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Basic Algebra

6. Homomorphisms of rings

F e r d i n a n d G e o r g F r o b e n i u s †

(1849-1917)
J o s e p h H e n r y M a c l a g e n W e d d e r b u r n ††

(1882-1948)

6.1. Let X be a set ane letP(X) be the power set ring ofX. The mape : P(X) → (K2)
X , that

assigns every subsetA ⊆ X to its characteristic funktioneA (which mapsx �→ 1 if x ∈ A and
x �→ 0 if x /∈ A), is an isomorphism of rings of the ringP(X) onto theX–fold direct product of K2.
A permutationσ of X induces the permutationσ ′ of P(X) with σ ′(A) := σ(A) = {σ(x) : x ∈ A}
for A ∈ P(X). Forσ ∈ S(X), σ ′ ∈ Aut P(X), and the mapσ �→ σ ′ is an isomorphism of groups
from the groupS(X) onto AutP(X).

6.2. Let ϕ : A → A′ be a homomorphism of rings. For a ringB denote�B(ϕ) : Hom(B, A) →
Hom(B, A′) and�B(ϕ) : Hom(A′, B) → Hom(A, B) the cannonical maps (on the sets of ring
homomorphisms) withτ �→ ϕτ resp.σ �→ σϕ.

a). ϕ is injective if and only if�B(ϕ) is injective for all ringsB. (Hint : Construct the ring
Z × (Kernϕ) and consider the ring homomorphismZ × (Kernϕ) → A defined by(n, a) �→ n · 1A + a and
(n, a) �→ n · 1A.)

b). If ϕ is surjective, then�B(ϕ) is injective for all ringsB. (Remark : The converse does not hold:
For every ringB, �B(Z → Q) is injective, but the inclusionZ → Q is not surjective.)

6.3. Let m, n ∈ N∗ andn be a divisor ofm. Then there exists exactly one ring homomorphism
ϕ : Am → An. Further, bothϕ as well asϕ× : A×

m → A×
n are surjective. (Hint : If a ∈ Z with

gcd(a, n) = 1, then there exists ar ∈ N such that gcd(a + rn, m) = 1, for example, the product of those
prime factors ofm, which do not dividea or n.)

6.4. a). Let n ∈ N. Show that the projectionspi : (ai) �→ ai, i = 1, . . . , n, are the only ring
homomorphismsZn → Z. (Hint : Considereres = 0 for r �= s, whereer , r = 1, . . . , n, is the standard
Z–basis ofZn.)

b). Show that the projectionspi : (aj )j∈N �→ ai, i ∈ N, are the only ring homomorphismsZN → Z.
(Hint : Use the following theorem :

Theorem ( S p e c k e r ) The projectionsπm : ZN → Z, m ∈ N, with (an)n∈N �→ am form a basis of the
Z–module of all linear forms onZN.

Corollary ( R. B a e r , E. S p e c k e r )Let I be an infinite set. Then the ablelian groupZI is not a free
group. In particular,ZN is not free.

Proof Suppose thatZN is free with the basisfi, i ∈ I , thenI will be necessarily uncountable. But then
there will be uncountably many coordinate functionsf ∗

i , i ∈ I and hence there will be uncountably many
linear forms onZN, but by the theorem there are only countably many linear forms onZN. •
Proof of the theorem : (Due to E. S p e c k e r ). First we shall show thatπm, m ∈ N, are linearly
independent overZ. Let en, n ∈ N, be the standard basis ofZ(N) ⊆ ZN. Thenπm(en) = δmn and from∑

m∈N
amπm = 0, am ∈ Z, it follows that 0= ∑

m∈N
amπm(en) = ∑

m∈N
amδmn = an for all n ∈ N.

