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Basic Algebra

5. A. Structure Constants of an algebra – Quaternion algebras

S i r W i l l i a m R o w a n H a m i l t o n †

(1805-1865)

Using the following theorem in this exersise set we shall contruct algebras explicitly.

5.A.1 Theorem Let A be a commutative ring,B a freeA–module withA–basisxi, i ∈ I , and
e be an element inB. Suppose that the multiplication among basis elements ofB is defined and
extended toB by using the distributive law. This multiplication onB gives anA–algebra structure
onB with the unit elemente if and only if for all i, j, k ∈ I we have:

(xixj )xk = xi(xjxk) , exi = xi = xie .

Moreover, ifxixj = xjxi for all i, j ∈ I , thenB is a commutativeA–algebra.

Proof The basis elements satisfy the desired associativity conditions. We have to show that the
associative law for arbitrary elementsx = ∑

i∈I aixi, y = ∑
j∈I bjxj , z = ∑

k∈I ckxk of B. Then
using the distributive law, we have

(xy)z =
(∑

i

aixi

∑
j

bjxj

) ∑
k

ckxk =
∑
i,j

aibj (xixj )
∑

k

ckxk =
∑
i,j,k

aibj ck((xixj )xk)

=
∑
i,j,k

aibj ck(xi(xjxk)) =
∑

i

aixi

∑
j,k

bj ck(xjxk) =
∑

i

aixi

(∑
j

bjxj

∑
k

ckxk

)
= x(yz) .

The elemente of B is the unit element ofB, since fromexi = xi = xie it follows that:

ex = e
(∑

i

aixi

)
=

∑
i

aiexi =
∑

i

aixi = x =
∑

i

aixi =
∑

i

aixie =
(∑

i

aixi

)
e = xe .

In particular, thexi is an algebra–generating system, the commutativity ofB is ensured if thexi are
pairwise commutative. •
5.A.2 Remark The proof of 5.A.1 shows that the following more general assertion: LetA be a commutative
ring and letB be an A – a l g e b r a i n a g e n e r a l s e n s e1) with anA–module–generating system

1) Algebras in general sense Let B be anA–algebra. ThenB is a ring and hence the multiplication is
associative. FurtherB has an unit element. Therefore more precisly we say thatB is a a s s o c i a t i v e
A –a lgeb ra w i t h un i t e l emen t . (Earlier such algebras were also calledh y p e r c o m p l e x s y s t e m s over
A (with unity.) Frequently the concept of algebra is used in more general sense and by anA – a l g e b r a i n
g e n e r a l s e n s e wemean anA–moduleB together with a multiplication onB, for which the distributive
laws(x + y)z = xz + yz, z(x + y) = zx + zy, x, y, z ∈ B, hold and for which the compatibility condition
(ax)(by) = ab(xy), a, b ∈ A, x, y ∈ B is fulfilled.
In other words an algebra over a commutative ringA is anA–moduleB with anA-bilinear mapB ×B → B.
TheA–bilinear mapB × B → B is called the m ul t i p l i c a t i o n of theA–algebraB and simply denoted
by (x, y) �→ xy. If the multiplication in theA–algebraB is commutative (resp. associative, has an identity
element (necessarily unique; this element is called the unit element ofB)), then theA–algebraB is called
c o m m u t a t i v e(resp. a s s o c i a t i v e , u n i t a l or u n i t a r y ).
Let B be anA–algebra; the maps(x, y) �→ xy + yx and(x, y) �→ xy − yx (with theA– moduleB) define
two A–algebra structures onB, whihc are not in general associative; the first law is always commutative.
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xi, i ∈ I . Further, lete ∈ B. Suppose that(xixj )xk = xi(xj xk) for all i, j, k ∈ I andexi = xi = xie for all
i ∈ I , thenB is associative with the unit elemente.

5.A.3 Structure Constants Let A be a commutative ring and letB be a freeA–algebra with
theA–module basisxi, i ∈ I . There exists an uniquely determined family

γ k
ij , (i, j, k) ∈ I × I × I ,

of elements fromA such that
xixj =

∑
k∈I

γ k
ij xk, i, j ∈ I .

For fixedi, j , γ k
ij = 0 for almost allk ∈ I . Note thatk is an index and not a power. The coef|ficients

γ k
ij are called thes t r u c t u r e c o n s t a n t s of theA– algebraB with respect to the basisxi, i ∈ I .

Conversely, suppose thatB is a freeA–module withA–basisxi, i ∈ I . When can a familyγ k
ij

of elements fromA, whereγ k
ij = 0 for almost allk and fixedi, j , by xixj := ∑

k∈I γ k
ij xk and by

extending using the distributive law, define a multiplication onB which give anA–algebra structure
onB? By 5.A.1 we only need to ensure the associativity conditions(xixj )xk = xi(xjxk), i, j, k ∈ I ,
and the existence of an elemente = ∑

ajxj ∈ B such thatexi = xi = xie, i ∈ I . After a direct
computation, this mean that the familyγ k

ij satisfy the following conditions:
∑

r

γ r
ij γ

s
rk =

∑
r

γ r
jkγ

s
ir for all i, j, k, s ∈ I and

∑
j

ajγ
k

ji =
∑

j

ajγ
k
ij = δki for all k, i ∈ I ,

whereδki is the Kronecker–Symbol. This algebra is commutative if and only if we further have

γ k
ij = γ k

ji for all i, j, k ∈ I .

