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The exercises 7.10, 7.11, 7.15 are marked as * and may be ignored in the first reading.

7.1. Letp : A — B be aring homomorphism. ¥ is a B—module and¥ is anA— module, there
exists a natural group homomorphism (see T7.7 and T7.15 c))

Homy(V, W) — Homg(V, Homy (B, W))

defined byf +— (v — (b — f(bv))) with inverseg — (v — g(v)(1p)). If R is another ring and
if V is a B—left—-R—right—bimodule, then the above isomorphism B-asomorphism. (This holds
for example in the case B = B is commutative.)

7.2. Let A and B be rings. LetU be anA-left-module,V be aB-right-module andW be a
(A, B)-bimodulé) of Type , Wg. Then there exists a natural isomorphism

Hom, (U, Homg(V, W)) — Homg(V, Hom, (U, W))
defined byf — (v — (u — f(u)(v))), with the inverse > (u — (v > g(v)(u))).
7.3. Let I be a finite set and let be an indecomposable rirfy

a). The canonical projections; : A’ — A, i € I are the onlyA—algebra—homomorphisms from
Al > A.

b). The map&(/) — Aut,_ag A! defined byo +— ((a;) +— (as-1))) is an isomorphism of
groups.

7.4. Let f : V — W be a homomorphism of modules over a riagIf ker f and im f are finite
A—modules, therV is also a finiteA—module. For the minimal number of generators we have:
pna(V) < pa(ker f) + paim f).

7.5. Let K be a division ringV be a finite dimensionak—vector spacef : V — W be a linear
mapping into an arbitrark —vector spacéV and letU C V be a subspace. Then

Dimg V — Dimg U > Dimg f(V) — Dimg f(U).
76. Letf:V > W, g: W — Xandleth : X — Y be linear maps of finite dimensional vector

spaces over a division ring.

a). (Inequality of Sylvesteryank f+rankg—Dimg W < rank(gf) < Min{rank f, rankg} .
(Hint: The first inequality easily follows from the exercise 7.5.)

1) SeeT7.14

2y Anon-zeroringA is calledindecomposable or connecte ddifis not isomorphic to a product of
two non-zero rings. A non-zero ring is indecomposable if and only if the only idempotents in the center
Z(A) are 0 and 1 (proof!). For example an integral domain is indecomposable.
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b). (Inequality of Frobenius)rank(hg) + rank(gf) < rankg + rank(hgf). (Hint: We
may assume thatis surjective and then apply part a).)

7.7. Let V andW be vector spaces over a division rikg A linear mapf : V — W has finite
dimensional kernel if and only if there exists a linear ngapW — V such thatgf = idy + A,
whereh € Endy V is of finite rank.

7.8. Let V andW be vector spaces over a division rikg Then

a). The linear maps fronV into W of finite rank form a 4 K)—submoduleE of Homg (V, W).
For f1,..., f, € E anday, ..., a, € Z(K) we have:

rank(ay f1 +---+a, f,) <rankfi +---+rankf,.

b). The endomorphisms df of finite rank form a two-sided ideal in the ring Epd’.

7.9. (Characters) LeM be a (multiplicative) semigroup and |&t be a division ring. A non-
zero semi-group homomorphism fravh in the multiplicative monoid oK is called acharacter
of M with values inK. The constant map — 1k is a character o#/, whcih is called the tivial
character. IfM is a monoid, then every character &f is a monoid homomorphis®). If

a € K, a # 0, then the conjugatios, = (b — aba™?) in K is a character of the multiplicative
monoid of K with values ink.

a). If x : M — K is a character, wher# is finite andy |M* is not trivial, then)_ _,, x (x) = 0.
(Hint: Letxg € M with x(x0) # 1. Then)_ _,, x(x) =, x (x0x) = x(x0) Y cp X (X).)

b). (Lemma on characters)Let,..., ¢, be characters o/ with values inK; Suppose
thate, ..., ¢, are (as an elements &) linearly independent ovek . If a linear combination
¢ = Y .4 a;ip; with coefficientsa; € K is a character oM, theng = ¢, ¢; for everyi with

a; %= 0. (Hint: Forx,y € M on one sidep(x)p(y) = ), ¢(x)a;¢:(y), and on the other side
P®)p(y) = p(xy) =3 aipi ()i (y).)

c). (Lemma of Dedekind—Artin) LeK be a field,M be a non-empty semigroup and let
@i, i € I, be afamily of distinct characters &f with values inK. Theng;, i € I, are linearly
independent ovek in K. (Hint: Use the lemma on characters.)

d). Some applications of theemma of Dedekind—-Artin:

1). Let A, K be algebras over a field whereA is finite dimensional and is a field. Then there exist at
most Dim, A distinctk—algebra—homomorphisms gafin K. (Hint: Hom, (A, K) is a K—subspace ok 4
of the dimension DimA. More generally see T7.16.)

2). Let K be afield. The maps— ", n € N, are the only polynomial maps &f into itself corresponding
characters of the multiplicative monoid &fwith values ink . More generally: The functions— ", n € Z,
are the only group homomorphismskf — K *, corresponding to the rational functions &rf. Deduce
that if K is finite, then the multiplicative groufy * is cyclic. (see also exercise T4.12.)

3). The functions — expat, a € C, of R in C are linearly independent ovér.
4). LetK be afield. the sequences),.n, a € K, are linearly independent ovr. (see also exercsie 4.17.)

e). (Inner automorphisms of a division rings) LEtbe a division ring with the
centerk. We considelk as ak—algebra.

