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Basic Algebra

7. Homomorphisms of modules

R i c h a r d D a g o b e r t B r a u e r †

(1901-1977)
A l b e r t T h o r a l f S k o l e m ††

(1887-1963)

The exercises 7.10, 7.11, 7.15 are marked as ∗ and may be ignored in the first reading.

7.1. Let ϕ : A → B be a ring homomorphism. IfV is aB–module andW is anA– module, there
exists a natural group homomorphism (see T7.7 and T7.15 c))

HomA(V, W) → HomB(V, HomA(B, W))

defined byf �→ (v �→ (b �→ f (bv))) with inverseg �→ (v �→ g(v)(1B)). If R is another ring and
if V is aB–left–R–right–bimodule, then the above isomorphism is aR–isomorphism. (This holds
for example in the case ifR = B is commutative.)

7.2. Let A andB be rings. LetU be anA–left-module,V be aB–right-module andW be a
(A, B)–bimodule1) of TypeAWB . Then there exists a natural isomorphism

HomA(U, HomB(V, W)) → HomB(V, HomA(U, W))

defined byf �→ (v �→ (u �→ f (u)(v))), with the inverseg �→ (u �→ (v �→ g(v)(u))).

7.3. Let I be a finite set and letA be an indecomposable ring2)

a). The canonical projectionsβi : AI → A, i ∈ I are the onlyA–algebra–homomorphisms from
AI → A.

b). The mapS(I ) → AutA–Alg AI defined byσ �→ ((ai) �→ (aσ−1(i))) is an isomorphism of
groups.

7.4. Let f : V → W be a homomorphism of modules over a ringA. If ker f and imf are finite
A–modules, thenV is also a finiteA–module. For the minimal number of generators we have:

µA(V ) ≤ µA(kerf ) + µA(im f ) .

7.5. Let K be a division ring,V be a finite dimensionalK–vector space,f : V → W be a linear
mapping into an arbitraryK–vector spaceW and letU ⊆ V be a subspace. Then

DimK V − DimK U ≥ DimK f (V ) − DimK f (U) .

7.6. Let f : V → W, g : W → X and leth : X → Y be linear maps of finite dimensional vector
spaces over a division ringK.

a). ( Inequal i ty of Sylvester)rankf +rankg−DimK W ≤ rank(gf ) ≤ Min{rankf, rankg} .

(Hint : The first inequality easily follows from the exercise 7.5.)

1) See T7.14
2) A non-zero ringA is calledi n d e c o m p o s a b l e or c o n n e c t e d ifA is not isomorphic to a product of
two non-zero rings. A non-zero ringA is indecomposable if and only if the only idempotents in the center
Z(A) are 0 and 1 (proof!). For example an integral domain is indecomposable.
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b). ( I n e q u a l i t y o f F r o b e n i u s )rank(hg) + rank(gf ) ≤ rankg + rank(hgf ) . (Hint : We
may assume thatg is surjective and then apply part a).)

7.7. Let V andW be vector spaces over a division ringK. A linear mapf : V → W has finite
dimensional kernel if and only if there exists a linear mapg : W → V such thatgf = idV + h,
whereh ∈ EndK V is of finite rank.

7.8. Let V andW be vector spaces over a division ringK. Then

a). The linear maps fromV into W of finite rank form a Z(K)–submoduleE of HomK(V, W).
Forf1, . . . , fn ∈ E anda1, . . . , an ∈ Z(K) we have:

rank(a1f1 + · · · + anfn) ≤ rankf1 + · · · + rankfn .

b). The endomorphisms ofV of finite rank form a two-sided ideal in the ring EndK V .

7.9. ( C h a r a c t e r s ) LetM be a (multiplicative) semigroup and letK be a division ring. A non-
zero semi-group homomorphism fromM in the multiplicative monoid ofK is called acha rac te r
of M with values inK. The constant mapx �→ 1K is a character ofM, whcih is called the t ri v i a l
c h a r a c t e r . IfM is a monoid, then every character ofM is a monoid homomorphism.3) If
a ∈ K, a �= 0, then the conjugationκa = (b �→ aba−1) in K is a character of the multiplicative
monoid ofK with values inK.

a). If χ : M → K is a character, whereM is finite andχ |M× is not trivial, then
∑

x∈M χ(x) = 0.
(Hint : Let x0 ∈ M× with χ(x0) �= 1. Then

∑
x∈M χ(x) = ∑

x∈M χ(x0x) = χ(x0)
∑

x∈M χ(x).)

b). ( L e m m a o n c h a r a c t e r s ) Letϕ1, . . . , ϕn be characters ofM with values inK; Suppose
thatϕ1, . . . , ϕn are (as an elements ofKM ) linearly independent overK. If a linear combination
ϕ = ∑n

i=1 aiϕi with coefficientsai ∈ K is a character ofM, thenϕ = κai
ϕi for every i with

ai �= 0. (Hint : For x, y ∈ M on one sideϕ(x)ϕ(y) = ∑
i ϕ(x)aiϕi(y), and on the other side

ϕ(x)ϕ(y) = ϕ(xy) = ∑
i aiϕi(x)ϕi(y).)

c). ( L e m m a o f D e d e k i n d –A r t i n ) LetK be a field,M be a non-empty semigroup and let
ϕi, i ∈ I , be a family of distinct characters ofM with values inK. Thenϕi, i ∈ I , are linearly
independent overK in KM . (Hint : Use the lemma on characters.)

d). Some applications of thel e m m a o f D e d e k i n d –A r t i n :

1). Let A, K be algebras over a fieldk, whereA is finite dimensional andK is a field. Then there exist at
most Dimk A distinctk–algebra–homomorphisms ofA in K. ( Hint : Homk(A, K) is aK–subspace ofKA

of the dimension Dimk A. More generally see T7.16.)

2). Let K be a field. The mapst �→ tn, n ∈ N, are the only polynomial maps ofK into itself corresponding
characters of the multiplicative monoid ofK with values inK. More generally: The functionst �→ tn, n ∈ Z,
are the only group homomorphisms ofK× → K×, corresponding to the rational functions onK×. Deduce
that if K is finite, then the multiplicative groupK× is cyclic. (see also exercise T4.12.)