For the concrete construction of an algebraB with basisxi and structure constantsγ k
ij , we give the

multiplication of the basis elements in the form of the following table

· · · xj · · ·
...

...

xi · · · ∑
k γ k

ij xk · · ·
...

...

and this table is called thes t r u c t u r e - t a b l e ofB with respect toxi, i ∈ I .

5.A.4 Remark In this remark we shall indicate a generalisation of 5.A.1 which is useful for the construction
of rings if the ground ring is not commutative. LetA be an arbitrary ring,B be a freeA–(left–) module
with A–Basisxi, i ∈ I , and lete be an element ofB. Suppose that a multiplication among basis elements
of B is defined and extended toB by using the distributive law. By usingxixj = ∑

k γ k
ij xk define structuire

constantsγ k
ij which are the elements of thecenterof A. Further, suppose that(xixj )xk = xi(xj xk) and

exi = xi = xie for all i, j, k ∈ I . Then there is a multiplication inB such thatB is a ring with the unit
elemente. The fact thate is the unit element is not that trivial as in 5.A.1. Lete = ∑

j εj xj . For every
i, we havexi = exi

∑
j εj (xj xi) = ∑

j,k εj γ
k

jixk. Therefore
∑

j εj γ
k

ji = δik (Kroneckersymbol). Now, for
everya ∈ A, we havee(axi) = ∑

j εj a(xjxi) = ∑
j,k εj aγ k

jixk = ∑
k(

∑
j εj γ

k
ji)axk = axi . Therefore bu

uning distributivity, it follows thate is a left unit element. It is trivial thate is a right element. The proof of
associativity of the multiplication is similar to that of the proof in, since the elementsγ k

ij commute with the
elements ofA. The details are left to the reader.

5.11. (Mono id a lgeb ras ) LetM be a (multiplicatively written) monoid with the unit element
1. Further, letA be a commutative ring. For everyσ ∈ M, leteσ denote the canonical basis element
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(δτ,σ )τ∈M of A(M), whereδτ,σ is the Kronecker symbol. Forσ, τ ∈ M, we defineeσ eτ := eστ .
The structure table in this case is nothing but the binary-operation-table ofM in which σ ∈ M is
replaced byeσ . It is clear that the hypothesis of 5.A.1 for the basiseσ , σ ∈ M, and the element
e = e1 are fulfilled. Therefore the structure constants are 0 or 1 and hence belong to the center of
A. Therefore, by 5.A.1 or 5.A.4 there is a ring structure onA(M) with the unit elemente1. The
algebra so defined is called theMono id a lgeb ra ofM overA and is dnoted byA[M]. If M is a
group, then this algebra is called theG r o u p a l g e b r a ofM ovr A. Special cases of the monoid
algebras are polynomial rings. These are the algebras of the monoidN(I ), whereI is an indexed
set and the binary operation onN is the usual addition.

5.12. (Genera l i sed qua te rn ions ove r a commuta t i ve r i ng ) LetA be a commutative
ring and leta, b ∈ A×, we shall construct theA – a l g e b r a(a, b)A t h e ( g e n e r a l i s e d )
q u a t e r n i o n s o f t y p e(a, b). We consider the freeA–moduleA4, the canonical basis ofA4 is
denoted by 1, i, j, k and a multiplication onA4 is defined by the structure-table

1 i j k

1 1 i j k

i i a k aj

j j −k b −bi

k k −aj bi −ab .

and extend by using distributive law. We leave the verification of the associativity conditions to the
reader. Clearly 1 is the unit element of this multiplication. We shall identifyA with A · 1. The
elementsz = c0 + c1i + c2j + c3k of (a, b)A are calledq u a t e r n i o n s . Thequaternions with
c0 = 0 are calledp u r e . For apure quaternionsz, w we have:zw = −wz. Therefore(a, b)A is
commutative if and only if eitherA = 0 or CharA = 2.

a). ( ( q u a t e r n i o n – ) c o n j u g a t i o n ) Foreach quaternionz = c0 + c1i + c2j + c3k ∈ (a, b)A,
the quaternionz := c0 − c1i − c2j − c3k is called thec o n j u g a t e q u a t e r n i o n ofz. For
a pure quaternionz we have :z = −z. Further, forz, w ∈ (a, b)A, we havez + w = z + w,
zw = w z andz = z. If 2 ∈ A∗, thenz = z if and only if z ∈ A. In particular, the mapz �→ z is an
anti-automorphism of theA-algebra(a, b)A and is called the( q u a t e r n i o n – ) c o n j u g a t i o n .
(Proof. Clearly cz = cz = zc for everyc ∈ A. In view of the given compatibility with addition, it is
enough to prove the assertion forz, w ∈ {i, j, k}. For examplei · i = a = a = (−i) · (−i) = i · i und
i · j = k = −k = j · i = (−j) · (−i) = j · i. The remaining part is left to the reader.)

b). ( ( R e d u c e d ) N o r m ) Foreach quaternionz ∈ (a, b)A, the element N(z) := zz is called the
( r e d u c e d ) n o r m ofz. Forz = c0 + c1i + c2j + c3k, c0, c1, c2, c3 ∈ A, we have

N(z) = c2
0 − ac2

1 − bc2
2 + abc2

3 ,

For z, w ∈ (a, b)A, we have N(z) = N(z) and N(zw) = N(z)N(w). In particular, the norm is a
multiplicative map N :(a, b)A → A. ( Proof. We have N(zw) = zw zw = zww z = zN(w)z =
N(z)N(w). This where we have used the fact that N(w) is contained in the center of(a, b)A.)