Now it remain to show that every linear form onZN is a linear combination of theπm, m ∈ N. Let
h : ZN → Z be a given linear form and letbn := h(en). Let cn, n ∈ N, be a sequence of positive natural
numbers such thatcn+1 is a multiple ofcn for all n ∈ N and such thatcn+1 ≥ n + 1 + ∑n

r=0 |crbr | for all
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n ∈ N. Such a sequence can be defined recursively. We considerc := h((cn)n∈N). For everym ∈ N, there
exists aym ∈ ZN such that(cn) = ∑m

n=0 cnen + cm+1ym. Applying h we getc = ∑m

n=0 cnbn + cm+1h(ym).
and so|c − ∑m

n=0 cnbn| = cm+1|h(ym)| which is either 0 or≥ cm+1. If m ≥ |c|, then|c − ∑m

n=0 cnbn| ≤
|c| +∑m

n=0 |cnbn| ≤ m+∑m

n=0 |cnbn| < cm+1 by definition ofcn. Thereforec = ∑m

n=0 cnbn frr all m ≥ |c|.
This means thatcnbn = 0 and sobn = 0 for all n > |c|. Therefore the linear formh − ∑|c|

n=0 bnπn vanishes
on all elements of the standard basisen, n ∈ N. We shall now show that such a linear from must be zero.

Therefore letg be a linear form onZN with g(en) = 0 for all n ∈ N. Let (cn) ∈ ZN be given. There
exists integersvn, wn such thatvn2n + wn3n = cn. (for examplecn = cn(3 − 2)2n.) Theng((cn)) =
g((vn2n)) + g((wn3n)). For everym ∈ N there exists azm ∈ ZN with (vn2n) = ∑m−1

n=0 vn2nen + 2mzm.
It follows that g((vn2n)) ∈ 2mZ for all m ∈ N, and sog((vn2n)) = 0. Analogously it follows that
g((wn3n)) = 0. This proves thatg((cn)) = 0, as desired. •
c). What are all the automorphisms of the ringZn, n ∈ N, resp. ZN?

6.5. ( R a d i c a l o f a n i d e a l ) Leta be an ideal in a commutative ringA. The inverse image of
the nilradical ofA/a in A under the canonical projectionA → A/a is called ther a d i c a l ofa. It
is usually denoted byr(a) or by

√
a. r(a) is the set of alla ∈ A, for which there is (dependent on

a) n ∈ N such thatan ∈ a. The residue ringA/r(a) is canonically isomorphic to the reduction of
A/a. Further,r(r(a)) = r(a).

6.6. ( T h e o r e m o f M. H. S t o n e ) LetA be a Boolean ring. LetM denote the set of all
maximal ideals inA. Then

⋂
m∈M m = 0. For everym ∈ M there exists a unique homomorphism

ϕm : A → K2 with the kernelm. The mapϕ : A → KM
2 defined bya �→ (ϕm(a))m∈M is an

injective ring homomorphism. IfA has only finitely many elements, thenϕ is bijective. (Hint:
Distinct maximal ideals are relatively coprime.)

From the theorem ofS t o n ededuce that: Every Boolean ring is isomorphic to a subring of a full
power set ring; every finite Boolean ring is isomorphic to a full power set ring. (see also exercise
6.1) There exists a Boolean ring, which is not isomorphic to the full power set ring.(Hint: Full
power set ring is never countablly infinite.)

6.7. Let a1, . . . , an andb1, . . . , bm be two-sided ideals in a ringA with ai + bj = A for all i, j .
Then a1 · · · an + b1 · · · bm = A . Deduce that: Ifa andb are relatively coprime two-sided ideals in
a ring, thenan andbm are also relatively coprime ideals for arbitrarym, n ∈ N.

6.8. For pairwise relatively coprime two-sided idealsa1, . . . , an in a ringA we have :

a1 ∩ · · · ∩ an =
∑

σ∈Sn

aσ(1) · · · aσ(n) . (Hint : Induction)

If A is commutative, then
⋂n

i=1 ai = ∏n
i=1 ai .