3). The functionst �→ expat, a ∈ C, of R in C are linearly independent overC.

4). LetK be a field. the sequences(aν)ν∈N, a ∈ K, are linearly independent overK. (see also exercsie 4.17.)

e). ( I n n e r a u t o m o r p h i s m s o f a d i v i s i o n r i n g s ) LetK be a division ring with the
centerk. We considerK as ak–algebra.

1). Let xi, i ∈ I , be a family of non-zero elementsK. Then the inner automorphismsκxi
, i ∈ I ,

in KK are linearly independentK if and only if x−1
i , i ∈ I , are linearly independent overk.

( Hint : Let x0, x1, . . . , xn ∈ K× andx−1
0 = ∑n

i=1 αix
−1
i , αi ∈ k. Thenx0yx−1

0 = ∑n

i=1 αix0yx−1
i =

∑n

i=1 αix0x
−1
i (xiyx−1

i ) , i.e. κx0 = ∑n

i=1 aiκxi
, ai := αix0x

−1
i . Conversely, fromκx0 = ∑n

i=1 aiκxi
, all

3) Every homomorphism of a monoid into a monoid in which cancellation holds is a monoid homomorphism,
i.e. maps the neutral element onto the neutral element.Let ϕ : M → N be a homomorphism. Suppose that
cancellation holds inN . Let e ∈ M ande′ ∈ N be neutral elements. Thenϕ(e) = ϕ(e2) = ϕ(e)ϕ(e) and on
the other handϕ(e) = e′ϕ(e). Thereforeϕ(e) = e′.
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ai �= 0 and lemma on characters, we getκx0 = κai
κxi

= κai xi
and thereforeaixi = αix0 with αi ∈ k and

x−1
0 = κx0(x

−1
0 ) = ∑n

i=1 aixix
−1
0 x−1

i = ∑n

i=1 αix
−1
i .)

2). (Theo rem o f Noe the r–Sko lem–Braue r ) IfK is finite dimensional overk, then every
k–algebra–endomorphism ofK is an inner automorphism ofK. ( Hint : Choose ak-basisy−1

1 , . . . , y−1
n

of K. Then by 1)κy1, . . . , κyn
is aK-basis of EndkK for dimensional reasons. Now, ifϕ ∈ Endk−AlgK,

thenϕ = ∑n

i=1 aiκyi
and hence using lemma on characters we getϕ = κai

κyi
= κai yi

for every indexi
with ai �= 0.)

3). Let n := Dimk K be finite. Further, lety1, . . . , yn be an arbitraryk– basis ofK andλi resp.�i

be the left resp. right multiplications byyi in K. Thenλi�j = �jλi, 1 ≤ i, j ≤ n, form ak–basis
of Endk K. ( Hint : Let f ∈ EndkK = Kκ

y−1
1

+ · · · + Kκ
y−1
n

by part 1). Then for appropriate elements

αij ∈ k we getf = ∑n

i=1 aiκy−1
i

= ∑n

i,j=1 αij yjκy−1
i

= ∑n

i,j=1 αijλyj λy−1
i

ρyi
∈ ∑n

i,j=1 kλyj ρyi
.

Remark: The part 3) could be reformulated without any use of coordinates in the following way: The
canonicalk-algebra-homomorphism

K ⊗k Kop −→ EndkK , x ⊗ y �−→ λxρy ,

is an isomorphism. This shows directly thatKop is the inverse ofK in the Brauer group ofk. – Moreover,
EndK ′K = C(K ′)⊗k Kop for all k-subalgebrasK ′ ⊆ K, where C(K ′) is the algebra containing the elements
of K commuting with all elements ofK ′.)

f). Every ring –endomorphism of the quaternionH(R) algebra is an inner automorphism.(Hint :
Note thatR = Z(H(R)) by exercise 5.13 and the only automorphism ofR is identity. Therefore every ring
endomorphism ofH(R) is anR-algebra endomorphism ofH(R) and hence by the theorem of Noether–
Skolem– Brauer, it is an inner automorphism.)The same result hold forH(Q).
∗ 7.10. Let A be a ring,V be a freeA–module with a basisxi, i ∈ I , andB := EndA V be
theA–endomorphism ring ofV . Let U denote the set of all those submodules ofV which have
generating system consisting of at most|I | elements.

a). A submoduleU of V belong toU if and only if there existsf ∈ B with im f = U .

b). The map defined byf B �→ im f is a bijective map from the set of right-principal ideals inB

onto the setU . (Hint : Forf, g ∈ B, we have imf ⊆ im g if and only if f ∈ gB.)

c). In the following casesU is the set of all submodules ofV :

1). I is infinite and|I | ≥ |A|. (Hint : By the4) we have|V | ≤ |I |.)
2). I is infinite andA is left-noetherian. (Hint : see the exercise5) which will be added in the exercise
set on noetherian modules).

3). A is a left-principal ideal ring. (Hint : If I is finite, then apply the exercise6) which will be added
in the exercise set on noetherian modules.)

d). Let f1, . . . , fr ∈ B with U := im f1 + · · · + im fr ∈ U. Then there exists an element
h ∈ f1B + · · · + frB such that imh = U . Further,hB = f1B + · · · + frB for everyh ∈ B with
im h = U . (Hint : Let yi, i ∈ I , be a system of generators ofU andyi = ∑r

j=1 fj (vij ) with vij ∈ V . Let
hj be defined byxi �→ fj (vij ) andh := h1 + · · · + hr .)

4) Theorem LetA be a ring and letV be a freeA–module with infinite rank. Then

|V | = |A| · rankA V = Sup{|A|, rankA V } .