c). A quaternionz ∈ (a, b)A is a unit in(a, b)A if and only if N(z) is a unit inA. In this case
z−1 = N(z)−1z. ( Proof. Sincezw = wz = 1, we have 1= N(1) = N(zw) = N(z)N(w). Conversely,
suppose that N(z) is a unit inA. Then N(z)−1 commutes with all quaternions and N(z)−1z is the inverse of
z, since 1= z(N(z)−1z) = (N(z)−1z)z.)

d). TheA–algebra(a, b)A is a division ring if and only ifA is a field and N(z) = 0, z ∈ (a, b)A, only
for z = 0. The last condition means that the only solution of the equationc2

0−ac2
1−bc2

2+abc2
3 = 0

in A is the trivial solutionc0 = c1 = c2 = c3 = 0.

e). TheA-algebra(1, 1)A is not a division ring, since the reduced norm is N(z) = c2
0 − c2

1 − c2
2 + c2

3
and N(z) = 0 has the non-trivial solution(1, 1, 1, 1). Similarly, theA-algebras(1, −1)A and
(−1, 1)A are not division rings.
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f). For an algebraically closed fieldK the generalised quaternion algebras are not division rings.
In particular,H(C) := (−1, −1)C is not a division ring. (Hint : For c = i ∈ C and
0 �= z := 1 + ci ∈ H(C), the norm N(z) = 0. More precisely, we have the following interesting theorem
(which need some more preparation!)

5.A.5 Theorem Let k be a field ofChark �= 2 and leta, b ∈ k×. Then

a). (a, b)k is a simplek–algebra with centerk.

b). If (a, b)k is not a division ring, then(a, b)k is isomorphic to thek–algebraM2(k) of (2×2)–matrices
overk.

c). If k is algebraically closed, then(a, b)k is isomorphic to thek–algebraM2(k) of (2×2)–matrices overk.

g). Let K be a finite field. Then the quaternion algebra(a, b)K , a, b ∈ K× is not a divison ring.
(Hint : It is enough to prove that: for givena, b, c ∈ K×, there existx, y ∈ K such thatax2 + by2 = c. Let
q := |K|, M := {ax2 : x ∈ K} andN := {c − by2 : y ∈ K}. Then|M| = q, if q is odd (use the exercise2))
and|M| = (q + 1)/2, if q even (use the exercise3)). In any case|M| = |N | and soM ∩ N �= ∅.)

h). ( (Reduced) Trace) For aquaternionz ∈ H(A), A commutative ring, the elementz+z ∈ A

is called the( r e d u c e d ) t r a c e ofz and is denoted by Tr(z). Fora, b ∈ A, z, w ∈ (a, b)A, we
have Tr(z) = Tr(z) and Tr(az + bw) = aTr(z) + bTr(w). In particular, the trace is aA–linear
Tr : (a, b)A → A. Further,z2 − Tr(z)z + N(z) = 0 for all z ∈ H(A).

5.13. For a commutative ringA, in the special casea = b = −1, we denote theA-algebra
(−1, −1)A by H(A). 4) This is the classical quaternion algebra overA; its structure-table is :

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1 .

The multiplication of the elements i, j, k is listed according to the following scheme : First write
these elements in the form

i

��
�

� ��
�

�
j −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� k

Then, if x, y, z are arbitrary succesive three elements in{i, j, k}, thenxy = z, in the case the
diagramm containsx → y andxy = −z otherwise. Further, ifx2 = −1 for x ∈ {i, j, k}. For
z = c0 + c1i + c2j + c3k, we have N(z) = c2

0 + c2
1 + c2

2 + c2
3.

2) Exercise Let G be a finite group of orderm and letn ∈ Z. Then gcd(m, n) = 1 if and only if the map
G → G defined byx �→ xn is bijective.
3) Exercise Let G be a finite group of even orderm = 2n. Then there are exactlyn elements ofG which
are squares inG. (Hint : Look at the bibers of the mapG → G, x �→ x2.
4) The letter “H” is used to denote this quaternion algebra as this algebra was first discovered byHamilton
in 1843. This was one of the first non-commutative ring discovered. Further, this is is a division ring, was
extremely influential in the subsequent developemnet of mathematics and it continues to play an important
role in certain areas of mathematics and physics; However, it believed that the quaternions were known to
Euler, Gauss and others before. LaterHurwitz, A. (1859-1919) had considered quaternion algebra
over the ringZ of integers. This algebra was used to prove the famous classical theorem ofLagrange, J.
L. (1736-1813) on the sum of four square theorem :Every integer can be expressed as the sum of squares
of four integers. This theorem was the starting point of a large research area in number theory, so called
W a r i n g p r o b l e m .This asksif every integer can be expressed as a sum of fixed number ofk-th powers.
For instance it can be ashown that every integer is a sum of nine cubes (resp. nineteen 4-th powers, etc...).
Hilbert had shown that the Waring problem have an affirmative answer.
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a). If A is a subfield ofR, then clearly N(z) = 0 is equivalent toc0 = c1 = c2 = c3 = 0 andH(A)

is a division ring. In particular,H(Q) and the “ usual ” quaternionsH := H(R) are division rings.

b). In the quaternion algebraH(Z) overZ the unitsz = c0 + c1i + c2j + c3k are determined by the
condition N(z) = c2

0 + c2
1 + c2

2 + c2
3 ∈ Z× = {1, −1}. Therefore the unit groupH(Z)× the group

of eight elements±1, ±i, ±j, ±k. This very interesting unit group is called theq u a t e r n i o n
g r o u p .

c). In the quaternion algebraH(A), the quaternions of norm 1 forms a subgroup of the unit group
H(A)× of HA. In the caseA = R this group is called theS p i n – G r o u p .