6.9. Let A be a ring. The set Idp(Z(A)) of all idempotent elements in the center Z(A) of A is
finite if and only ifA is isomorphic to a finite direct product of indecomposable rings. Moreover,
in this case|Idp(Z(A))| = 2s , wheres is the number of indecomposable components in the product
representation ofA.
6.10. Let ϕ : A → B be a homomorphism of commutative rings.ϕ induces a mapϕ1 : Idp(A) →
Idp(B) between the idempotent elements ofA resp.B. If ϕ is surjective and the kernel ofϕ is
conatined in the nilradicalnA of A, thenϕ1 is bijective. (Hint: Use exercise 1.4)Corollary: A
commutative ringA is indecomposable (see T6.8) if and only ifA/nA is indecomposable. (Hint:
If A/nA is indecomposable, then so isA even in the non-commutative case (proof!). However, in the
non-commutative case the residue ringA/nAcan be decomposable withoutA being so. For example the
ring

B :=
{(

a b

0 c

)
: a , b , c ∈ K

}
⊆ M2(K)

of 2 × 2 upper triangular matrices over a fieldK (vgl. Kapitel V) is indecomposable, but the residue ring
B/nB

∼= K × K is decomposable.)
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Below one can see (simple) test-exercises.

Test-Exercises
T6.1. Let A andB be rings and letf, g be homomorphisms ofA in B. The subsetA′ of all elementsa ∈ A

with f (a) = g(a) is a subring ofA. Moreover, ifA is a division ring, thenA′ is also a division ring.

T6.2. Let K andL be fields of characteristic�= 2 andϕ be a group homomorphism of(K, +) in (L, +)

with the following properties: (1)ϕ(1) = 1. (2)ϕ(a)ϕ(a−1) = 1 for all a ∈ K, a �= 0. Show thatϕ is a
ring homomorphism ofK in L. (Hint : If a ∈ K, a �= 0, a �= 1, then proveϕ(a2) = ϕ(a)2 by considering
1 + a = (1 − a)−1 − ((a2)−1 − a−1)−1. — Remark : More generally, ( S a t z v o n H u a ) ifK andL are
division rings andϕ : K → L is a homomorphism of its addtive groups with the properties (1) and (2), then
ϕ is a ring homomorphism or a ring anti–homomorphism.)

T6.3. Two subrings ofQ are isomorphic if and only if they are equal. (Remark : The set of isomorphism
classes of subrings ofQ has the cardinality of the continuum, i.e., c := card(R).)

T6.4. Let A be an ordered ring.

a). For a natural numbern ∈ N∗, show that the equationxn = 1 has atmost two solutions 1 and−1 in A.
(Hint : One may assumex ≥ 0.)

b). Let a, b ∈ A. Show that|a| · |b| = |ab|, |a|2 = a2, |a + b| ≤ |a| + |b|, |a − b| ≥ ||a| − |b||.
c). If the order onA is archimedian, then show that the identity map is the only order preserving automor-
phism ofA.

T6.5. ( R e d u c e d r i n g s ) LetA be a commutative ring. ThenA is calledr e d u c e d , ifzero is the only
nilpotent element ofA. A ring A is reduced if and only if the nilradicalnA of A is the zero ideal. The residue
ring A/nA is reduced. (This ring is called the re d u c t i o n ofA and is usually denoted byAred.)

T6.6. Let A be a ring which contain the prime fieldQ of characteristic 0 and as anQ–algebra generated by
a nilpotent elementa ∈ A. ThenA is commutative,Aa is the additive group of the nilpotent elements ofA

and 1+ Aa is the multiplicative group of unipotent elements ofA. The e x p o n e n t i a l m a p

exp :c �→
∞∑

n=0

cn

n!

of Aa into 1+ Aa is an isomorphism of groups. (Prove its bijectivity by induction on the numberm, for
whicham = 0, where the induction hypothesis is applied onA/Aam−1.)

T6.7. Let A be a ring and letI be a finite indexed set. The set of the family(ei)i∈I of idempotent elements
ei ∈ A such thatei ∈ Z(A), eiej = δij ei ,

∑
i∈I ei = 1 defines

(ei)i∈I �→ (ai )i∈I with ai :=
∑
j �=i

Aej = A(1 − ei)

a bijective map onto the set of the family(ai )i∈I of two-sided idealsai in A, which satisfy the conditions
ai + aj = A for all i, j ∈ I with i �= j and∩i∈Iai = 0.

T6.8. A non-zero ring which is not isomorphic to a product of two non-zero rings is calledindecomposable
or c o n n e c t e d .

Let A be a non-zero ring. The following statements are equivalent:

(1) A is indecomposable.

(2) There are no relatively coprime two-sided non-unit idealsa andb in A such thata ∩ b = 0.