1). Letx;, i € I, be a family of non-zero elements. Then the inner automorphismas,, i € I,
in KX are linearly independer if and only ifxi’l, i € I, are linearly independent over

( Hint: Let xg, x1,...,x, € K~ andxgl = Z:.':lcx,-xi_l, o € k. Thenxoy)ca1 = Z:.’:lotixoyxi_l =
S aixox; Toayx D) il sag = Yo i, a; = a;xox; t. Conversely, frome, = Y0 a5, , all

3) Every homomorphism of a monoid into a monoid in which cancellation holds is a monoid homomorphism,
i.e. maps the neutral element onto the neutral elemegtty : M — N be a homomorphism. Suppose that
cancellation holds itV. Lete € M ande’ € N be neutral elements. There) = ¢(e?) = p(e)p(e) and on

the other hana(e) = ¢'p(e). Thereforep(e) = ¢'.
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a; # 0 and lemma on characters, we gel) = »,, s, = »,,, and therefore;x; = a;xo with o; € k and
xgt= g (xoh) =Y axixg it =0 ax )

2). (Theorem of Noether—Skolem—Brauer)Hfis finite dimensional ovek, then every
k—algebra—endomorphism &fis an inner automorphism @f . (Hint: Choose &-basisy; *, ..., y;?

of K. Then by 1)x,,, ..., »,, is aK-basis of EngdK for dimensional reasons. Now,df € End,._aigK,
thengy = "' ; a;»,, and hence using lemma on characters weyget s, s, = ,,,, for every indexi
with a; #0.)

3). Letn := Dim; K be finite. Further, let,, ..., y, be an arbitrarg— basis ofK and; resp.o;

be the left resp. right multiplications by in K. Theni;o; = 0;A;, 1 <i, j < n, form ak—basis
of End, K. (Hint: Let f € EndK = K%yil + -+ K 1 by part 1). Then for appropriate elements

n n n n
aij € kwegetf =31 a Hy-1= Dol ®ijYj,-1 = Dii-1 O‘ij)‘yj)‘};lpyi € 2 i j—1khypy, -

Remark: The part 3) could be reformulated without any use of coordinates in the following way: The
canonicak-algebra-homomorphism

K ®; K°° — End.K , XQY > Ay,

is an isomorphism. This shows directly th&etP is the inverse ok in the Brauer group of. — Moreover,
Endy' K = C(K') ®; K°P for all k-subalgebrak’ € K, where GK’) is the algebra containing the elements
of K commuting with all elements at’.)

f). Every ring —endomorphism of the quaterniéiqR) algebra is an inner automorphism(Hint :
Note thatR = Z(H(RR)) by exercise 5.13 and the only automorphisniRadsé identity. Therefore every ring
endomorphism of(R) is anR-algebra endomorphism d@f(R) and hence by the theorem of Noether—
Skolem— Brauer, it is an inner automorphisnihe same result hold fail(Q).

*7.10. Let A be aring,V be a freeA—module with a basis;, i € I, andB := End, V be
the A—endomorphism ring o¥'. Let i denote the set of all those submodules/oivhich have
generating system consisting of at mpi§telements.

a). A submodulel of V belong toil if and only if there existy € B withim f = U.

b). The map defined by B — im f is a bijective map from the set of right-principal idealsAn
onto the setl. (Hint: For f, g € B, we have imf C imgifand only if f € gB.)

c). In the following casedl is the set of all submodules &f:

1). I isinfinite and|Z| > |A|. (Hint: By the%) we havelV| < |I].)

2). I is infinite andA is left-noetherian. (Hint : see the exercis® which will be added in the exercise
set on noetherian modules).

3). A is aleft-principal ideal ring. (Hint: If I is finite, then apply the exerci$e which will be added
in the exercise set on noetherian modules.)

d). Let f1,...,f, € Bwith U := im f; + ---4+1im f, € 4. Then there exists an element
h e fiB+---+ f,Bsuchthatinh = U. FurtherhB = fiB + --- + f, B for everyh € B with
imh = U. (Hint: Lety;, i € I, be a system of generators@fandy, = Y ";_; f;(v;;) with v;; € V. Let

h; be defined by; — f;(v;;) andh :=hy +---+h,.)

4) Theorem LetA be aring and letV be a freeA—module with infinite rank. Then
V| =|A|-rank, V = Sup|A|, rank, V}.

5) Exercise LetV be a module over a left-noetherian riigand letx;, i € I be a generating system for
V, wherel is infinite. Then every submodulé of V has a generating system of the foymi € 1.

6) Exercise Let A be aring in which every left- ideal has a generating system consistinglefments and
let V be anA—module generated byelements. Then every submoduleof V is generated byr elements.
(Hint: By Induction onN. Suppose thaV' = Ax; +---+ Ax, and f : V — V/Axy be the residue
map. Now considey|U.) Corollary : Over a left-principal ideal ring, every submodule of a module with
n generators has a generating system consisting@&ments
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e). If I isinfinite, then every finitely generated right-idealBns a right- principal ideal. (Hint:
Use the set-theoretic observatiGrand the part d) of this exercise.)

f). Suppose that is finite andf;, j € J, is a family of elements fronB. Then the right-ideal
> jcs fiB generated by, j € J isthe unitideal ifand only ib_,_, f;(V) = V. (Hint: Use d).

g). Supposethafi, ..., f, e BwithW :=im fin---Nim f, € . ThengB = f1BN---N f, B
for everyg € Bwithimg = W.