5.14. In this we list many interesting results with out proofs. First the two interesting theorems
5.A.6 and 5.A.7 (which need some more preparation!) are due toWedderburn, H. M. (1882-
1948) andFrobenius, G. (1849-1917) respectively.

5.A.6 Theorem (W e d d e r b u r n , 1 9 0 5 )Every finite division ring is commutative and hence a field.

5.A.7 Theorem ( F r o b e n i u s , 1 8 7 7 )R, C andH are the only non-isomorphic divisionR–algebras
which are finite dimensional overR.

5.A.8 Octonions Let a, b be non-zero elements of a fieldK and letH := (a, b)K be the quaternion algebra
of type(a, b) overK (see exercise 5.12) with the standard basis 1 , i , j , k= i j .

For an arbitrary elementc ∈ K, onO := H × H define aK-bilinear multiplication by

(ω1 , η1) (ω2 , η2) := (ω1ω2 + c η2η1 , η2ω1 + η1ω2)

and the conjugation by
(ω , η) := (ω , −η) .

We identifyH with H × {0} in O, and hence the multiplication onO can be restricted toH , this multi-
plication is in genearlnot associative. The element 1∈ H ⊆ O is also the unit element forO. Further,

(ω1 , η1) · (ω2 , η2) = (ω2 , η2) (ω1 , η1) . The quadratic form

N(ω , η) := (ω , η) (ω , η) = ω ω − c ηη = N(ω) − c N(η)

onO is called the N o r m . This norm is multiplicative:

N
(
(ω1 , η1) (ω2 , η2)

) = N(ω1 , η1) · N(ω2 , η2) .

Therefore it follows that :If the normN(ω, η) = N(ω) − c N(η) onO is anisotrop, then the corresponding
multiplication ofO is free from zero divisors.ThisK–algebraO = OK(a, b, c) is (which is in general not
associative) the well-knowna l g e b r a o f C a y l e y - n u m b e r s or the o c t o n i o n a l g e b r a o f t y p e
(a, b, c) overK; this is 8-dimensional algebra overK. The algebraO(K) := OK(−1, −1, −1) is called
the o c t o n i o n a l g e b r a . In thecaseK = R, this algebra is simply denoted byO. Its norm is positive
definite.ThereforeO is free from zero divisorsand hence a division algebra in general sense (see footnote
1)), in which the equationsxy = z for giveny, z with y �= 0 resp. for givenx, z with x �= 0 has exactly one
solutionx resp.y.

5.A.9 Theorem (A d a m , B o t t - M i l n o r , K e r v a i r e )If n �= 0, 1, 2, 4, 8, then there does not exist an
n–dimensional real division algebra in general sense.

This is a very deep theorem and was first proved byAdams by usingTopologicalK-theory. Nowadays
there is a proof byBott , Milnor andKervaire . (seeM i l no r , J.: Some Consequences of a Theorem
of Bott. Ann. Math.68 (1958) 444–449.)

5.A.10 Real Clifford algebras5) The sequence of real division algebrasR, C, H can be extended by
introducing the( r e a l ) C l i f f o r d a l g e b r a s Cln for n ≥ 0.

5) The study of real Clifford algebras have become central inmodern geometry and topology; they also
appear inQuantum Theoryin connection with theDirac operator. The groups of units in Clifford algebras
contain thespinor groups; they provide double coverings of thespecial orthogonal groups. We have only
given definition of real Clifford algebras associated to positive definite inner products onRn. There are also
complex and indefinite Clifford algebras.
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For each integern ≥ 0, the C l i f f o r d a l g e b r a6) Cln is the associative algebra overR that
is generated (as anR–algebrra) by a unity 1 and elementse1, e2, . . . , en, subject only to relations
e2
i = −1, eiej = −ej ei for i �= j , 1 ≤ i, j ≤ n . It is evident that Cl0 = R viewed as 1-dimensional

algebra over it self. The algebra Cl1 is generated by 1 ande1 subject only to relatione2
1 = −1. But

this is just the way that the complex numbers are described when viewed as a 2-dimensional algebra
overR. Therefore if we sete1 = i, then Cl1 = C. The quternion algebraH is a 4-dimensional
algebra overR generated by 1, i, j, k with relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i
and ki= −ik = j. Therefore if we sete1 = i, e2 = j ande1e2 = k, it is easy to cheak that Cl2 = H.
All of the Clifford algebras have been explicitly computed7) by Atiyah, Bott andShapiro. For
0 ≤ n ≤ 7 the Clifford algebras are given in the following table and all other Clifford algebras can
now be computed by using the isomorphism Cln+8

∼= M16(Cln). The mysterious numbersan+1

in the 4-th row of the table are similarly defined for all indices by settinga(n+1)+8 = 16an+1. For
eachn ≥ 0, the Clifford algebra Cln has a representation onRan . All these results can be proved
by usingtensor products of algebras, the prrofs are given in [loc.cit.] and are quite accessible and
elegant. The first few real Clifford algebras are summarised in the following table :

n 0 1 2 3 4 5 6 7 8

Cln R C H H × H M2(H) M4(C) M8(R) M8(R) × M8(R) M16(R)

