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Lectures : Monday/Thursday 11:30–1:00 ; Lecture Hall-II, Department of Mathematics

1. Ideals — Operation on Ideals

W o l f g a n g K r u l l (1899-1971) †

All rings we consider in this course are commutative with an identity element, called theunity. For
a ring A , let IA denote the set of ideals inA .

1.1. ( O p e r a t i o n s o n i d e a l s ) LetA be a ring and leta, b, c ∈ IA.

1). ( S u m s , P r o d u c t s a n d I n t e r s e c t i o n s )a). The operations sum, intersection and
product onIA are commutative and associative.

b). ( D i s t r i b u t i v e l a w ) a(b + c) = ab + ac . (Remark : In the ringZ the operations∩ and+ are
distributive over each other. This is not the case for general rings.)

c). ( M o d u l a r l a w ) If a ⊇ b or a ⊇ c , then a ∩ (b + c) = a ∩ b + a ∩ c .

d). (a + b)(a ∩ b) ⊆ ab . (Remark : In the ringZ the equality(a + b)(a ∩ b) = ab holds.)

e). ab ⊆ a ∩ b. Further,a ∩ b = ab if a + b = A .

f). (Comax ima l idea ls ) Twoidealsa, b are calledcopr ime or comax ima l ifa+b = A .
Therefore for coprime idealsa, b , we havea ∩ a = ab .

1) Let a1, . . . , an , n ≥ 2 be pairwise comaximal ideals inA , i.e. ai + aj = A whenever
1 ≤ i, j ≤ n with i �= j . Then : i) a1∩· · ·∩an−1 andan are also comaximal. ii)a1∩· · ·∩an =
a1 · · · an .

2) Let a1, . . . , an , b1, . . . , bm , n, m ∈ N be ideals inA with ai + bj = A for all i, j with
1 ≤ i ≤ n and 1 ≤ j ≤ m . Then the productsa1 · · · an and b1 · · · bm are comaximal, i.e.,
a1 · · · an + b1 · · · bm = A . In particular, if a and b are comaximal ideals inA , then the powers
an and bm are also comaximal inA for all n, m ∈ N .

g). Let a1, . . . , an , n ≥ 2 be ideals in a ringA and for i = 1, . . . , n , let πi : A → A/ai be the
natural surjective map. Then :

1) The ring homomorphismπ : A → A/a1 × · · · × A/an defined bya 	→ (π1(a), . . . , πn(a)) is
a ring homomorphism with kernel Kerπ = a1 ∩ · · · ∩ an . In particular,π is injective if and only
if a1 ∩ · · · ∩ an = 0 .

2) ( C h i n e s e R e m a i n d e r T h e o r e m ) Thering homomorphismπ, in 1) above is surjective
if and only if a1, . . . , an are pairwise comaximal.

† W o l f g a n g K r u l l ( 1 8 9 9 - 1 9 7 1 ) Wolfgang Krull was born on 26 Aug 1899 in Baden-Baden,
Germany and died on 12 April 1971 in Bonn, Germany.
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1.2 MA-312 Commutative Algebra / January-April 2008 1. Ideals

2). ( I d e a l q u o t i e n t ) For twoideals a and b in A , the i d e a l q u o t i e n t ofa by b is
(a : b) := {a ∈ A | ab ⊆ a} which is an ideal inA. In particular,(a : b) is {a ∈ A | ab = 0} the
ann ih i l a to r o f b and is denoted by ann(b) . If b is a principal idealAb, then we simply write
(a : b) for (a : b) . (In the ringA = Z, leta = Zm, b = Zn. Then (a : b) = Zq , whereq = ∏

p primeprp ,
rp := max(vp(m) − vp(n), 0) = vp(m) − min(vp(m) − vp(n)). Thereforeq = m/ gcd(m, n) .)

For idealsa, ai , i ∈ I , b, bi , i ∈ I , c in IA, we have

a). a ⊆ (a : b) . b). (a : b)b ⊆ a . c).
(
a : b) : c

) = (a : bc) = (
a : c) : b

)
.

d).
( ∩i∈I ai : b

) = ∩i∈I (ai : b) . e).
(
a :

∑
i∈I bi

) = ∩i∈I (a : bi ) .