5) Exercise Let V be a module over a left-noetherian ringA and letxi, i ∈ I be a generating system for
V , whereI is infinite. Then every submoduleU of V has a generating system of the formyi, i ∈ I .
6) Exercise Let A be a ring in which every left- ideal has a generating system consisting ofr elements and
let V be anA–module generated byn elements. Then every submoduleU of V is generated bynr elements.
(Hint : By Induction onN . Suppose thatV = Ax1 + · · · + Axn andf : V → V/Ax1 be the residue
map. Now considerf |U .) Corollary : Over a left-principal ideal ring, every submodule of a module with
n generators has a generating system consisting ofn elements.
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e). If I is infinite, then every finitely generated right-ideal inB is a right- principal ideal. (Hint :
Use the set-theoretic observation7) and the part d) of this exercise.)

f). Suppose thatI is finite andfj , j ∈ J , is a family of elements fromB. Then the right-ideal∑
j∈J fjB generated byfj , j ∈ J is the unit ideal if and only if

∑
j∈J fj (V ) = V . (Hint : Use d).

g). Suppose thatf1, . . . , fr ∈ B with W := im f1 ∩ · · · ∩ im fr ∈ U. ThengB = f1B ∩ · · · ∩frB

for everyg ∈ B with im g = W .
∗ 7.11. Let A be a left-principal ideal ring,V be a freeA–module and letB := EndA V be the
endomorphism ring ofV . Then:

a). Sum and intersection of finitely many right-principal ideals inB is again a right-principal ideal
in B. (Hint : Use 7.10, c)-3) and d), g).

b). The mapf B �→ im f is an isomorphism of the lattice of the right-principal ideals ofB onto
the lattice of theA–submodules ofV . (Hint : Choose a basis ofV . ThenU is the set of all submodules
of V by 7.10 c)-3). Now, apply the exercise 7.10.)

c). (Theorem of E. Noether)Suppose thatV is a finite freeA–module. Then the endomorphism
ring EndA V is a right-principal ideal ring. (Hint : Choose a basis forV and use the exercise 7.10
with the following observation:Letb be a right-ideal inB := EndA V . There existf1, . . . , fr ∈ b such that
∑

f ∈b im f = im f1+· · ·+ im fr . Thenb = f1B +· · ·+frB. — Remark. LetA be a right-principal ideal
ring and letV be a finite freeA–module. Then the endomorphism ringEndA V is a left-principal ideal ring.
Proof Choose a basis ofV consisting ofn elements. Then EndA V ∼= Mn(A

op) = Mn(A)op is left-principal
ideal ring if and only ifMn(A) is right-principal ideal ring. ButMn(A) = Mn((A

op)op) = EndAop((Aop)n)

is the endomorphism ring of the freeAop–module(Aop)n over the left-principal ideal ringAop, and so by
the theorem of E. Noether (part c) above) is a right-principal ideal ring. For the case whenA is a division
ring, see also the next exercise 7.12.)

7.12. LetK be a division ring,V be aK–vector space and letB be the endomorphism ring EndK V .

a). For every subspaceU ⊆ V , there exists af ∈ B such that kerf = U .

b). For f, g ∈ B, we have kerf ⊆ kerg if and only if g ∈ Bf . Deduce that: forf, g ∈ B, we
have kerf = kerg if and only if Bf = Bg.

c). Forf1, . . . , fr ∈ B, Bh = Bf1 ∩ · · · ∩ Bfr for all h ∈ B with kerh = kerf1 + · · · + kerfr .

d). For f1, . . . , fr ∈ B, Bg = Bf1 + · · · + Bfr for all g ∈ B with kerg = kerf1 ∩ · · · ∩ kerfr .
(Hint : Using induction reduce to the caser = 2. Then use the exercise 4.15.)

e). The mapBf �→ kerf is an anti–isomorphism of the lattice of the left-principal ideals ofB

onto the lattice of theK–subspaces ofV .

f). If V is finite dimensional, thenB = EndK V is a left-principal ideal ring. (Remark : B is also a
right-principal ideal ring by exercise 7.11 c).)

7.13. A groupG is calledr i g i d if identity map idG is the only automorphism ofG is the identity
map ofG. A groupG is rigid if and only if |G| ≤ 2. (Hint : First show that every rigid group is an
elementary abelian 2-group. See T7.17)

7.14. Let V be a non-zero abelian group which is the additive group of aR–vector space of finite
dimensionn. Neither theR–vector space structure onV nor its dimensionn are enough to determine
V (as shown in the8) In addition to this there exists many differentR–vector space structures on
V with the same dimensionn. In the following we give some methods for this construction.

a). The casen ≥ 3 is simple. There exists a natural numberm ∈ N∗ with n − m ≥ 1 and
m �= n − m. Let h be an isomorphism (exists by the theorem below) betweenRm andRn−m.

7) Let I be an infinite set and letYj , j ∈ J be a family of sets with|J | ≤ |I | and |Yj | ≤ |I | for all j ∈ J .
Then| ∪j∈J Yj | ≤ |I |.
8) T7.17-2.c), 2d)
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Now, in Rn = Rm ⊕ Rn−m with the help ofh interchange the vector space structures of the direct
summands.

b). Let n = 2. ThenR = Q(I ) with an indexed setI . Further, writeI = {a} ∪ J with a /∈ J , then

(Q(J ) ⊕ Q{a}) ⊕ Q(I ) = Q(J ) ⊕ (Q{a} ⊕ Q(I )) ,

and both these summand representations essentially yield different decompositions of the form
R ⊕ R.

c). If n = 1 then one can choose a Hamel-basis ofR which contain the number 1. Letα be a
Q–automorphism ofR which interchanges 1 with another basis element in the Hamel basis and let
κα be the inner automorphism of EndR corresponding toα. If ϑ : R → EndR is the canonical
representation ofR, then one can give anotherR–vector space structure onR via καϑ . — With
this method one can also spiltR into direct summands which will also cover the above cases.
∗ 7.15. Let V benot finite dimensional vector space over a division ringK with DimK V = α (≥
ℵ0). Then the maps

β �→ {f ∈ EndK V : rankf < β} andb �→ Min{γ : rankf < γ for all f ∈ b}
are inverse isomorphisms to each other from the (well ordered) set of infinite cardinal numbersβ ≤ α

and the set (ordered by the inclusion) of two-sided idealsb ⊆ EndK V with 0 �= b �= EndK V .
— How many two-sided ideals are there in the ring End(R, +) = EndQ R ? (— Basic results on
cardinal numbers are needed!.)

Below one can see (simple) test-exercises.