DimRCln 1 2 4 8 16 32 64 128 256

an+1 1 2 4 4 8 8 8 8 8

5.15. OnCn, n ∈ N, n ≥ 2, there does not exist a divisionC–algebra structure in general sense.

(Proof This follows very easily from thefundamental theorem of algebra8) and hence its proof works
for any algebraically closed9) field K. For the proof we shall use the determinant theory. In view of
the exercise 5.10c), it is enough to show that there existsz ∈ Kn such that the left multiplication map
λz : Kn → Kn which is aK-linear endomorphism ofKn, is not bijective, i.e. the determinant Detλz of
λz is equal to 0. For this letu andv be two linearly independent elements inKn (e.g.u := e1, v := e2).
We may assume thatλu is bijectiv; otherwise takez := u. Then we consider fort ∈ K the determinant of
λ−1

u ◦ λu+tv = λ−1
u (λu + tλv) = id + t λ−1

u λv. This is a polynomial function of degreen in t (namely, the
value of the characteristic polynomial ofλ−1

u λv at −t . Now, sinceK is algebraically closed, there exists
t0 ∈ K such that Det(id + t0λ

−1
u λv) = 0. But thenλz for z := u + t0v is not bijective.)

5.16. ( H u r w i t z ’s q u a t e r n i o n s ) ThequaternionZ–algebraH(Z) is a Z–subalgebra of
H(Q). An elementz = a + bi + cj + dk ∈ H(Q) is called aH u r w i t z ’s q u a t e r n i o n if
a = a′/2, b = b′/2, c = c′/2, d = d ′/2, where the numbersa′, b′, c′, d ′ are either all even integers
(in this casez ∈ H(Z)) or all odd intgers. The Hurwitz’s Quaternions form a non-commutative
Z–algebraH ′ betweenH(Z) andH(Q), it is a freeZ–algebra of rank 4. Find aZ–basis ofH ′. If
z ∈ H ′, thenN(z) ∈ Z. Further,z ∈ H ′ is a unit inH ′ if and only if N(z) = 1. The unit group

6) Clifford algebra were introducedWilliam Kingdon Clifford (1845-1879). Clifford generalised
the quaternions (introduced by Hamilton two years before Clifford’s birth) to what he called the biquaternions
and he used them to study motion in non-euclidean spaces and on certain surfaces. These are now known as
’Clifford-Klein spaces’. He showed that spaces of constant curvature could have several different topological
structures.
7) See [Atiyah, M.F., Bott, R. and Shapiro, A.,Clifford modules, Topology3 (1964), 3-38.]
8) F u n d a m e n t a l t h e o r e m o f a l g e b r aEvery non-constant polynomial with coefficients inC has a
zero inC. The fundamental theorem of algebra was stated first by a French mathematicianJean-de-Rond
D’Alembert 91717-1855), who gave imcomplete proof. The first correct proof of this theorem was
given byGauss in 1799.
9) A field K is called a l g e b r a i c a l l y c l o s e d if thefundamental theorem of algebra holds forK, i.e.
every polynomial of positive degree overK has a zero inK. For example,C is algebraically closed, butQ
andR are not algebraically closed.
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H ′× contains 24 elements, namely

ε, εi, εj, εk,
1

2
(ε0 + ε1i + ε2j + ε3k, mit ε, ε0, ε1, ε2, ε3 ∈ {1, −1} .

For every Hurwitz’s quaternionz ∈ H ′ there exists an unite ∈ H ′× such thatez ∈ H(Z). (Hint :
If z /∈ H(Z), then there exists af ∈ H ′× such thatz + f = 2z′ andz′ ∈ H(Z). Now multiply byf −1 on the
left.)

5.17. Let K be a field and letB be a non-zero finiteK–algebra which is free from zero divisors.
ThenB and everyK–subalgebra ofB is a division ring. (Proof Since allK–subalgebras ofB are
finite and free from zero divisors, it is enough to prove thatB is a division ring. Letx1, . . . , xm be aK–basis
of B. For an arbitrary elementx ∈ B, x �= 0, xx1, . . . , xxm resp.x1x, . . . , xmx are bases ofB. For this it is
enough to prove that these elements are linearly independent overK. Suppose thata1xx1+· · ·+amxxm = 0
with a1, . . . , am ∈ K. Thenx(a1x1 +· · ·+ amxm) = 0 and hencea1x1 +· · ·+ amxm = 0, sincex �= 0 andB

is free from zero divisors. Thereforea1 = · · · = an = 0, similarly,x1x, . . . , xmx are linearly independent
overK. Now, letz ∈ B be arbitrary. Then there exist elementsb1, . . . , bm resp.c1, . . . , cm in K such that
z = b1xx1 + · · · + bmxxm = x(b1x1 + · · · + bmxm) resp.z = c1x1x + · · · + cmxmx = (c1x1 + · · · + cmxm)x.
This shows that the equationsxu = z resp.vx = z have solutions inB. Now use the exercise 5.10c).)

5.18. Let K be a field of CharK �= 2 and leta, b ∈ K×. Then the following statements are
equivalent:

(i) There existc0, c1, c2, c3 ∈ K, not all zero such thatc2
0 − a c2

1 − b c2
2 + abc2

3 = 0.

(ii) There existc0, c1, c2 ∈ K, not all zero such thatc2
0 − ac2

1 − bc2
2 = 0.

(iii) There existc1, c2, c3 ∈ K, not all zero such that−ac2
1 − bc2

2 + abc2
3 = 0.

Below one can see (simple) test-exercises.