3). ( R a d i c a l o f a n i d e a l ) For anideal a in A , the r a d i c a l o fa is

{a ∈ A | an ∈ a for some n ∈ N+}
which is an ideal inA and is denoted by r(a) or

√
a .

a). a ⊆ √
a . b).

√√
a = √

a . c).
√

ab = √
a ∩ b) = √

a ∩ √
b d).

√
a + b =

√√
a + √

b .

e).
√

a = A if and only if a = A . f). If p is a prime ideal inA, then
√

pn = p for all n ∈ N+.

4). (Ex tens ions and Con t rac t i ons o f Idea ls ) Letϕ : A → B be a ring homomorphism.

For an ideala in A, the e x t e n s i o n o f a i n B u n d e r ϕ is the idealBϕ(a) generated by
ϕ(a) ; (explicitly Bϕ(a) = {∑j⊂J bjϕ(aj ) | J is a finite set, bj ∈ B, aj ∈ a} . — In general,ϕ(a) need
not be an ideal inB, for example, letϕ : Z → Q be the natural inclusion anda := Zn, n �= 0. )

For an idealb in B, the con t rac t i on o f b i n A unde r ϕ is the idealϕ−1(b) ; (This
is always an ideal inA. )

For a ∈ IA (resp. b ∈ IB) the extensionBϕ(a) of a (resp. the contractionϕ−1(b) of b) is
usually denoted byaB (resp. b ∩ A), when there is no possibility of confusion over which ring
homomorphism is under discussion.

Let CB
A ⊆ IA (resp.EB

A ⊆ IB) be the set of ideals inA which are contracted toA from B underϕ
(resp. the set of ideals inB which are extended toB from A underϕ), i.e.

CB
A := {b ∩ A | b ∈ IB} and EB

A := {aB | a ∈ IA} .

a). The mapsCB
A −→ EB

A , a 	→ aB and EB
A −→ CB

A , b 	→ b ∩ A are inclusion preserving
bijective maps which are inverses to each other.(Hint : Fora ∈ IA (resp.b ∈ IB ), a ⊆ aB ∩ A, (resp.
b ⊇ (b ∩ A)B) and henceb ∩ A = (b ∩ A)B ∩ A andaB = (

aB ∩ A
)
B.)

b). The setCB
A is closed under intersections and radicals. Further, for idealsb1, b2 ∈ IB ,

(i) (b1 + b2) ∩ A ⊇ (b1 ∩ A) + (b2 ∩ A). (ii) (b1b2) ∩ A ⊇ (b1 ∩ A)(b2 ∩ A).
(iii) (b1 : b2) ∩ A ⊆ (b1 ∩ A) : (b2 ∩ A).

c). The setEB
A is closed under sums and products. Further, for idealsa, a1, a2 ∈ IA,

(i) (a1 ∩ a2)B ⊆ (a1B) ∩ (a2B). (ii) (a1 : a2)B ⊆ (a1B : a2B). (iii)
√

aB ⊆ √
aB.

d). Suppose thatϕ is surjective. ThenCB
A = {a ∈ IA | Kerϕ ⊆ a} and EB

A = IB . In particular,
the map{a ∈ IA | Kerϕ ⊆ a} → IB , a 	→ ϕ(a) is inclusion preserving bijective map with inverse
b 	→ b ∩ A .

e). Let a be an ideal inA and letπ : A → A/a be the natural surjective map. Letϕ : A → A[X]
be the natural inclusion and letη := π [X] : A[X] → (A/a) [X] be the ring homomorphsim defined
by

∑n
i=0 aiX

i 	→ ∑n
i=0 π(ai)X

i . Then :
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1. Ideals MA-312 Commutative Algebra / January-April 2008 1.3

1) Kerη = aA[X] = { ∑n
i=0 aiX

i ∈ A[X] | n ∈ N, ai ∈ a for all i = 0, . . . , n
}

.

2) aA[X] ∩ A = a . In particular,CA[X]
A = IA.