Test-Exercises

T7.1. Let V andW be modules over a non-commutative ringA. Then the abelian group HomA(V, W)),
need not be anA–submodules ofWV . (For example, HomA(A, A) is not anA–submodule ofAA ; choose
a, c ∈ A with ca �= ac. Thenf := idA ∈ HomA(A, A), butcf �∈ HomA(A, A), since(cf )(a · 1A) = ca, but
a · ((cf )(1A)) = ac.)

T7.2. Let V andW be isomorphic modules over a ringA. Then EndAV and EndAW are isomorphic rings.
If A is commutative, then EndAV and EndAW are isomorphicA–algebras. (Hint : Consider
EndAV → EndAW with f �→ hf h−1, whereh : V → W is anA–isomorphism.)

T7.3. Let V be a vector space over a division ringK, U be a subspace ofV and letx ∈ V, x /∈ U . Then
there exists aK–linear formf onV such thatf (U) = 0 andf (x) �= 0.

T7.4. LetA be an integral domain and letV be anA–module. IfV is a torsion module, then HomA(V, A)=0.

T7.5. Let A be an integral domain with quotient fieldK. Then HomA(K, A) �= 0 if and only if A = K.
(f ∈ HomA(K, A) is the homothecy ofK with f (1).) If K is a finiteA–module, thenA = K. (see
exercise 3.5. –Moreover, ifK is a submodule of an arbitrary direct sum of finiteA–modules, thenA = K.)

T7.6. Let K be a divison ring,V be aK–vector space of dimension≥ 2 andϕ : V → V be a group
homomorphism withϕ(Kx) ⊆ Kx for all x ∈ V . Thenϕ is a homothecy. (Hint : First consider
ϕ(x), ϕ(y), ϕ(x + y), wherex, y ∈ V are linearly independent.)

T7.7. (Res t r i c t i on o f modu le s t ruc tu re ) LetA, B be rings,ϕ : A → B be a ring homomorphism
and letW be aB–module.With the help ofϕ, from theB–module structure onW , we can define anA–module
structure onW . Define the operation ofA on W by ay := ϕ(a)y for a ∈ A andy ∈ W . If one thinks
that theB–module structure onW is given by the ring homomorphismϑ : B → EndW , then the above
A–module structure onW is given by the compositionϑϕ : A → EndW . ThisA-module structure onW
is said to be obtained ther e s t r i c t i o n o f s c a l a r s f r o mB t o A v i a ϕ or just thei n d u c e d
m o d u l e s t r u c t u r e b yϕ .

A simple example of the restriction of scalars of theB–moduleW is onto a subringB ′ of B. In this case
ϕ is the canonical inclusionB ′ → B. Another example is the canonicalk–module structure of a moduleV
over ak–algebraA. In this caseϕ is the structure homomorphismk → A of A.

Let ϕ : A → B be a surjective ring homomorphism. IfV, W are modules overB, then HomB(V, W) =
HomA(V, W). (TheB–modules are considered asA-modules by the restriction of scalarsviaϕ.)

D. P. Patil July 16, 2003 ,3:38 p.m.



6 Basic Algebra ; May-July 2003 ; 7. Homomorphisms of modules

T7.8. Let A be a ring and letU, W be submodules of anA–module. Suppose thatf : U → X and
g : W → X are homomorphisms ofA–modules into anA–moduleX. Then there exists a homomorphism
h : U + W → X such thath|U = f andh|W = g if and only if f |U ∩ W = g|U ∩ W .

T7.9. Let A be a non-zero ring and letV be a freeA–module which has a basis consiting of atleast two
elements. Then the endomorphism ring EndA V is neither commutative nor free from zero-divisors.

T7.10. Let K be a field and letf resp.g be theK–endomorphisms ofK3 defined bye1 �→ e2, e2 �→
e1, e3 �→ 0 resp.e1 �→ 0, e2 �→ e3, e3 �→ e2, wheree1, e2, e3 is the standard basis ofK3. Then : (1)
im f + im g = K3. (2) kerf ∩ kerg = 0. (3) No linear combination off andg is an automorphism ofK3.

T7.11. Let V be a finite dimensional vector space over a division ringK and letf ∈ EndK V . a). The
following statements are equivalent: (1) imf = kerf . (2) f 2 = 0 and DimK V = 2 · rankf .

b). The following statements are equivalent: (1) rankf = rankf 2. (2) imf = im f 2. (3) kerf = kerf 2.
(4) imf ∩ kerf = 0. (5) imf + kerf = V .

T7.12. Let A be a finite dimensional algebra over a fieldK. For an elementx ∈ A the following statements
are equivalent: (1)x is a unit inA. (2) x is not a left -zero divisor inA. (2′) x is not a right-zero divisor in
A. (3) x has a left-inverse. (3′) x has a right-inverse. (Hint : Consider the translationsλx and�x in A with
x.) — Use this to give a new proof of exercise 5.17.)

T7.13. Let A be a finite dimensional algebra over a fieldK. If x ∈ A is unit, thenx−1 belong to the
K–subalgebraK[x] of A generated byx.

T7.14. ( B i m o d u l e s ) Often we consider many module structures on the same abelian groupV at the
same time. If these module structures arecompatiblewith each other, then we can use the term M ul t i -
m o d u l e s ,especiallyB i m o d u l e s , if twocompatible modules structures on the same abelian group are
considered.

Let V be an abelian group. Suppose thatV has anA– as well asB–(left–)module structure. ThenV is
called an(A, B) – b i m o d u l e if a(bx) = b(ax) for all a ∈ A, b ∈ B, x ∈ V . This is usually writen as
V = A,BV .

Suppose thatV has anA–left – and aB–right module structure. ThenV is called an(A , B ) –b imodu le ,
if a(xb) = (ax)b for all a ∈ A, b ∈ B, x ∈ V . In this case we use the notationV = AVB .