*7.11. Let A be a left-principal ideal ringy be a freeA—module and leB := End, V be the
endomorphism ring o¥. Then:

a). Sum and intersection of finitely many right-principal idealsims again a right-principal ideal
in B. (Hint: Use 7.10, c)-3) and d), g).

b). The mapf B — im f is an isomorphism of the lattice of the right-principal idealsBobnto
the lattice of theA—submodules oV. (Hint: Choose a basis df. Then is the set of all submodules
of V by 7.10 c¢)-3). Now, apply the exercise 7.10.)

c). (Theorem of E. NoetheSuppose thdl is afinite freeA—module. Thenthe endomorphism
ring End, V is a right-principal ideal ring.  (Hint: Choose a basis fdr and use the exercise 7.10
with the following observationtetb be a right-ideal inB := End, V. There exisff1, ..., f € bsuch that
Zfeb im f =im fi+---+im f,. Thenb = f1B+---+ f. B. —Remark. LetA be aright-principal ideal
ring and letV be a finite freeA—module. Then the endomorphism riggd, V is a left-principal ideal ring.
Proof Choose a basis df consisting of: elements. Then EndvV = M,,(A°P) = M,,(A)°P is left-principal
ideal ring if and only ifM,, (A) is right-principal ideal ring. Bum, (A) = M, ((A°P)°P) = End,op((A°P)")

is the endomorphism ring of the fre®®P—module(A°P)" over the left-principal ideal ring\°P, and so by
the theorem of E. Noether (part ¢) above) is a right-principal ideal ring. For the caseAnendivision
ring, see also the next exercise 7.12.)

7.12. LetK beadivisionringy be aK—vector space and I&be the endomorphismring Epd/.
a). For every subspadé C V, there exists & € B such that keyf = U.

b). For f, ¢ € B, we have kerf C kerg if and only if g € Bf. Deduce that: forf, g € B, we
have kerf = kerg ifand only if Bf = Bg.

c). Forfi, ..., f, € B,Bh=BfiN---N Bf, forall h € B with kerh = ker f; + - - - + ker f,.

d). For f1,..., f, € B, Bg = Bf1 + --- + Bf, for all g € B with kerg = ker fy N --- Nker f,.
(Hint: Using induction reduce to the case= 2. Then use the exercise 4.15.)

e). The mapBf +— ker f is an anti-isomorphism of the lattice of the left-principal idealg3of
onto the lattice of th&K—subspaces df .

f). If V isfinite dimensional, the® = Endg V is a left-principal ideal ring. (Remark: B is also a
right-principal ideal ring by exercise 7.11 c).)

7.13. AgroupG is calledrigid if identity map ig; is the only automorphism & is the identity
map ofG. A groupG is rigid if and only if |G| < 2.  (Hint: First show that every rigid group is an
elementary abelian 2-group. See T7.17)

7.14. LetV be a non-zero abelian group which is the additive grouplfaector space of finite
dimensiom. Neither théR—vector space structure dhnor its dimensiom are enough to determine
V (as shown in thé) In addition to this there exists many differéRt-vector space structures on
V with the same dimension In the following we give some methods for this construction.

a). The casen > 3 is simple. There exists a natural numlwere N* withn —m > 1 and
m # n —m. Leth be an isomorphism (exists by the theorem below) betw®&rand R" ™.

7y Let I be an infinite set and let;, j € J be afamily of sets with/| < /| and|Y;| < |I|forall j € J.
Then| Uje; Y| < |11
8) T7.17-2.c), 2d)
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Now, inR"” = R™ @ R"~™ with the help ofz interchange the vector space structures of the direct
summands.

b). Letn = 2. ThenR = QY with an indexed sef. Further, writel = {a} U J witha ¢ J, then

QY eQeQ"=Q0"e Q" eQ"),

and both these summand representations essentially yield different decompositions of the form
R @ R.

c). If n = 1 then one can choose a Hamel-basi®Roivhich contain the number 1. Let be a
Q-automorphism oR which interchanges 1 with another basis element in the Hamel basis and let
», be the inner automorphism of Effdcorresponding tee. If 9 : R — EndR is the canonical
representation dR, then one can give anoth&—vector space structure @via s, . — With

this method one can also spitinto direct summands which will also cover the above cases.

*7.15. Let V benotfinite dimensional vector space over a division rikigvith Dimg V = o (>
Np). Then the maps

B {f €eEndg V :rankf < g} andb — Min{y :rankf < y forall f € b}

are inverse isomorphisms to each other from the (well ordered) set of infinite cardinal nghibers
and the set (ordered by the inclusion) of two-sided idéas Endgy V with O £ b # Endg V.
— How many two-sided ideals are there in the ring Bhdt-) = Endy R ? (— Basic results on
cardinal numbers are needed!.)

Below one can see (simple) test-exercises.

Test-Exercises

T7.1. Let V andW be modules over a non-commutative riag Then the abelian group Honv, w)),
need not be ar—submodules ofv". (For example, Hom(A, A) is not anA—submodule ofA* ; choose
a,c € Awith ca # ac. Thenf :=id, € Homy (A, A), butcf ¢ Hom, (A, A), since(cf)(a - 1,) = ca, but
a-((cf)(1a)) =ac.)

T7.2. Let V andW be isomorphic modules over a rimg Then End V and Eng W are isomorphic rings.
If A is commutative, then End/ and End W are isomorphicA—algebras. Hint: Consider
End,V — End, W with f — hfh~1, whereh : V — W is anA—isomorphism.)

T7.3. Let V be a vector space over a division riRg U be a subspace of and letx € V, x ¢ U. Then
there exists & —linear formf on vV such thatf (U) = 0 and f(x) # 0.

T7.4. LetA be anintegraldomain and [étbe anA—module. IfV is atorsion module, then Hongv, A) =0.

