most of his time living with his Cousin Arthur at Trim and therefore
not attending all of his lectures. In August 1824, Uncle James took Hamilton to Summerhill to meet the Disney family. It was at
this point that William first met their daughter Catherine and immediately fell hopelessly in love with her. Unfortunately, as he had
three years left at Trinity College, Hamilton was not in a position to propose marriage. However Hamilton was making remarkable
progress for an undergraduate and submitted his first paper to the Royal Irish Academy before the end of 1824, which was entitled
On Caustics. The following February, Catherine’s mother informed William that her daughter was to marry a clergyman, who was
fifteen years her senior. He was affluent and could offer more to Catherine than Hamilton. In his next set of exams William was given
a 'bene’ instead of the usual 'valde bene’ due to the fact that he was so distraught at losing Catherine. He became ill and at one
point he even considered suicide. In this period he turned to poetry, which was a habit that he pursued for the rest of his life in times
of anguish.

In 1826 Hamilton received an 'optime’in both science and Classics, which was unheard of, while in his final year as an undergraduate
he presented a memoir Theory of Systems of Rays to the Royal Irish Academy. It is in this paper that Hamilton introduced the
characteristic function for optics. Hamilton’s finals examiner, Boyton, persuaded him to apply for the post of Astronomer Royal at
Dunsink observatory even although there had already been six applicants, one of whom was George Biddell Airy. Later in 1827
the board appointed Hamilton Professor of Astronomy at Trinity College while he was still an undergraduate aged twenty-one years.
This appointment brought a great deal of controversy as Hamilton did not have much experience in observing. His predecessor,
Professor Brinkley, who had become a bishop, did not think that it had been the correct decision for Hamilton to accept the post and
implied that it would have been prudent for him to have waited for a fellowship. It turned out that Hamilton had made an poor choice
as he lost interest in astronomy and spend all time on mathematics.

Before beginning his duties in this prestigious position, Hamilton toured England and Scotland (from where the Hamilton family

originated). He met the poet Wordsworth and they became friends. One of Hamilton’s sisters Eliza wrote poetry too and when

Wordsworth came to Dunsink to visit, it was her poems that he liked rather than Hamilton’s. The two men had long debates

over science versus poetry. Hamilton liked to compare the two, suggesting that mathematical language was as artistic as poetry.

However, Wordsworth disagreed saying that: Science applied only to material uses of life waged war with and wished to extinguish
imagination.Wordsworth had to tell Hamilton quite forcibly that his talents were in science rather than poetry: You send me showers

of verses which | receive with much pleasure ... yet have we fears that this employment may seduce you from the path of science. ...
Again | do venture to submit to your consideration, whether the poetical parts of your nature would not find a field more favourable

to their nature in the regions of prose, not because those regions are humbler, but because they may be gracefully and profitably
trod, with footsteps less careful and in measures less elaborate.

Hamilton took on a pupil by the name of Adare. They were a bad influence on each other as Adare’s eyesight started to present
problems as he was doing too much observing, while at the same time Hamilton became ill due to overwork. They decided to take
a trip to Armagh by way of a holiday and visit another astronomer Romney Robinson. It was on this occasion that Hamilton met
Lady Campbell, who was to become one of his favourite confidants. William also took the opportunity to visit Catherine, as she was
living relatively nearby, which she then reciprocated by coming to the observatory. Hamilton was so nervous in her presence that
he broke the eyepiece of the telescope whilst trying to give her a demonstration. This episode inspired another interval of misery
and poem writing. In July 1830 Hamilton and his sister Eliza visited Wordsworth and it was around this time that he started to think
seriously about getting married. He considered Ellen de Vere, and he told Wordsworth that he: ... admired her mind ...but he did
not mention love. He did, however, bombard her with poetry and was about to propose marriage when she happened to say that
she could ... not live happily anywhere but at CurragtHamilton thought this was her way of discouraging him tactfully and so he
ceased to pursue her. However he was proved to be mistaken as she married the following year and did leave Curragh! Fortunately,
one good thing transpired from the event as Hamilton became firm friends with Ellen’s brother Aubrey although a dispute about
religion in 1851 made them go their separate ways.
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Catherine aside, Hamilton seemed quite fickle when it came to relationships with women. Perhaps this was because he thought
that he ought to marry and so, if he could not have Catherine, then it did not really matter who he married. In the end he married
Helen Maria Bayly who lived just across the fields from the observatory. William told Aubrey that she was "not at all brilliant" and,
unfortunately, the marriage was fated from the start. They spent their honeymoon at Bayly Farm and Hamilton worked on his third
supplement to his Theory of Systems of Rays for the duration. Then at the observatory Helen did not have much of an idea of
housekeeping and was so often ill that the household became extremely disorganised. In the years to come she spent most of her
time away from the observatory as she was looking after her ailing mother or was indisposed herself.