Analogously, bimodules of the typeVA,B can be defined.

a). A trivial example of a bimodule structure is an usual moduleV over acommutativering A. With one
and the same operationV is an(A, A)–bimodule of the typeA,AV .

b). Let V be anA–module. ThenV has a natural(EndA V )–module structure given by the operation
(f, x) �→ f (x), for f ∈ EndA V andx ∈ V . (Note that Giving anA–module structure on the abelian
groupV is equivalent to giving a (canonical) ring homomorphismϑ : A → EndZ V . Further, the ring
B := EndA V is a subring of the ring EndZ V and hence the(EndA V )–module structure onV is nothing
but the restriction of scalars from the ring EndZ V to the subring EndA V .) ThereforeV is anA–module as
well asB–module and furtherV is a(A, B)–module of typeA,BV ; since fora ∈ A, f ∈ B andx ∈ V , we
havea(f · x) = af (x) = f (ax) = f · (ax).

T7.15. ( H o m o m o r p h i s m m o d u l e s o f b i m o d u l e s ) We haveseen in T7.1 that in general,
the abelian group HomA(V, W)) need not be anA–submodules ofWV . Let B be an another ring. We are
looking for some conditions either onV or onW , so that the abelian group HomA(V, W)) has aB–module
structure. For example :

a). LetV be anA–module andW be a(A, B)–bimodule of typeAWB . Then the abelian groupHomA(V, W)

is aB–right module with respect to the right operation ofB onHomA(V, W) defined by

f b := (x �→ f (x)b) , b ∈ B andf ∈ HomA(V, W) .

(Proof We considerWV asB–right module, where forb ∈ B andf ∈ WV the productf b is defined
by f b := (x �→ f (x)b). We need therefore to show that the subset HomA(V, W) of WV is a B–right
submodule. Since HomA(V, W) is a subgroup ofWV , it is enought to show that HomA(V, W) is closed (in
WV ) under the right-operation ofB and this can be easily verified. •
b). If V is anA–module andW be a(A, B)–bimodule of typeA,BW , then the abelian groupHomA(V, W)

is aB–(left) module with respect to the (left) operation ofB onHomA(V, W) defind by

bf := (x �→ bf (x)) , b ∈ B andf ∈ HomA(V, W) .
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An important example for the application of a) is : IfV is anA–module, then the abelian groupV ∗ =
HomA(V, A) has a naturalA-right module structure, sinceA is trivially a (A, A)–bimodule of typeAAA.
With this right module structure the moduleV ∗ is called thed u a l m o d u l e ofV . If A is commutative,
then this module structure is same as that of the naturalA–modules strukture, namelyaf := (x �→ af (x))

for a ∈ A andf ∈ HomA(V, A).

c). LetV be a(A, B)–bimodule of typeAVB and letW be anA–module. Then the abelian groupHomA(V, W)

is aB–(left) module with respect to the(left) operation ofB onHomA(V, W) defined by

bf := (x �→ f (xb)) , b ∈ B andf ∈ HomA(V, W) .

(Proof The multiplicative monoid ofB operates onWV in a canonical way :bf = (x �→ f (xb)) for
b ∈ B andf ∈ WV . We need to show that this operation cane be restricated to HomA(V, W). Thereofre, let
b ∈ B, f ∈ HomA(V, W) andx, y ∈ V . Then(bf )(x+y) = f ((x+y)b) = f (xb+yb) = f (xb)+f (yb) =
(bf )(x)+ (bf )(y). Further, fora ∈ A, we have(bf )(ax) = f ((ax)b) = f (a(xb)) = af (xb) = a((bf )(x)).
Thereforebf ∈ HomA(V, W), and so the given operation ofB on HomA(V, W) exists. Now, one can easily
verify that this operation defines aB–module structure on HomA(V, W). •
d). If V is a (A, B)–bimodule of typeA,BV andW is anA–module, then the abelian groupHomA(V, W) is
a B–right module with respect to the right operation ofB onHomA(V, W) defined by

f b := (x �→ f (bx)) , b ∈ B andf ∈ HomA(V, W) .

T7.16. Let A be a ring,V be anA–module with basisxi, i ∈ I and letW be an arbitraryA–module. Then
the map

σ : HomA(V, W) → WI

defined byf �→ (f (xi))i∈I is bijective. Further,

a). σ is an isomorphism of the additive groups. (Proof Forf, g ∈ HomA(V, W) σ(f +g) = ((f +g)(xi)) =
(f (xi) + g(xi)) = (f (xi)) + (g(xi)) = σ(f ) + σ(g).)

b). Let W be an(A, B)–bimodule with respect to another ringB. Thenσ is an isomorphism ofB–modules.
(Proof Suppose for exampleW is an(A, B)–bimodule of typeAWB . Then forb ∈ B andf ∈ HomA(V, W)

we haveσ(f b) = ((f b)(xi)) = (f (xi)b) = (f (xi))b = σ(f )b. Thereforeσ is an isomorphism ofB–
right-modules.) Similarly,σ is an isomorphism ofB–(left)-modules, ifW is an(A, B)–bimodule of type
A,BW . EveryA–module is trivially(A, Z(A))–bimodule. Thereforeσ is linear over the center Z(A) of A.
In particular:If A is commutative, thenσ is an isomorphism ofA–modules.

c). An important special case isW = A. SinceA is an(A, A)–bimodule of typeAAA, we have :Then
canonical map ofV ∗ = HomA(V, A) in AI is an isomorphism ofA–right-modules. In particular, in the
caseV = A(I) we have a canonical isomorphism(A(I))∗ → AI of A–right-modules. In the general case if
V = A(I). The direct sumA(I) with the standard basisei, i ∈ I , is a(A, A)–bimodule of typeA(A(I))A in
a canonical way. Therefore HomA(A(I), W) has a naturalA–module structure by T7.15-c).with respect to
this structure and the canonical module structure onWI , σ is always an isomorphism. For, if a ∈ A and
f ∈ HomA(A(I), W), thenσ(af ) = ((af )(ei)) = (f (eia)) = (f (aei)) = (af (ei)) = a(f (ei)) = aσ(f ).
In particular, the canonical isomorphism HomA(A, W) → W of A–modules is given byf �→ f (1).

d). In the caseW = A we have : Thecanonical map(A(I))∗ → AI is an isomorphism of(A, A)–bimodules.
In words: dualising converts the direct sumsA(I) into the direct productAI in a canonical way.