T7.5. Let A be an integral domain with quotient fieki. Then Hom (K, A) £ O ifand only if A = K.
(f € Hom, (K, A) is the homothecy oK with f(1).) If K is a finite A—module, thed = K. (see
exercise 3.5. —Moreover, K is a submodule of an arbitrary direct sum of fintemodules, thed = K.)

T7.6. Let K be a divison ring,V be aK-vector space of dimension 2 andg : V — V be a group
homomorphism withp(Kx) € Kx for all x € V. Theng is a homothecy. Hint: First consider
(), (), o(x + y), wherex, y € V are linearly independent.)

T7.7. (Restriction of module structure) Ldt Bberingsy : A — B be aringhomomorphism
and letw be aB—module.With the help of, from theB—module structure oW, we can define an—module
structure onW. Define the operation o on W by ay := ¢(a)y fora € A andy € W. If one thinks
that the B—module structure oW is given by the ring homomorphisih : B — EndW, then the above
A—module structure oW is given by the compositiofty : A — EndW. This A-module structure ofv
is said to be obtained theestriction of scalars fromB to A via ¢ orjusttheinduced
module structure byg.

A simple example of the restriction of scalars of tBemoduleW is onto a subringd’ of B. In this case
@ is the canonical inclusioB’” — B. Another example is the canonidatmodule structure of a moduié
over ak—algebraA. In this casey is the structure homomorphisin— A of A.

Lety : A — B be a surjective ring homomorphism. W, W are modules oveB, then Homy(V, W) =
Hom, (V, W). (The B—modules are considered asmodules by the restriction of scalarsyig
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T7.8. Let A be a ring and let/, W be submodules of ad—module. Suppose that : U — X and
g . W — X are homomorphisms of—modules into am—moduleX. Then there exists a homomorphism
h:U+4+ W — Xsuchthat|U = f andh|W =gifandonlyif flUNW =glUNW.

T7.9. Let A be a non-zero ring and I8t be a freeA—module which has a basis consiting of atleast two
elements. Then the endomorphism ring Efdis neither commutative nor free from zero-divisors.

T7.10. Let K be a field and letf resp.g be theK—endomorphisms ok 2 defined bye; — e2, ex +—
e1, e3 = 0resp.e; — 0, eo > e3, e3 > ep, Whereey, e, e3 is the standard basis &3. Then : (1)
im f4+im g = K3. (2) kerf nkerg = 0. (3) No linear combination of andg is an automorphism af 3.

T7.11. Let V be a finite dimensional vector space over a division kh@nd letf € Endgx V. a). The
following statements are equivalent: (1) ifn= ker f. (2) f2 = 0 and Dinx V = 2 rank f.

b). The following statements are equivalent: (1) rghk rank /2. (2) im f =im f2. (3) ker f = ker f2.
@) imfnkerf=0.(B)imf+kerf=1V.

T7.12. Let A be afinite dimensional algebra over a fi&d For an element € A the following statements
are equivalent: (13 isa unitinA. (2) x is not a left -zero divisor iM. (2) x is not a right-zero divisor in
A. (3) x has a left-inverse. (Bx has a right-inverse.Hint: Consider the translationls ande, in A with
x.) — Use this to give a new proof of exercise 5.17.)

T7.13. Let A be a finite dimensional algebra over a figtd If x € A is unit, thenx~! belong to the
K—subalgebr&[x] of A generated by.

T7.14. (Bimodules) Often we consider many module structures on the same abelian gratiphe
same time. If these module structures emenpatiblewith each other, then we can use the term Miu
modulesgespeciallyBimodules, if twocompatible modules structures on the same abelian group are
considered.

Let V be an abelian group. Suppose tlvahas anA— as well asB—(left—=)module structure. Thevi is
called an(A, B) —bimodule if a(bx) = b(ax) foralla € A, b € B, x € V. This is usually writen as
V=,35V.

Suppose that has anA—left — and aB—right module structure. Thénis calledan(A, B) —bimodule,
if a(xb) = (ax)b foralla € A, b € B, x € V. In this case we use the notatidn= ,V;.

Analogously, bimodules of the typé, 5 can be defined.

a). A trivial example of a bimodule structure is an usual modudlever acommutativeing A. With one
and the same operatidnis an(A, A)—bimodule of the typg 4 V.

b). Let V be anA—module. ThenV has a naturalEnd, V)—module structure given by the operation
(f,x) = f(x), for f € Endy V andx € V. (Note that Giving anA—module structure on the abelian
group V is equivalent to giving a (canonical) ring homomorphism A — End; V. Further, the ring
B := End, V is a subring of the ring Engdv and hence théEnd, V)—module structure ol is nothing
but the restriction of scalars from the ring End to the subring EnglV.) ThereforeV is anA—module as
well as B—module and furtheV is a(A, B)-module of type, 3V ; since fora € A, f € Bandx € V, we
havea(f - x) = af(x) = f(ax) = [ - (ax).

T7.15. (Homomorphism modules of bimodules) We haeen in T7.1 that in general,
the abelian group Hog(V, W)) need not be an—submodules of¥". Let B be an another ring. We are
looking for some conditions either dnor on W, so that the abelian group HortV/, W)) has aB—module
structure. For example :

a). LetV be anA—-module and¥ be a(A, B)—-bimodule of typg W. Then the abelian groudom, (V, W)
is a B—right module with respect to the right operation®bnHom, (V, W) defined by

fb:=xw~ f(x)b) , be Bandf € Homy(V, W).