Test-Exercises

T5.12. Let K be a field. Construct a non-commutativeK–algebra of dimension 3 with basis 1, z, w and
the structure-table

1 z w

1 1 z w

z z z w

w w 0 0 .

(Remark : This is the only non-commutativeK–algebra of dimension 3.)

T5.13. The center ofH(R) is R. — What is the center ofH(A) for an arbitray commutative ringA?

T5.14. a). Find all z ∈ H = H(R) with z2 = −1. b). Let B be aR–subalgebra ofH with R ⊂ B ⊂ H.
Show that : there exists az ∈ H with z2 = −1 andB = R[z]. What is the dimensionB overR? Compare
theR–algebraB with theR–algebraC of the complex numbers. Letz, w ∈ H with z2 = w2 = −1. Show
thatR[z] = R[w] if and only if w = z or w = −z.

T5.15. Let A commutative ring and letz ∈ H(A) be a quaternion. Show that the follwoing statements are
equivalent :

(i) z is a left zero-divisor inH(A). (ii) z is a right zero-divisor inH(A).

(iii) z is a zero-divisor inH(A). (iv) N(z) is a zero-divsior inA.

T5.16. Let z ∈ H(R). the non-negative square root
√

N(z) of the norm ofz is called thea b s o l u t e
v a l u e of thequaternionz. For z, w ∈ H, we have|zw| = |z||w| and the t r i a n g l e i n e q u a l i t y
|z + w| ≤ |z| + |w|.
T5.17. Generalise 5.18 as follows : LetB be a ring which is free from zero-divisors. Suppose thatB is
finite as a left-vector spaceor as a right-vector space finite over a sub-divison ringK. ThenB and every
subring betweenK andB is a division ring.
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T5.18. Generalise 5.18 as follows : LetK be a field and letB �= 0 be aK–algebra in the general sense
(see footnote1)). If DimKB is finite and ifB is free from zero-divisors (i.e.yz �= 0 if 0 �= z), thenB is a
division algebra in the general sense (see footenote1)), i.e. for givenu, v ∈ B, u �= 0, the equationuw = v

resp.xu = v has exactly one solutionw resp.x.

T5.19. Let K be a field and letM be a monoid generated by one elementσ . ThenK[M] = K[eσ ] is a
monogeneK–algebra andK[M] is a principal ideal ring. (see exercise 5.8)

T5.20. LetG be a group and letg ∈ G be an element of finite orderm > 1. Then the element 1−g = e1−eg

in the group ringA[G] is a zero divisor. (Hint : (1 − g)(1 + g + · · · + gm−1) = 1 − gm = 1 − 1 = 0 in the
ring A[G].)

T5.21. Let Q8 := {±1, ±i, ±j, ±k} be the quaternion (multiplicatively written) group. Then the group
ring R[Q8] of Q8 overR is not same asH even though later conatin a copy of the quaternion group Q8.

† S i r W i l l i a m R o w a n H a m i l t o n ( 1 8 0 5 - 1 8 6 5 ) was born on 4 Aug 1805 in Dublin, Ireland and died
on 2 Sept 1865 in Dublin, Ireland. William Rowan Hamilton’s father, Archibald Hamilton, did not have time to teach William as he
was often away in England pursuing legal business. Archibald Hamilton had not had a university education and it is thought that
Hamilton’s genius came from his mother, Sarah Hutton. By the age of five, William had already learned Latin, Greek, and Hebrew.
He was taught these subjects by his uncle, the Rev James Hamilton, who William lived with in Trim for many years. James was a fine
teacher. William soon mastered additional languages but a turning point came in his life at the age of 12 when he met the American
Zerah Colburn. Colburn could perform amazing mental arithmetical feats and Hamilton joined in competitions of arithmetical ability
with him. It appears that losing to Colburn sparked Hamilton’s interest in mathematics. Hamilton’s introduction to mathematics came
at the age of 13 when he studied Clairaut’s Algebra, a task made somewhat easier as Hamilton was fluent in French by this time.
At age 15 he started studying the works of Newton and Laplace. In 1822 Hamilton found an error in Laplace’s Méchanique céleste
and, as a result of this, he came to the attention of John Brinkley, the Astronomer Royal of Ireland, who said: This young man, I do
not say will be, but is, the first mathematician of his age.

Hamilton entered Trinity College, Dublin at the age of 18 and in his first year he obtained an ’optime’ in Classics, a distinction only
awarded once in 20 years. He achieved this merit despite spending most of his time living with his Cousin Arthur at Trim and therefore
not attending all of his lectures. In August 1824, Uncle James took Hamilton to Summerhill to meet the Disney family. It was at
this point that William first met their daughter Catherine and immediately fell hopelessly in love with her. Unfortunately, as he had
three years left at Trinity College, Hamilton was not in a position to propose marriage. However Hamilton was making remarkable
progress for an undergraduate and submitted his first paper to the Royal Irish Academy before the end of 1824, which was entitled
On Caustics. The following February, Catherine’s mother informed William that her daughter was to marry a clergyman, who was
fifteen years her senior. He was affluent and could offer more to Catherine than Hamilton. In his next set of exams William was given
a ’bene’ instead of the usual ’valde bene’ due to the fact that he was so distraught at losing Catherine. He became ill and at one
point he even considered suicide. In this period he turned to poetry, which was a habit that he pursued for the rest of his life in times
of anguish.