T7.17. (A b e l i a n g r o u p s w i t h v e c t o r s p a c e s t r u c t u r e ) We would like to describe the abelian
groups which are the underlying additive groups of vector spaces over division rings. Each vector space
over a division ringK, by restricting the scalars, we consider a vector space over the prime field ofK. Since
prime fields are canonically isomorphic to Kp = Z/pZ in the case of prime characteristicp resp. toQ in the
case of characteristic 0. With this we need to describe those abelian groups which are underlying additive
groups of the vector spaces over the fields Kp resp. Q. For this we shall use different methods for different
characteristic.

1). First consider the case of a prime characteristic. Letp be a prime number. An additively written abelian
groupH is called anelementary abelianp–group, if px = 0 for all x ∈ H , therefore every element ofH is
of order 1 orp. (An elementary abelian 2–group is nothing but the group in which every element is its self
inverse.)

1.a) An abelian group is the additive group of aKp–vector space if and only if it is an elementary abelian
p–group. Moreover, in this case theKp–vector space–structure is uniquely determined.(Proof If V is a
vector space over Kp, thenpx = 0 for all x ∈ V . Conversely, suppose thatH is an elementary abelian
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p–group. By assumption onH the kernel of the canonical ring homomorphismχ : Z → EndZ H defined
byn �→ n · idH contains the prime numberp and hence containspZ. Thereforeχ induces a homomorphism
χp of Kp = Z/pZ in EndZ H , which defines a Kp–vector space–structure onH . Since Kp is a prime ring,
this is the only homomorphism of the ring Kp into EndZ H and hence the given vector spaces structure on
H is uniquely determined.)

Let H be an elementary abelianp–group. A subgroupH ′ of H is always an elementary abelianp–group
and hence Kp–vector space in a canonical way. This vector space structure is clearly the restriction of the
vector space structure fromH ; thereforeH ′ is a subspace ofH . From now on every elementary abelian
p–group is considered as Kp–vector space.

1.b) For elementary abelianp–group H, F we haveHom(H, F ) = HomKp
(H, F ) . Proof We have

Hom(H, F ) = HomZ(H, F ). Now, apply T7.7 in the situationZ → Kp.)

With 1.a) and 1.b) the theory of the elemenatray abelianp–groups is equivalent to the theory of the Kp–
vector spaces. As an applications can be directly given. For example every elementary abelianp–group
H is isomorphis to a group of the form K(I )

p , where the cardinality ofI is uniquely determined, namely as
the dimension of the Kp–vector spaceH , vgl. Beispiel 1. Alternatively,|I | can be simply computed from
|H |. For example ifH is finite, then|I | is determined by|H | = p|I |. If H is infinite, then|I | = |H | by
footnote 4. In particular, we have:An elementary abelianp–group is uniquely determined upto isomorphism
by its cardinality. For further applications see ???).

2). We now consider the abelian groups which has aQ–vector space structure. An (additively written)
abelian groupH is calledt o r s i o n f r e e , if thehomotheciesx �→ nx for n ∈ Z, n �= 0, are injective, and
is called d i v i s i b l e , if the homothecies are surjective.

2.a) An abelain group is the additive group of aQ–vector space if and only if it is torsion free and is divisible.
Moreover, in this case theQ–vector space–structure is uniquely determined.(Proof If V is a Q–vector
space andn ∈ Z, n �= 0, then the homothecyϑn by n is bijective onV . Butϑn is the multiplicationx �→ nx

by n on theZ–moduleV . Therefore it follows thatV is torsion free and divisible. Conversely, suppose that
H is torsion free divisible abelian group. We may assume thatH �= 0. The homotheciesx �→ nx, n �= 0,
in EndZ H = End H are by hypothesis are automorphisms ofH . Therefore are the multiplesn · idH of the
unit element of EndH and hence units in this endomorphism ring. SinceH �= 0, EndH contains a field of
characteristic 0 and there exists a unique homomorphismχ : Q → End H . With this there exists a unique
Q–vector space structure onH .)

From now on every torsion free divisible abelian group is considered as aQ–vector space.

2.b) For torsion free divisible abelian groupsH, F we haveHom(H, F ) = HomQ(H, F ) . (Proof Let
f ∈ Hom(H, F ) = HomZ(H, F ). We need to show thatf is linear overQ. For this letx ∈ H and
q = m/n ∈ Q, m, n ∈ Z, n �= 0, thennf (qx) = f (n(qx)) = f ((nq)x) = f (mx) = mf (x) = (nq)f (x) =
n(qf (x)). Cancellingn we getf (qx) = qf (x), as desired.)

With 2.a) and 2.b) the theory of torsion free divisible abelain groups is eqivalent to the theory of theQ–
vector spaces. As an application we can give a simple classification of the torsion free divisible abelain
groups. Every such groupH is isomorphic toQ(I ), whereI is a set with|I | = DimQ H . This cardinal
number uniquely determines the group upto isomorphism. IfH is countable, thenI is necessarily finite or
countably infinite. Therefore we have:The isomorphism type of the countable torsion free divisible abelain
groups are represented by the groupsQn, n ∈ N, andQ(N). If H is uncountable, thenI is infinite and hence
|H | = |Q(I )| = |I | by footnote 4. Therefore we have:An uncountable torsion free divisible abelian group
is uniquelly determined upto isomorphism by its cardinality.

We further note the following applications.

2.c) LetK be a division ring which is not finite dimensional over its prime field. Then the additive groups
of all finite non-zeroK–vector spaces are isomorphic to each other.(Proof Let k be the prime field ofK.
For an–dimensionalK–vector spaceV, n ≥ 1, we have (see footnote 4) Dimk V = n · Dimk K = Dimk K

and this cardinal number does not depend onn.)

2.d) The additive groupsRn, Cn, n ∈ N∗, are isomorphic to each other.(Proof Cn is aR–vector space of
dimension 2n andR is an infinite dimensional overQ. Now apply the above theorem.)