(Proof We considerW" as B—right module, where fob ¢ B and f € W" the productfb is defined
by fb .= (x — f(x)b). We need therefore to show that the subset HOm W) of WV is a B—right
submodule. Since HoptV, W) is a subgroup of¥", it is enought to show that HoptV, W) is closed (in
WwYV) under the right-operation @ and this can be easily verified. °

b). If V is an A—module andV be a(A, B)—bimodule of typg z W, then the abelian grouplom, (V, W)
is a B—(left) module with respect to the (left) operationlbobn Hom, (V, W) defind by

bf .= (xw— bf(x)) , be Bandf € Hom,(V, W).

D. P. Patil July 16, 2003,3:38 p.m.



Basic Algebra ; May-July 2003 ; 7. Homomorphisms of modules 7

An important example for the application of a) is: Wf is an A—-module, then the abelian grotp =
Homy (V, A) has a natural-right module structure, sincé is trivially a (A, A)—bimodule of type, A 4.
With this right module structure the modul& is called thedual module ofV. If A is commutative,
then this module structure is same as that of the natiwatodules strukture, namely ;= (x — af (x))
fora € Aandf € Hom,(V, A).

c). LetV bea(A, B)-bimodule oftypgVy and letW be anA—module. Thenthe abelian grotiom, (V, W)
is a B—(left) module with respect to thgeft) operation ofB onHom,(V, W) defined by

bf := (x > f(xb)) , be Bandf e Hom(V, W).

(Proof The multiplicative monoid of8 operates oWV in a canonical way :bf = (x — f(xb)) for

b e Bandf € WV. We need to show that this operation cane be restricated to,Hon¥). Thereofre, let
be B, f e Hom,(V,W)andx,y € V. Then(bf)(x+y) = f((x+y)b) = f(xb+yb) = f(xb)+ f(yb) =
BHx)+ b)) (). Further, fora € A, we havebf)(ax) = f((ax)b) = f(a(xb)) = af (xb) = a((bf)(x)).
Thereforebf € Hom, (V, W), and so the given operation 8fon Hom, (V, W) exists. Now, one can easily
verify that this operation definesB~module structure on HogdV, W). °

d). If Visa(A, B)-bimodule of typg 3V andW is an A—-module, then the abelian grodfom, (V, W) is
a B-right module with respect to the right operation®fnHom, (V, W) defined by

fb:=(xwr f(bx)) , be Bandf € Homy(V, W).

T7.16. Let A be aring,V be anA—module with basis;, i € I and letW be an arbitraryA—module. Then
the map
o :Homy(V, W) — W'

defined byf — (f(x;));c; is bijective. Further,

a). o isanisomorphism of the additive group®r¢of For f, g € Hom,(V, W)o (f+g) = (f+g)(x;)) =

(f (i) +g(x) = (f(x) + (g(xi)) = o (f) +0(g).)

b). Let W be an(A, B)—bimodule with respect to another rilBy Theno is an isomorphism aB—modules.
(Proof Suppose for exampl® is an(A, B)—-bimodule of type, W. Then forb € B andf € Hom,(V, W)

we haveo (fb) = ((fb)(x))) = (f(x;))b) = (f(x))b = o(f)b. Therefores is an isomorphism ofZ—

right-modules.) Similarlyg is an isomorphism oB—(left)-modules, ifW is an(A, B)-bimodule of type
A.8W. Every A—-module is trivially(A, Z(A))-bimodule. Therefore is linear over the center(@) of A.

In particular:If A is commutative, thes is an isomorphism afi—modules.

c). An important special case W = A. SinceA is an(A, A)-bimodule of type,A,, we have :Then
canonical map ofV* = Hom,(V, A) in A’ is an isomorphism ofi—right-modules In particular, in the
caseV = AY) we have a canonical isomorphism”)* — A’ of A—right-modules. In the general case if
V = AP, The direct sunin” with the standard basis, i € I, is a(A, A)-bimodule of type, (A"), in

a canonical way. Therefore HoypA?, W) has a naturakl—module structure by T7.15-c)vith respect to
this structure and the canonical module structureVgh, o is always an isomorphisimor, ifa € A and

f € Hom, (A", W), thena (af) = ((af)(e)) = (f(eia)) = (f(ae)) = (af(e)) = a(f(e)) = ao(f).

In particular, the canonical isomorphism Hem, W) — W of A—-modules is given by — f(1).

d). Inthe casé¥ = A we have : Theanonical magA”)* — A’ is anisomorphism afA, A)—bimodules

In words: dualising converts the direct sum$ into the direct productt’ in a canonical way.

T7.17. (Abelian groups with vector space structure) Wawd like to describe the abelian
groups which are the underlying additive groups of vector spaces over division rings. Each vector space
over a division ringk , by restricting the scalars, we consider a vector space over the prime figldihce

prime fields are canonically isomorphic tq K= Z/ pZ in the case of prime characterisgigesp. toQ in the

case of characteristic 0. With this we need to describe those abelian groups which are underlying additive
groups of the vector spaces over the fields&sp. Q. For this we shall use different methods for different
characteristic.

1). First consider the case of a prime characteristic. ¢ a prime number. An additively written abelian
groupH is called arelementary abeliap—group if px = O for allx € H, therefore every element &f is

of order 1 orp. (An elementary abelian 2—group is nothing but the group in which every element is its self
inverse.)

1.a) An abelian group is the additive group ofkg,—vector space if and only if it is an elementary abelian
p—group. Moreover, in this case thé,—vector space—structure is uniquely determingtoof If V is a
vector space over K thenpx = 0 for all x € V. Conversely, suppose that is an elementary abelian
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p—group. By assumption oA the kernel of the canonical ring homomorphigm Z — End; H defined
byn — n-idy contains the prime numberand hence containsZ. Thereforey induces a homomorphism
xp of K, = Z/pZ in End; H, which defines a k—vector space—structure @¢h. Since K, is a prime ring,
this is the only homomorphism of the ring,knto End, H and hence the given vector spaces structure on
H is uniquely determined.)