In 1832 Hamilton published this third supplement to Theory of Systems of Rays which is essentially a treatise on the characteristic
function applied to optics. Near the end of the work he applied the characteristic function to study Fresnel's wave surface. From this
he predicted conical refraction and asked the Professor of Physics at Trinity College, Humphrey Lloyd, to try to verify his theoretical
prediction experimentally. This Lloyd did two months later and this theoretical prediction brought great fame to Hamilton. However, it
also led to controversy with MacCullagh, who had come very close to the theoretical discovery himself but, he was forced to admit,
had failed to take the last step.

On 4 November 1833 Hamilton read a paper to the Royal Irish Academy expressing complex numbers as algebraic couples, or

ordered pairs of real numbers. He used algebra in treating dynamics in On a General Method in Dynamics in 1834. In this paper

Hamilton gave his first statement of the characteristic function applied to dynamics and wrote a second paper on the topic the

following year. Hankins writes : These papers are difficult to read. Hamilton presented his arguments with great economy, as usual,
and his approach was entirely different from that now commonly presented in textbooks describing the method. In the two essays
on dynamics Hamilton first applied the characteristic function V to dynamics just as he had in optics, the characteristic function
being the action of the system in moving from its initial to its final point in configuration space. By his law of varying action he
made the initial and final coordinates the independent variables of the characteristic function. For conservative systems, the total
energy H was constant along any real path but varied if the initial and final points were varied, and so the characteristic function

in dynamics became a function of the 6n coordinates of initial and final position (for n particles) and the Hamiltonian H.

The year 1834 was the one in which Hamilton and Helen had a son, William Edwin. Helen then left Dunsink for nine months leaving
Hamilton to fight the loneliness by throwing himself into his work even more. In 1835 Hamilton published Algebra as the Science of
Pure Time which were inspired by his study of Kant and presented to a meeting of the British Association for the Advancement of
Science. This second paper on algebraic couples identified them with steps in time and he referred to the couples as 'time steps’.

Hamilton was knighted in 1835 and that year his second son, Archibald Henry, was born but the next few years did not bring him
much happiness. After the discovery of algebraic couples, he tried to extend the theory to triplets, and this became an obsession
that plagued him for many years. The following autumn he went to Bristol for a meeting of the British Association, and Helen took
the children with her to Bayly Farm for ten months. His cousin Arthur died, and not long after Helen returned from her mother’s she
went away again to England this time leaving the children behind after the birth of a daughter, Helen Eliza Amelia. At this point,
William became depressed and started to have problems with alcohol so his sister came back to live at Dunsink. Helen returned in
1842 when Hamilton was so preoccupied with the triplets that even his children were aware of it. Every morning they would inquire:
Well, Papa can you multiply triplets®ut he had to admit that he could still only add and subtract them.