2.e) The endomorphism ringEndH of an abelain groupH is a division ing if and only ifH is the additive
group of a prime field, i.e. ifH is cyclic of prime order or ifH isomorphic to(Q, +). (Proof Suppose
that EndH is a division ring. Ifk is a prime field of EndH , thenH is a k–module and by 1. b) resp.
2.b) EndH = Endk H . By exercise T7.9, the last ring is a division ring if and only if Dimk H = 1.
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ThereforeH is isomorphic to the additive group ofk. Conversely, suppose thatH is cyclic of prime order
p, then EndH = EndKp

H by 1.a); ifH = (Q, +), then EndH = EndQ H by 2.b). In both the cases the
endomorphism rings are isomorphic to prime fields.)

† R i c h a r d D a g o b e r t B r a u e r ( 1 9 0 1 - 1 9 7 7 ) was born on 10 Feb 1901 in Berlin-Charlottenburg, Germany and
died on 17 April 1977 in Belmont, Massachusetts, USA. Richard Brauer’s father was Max Brauer who was a well-off businessman in
the wholesale leather trade. Max Brauer’s wife was Lilly Caroline and Richard was the youngest of their three children. He had an
older brother Alfred Brauer, who also became a famous mathematician. Alfred Brauer was seven years older than Richard and of
an age between the two brothers was Richard’s sister Alice.

Richard entered the Kaiser-Freidrich-Schule in Charlottenburg in 1907. Charlottenburg was a district of Berlin which was not
incorporated into the city until 1920. Richard studied at this school until 1918 and it was during his school years that he developed
his love of mathematics and science. However, this was not due to the teaching at the school, but it came about through the
influence of his brother Alfred. Richard writes about his school teachers who he describes as not being very competent. There was
one exception however, and it was fortunate that this good teacher was a mathematician who had a doctorate awarded for research
done under Frobenius’s supervision.

Of course Richard’s last four years at school were the years of World War I, but, unlike his brother, he was young enough to avoid
being drafted into the army. When he graduated from the Kaiser-Freidrich-Schule in September 1918 the war was still in progress,
and Brauer was drafted to undertake civilian war service in Berlin. Only two months later, in November 1918, the war ended, Brauer
was released from war service and he resumed his education. Despite the love for mathematics which he had gained from his brother,
Brauer decided to follow his boyhood dreams of becoming an inventor. He entered the Technische Hochschule of Charlottenburg in
February 1919 where he studied for a term before, having realised that his talents were in theory rather than practice, he transferred
to the University of Berlin.

At the University of Berlin Brauer was taught by a number of really outstanding mathematicians including Bieberbach, Carathéodory,
Einstein, Knopp, von Mises, Planck, Schmidt, Schur and Szego. Brauer describes some of the lectures he attended; talking of
Schmidt’s lectures he writes: It is not easy to describe their fascination. When Schmidt stood in front of a blackboard, he never
used notes, and was hardly ever well prepared. He gave the impression of developing the theory right there and then.

It was the custom that German students at this time spent periods in several different universities during their degree course. Brauer
was no exception to this, although he made only one visit during his studies, that being for a term to the University of Freiburg. Back
in Berlin he attended seminars by Bieberbach, Schmidt and Schur. He was increasingly attracted towards the algebra which Schur
was presenting in his seminar (which was attended in the same year by Alfred Brauer). Schur, unlike Schmidt,

... was very well prepared for his classes, and he lectured very fast. If one did not pay the utmost attention to his words, one
was quickly lost. There was hardly any time to take notes in class; one had to write them up at home. ... He conducted weekly
problem hours, and almost every time he proposed a difficult problem. Some of the problems had already been used by his teacher
Frobenius, and others originated with Schur. Occasionally he mentioned a problem he could not solve himself.

In fact it was one of these open problems which Richard working with his brother Alfred solved in 1921 and this was eventually
to be included in Brauer’s first publication. Schur suggested the problem that Brauer worked on for his doctorate and the degree
was awarded (with distinction) in March 1926. His dissertation took an algebraic approach to calculating the characters of the
irreducible representations of the real orthogonal group. Before the award of his doctorate, however, Brauer had married Ilse Karger
in September 1925. They had been a fellow students in one of Schur’s courses on number theory. Before his marriage Brauer was
appointed as Knopp’s assistant at the University of Königsberg and he took up this post in the autumn of 1925.

Shortly after Brauer arrived in Königsberg, Knopp left to take up an appointment at Tübingen. The mathematics department at
Königsberg was small, with two professors Szego and Reidemeister, and with Rogosinski and Kaluza holding junior positions like
Brauer. It was in Königsberg that Brauer’s two sons, George Ulrich Brauer and Fred Günter Brauer were born. Brauer taught at
Königsberg until 1933 and during this period he produced results of fundamental importance. Green writes :

This was the time when Brauer made his fundamental contribution to the algebraic theory of simple algebras. ... Brauer developed
... a theory of central division algebras over a given perfect field, and showed that the isomorphism classes of these algebras can
be used to form a commutative group whose properties gave great insight into the structure of simple algebras. This group became
known (to the author’s embarrassment) as the "Brauer group" ...

Political events forced Brauer’s family to move. He wrote : I lost my position in Königsberg in the spring of 1933 after Hitler became
Reichskanzler of Germany.

Brauer was from a Jewish family so was dismissed from his post under the Nazi legislation which removed all Jewish university
teachers from their posts. This was a desperate time for Brauer who realised that he had to find a post outside Germany. Fortunately
action was taken in several countries to find posts abroad for German academics forced from their positions and a one year
appointment was arranged for Brauer in Lexington, Kentucky for the academic year 1933-34. In November 1933 Brauer arrived to
take up his appointment at the University of Kentucky, his wife and two sons following three months later. We should record that
Alfred Brauer left Germany in 1939, but Brauer’s sister Alice stayed behind and was murdered in a concentration camp by the Nazis.

Following his year in Lexington, Brauer was appointed as Weyl’s assistant at the Institute for Advanced Study in Princeton. He wrote
about this appointment with Weyl: I had hoped since the days of my PhD thesis to get in contact with him some day; this dream
was now fulfilled.

Collaboration between Brauer and Weyl on several projects followed, in particular a famous joint paper on spinors published in 1935
in the American Journal of Mathematics. This work was to provide a background for the work of Paul Dirac in his exposition of the
theory of the spinning electron within the framework of quantum mechanics.