(3) The center Z(A) of A is indecomposable.

(4) There are no idepotents other than 0 and 1 in Z(A).

(Hint : Use the exercise and for (4): Ife is an idempotent, then so is 1−e and 1= e+ (1−e), e(1−e) = 0.)

T6.9. The characteristic of an indecomposable ring is 0 or a power of a prime number.

T6.10. The number of elements in a finite indecomposable ring is a power of a prime number.

† F e r d i n a n d G e o r g F r o b e n i u s ( 1 8 4 9 - 1 9 1 7 ) was born on 26 Oct 1849 in Berlin-Charlottenburg,
Prussia (now Germany) and died on 3 Aug 1917 in Berlin, Germany. Georg Frobenius’s father was Christian Ferdinand Frobenius,
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a Protestant parson, and his mother was Christine Elizabeth Friedrich. Georg was born in Charlottenburg which was a district of
Berlin which was not incorporated into the city until 1920. He entered the Joachimsthal Gymnasium in 1860 when he was nearly
eleven years old and graduated from the school in 1867. In this same year he went to the University of Göttingen where he began
his university studies but he only studied there for one semester before returning to Berlin.

Back at the University of Berlin he attended lectures by Kronecker, Kummer and Weierstrass. He continued to study there for his
doctorate, attending the seminars of Kummer and Weierstrass, and he received his doctorate (awarded with distinction) in 1870
supervised by Weierstrass. In 1874, after having taught at secondary school level first at the Joachimsthal Gymnasium then at the
Sophienrealschule, he was appointed to the University of Berlin as an extraordinary professor of mathematics.

For the description of Frobenius’s career so far, the attentive reader may have noticed that no mention has been made of him receiving
an habilitation before being appointed to a teaching position. This is not an omission, rather it is surprising given the strictness of the
German system that this was allowed. We should say that it must ultimately have been made possible due to strong support from
Weierstrass who was extremely influential and considered Frobenius one of his most gifted students.

Frobenius was only in Berlin for a year before he went to Zürich to take up an appointment as an ordinary professor at the Eidgenös-
sische Polytechnikum. For seventeen years, between 1875 and 1892, Frobenius worked in Zürich. He married there and brought
up a family and did much important work in widely differing areas of mathematics. We shall discuss some of the topics which he
worked on below, but for the moment we shall continue to describe how Frobenius’s career developed.

In the last days of December 1891 Kronecker died and, therefore, his chair in Berlin became vacant. Weierstrass, strongly believing
that Frobenius was the right person to keep Berlin in the forefront of mathematics, used his considerable influence to have Frobenius
appointed. However, for reasons which we shall discuss in a moment, Frobenius turned out to be something of a mixed blessing for
mathematics at the University of Berlin.

The positive side of his appointment was undoubtedly his remarkable contributions to the representation theory of groups, in particular
his development of character theory, and his position as one of the leading mathematicians of his day. The negative side came about
largely through his personality which is described as: ... occasionally choleric, quarrelsome, and given to invectives.

Biermann, looks more closely at his character (no pun intended!), and how it affected the success of mathematical education at
the university. He describes the strained relationships which developed between Frobenius and his colleagues at Berlin. He had
such high standards that in the end these did not serve Berlin well. He suspected at every opportunity a tendency of the Ministry to
lower the standards at the University of Berlin, in the words of Frobenius, to the rank of a technical school ... Even so, Fuchs and
Schwarz yielded to him, and later Schottky, who was indebted to him alone for his call to Berlin. Frobenius was the leading figure,
on whom the fortunes of mathematics at Berlin university rested for 25 years. Of course, it did not escape him, that the number
of doctorates, habilitations, and docents slowly but surely fell off, although the number of students increased considerably. That he
could not prevent this, that he could not reach his goal of maintaining unchanged the times of Weierstrass, Kummer and Kronecker
also in their external appearances, but to witness helplessly these developments, was doubly intolerable for him, with his choleric
disposition.

We should not be too hard on Frobenius for, as Haubrich explains, Frobenius’s attitude was one which was typical of all professors of
mathematics at Berlin at this time: They all felt deeply obliged to carry on the Prussian neo-humanistic tradition of university research
and teaching as they themselves had experienced it as students. This is especially true of Frobenius. He considered himself to be
a scholar whose duty it was to contribute to the knowledge of pure mathematics. Applied mathematics, in his opinion, belonged to
the technical colleges.