On 16 October 1843 (a Monday) Hamilton was walking in along the Royal Canal with his wife to preside at a Council meeting of the

Royal Irish Academy. Although his wife talked to him now and again Hamilton hardly heard, for the discovery of the quaternions, the

first noncommutative algebra to be studied, was taking shape in his mind: And here there dawned on me the notion that we must
admit, in some sense, a fourth dimension of space for the purpose of calculating with triples ... An electric circuit seemed to close,
and a spark flashed forth.He could not resist the impulse to carve the formulae for the quaternions i?=j?=k’=ijk=—1. in the

stone of Brougham Bridge as he and his wife passed it. Hamilton felt this discovery would revolutionise mathematical physics and

he spent the rest of his life working on quaternions. He wrote: | still must assert that this discovery appears to me to be as important

for the middle of the nineteenth century as the discovery of fluxibasalculug was for the close of the seventeenth.

Shortly after Hamilton’s discovery of the quaternions his personal life started to prey on his mind again. In 1845, Thomas Disney

visited Hamilton at the observatory and brought Catherine with him. This must have upset William as his alcohol dependency took

a turn for the worse. At a meeting of the Geological Society the following February he made an exhibition of himself through his
intoxication. Macfarlane writes: ... at a dinner of a scientific society in Dublin he lost control of himself, and was so mortified that,

on the advice of friends he resolved to abstain totally. This resolution he kept for two years, when ... he was taunted for sticking
to water, particularly by Airy ... . He broke his good resolution, and from that time forward the craving for alcoholic stimulants
clung to him.

The year 1847 brought the deaths of his uncles James and Willey and the suicide of his colleague at Trinity College, James
MacCullagh, which greatly disturbed him despite the fact that they had not always seen eye to eye. The following year Catherine
began writing to Hamilton, which cannot have helped at this time of depression. The correspondence continued for six weeks and
became more informal and personal until Catherine felt so guilty that she confessed to her husband. Hamilton wrote to Barlow and
informed him that they would never hear from him again. However, Catherine wrote once more and this time attempted suicide
(unsuccessfully) as her remorse was so great. She then spent the rest of her life living with her mother or siblings, although there
was no official separation from Barlow. Hamilton persisted in his correspondence to Catherine, which he sent through her relatives.
It is no surprise that Hamilton gave in to alcohol immediately after this, but he threw himself into his work and began writing his
Lectures on Quaternions. He published Lectures on Quaternions in 1853 but he soon realised that it was not a good book from which
to learn the theory of quaternions. Perhaps Hamilton’s lack of skill as a teacher showed up in this work. Hamilton helped Catherine’s
son James to prepare for his Fellowship examinations which were on quaternions. He saw this as revenge towards Barlow as he
was able to help his son in a way that his father could not. Later that year Hamilton received a pencil case from Catherine with an
inscription that read : From one who you must never forget, nor think unkindly of, and who would have died more contented if we
had once more metHamilton went straight to Catherine and gave her a copy of Lectures on Quaternions. She died two weeks later.
As a way of dealing with his grief, Hamilton plagued the Disney family with incessant correspondence, sometimes writing two letters
a day. Lady Campbell was another sufferer of the burden of mail, as only she and the Disneys knew of his love for Catherine. On
the other hand, Helen must have always suspected that she did not take first place in her husband’s heart, a notion that must have
been strengthened in 1855 when she found a letter from Dora Disney (Catherine’s sister-in-law). This led to an argument, although
the only consequence was that Dora had her letters addressed by her husband, they did not stop altogether.

Determined to produce a work of lasting quality, Hamilton began to write another book Elements of Quaternions which he estimated
would be 400 pages long and take 2 years to write. The title suggests that Hamilton modelled his work on Euclid’s Elements and
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indeed this was the case. The book ended up double its intended length and took seven years to write. In fact the final chapter was

incomplete when he died and the book was finally published with a preface by his son William Edwin Hamilton. Not everyone found

Hamilton’s quaternions the answer to everything they had been looking for. Thomson wrote: Quaternions came from Hamilton after

his really good work had been done, and though beautifully ingenious, have been an unmixed evil to those who have touched them
in any way. Cayley compared the quaternions with a pocket map : ... which contained everything but had to be unfolded into
another form before it could be understood.

Hamilton died from a severe attack of gout shortly after receiving the news that he had been elected the first foreign member of the
National Academy of Sciences of the USA.
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