A permanent post followed the two temporary posts when Brauer accepted an assistant professorship at the University of Toronto
in Canada in the autumn of 1935. It was largely as a result of Emmy Noether’s recommendation, which she made while visiting
Toronto, which led to his appointment. This was a time when Brauer developed some of his most impressive theories, carrying the
work of Frobenius into a whole new setting, in particular the work on group characters Frobenius published in 1896. Brauer carried
Frobenius’s theory of ordinary characters (where the characteristic of the field does not divide the order of the group) to the case of
modular characters (where the characteristic does divide the group order). He also studied applications to number theory.
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C J Nesbitt was Brauer’s first doctoral student in Toronto and he described their relationship as doctoral student and supervisor
: Curiously, as thesis advisor, he did not suggest much preparatory reading or literature search. Instead we spent many hours
exploring examples of the representation theory ideas that were evolving in his mind.

It was in joint work with Nesbitt, published in 1937, that Brauer introduced the theory of blocks. This he used to obtain results on
finite groups, particularly finite simple groups, and the theory of blocks would play a big part in much of Brauer’s later work.

Alperin also spoke of Brauer’s thirteen years in Toronto : The years he spent at Toronto were his most productive years. He achieved
five or six great results during that time, any one of which would have established a person as a first-rank mathematician for the
rest of their life. ... those years had their high points, but also contained fallow periods, when there was the day-to-day grind of
raising a family in modest circumstances.

Brauer spent 1941 at the University of Wisconsin having been awarded a Guggenheim Memorial Fellowship. He was the Colloquium
lecturer at the American Mathematical Society Summer Meeting in Madison, Wisconsin in 1948. Later that year he moved from
Toronto back to the United States, accepting a post at the University of Michigan in Ann Arbor. In 1949 Brauer was awarded the Cole
Prize from the American Mathematical Society for his paper On Artin’s L-series with general group characters which he published in
the Annals of Mathematics in 1947. In 1951 Harvard University offered him a chair and, in 1952, he took up the position in Harvard
which he was to hold until he retired in 1971. In the year of his retirement he was honoured with the award of the National Medal for
Scientific Merit.

We have mentioned a number of topics which Brauer worked on in the course of this biography. However we have not yet mentioned
the work which in many ways was his most famous and this he began around the time he took up the chair at Harvard. He began to
formulate a method to classify all finite simple groups and his first step on this road was a group-theoretical characterisation of the
simple groups PSL(2,q) in 1951 (although for a complicated number of reasons, this did not appear in print until 1958). This work
was done jointly with his doctoral student K A Fowler, and in 1955 they published a major paper which was to set mathematicians on
the road to the classification. The paper was On groups of even order and it provided the key to the major breakthrough by Walter
Feit and John Thompson when they proved that every finite simple group has even order.

Brauer was to spend the rest of his life working on the problem of classifying the finite simple groups. He died before the classification
was complete but his work provided the framework of the classification which was completed only a few years later. (See the biography
of Gorenstein for further details on the programme to classify finite simple groups.) Most important was Brauer’s vital step in setting
the direction for the whole classification programme in the paper On groups of even order where it is shown that there are only finitely
many finite simple groups containing an involution whose centraliser is a given finite group. Brauer had announced these results
and his programme for classifying finite simple groups at the International Congress of Mathematicians in Amsterdam in 1954.

Green points out that when Brauer went to Harvard he was 51 years old, yet almost half his total of 147 publications were published
after this date. He certainly did not sit quietly working away in Harvard. He spent extended periods visiting friends and colleagues
in universities around the world, for example Frankfurt and Göttingen in Germany, Nagoya in Japan, and Newcastle and Warwick in
England.

Despite his remarkable contributions to research, Brauer found time to act as an editor for a number of journals. He was an editor
of the Transactions of the Canadian Mathematical Congress from 1943 to 1949, the American Journal of Mathematics from 1944 to
1950, the Canadian Journal of Mathematics from 1949 to 1959, the Duke Mathematical Journal from 1951 to 1956 and again from
1963 to 1969, the Annals of Mathematics from 1953 to 1960, the Proceedings of the Canadian Mathematical Congress from 1954
to 1957, and the Journal of Algebra from 1964 to 1970. A quick glance will show that in 1955 he held editorships of four learned
journals.

We have mentioned above a number of honours which Brauer received. We should also mention the learned societies which
honoured him with membership: the Royal Society of Canada (1945), the American Academy of Arts and Sciences (1954), the
National Academy of Sciences (1955), the London Mathematical Society (1963), the Akademie der Wissenschaften Göttingen
(1964), and the American Philosophical Society (1974). He was also elected President of the Canadian Mathematical Congress
(1957-58) and the American Mathematical Society (1959-60).

Green describes Brauer’s character (no pun intended!):

All who knew him best were impressed by his capacity for wise and independent judgement, his stable temperament and his
patience and determination in overcoming obstacles. He was the most unpretentious and modest of men, and remarkably free of
self-importance. ...

Brauer’s interest in people was natural and unforced, and he treated students and colleagues alike with the same warm friendliness.
In mathematical conversations, which he enjoyed, he was usually the listener. If his advice was sought, he took this as a serious
responsibility, and would work hard to reach a wise and objective decision.

Richard Brauer occupied an honoured position in the mathematical community, in which the respect due to a great mathematician
was only one part. He was honoured as much by those who knew him for his deep humanity, understanding and humility; these
were the attributes of a great man.

† A l b e r t T h o r a l f S k o l e m ( 1 8 8 7 - 1 9 6 3 ) was born 23 May 1887 in Sandsvaer, Norway and died on 23
March 1963 in Oslo, Norway. Thoralf Skolem worked on Diophantine equations, mathematical logic, group theory, lattice theory and
set theory. In 1912 he produced a description of a free distributive lattice. He made refinements to Zermelo’s axiomatic set theory,
publishing work in 1922 and 1929.

Skolem extended work by Löwenheim (1915) to give the Löwenheim- Skolem theorem, which states that if a theory has a model
then it has a countable model. From 1933 he did pioneering work in metalogic and constructed a nonstandard model of arithmetic.
He also developed the theory of recursive functions as a means of avoiding the so-called paradoxes of the infinite.
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