The view of mathematics at the University of Göttingen was, however, very different. This was a time when there was competition
between mathematians in the University of Berlin and in the University of Göttingen, but it was a competition that Göttingen won,
for there mathematics flourished under Klein, much to Frobenius’s annoyance. Biermann writes that: The aversion of Frobenius to
Klein and S Lie knew no limits ...

Frobenius hated the style of mathematics which Göttingen represented. It was a new approach which represented a marked change
from the traditional style of German universities. Frobenius, as we said above, had extremely traditional views. In a letter to Hurwitz,
who was a product of the Göttingen system, he wrote on 3 February 1896: If you were emerging from a school, in which one amuses
oneself more with rosy images than hard ideas, and if, to my joy, you are also gradually becoming emancipated from that, then old
loves don’t rust. Please take this joke facetiously.

One should put the other side of the picture, however, for Siegel, who knew Frobenius for two years from 1915 when he became a
student until Frobenius’s death, relates his impression of Frobenius as having a warm personality and expresses his appreciation
of his fast-paced varied and deep lectures. Others would describe his lectures as solid but not stimulating. To gain an impression
of the quality of Frobenius’s work before the time of his appointment to Berlin in 1892 we can do no better than to examine the
recommendations of Weierstrass and Fuchs when Frobenius was elected to the Prussian Academy of Science in 1892. Fairly
extensive quotes from this document, and another similar document from Fuchs and Helmholtz, are given, but we quote a short
extract to show the power, variety and high quality of Frobenius’s work in his Zürich years. Weierstrass and Fuchs list 15 topics on
which Frobenius had made major contributions:

1.On the development of analytic functions in series. 2.On the algebraic solution of equations, whose coefficients are rational
functions of one variable. 3.The theory of linear differential equations. 4.On Pfaff’s problem. 5.Linear forms with integer coefficients.
6.On linear substitutions and bilinear forms... 7.On adjoint linear differential operators... 8.The theory of elliptic and Jacobi functions...
9.On the relations among the 28 double tangents to a plane of degree 4. 10.On Sylow’s theorem. 11.On double cosets arising from
two finite groups. 12.On Jacobi’s covariants... 13.On Jacobi functions in three variables. 14.The theory of biquadratic forms. 15.On
the theory of surfaces with a differential parameter.

In his work in group theory, Frobenius combined results from the theory of algebraic equations, geometry, and number theory, which
led him to the study of abstract groups. He published über Gruppen von vertauschbaren Elementen in 1879 (jointly with Stickelberger,
a colleague at Zürich) which looks at permutable elements in groups. This paper also gives a proof of the structure theorem for
finitely generated abelian groups. In 1884 he published his next paper on finite groups in which he proved Sylow’s theorems for
abstract groups (Sylow had proved theorem as a result about permutation groups in his original paper). The proof which Frobenius
gives is the one, based on conjugacy classes, still used today in most undergraduate courses.

In his next paper in 1887 Frobenius continued his investigation of conjugacy classes in groups which would prove important in his
later work on characters. In the introduction to this paper he explains how he became interested in abstract groups, and this was
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through a study of one of Kronecker’s papers. It was in the year 1896, however, when Frobenius was professor at Berlin that his
really important work on groups began to appear. In that year he published five papers on group theory and one of them über
die Gruppencharactere on group characters is of fundamental importance. He wrote in this paper: I shall develop the concept [of
character for arbitrary finite groups] here in the belief that through its introduction, group theory will be substantially enriched.

This paper on group characters was presented to the Berlin Academy on July 16 1896 and it contains work which Frobenius had
undertaken in the preceding few months. In a series of letters to Dedekind, the first on 12 April 1896, his ideas on group characters
quickly developed. Ideas from a paper by Dedekind in 1885 made an important contribution and Frobenius was able to construct a
complete set of representations by complex numbers. It is worth noting, however, that although we think today of Frobenius’s paper
on group characters as a fundamental work on representations of groups, Frobenius in fact introduced group characters in this work
without any reference to representations. In was not until the following year that representations of groups began enter the picture,
and again it was a concept due to Frobenius. Hence 1897 is the year in which the representation theory of groups was born.