In 1826 Hamilton received an ’optime’ in both science and Classics, which was unheard of, while in his final year as an undergraduate
he presented a memoir Theory of Systems of Rays to the Royal Irish Academy. It is in this paper that Hamilton introduced the
characteristic function for optics. Hamilton’s finals examiner, Boyton, persuaded him to apply for the post of Astronomer Royal at
Dunsink observatory even although there had already been six applicants, one of whom was George Biddell Airy. Later in 1827
the board appointed Hamilton Professor of Astronomy at Trinity College while he was still an undergraduate aged twenty-one years.
This appointment brought a great deal of controversy as Hamilton did not have much experience in observing. His predecessor,
Professor Brinkley, who had become a bishop, did not think that it had been the correct decision for Hamilton to accept the post and
implied that it would have been prudent for him to have waited for a fellowship. It turned out that Hamilton had made an poor choice
as he lost interest in astronomy and spend all time on mathematics.

Before beginning his duties in this prestigious position, Hamilton toured England and Scotland (from where the Hamilton family
originated). He met the poet Wordsworth and they became friends. One of Hamilton’s sisters Eliza wrote poetry too and when
Wordsworth came to Dunsink to visit, it was her poems that he liked rather than Hamilton’s. The two men had long debates
over science versus poetry. Hamilton liked to compare the two, suggesting that mathematical language was as artistic as poetry.
However, Wordsworth disagreed saying that: Science applied only to material uses of life waged war with and wished to extinguish
imagination.Wordsworth had to tell Hamilton quite forcibly that his talents were in science rather than poetry: You send me showers
of verses which I receive with much pleasure ... yet have we fears that this employment may seduce you from the path of science. ...
Again I do venture to submit to your consideration, whether the poetical parts of your nature would not find a field more favourable
to their nature in the regions of prose, not because those regions are humbler, but because they may be gracefully and profitably
trod, with footsteps less careful and in measures less elaborate.

Hamilton took on a pupil by the name of Adare. They were a bad influence on each other as Adare’s eyesight started to present
problems as he was doing too much observing, while at the same time Hamilton became ill due to overwork. They decided to take
a trip to Armagh by way of a holiday and visit another astronomer Romney Robinson. It was on this occasion that Hamilton met
Lady Campbell, who was to become one of his favourite confidants. William also took the opportunity to visit Catherine, as she was
living relatively nearby, which she then reciprocated by coming to the observatory. Hamilton was so nervous in her presence that
he broke the eyepiece of the telescope whilst trying to give her a demonstration. This episode inspired another interval of misery
and poem writing. In July 1830 Hamilton and his sister Eliza visited Wordsworth and it was around this time that he started to think
seriously about getting married. He considered Ellen de Vere, and he told Wordsworth that he: ... admired her mind ...but he did
not mention love. He did, however, bombard her with poetry and was about to propose marriage when she happened to say that
she could ... not live happily anywhere but at Curragh.Hamilton thought this was her way of discouraging him tactfully and so he
ceased to pursue her. However he was proved to be mistaken as she married the following year and did leave Curragh! Fortunately,
one good thing transpired from the event as Hamilton became firm friends with Ellen’s brother Aubrey although a dispute about
religion in 1851 made them go their separate ways.
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Catherine aside, Hamilton seemed quite fickle when it came to relationships with women. Perhaps this was because he thought
that he ought to marry and so, if he could not have Catherine, then it did not really matter who he married. In the end he married
Helen Maria Bayly who lived just across the fields from the observatory. William told Aubrey that she was "not at all brilliant" and,
unfortunately, the marriage was fated from the start. They spent their honeymoon at Bayly Farm and Hamilton worked on his third
supplement to his Theory of Systems of Rays for the duration. Then at the observatory Helen did not have much of an idea of
housekeeping and was so often ill that the household became extremely disorganised. In the years to come she spent most of her
time away from the observatory as she was looking after her ailing mother or was indisposed herself.

In 1832 Hamilton published this third supplement to Theory of Systems of Rays which is essentially a treatise on the characteristic
function applied to optics. Near the end of the work he applied the characteristic function to study Fresnel’s wave surface. From this
he predicted conical refraction and asked the Professor of Physics at Trinity College, Humphrey Lloyd, to try to verify his theoretical
prediction experimentally. This Lloyd did two months later and this theoretical prediction brought great fame to Hamilton. However, it
also led to controversy with MacCullagh, who had come very close to the theoretical discovery himself but, he was forced to admit,
had failed to take the last step.

On 4 November 1833 Hamilton read a paper to the Royal Irish Academy expressing complex numbers as algebraic couples, or
ordered pairs of real numbers. He used algebra in treating dynamics in On a General Method in Dynamics in 1834. In this paper
Hamilton gave his first statement of the characteristic function applied to dynamics and wrote a second paper on the topic the
following year. Hankins writes : These papers are difficult to read. Hamilton presented his arguments with great economy, as usual,
and his approach was entirely different from that now commonly presented in textbooks describing the method. In the two essays
on dynamics Hamilton first applied the characteristic function V to dynamics just as he had in optics, the characteristic function
being the action of the system in moving from its initial to its final point in configuration space. By his law of varying action he
made the initial and final coordinates the independent variables of the characteristic function. For conservative systems, the total
energy H was constant along any real path but varied if the initial and final points were varied, and so the characteristic function
in dynamics became a function of the 6n coordinates of initial and final position (for n particles) and the Hamiltonian H.