Let H be an elementary abeligir-group. A subgroug’ of H is always an elementary abelign-group

and hence K—vector space in a canonical way. This vector space structure is clearly the restriction of the
vector space structure froii; thereforeH’ is a subspace aff. From now on every elementary abelian
p—group is considered as,Kvector space.

1.b) For elementary abeliarp—group H, F we haveHom(H, F) = Homk,(H, F). Proof We have
Hom(H, F) = Homy(H, F). Now, apply T7.7 in the situatiod — K,.)

With 1.a) and 1.b) the theory of the elemenatray abetiagroups is equivalent to the theory of thg-K
vector spaces. As an applications can be directly given. For example every elementary gbgi@ip

H is isomorphis to a group of the form}]K, where the cardinality of is uniquely determined, namely as
the dimension of the J<vector spacéi, vgl. Beispiel 1. Alternatively|/| can be simply computed from
|H|. For example ifH is finite, then|I| is determined byH| = p!I. If H is infinite, then|I| = |H| by
footnote 4. In particular, we havén elementary abeliap—group is uniquely determined upto isomorphism
by its cardinality For further applications see ??7?).

2). We now consider the abelian groups which ha®-asector space structure. An (additively written)
abelian grouH is calledtorsion free, if thehomothecies — nx forn € Z, n # 0, are injective, and
is called divisible, if the homothecies are surjective.

2.a) An abelain group is the additive group ofja-vector space if and only if it is torsion free and is divisible.
Moreover, in this case th@—vector space—structure is uniquely determinéeoof If V is aQ-vector
space and € Z, n # 0, then the homothea$, by  is bijective onV. But, is the multiplicationx > nx

by n on theZ—moduleV. Therefore it follows thav is torsion free and divisible. Conversely, suppose that
H is torsion free divisible abelian group. We may assume ihat 0. The homothecies — nx, n # 0,

in End; H = End H are by hypothesis are automorphismgf Therefore are the multiples- id; of the
unit element of Endd and hence units in this endomorphism ring. Sifte: 0, End H contains a field of
characteristic 0 and there exists a unique homomorphkis® — End H. With this there exists a unique
Q-vector space structure ah.)

From now on every torsion free divisible abelian group is consideredias/actor space.

2.b) For torsion free divisible abelian groupd, F we haveHom(H, F) = Homgy(H, F). (Proof Let
f € Hom(H, F) = Homg(H, F). We need to show thaf is linear overQ. For this letx € H and
g=m/ne€Q, mnelZ, n#0,thenf(gx) = f(n(gx)) = f((nq)x) = f(mx) = mf(x) = (nq) f(x) =
n(gf(x)). Cancelling: we getf(gx) = gf(x), as desired.)

With 2.a) and 2.b) the theory of torsion free divisible abelain groups is egivalent to the theory@#the
vector spaces. As an application we can give a simple classification of the torsion free divisible abelain
groups. Every such groufl is isomorphic toQ”, where! is a set with|/| = Dimg H. This cardinal
number uniquely determines the group upto isomorphisnil i§ countable, theid is necessarily finite or
countably infinite. Therefore we havéhe isomorphism type of the countable torsion free divisible abelain
groups are represented by the groups »n € N, andQ™. If H is uncountable, thehis infinite and hence

|H| = |Q"| = |I| by footnote 4. Therefore we hav&n uncountable torsion free divisible abelian group

is uniquelly determined upto isomorphism by its cardinality.

We further note the following applications.

2.c) LetK be a division ring which is not finite dimensional over its prime field. Then the additive groups
of all finite non-zerak —vector spaces are isomorphic to each otl{eroof Letk be the prime field oK.

For an—dimensionak —vector spac#&, n > 1, we have (see footnote 4) DifW = n - Dim; K = Dim; K

and this cardinal number does not depena:9n

2.d) The additive group®”, C", n € N*, are isomorphic to each othefProof C” is aR—vector space of
dimension 2 andR is an infinite dimensional oveép. Now apply the above theorem.)

2.e) The endomorphism ringnd H of an abelain groufH is a division ing if and only i is the additive
group of a prime field, i.e. i is cyclic of prime order or ifH isomorphic to(Q, +). (Proof Suppose
that EndH is a division ring. Ifk is a prime field of EndH, then H is ak—module and by 1. b) resp.
2.b) EndH = End. H. By exercise T7.9, the last ring is a division ring if and only if Qi = 1.
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ThereforeH is isomorphic to the additive group &f Conversely, suppose that is cyclic of prime order
p, then EndH = Endk, H by 1.a); if H = (Q, +), then EndH = Endy H by 2.b). In both the cases the
endomorphism rings are isomorphic to prime fields.)

TRichard D agobert Brauer (1901-1977) wasbornon 10 Feb 1901 in Berlin-Charlottenburg, Germany and
died on 17 April 1977 in Belmont, Massachusetts, USA. Richard Brauer's father was Max Brauer who was a well-off businessman in
the wholesale leather trade. Max Brauer’s wife was Lilly Caroline and Richard was the youngest of their three children. He had an
older brother Alfred Brauer, who also became a famous mathematician. Alfred Brauer was seven years older than Richard and of
an age between the two brothers was Richard’s sister Alice.