Over the years 1897-1899 Frobenius published two papers on group representations, one on induced characters, and one on tensor
product of characters. In 1898 he introduced the notion of induced representations and the Frobenius Reciprocity Theorem. It was
a burst of activity which set up the foundations of the whole of the machinery of representation theory.

In a letter to Dedekind on 26 April 1896 Frobenius gave the irreducible characters for the alternating groups A4, A5 the symmetric
groups S4, S5 and the group PSL(2,7) of order 168. He completely determined the characters of symmetric groups in 1900 and of
characters of alternating groups in 1901, publishing definitive papers on each. He continued his applications of character theory in
papers of 1900 and 1901 which studied the structure of Frobenius groups.

Only in 1897 did Frobenius learn of Molien’s work which he described in a letter to Dedekind as "very beautiful but difficult". He
reformulated Molien’s work in terms of matrices and then showed that his characters are the traces of the irreducible representations.
This work was published in 1897. Frobenius’s character theory was used with great effect by Burnside and was beautifully written
up in Burnside’s 1911 edition of his Theory of Groups of Finite Order.

Frobenius had a number of doctoral students who made important contributions to mathematics. These included Edmund Landau
who was awarded his doctorate in 1899, Issai Schur who was awarded his doctorate in 1901, and Robert Remak who was awarded
his doctorate in 1910. Frobenius collaborated with Schur in representation theory of groups and character theory of groups. It is
certainly to Frobenius’s credit that he so quickly spotted the genius of his student Schur. Frobenius’s representation theory for finite
groups was later to find important applications in quantum mechanics and theoretical physics which may not have entirely pleased
the man who had such "pure" views about mathematics.

Among the topics which Frobenius studied towards the end of his career were positive and non-negative matrices. He introduced the
concept of irreducibility for matrices and the papers which he wrote containing this theory around 1910 remain today the fundamental
results in the discipline. The fact so many of Frobenius’s papers read like present day text-books on the topics which he studied is a
clear indication of the importance that his work, in many different areas, has had in shaping the mathematics which is studied today.
Having said that, it is also true that he made fundamental contributions to fields which had already come into existence and he did
not introduce any totally new mathematical areas as some of the greatest mathematicians have done.

Haubrich gives the following overview of Frobenius’s work:

The most striking aspect of his mathematical practice is his extraordinary skill at calculations. In fact, Frobenius tried to solve
mathematical problems to a large extent by means of a calculative, algebraic approach. Even his analytical work was guided by
algebraic and linear algebraic methods. For Frobenius, conceptual argumentation played a somewhat secondary role. Although
he argued in a comparatively abstract setting, abstraction was not an end in itself. Its advantages to him seemed to lie primarily
in the fact that it can lead to much greater clearness and precision.

†† J o s e p h H e n r y M a c l a g e n W e d d e r b u r n ( 1 8 8 2 - 1 9 4 8 ) was born on 2 Feb 1882 in Forfar, Angus,
Scotland and died on 9 Oct 1948 in Princeton, New Jersey, USA. Joseph Wedderburn’s father, Alexander Stormonth Maclagen
Wedderburn, was a medical doctor. Alexander Wedderburn came from a family of Ministers of the Church with his father being
the Parish Minister of Kinfauns and his grandfather (Joseph’s great-grandfather) being Parish Minister of Blair Atholl. Joseph’s
mother was Anne Ogilvie and she came from a family of lawyers; Anne’s father had been a lawyer in Dundee. Anne and Alexander
Wedderburn had a large family, Joseph being one of fourteen children, eight boys and six girls. In fact Joseph was the tenth child of
the family.