The year 1834 was the one in which Hamilton and Helen had a son, William Edwin. Helen then left Dunsink for nine months leaving
Hamilton to fight the loneliness by throwing himself into his work even more. In 1835 Hamilton published Algebra as the Science of
Pure Time which were inspired by his study of Kant and presented to a meeting of the British Association for the Advancement of
Science. This second paper on algebraic couples identified them with steps in time and he referred to the couples as ’time steps’.

Hamilton was knighted in 1835 and that year his second son, Archibald Henry, was born but the next few years did not bring him
much happiness. After the discovery of algebraic couples, he tried to extend the theory to triplets, and this became an obsession
that plagued him for many years. The following autumn he went to Bristol for a meeting of the British Association, and Helen took
the children with her to Bayly Farm for ten months. His cousin Arthur died, and not long after Helen returned from her mother’s she
went away again to England this time leaving the children behind after the birth of a daughter, Helen Eliza Amelia. At this point,
William became depressed and started to have problems with alcohol so his sister came back to live at Dunsink. Helen returned in
1842 when Hamilton was so preoccupied with the triplets that even his children were aware of it. Every morning they would inquire:
Well, Papa can you multiply triplets?but he had to admit that he could still only add and subtract them.

On 16 October 1843 (a Monday) Hamilton was walking in along the Royal Canal with his wife to preside at a Council meeting of the
Royal Irish Academy. Although his wife talked to him now and again Hamilton hardly heard, for the discovery of the quaternions, the
first noncommutative algebra to be studied, was taking shape in his mind: And here there dawned on me the notion that we must
admit, in some sense, a fourth dimension of space for the purpose of calculating with triples ... An electric circuit seemed to close,
and a spark flashed forth.He could not resist the impulse to carve the formulae for the quaternions i2=j2=k2=ijk=−1. in the
stone of Brougham Bridge as he and his wife passed it. Hamilton felt this discovery would revolutionise mathematical physics and
he spent the rest of his life working on quaternions. He wrote: I still must assert that this discovery appears to me to be as important
for the middle of the nineteenth century as the discovery of fluxions[the calculus] was for the close of the seventeenth.

Shortly after Hamilton’s discovery of the quaternions his personal life started to prey on his mind again. In 1845, Thomas Disney
visited Hamilton at the observatory and brought Catherine with him. This must have upset William as his alcohol dependency took
a turn for the worse. At a meeting of the Geological Society the following February he made an exhibition of himself through his
intoxication. Macfarlane writes: ... at a dinner of a scientific society in Dublin he lost control of himself, and was so mortified that,
on the advice of friends he resolved to abstain totally. This resolution he kept for two years, when ... he was taunted for sticking
to water, particularly by Airy ... . He broke his good resolution, and from that time forward the craving for alcoholic stimulants
clung to him.

The year 1847 brought the deaths of his uncles James and Willey and the suicide of his colleague at Trinity College, James
MacCullagh, which greatly disturbed him despite the fact that they had not always seen eye to eye. The following year Catherine
began writing to Hamilton, which cannot have helped at this time of depression. The correspondence continued for six weeks and
became more informal and personal until Catherine felt so guilty that she confessed to her husband. Hamilton wrote to Barlow and
informed him that they would never hear from him again. However, Catherine wrote once more and this time attempted suicide
(unsuccessfully) as her remorse was so great. She then spent the rest of her life living with her mother or siblings, although there
was no official separation from Barlow. Hamilton persisted in his correspondence to Catherine, which he sent through her relatives.
It is no surprise that Hamilton gave in to alcohol immediately after this, but he threw himself into his work and began writing his
Lectures on Quaternions. He published Lectures on Quaternions in 1853 but he soon realised that it was not a good book from which
to learn the theory of quaternions. Perhaps Hamilton’s lack of skill as a teacher showed up in this work. Hamilton helped Catherine’s
son James to prepare for his Fellowship examinations which were on quaternions. He saw this as revenge towards Barlow as he
was able to help his son in a way that his father could not. Later that year Hamilton received a pencil case from Catherine with an
inscription that read : From one who you must never forget, nor think unkindly of, and who would have died more contented if we
had once more met.Hamilton went straight to Catherine and gave her a copy of Lectures on Quaternions. She died two weeks later.
As a way of dealing with his grief, Hamilton plagued the Disney family with incessant correspondence, sometimes writing two letters
a day. Lady Campbell was another sufferer of the burden of mail, as only she and the Disneys knew of his love for Catherine. On
the other hand, Helen must have always suspected that she did not take first place in her husband’s heart, a notion that must have
been strengthened in 1855 when she found a letter from Dora Disney (Catherine’s sister-in-law). This led to an argument, although
the only consequence was that Dora had her letters addressed by her husband, they did not stop altogether.

Determined to produce a work of lasting quality, Hamilton began to write another book Elements of Quaternions which he estimated
would be 400 pages long and take 2 years to write. The title suggests that Hamilton modelled his work on Euclid’s Elements and
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indeed this was the case. The book ended up double its intended length and took seven years to write. In fact the final chapter was
incomplete when he died and the book was finally published with a preface by his son William Edwin Hamilton. Not everyone found
Hamilton’s quaternions the answer to everything they had been looking for. Thomson wrote: Quaternions came from Hamilton after
his really good work had been done, and though beautifully ingenious, have been an unmixed evil to those who have touched them
in any way. Cayley compared the quaternions with a pocket map : ... which contained everything but had to be unfolded into
another form before it could be understood.

Hamilton died from a severe attack of gout shortly after receiving the news that he had been elected the first foreign member of the
National Academy of Sciences of the USA.
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