Richard entered the Kaiser-Freidrich-Schule in Charlottenburg in 1907. Charlottenburg was a district of Berlin which was not
incorporated into the city until 1920. Richard studied at this school until 1918 and it was during his school years that he developed
his love of mathematics and science. However, this was not due to the teaching at the school, but it came about through the
influence of his brother Alfred. Richard writes about his school teachers who he describes as not being very competent. There was
one exception however, and it was fortunate that this good teacher was a mathematician who had a doctorate awarded for research
done under Frobenius’s supervision.

Of course Richard's last four years at school were the years of World War |, but, unlike his brother, he was young enough to avoid
being drafted into the army. When he graduated from the Kaiser-Freidrich-Schule in September 1918 the war was still in progress,
and Brauer was drafted to undertake civilian war service in Berlin. Only two months later, in November 1918, the war ended, Brauer
was released from war service and he resumed his education. Despite the love for mathematics which he had gained from his brother,
Brauer decided to follow his boyhood dreams of becoming an inventor. He entered the Technische Hochschule of Charlottenburg in
February 1919 where he studied for a term before, having realised that his talents were in theory rather than practice, he transferred
to the University of Berlin.

At the University of Berlin Brauer was taught by a number of really outstanding mathematicians including Bieberbach, Carathéodory,
Einstein, Knopp, von Mises, Planck, Schmidt, Schur and Szego. Brauer describes some of the lectures he attended; talking of
Schmidt’s lectures he writes: It is not easy to describe their fascination. When Schmidt stood in front of a blackboard, he never
used notes, and was hardly ever well prepared. He gave the impression of developing the theory right there and then.

It was the custom that German students at this time spent periods in several different universities during their degree course. Brauer
was no exception to this, although he made only one visit during his studies, that being for a term to the University of Freiburg. Back
in Berlin he attended seminars by Bieberbach, Schmidt and Schur. He was increasingly attracted towards the algebra which Schur
was presenting in his seminar (which was attended in the same year by Alfred Brauer). Schur, unlike Schmidt,

. was very well prepared for his classes, and he lectured very fast. If one did not pay the utmost attention to his words, one
was quickly lost. There was hardly any time to take notes in class; one had to write them up at home. ... He conducted weekly
problem hours, and almost every time he proposed a difficult problem. Some of the problems had already been used by his teacher
Frobenius, and others originated with Schur. Occasionally he mentioned a problem he could not solve himself.

In fact it was one of these open problems which Richard working with his brother Alfred solved in 1921 and this was eventually
to be included in Brauer’s first publication. Schur suggested the problem that Brauer worked on for his doctorate and the degree
was awarded (with distinction) in March 1926. His dissertation took an algebraic approach to calculating the characters of the
irreducible representations of the real orthogonal group. Before the award of his doctorate, however, Brauer had married llse Karger
in September 1925. They had been a fellow students in one of Schur’s courses on number theory. Before his marriage Brauer was
appointed as Knopp's assistant at the University of Kdnigsberg and he took up this post in the autumn of 1925.

Shortly after Brauer arrived in Kdnigsberg, Knopp left to take up an appointment at Tibingen. The mathematics department at
Koénigsberg was small, with two professors Szego and Reidemeister, and with Rogosinski and Kaluza holding junior positions like
Brauer. It was in Konigsberg that Brauer’s two sons, George Ulrich Brauer and Fred Giinter Brauer were born. Brauer taught at
Konigsberg until 1933 and during this period he produced results of fundamental importance. Green writes :

This was the time when Brauer made his fundamental contribution to the algebraic theory of simple algebras. ... Brauer developed
... atheory of central division algebras over a given perfect field, and showed that the isomorphism classes of these algebras can
be used to form a commutative group whose properties gave great insight into the structure of simple algebras. This group became
known (to the author’'s embarrassment) as the "Brauer group” ...

Political events forced Brauer’s family to move. He wrote : | lost my position in Kénigsberg in the spring of 1933 after Hitler became
Reichskanzler of Germany.

Brauer was from a Jewish family so was dismissed from his post under the Nazi legislation which removed all Jewish university
teachers from their posts. This was a desperate time for Brauer who realised that he had to find a post outside Germany. Fortunately
action was taken in several countries to find posts abroad for German academics forced from their positions and a one year
appointment was arranged for Brauer in Lexington, Kentucky for the academic year 1933-34. In November 1933 Brauer arrived to
take up his appointment at the University of Kentucky, his wife and two sons following three months later. We should record that
Alfred Brauer left Germany in 1939, but Brauer's sister Alice stayed behind and was murdered in a concentration camp by the Nazis.

Following his year in Lexington, Brauer was appointed as Weyl's assistant at the Institute for Advanced Study in Princeton. He wrote
about this appointment with Weyl: | had hoped since the days of my PhD thesis to get in contact with him some day; this dream
was now fulfilled.

Collaboration between Brauer and Weyl on several projects followed, in particular a famous joint paper on spinors published in 1935
in the American Journal of Mathematics. This work was to provide a background for the work of Paul Dirac in his exposition of the
theory of the spinning electron within the framework of quantum mechanics.

A permanent post followed the two temporary posts when Brauer accepted an assistant professorship at the University of Toronto
in Canada in the autumn of 1935. It was largely as a result of Emmy Noether's recommendation, which she made while visiting
Toronto, which led to his appointment. This was a time when Brauer developed some of his most impressive theories, carrying the
work of Frobenius into a whole new setting, in particular the work on group characters Frobenius published in 1896. Brauer carried
Frobenius’s theory of ordinary characters (where the characteristic of the field does not divide the order of the group) to the case of
modular characters (where the characteristic does divide the group order). He also studied applications to number theory.
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C J Nesbhitt was Brauer’s first doctoral student in Toronto and he described their relationship as doctoral student and supervisor
Curiously, as thesis advisor, he did not suggest much preparatory reading or literature search. Instead we spent many hours
exploring examples of the representation theory ideas that were evolving in his mind.