Joseph was brought up in Forfar, north of Dundee, and he attended Forfar Academy from the age of five until he was thirteen. He then
went to George Watson’s College, an independent school in Edinburgh, for three years. In 1898 he completed his school education
and won a scholarship to study at the University of Edinburgh. He entered Edinburgh University in 1898, at the age of sixteen and
a half. It was a time when Wedderburn made remarkable progress with his mathematics and in addition during 1902-03 he worked
as an assistant in the Physical Laboratory of the University. He began mathematical research while still an undergraduate and his
first paper, On the isoclinal lines of a differential equation of the first order was published in the Proceedings of The Royal Society of
Edinburgh in 1903. Two other papers which he published in the same year in publications of the Royal Society of Edinburgh were
on the scalar functions of a vector and on an application of quaternions to differential equations. He obtained an M.A. degree with
First Class Honours in mathematics from the University of Edinburgh in 1903.

Wedderburn then pursued postgraduate studies in Germany spending session 1903-1904 at the University of Leipzig and then the
summer semester of 1904 at the University of Berlin. Already Wedderburn’s mathematical interests were in algebra and his German
trip allowed him to interact with Frobenius and Schur. He was awarded a Carnegie Scholarship to study in the United States and
he spent 1904-1905 at the University of Chicago where he did joint work with Veblen. Chicago was, of course, an excellent place
to continue his deepening interest in algebra for, in addition to Veblen, Eliakim Moore and L E Dickson were there at this time. The
determination of finite division algebras was a very natural problem in the light of the work being undertaken in Chicago, and as soon
as he arrived at Chicago, Wedderburn started to work on it, in close contact with Dickson.

Returning to Scotland in 1905, Wedderburn worked for four years at the University of Edinburgh as an assistant to George Chrystal.
The depth of Wedderburn’s contribution to algebra during these years in Edinburgh was remarkable. In 1905 he showed that a
non-commutative finite field could not exist. In the paper he published in that year he gave three proofs of this theorem which were
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all based on a clever use of the interplay between the additive group of a finite division algebra A, and the multiplicative group
A∗=A\{0}.
Parshall discusses this theorem. She notes that the first of the three proofs has a gap in it which was not noticed at the time. This
is in fact significant since Dickson also found a proof of this result but, since Wedderburn had already found his first "proof" (which
Dickson believed to be correct), Dickson acknowledged Wedderburn’s priority in a paper he wrote on the topic. Dickson noted in
the paper that it is only after having seen his proof that Wedderburn constructed his second and third proofs. Parshall’s work here
shows that really Dickson should be credited with having found the first correct proof.

This theorem gave, as a corollary, the complete structure of all finite projective geometries. These geometries consisted of a set
of "points", a set of "lines" and an "incidence relation" between points and lines, subject only to the conditions that two distinct
points are on a single line, two distinct lines have a single common point and a line contains at least three points. Wedderburn and
Veblen showed that in all these geometries Pascal’s theorem is a consequence of Desargues’ theorem. They published the paper
Non-Desarguesian and non-Pascalian geometries in the Transactions of the American Mathematical Society in 1907 in which they
constructed finite projective geometries which are neither "Desarguesian" nor "Pascalian" (this is Hilbert’s terminology).

In 1907 Wedderburn published what is perhaps his most famous paper on the classification of semisimple algebras. In this paper On
hypercomplex numbers which appeared in the Proceedings of the London Mathematical Society, he showed that every semisimple
algebra is a direct sum of simple algebras and that a simple algebra was a matrix algebra over a division ring. From 1906 to 1908
he served as editor of the Proceedings of the Edinburgh Mathematical Society.

In 1909 Wedderburn returned to the United States being appointed a Preceptor in Mathematics at Princeton where he joined Veblen.
We should say a word about the Preceptors at Princeton. They were the idea of Woodrow Wilson (who was to become the 28th
President of the United States in 1913). Woodrow Wilson had been Professor of Political Science at Princeton and, in 1902, he was
appointed President of Princeton. He set out to change the nature of Princeton by making it a leading research active university. To
do this, Wilson said: ... required a large scale infusion of new blood, of scholars who would assume an intimate personal relation
with small groups of undergraduates and impart to them something of their own enthusiasm for things of the mind.

Fifty Preceptors were to be appointed to achieve this in the whole university and Henry Fine, Dean of Mathematics, was put in
charge of finding young mathematicians to fill the mathematics posts. Between 1905 and 1909 Eisenhart, Veblen, Bliss, George
Birkhoff, and Wedderburn were appointed. The next five years were especially happy ones for Wedderburn and his fellow Preceptors
described him during this time:

They recall his passion for play as well as for work, his desire for companionship and association with men. He loved the out-of-
doors, found deep satisfaction in the wilderness, in the woods, canoeing along rivers and streams in the company of thoughtful
men. As in his scientific work, he brought to the construction of the camp-site, the erection of the tent, the paddling of the canoe
up- and down-stream, the qualities of a complete perfectionist. In the wilds of Northern Canada, with congenial men, he found
complete happiness. ... His taste in literature ran to books of travel and he accumulated a large library of travel.

However the five happy years came to an end with the outbreak of the First World War. Immediately Wedderburn volunteered for
the British Army but, being an exceptionally modest man, he enlisted only in the role of private. Records show that he was the first
person at Princeton to volunteer for war service and that he had the longest war service of anyone on the staff. He served in France
between January 1918 and March 1919, making use of his scientific skills. In France, as a Captain in the 4th Field Survey Battalion,
he devised sound-ranging equipment to pinpoint the positions of enemy guns.

On his return to Princeton he took up his post as Preceptor in Mathematics but he was soon promoted to Assistant Professor in
1920, obtaining permanent tenure as Associate Professor in 1921. He served as Editor of the Annals of Mathematics from 1912
to 1928. From about the end of this period Wedderburn seemed to suffer a mild nervous breakdown and became an increasingly
solitary figure. It looks as if from this time on he suffered from depression. Certainly he stopped seeing his friends and although
he seemed to recognise that his problems came from loneliness, rather than seek to be with people he deliberately cut himself off.
Some of his friends made a strenuous effort to penetrate the barrier he was erecting and found that underneath was still the friendly,
deep thinking, brilliant mathematician.

A comment on his teaching by Robert Hooke: Wedderburn’s lecturing style was unique, to say the least. He was apparently a very
shy man and much preferred looking at the blackboard to looking at the students. He had the galley proofs from his book "Lectures
on Matrices" pasted to cardboard for durability, and his "lecturing" consisted of reading this out loud while simultaneously copying
it onto the blackboard. Ernst Snapper, who claimed to be only the fourth person ever with the courage to write a dissertation
under Wedderburn (and one of the other three had lost his mind) told me this story explaining why Wedderburn was a bachelor. It
seems that an old Scottish tradition required that a man, before marrying, accumulate savings equal to a certain percentage of his
annual income. In Wedderburn’s case his income had gone up so rapidly that he had never been able to accomplish this.

By 1945 Princeton gave him early retirement in his own best interests. From this time on his isolation became almost total. Although
we have given 9 October 1948 as the date of his death, in fact he probably died a few days earlier than this. The people who looked
after the house and grounds in Princeton were he lived found him on that day but the subsequent medical examination revealed that
he had died of a heart attack several days earlier.

Parshall writes : According to officials at the bank which settled Wedderburn’s estate ..., the papers remaining at his death were
subsequently destroyed, thereby limiting historical study of Wedderburn’s life and work almost exclusively to published sources.

Wedderburn made important advances in the theory of rings, algebras and matrix theory. His best mathematical work was done
before his war service and we have referred to some of it above. In total he published around 40 works mostly on rings and matrices.
His famous book is Lectures on Matrices (1934). This work was described by Jacobson, who was a student of Wedderburn’s.
Jacobson writes: That this was the result of a number of years of painstaking labour is evidenced by the Bibliography of 661
items (in the revised printing) covering the period 1853 to 1936. The work is, however, not a compilation of the literature, but a
synthesis that is Wedderburn’s own. It contains a number of original contributions to the subject. Though he did not follow the
abstract point of view that had just become dominant, neither did he commit the error made by others of treating matrix theory as
an art of juggling elements in an array. The important ideas of linear transformations, vector spaces, bilinear forms, though not
set off, as is common in most modern treatments, do appear in Wedderburn’s book. also, as in his best work, one finds here some
neat and suggestive algebraic devices that make the book a very valuable reference book ...

Among the honours which Wedderburn received were the MacDougall-Brisbane Gold Medal and Prize from the Royal Society of
Edinburgh in 1921, and election to the Royal Society of London in 1933.
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