It was in joint work with Nesbitt, published in 1937, that Brauer introduced the theory of blocks. This he used to obtain results on
finite groups, particularly finite simple groups, and the theory of blocks would play a big part in much of Brauer’s later work.

Alperin also spoke of Brauer’s thirteen years in Toronto : The years he spent at Toronto were his most productive years. He achieved
five or six great results during that time, any one of which would have established a person as a first-rank mathematician for the
rest of their life. ... those years had their high points, but also contained fallow periods, when there was the day-to-day grind of
raising a family in modest circumstances.

Brauer spent 1941 at the University of Wisconsin having been awarded a Guggenheim Memorial Fellowship. He was the Colloquium
lecturer at the American Mathematical Society Summer Meeting in Madison, Wisconsin in 1948. Later that year he moved from
Toronto back to the United States, accepting a post at the University of Michigan in Ann Arbor. In 1949 Brauer was awarded the Cole
Prize from the American Mathematical Society for his paper On Artin’s L-series with general group characters which he published in
the Annals of Mathematics in 1947. In 1951 Harvard University offered him a chair and, in 1952, he took up the position in Harvard
which he was to hold until he retired in 1971. In the year of his retirement he was honoured with the award of the National Medal for
Scientific Merit.

We have mentioned a number of topics which Brauer worked on in the course of this biography. However we have not yet mentioned
the work which in many ways was his most famous and this he began around the time he took up the chair at Harvard. He began to
formulate a method to classify all finite simple groups and his first step on this road was a group-theoretical characterisation of the
simple groups PSL(2,q) in 1951 (although for a complicated number of reasons, this did not appear in print until 1958). This work
was done jointly with his doctoral student K A Fowler, and in 1955 they published a major paper which was to set mathematicians on
the road to the classification. The paper was On groups of even order and it provided the key to the major breakthrough by Walter
Feit and John Thompson when they proved that every finite simple group has even order.

Brauer was to spend the rest of his life working on the problem of classifying the finite simple groups. He died before the classification
was complete but his work provided the framework of the classification which was completed only a few years later. (See the biography
of Gorenstein for further details on the programme to classify finite simple groups.) Most important was Brauer’s vital step in setting
the direction for the whole classification programme in the paper On groups of even order where it is shown that there are only finitely
many finite simple groups containing an involution whose centraliser is a given finite group. Brauer had announced these results
and his programme for classifying finite simple groups at the International Congress of Mathematicians in Amsterdam in 1954.

Green points out that when Brauer went to Harvard he was 51 years old, yet almost half his total of 147 publications were published
after this date. He certainly did not sit quietly working away in Harvard. He spent extended periods visiting friends and colleagues
in universities around the world, for example Frankfurt and Géttingen in Germany, Nagoya in Japan, and Newcastle and Warwick in
England.

Despite his remarkable contributions to research, Brauer found time to act as an editor for a number of journals. He was an editor
of the Transactions of the Canadian Mathematical Congress from 1943 to 1949, the American Journal of Mathematics from 1944 to
1950, the Canadian Journal of Mathematics from 1949 to 1959, the Duke Mathematical Journal from 1951 to 1956 and again from
1963 to 1969, the Annals of Mathematics from 1953 to 1960, the Proceedings of the Canadian Mathematical Congress from 1954
to 1957, and the Journal of Algebra from 1964 to 1970. A quick glance will show that in 1955 he held editorships of four learned
journals.

We have mentioned above a number of honours which Brauer received. We should also mention the learned societies which
honoured him with membership: the Royal Society of Canada (1945), the American Academy of Arts and Sciences (1954), the
National Academy of Sciences (1955), the London Mathematical Society (1963), the Akademie der Wissenschaften Goéttingen
(1964), and the American Philosophical Society (1974). He was also elected President of the Canadian Mathematical Congress
(1957-58) and the American Mathematical Society (1959-60).

Green describes Brauer’s character (no pun intended!):

All who knew him best were impressed by his capacity for wise and independent judgement, his stable temperament and his
patience and determination in overcoming obstacles. He was the most unpretentious and modest of men, and remarkably free of
self-importance. ...

Brauer's interest in people was natural and unforced, and he treated students and colleagues alike with the same warm friendliness.
In mathematical conversations, which he enjoyed, he was usually the listener. If his advice was sought, he took this as a serious
responsibility, and would work hard to reach a wise and objective decision.

Richard Brauer occupied an honoured position in the mathematical community, in which the respect due to a great mathematician
was only one part. He was honoured as much by those who knew him for his deep humanity, understanding and humility; these
were the attributes of a great man.

T Albert Thoralf Skolem (1887-1963) was born 23 May 1887 in Sandsvaer, Norway and died on 23
March 1963 in Oslo, Norway. Thoralf Skolem worked on Diophantine equations, mathematical logic, group theory, lattice theory and
set theory. In 1912 he produced a description of a free distributive lattice. He made refinements to Zermelo’s axiomatic set theory,
publishing work in 1922 and 1929.

Skolem extended work by Léwenheim (1915) to give the Loéwenheim- Skolem theorem, which states that if a theory has a model
then it has a countable model. From 1933 he did pioneering work in metalogic and constructed a nonstandard model of arithmetic.
He also developed the theory of recursive functions as a means of avoiding the so-called paradoxes of the infinite.
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