3) The ringsA[X]/aA[X] and (A/a)[X] are isomorphic.
4) For idealsa1, . . . , ar ∈ IA prove that(a1 ∩ · · · ∩ ar )A[X] = (a1A[X]) ∩ · · · ∩ (arA[X]) .

f). Extend the results of e) to the polynomial ringA[X1, . . . , Xn] .

g). Find an ideal in the polynomial ringZ[X] which is not extended fromZ under the natural
inclusion Z → Z[X] , i.e. not in E

Z[X]
Z

.

1.2. ( P r i m e i d e a l s and M a x i m a l i d e a l s ) LetA be a ring.

1). An ideal p in A is called ap r ime idea l if p �= A and if ab ∈ p for arbitrary elementsa, b

in A, then eithera ∈ p or b ∈ p . The set of all prime ideals inA is denoted by SpecA .

a). For an idealp in A, the following statements are equivalent :

(i) p is a prime ideal.
(ii) A \ p is a multiplicatively closed set inA containing 1.
(iii) The residue class ringA/p is an integral domain.
(iv) p �= A and for arbitrary ideala , b in A with ab ⊆ p , either a ⊆ p or b ⊆ p .

b). Let p be a prime ideal in a ringA and leta1, . . . , an be ideals inA. Show that the following
statements are equivalent :

(i) p ⊇ ai for somej with 1 ≤ j ≤ n . (ii) p ⊇ ∩n
i=1ai . (iii) p ⊇ ∏n

i=1 ai .

c). Let p be an ideal inA . Show thatp is a prime ideal inA if and only if the extensionpA[X]
is a prime ideal inA[X] , where A[X] is the polynomial ring in one indeterminateX over A .

2). The setIA is ordered by the natural inclusion, i.e. the natural inclusion⊆ is a partial order
on IA. An ideal m in A is called a m a x i m a li d e a l if it is amaximal element in the partially
ordered set(IA \ {A}, ⊆) . Therefore an idealm is a maximal ideal inA if and only if m �= A
and if a ∈ IA with m ⊆ a ⊆ A , then eithera = m or a = A . The set of all maximal ideals in
A is denoted by MaxA . A ring A is called( q u a s i )- l o c a l if Max(A) is singleton, i.e.,A
has exactly one maximal ideal. (Remark : Prime ideals and maximal ideals play fundamental
role in commutative algebra and algebraic geometry. The followingTheorem of Krul l and its
corollaries ensure that there are maximal (and hence prime) ideals, i.e. MaxA �= ∅ .

Theorem ( Krul l ) Every non-zero ring A has at least one maximal ideal.

Corollary 1 Let a be an ideal in A , a �= A . Then there exists a maximal ideal in A which conatin a .

Corollary 2. Every non-unit in A is contained in some maximal ideal. )

a). Prove that an idealm in A is a maximal ideal if and only if the residue class ringA/m is a
field. In particular, every maximal ideal inA is a prime ideal inA , i.e. MaxA ⊆ SpecA .

b). Let m be a maximal ideal inA . When exactly the extensionmA[X] is a maximal ideal in
A[X] ?, whereA[X] is the polynomial ring in one indeterminateX over A .

c). Let k be a field and leta1, . . . , an ∈ K , n ∈ N∗ . The the idealma := {f ∈ k[X1, . . . , Xn] |
f (a) = 0} is a maximal ideal in the polynomial ringk[X1, . . . , Xn] and is generated by the linear
polynomialsX1 − a1, . . . , Xn − an . Further, the mapϕ : kn → Max (k[X1, . . . , Xn]) defined by
a 	→ ma is injective. In general this map is not surjective, for example, ifk is any prime field,
then the mapϕ is not surjective!.

d). Let CR([0, 1]) be the ring of all continuous real valued functions on the closed interval [0, 1] ⊂
R (with pointwise addition and pointwise multiplication of functions). Then :

1) For everyt ∈ [0, 1] , mt := {f ∈ CR([0, 1]) | f (t) = 0} is a maximal ideal in CR([0, 1]) .
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1.4 MA-312 Commutative Algebra / January-April 2008 1. Ideals

2) Let f1, . . . , fn ∈ CR([0, 1]) be such thatf1, . . . , fn does not have any common zero in [0, 1] .
Then f 2

1 + · · · + f 2
n is a unit in CR([0, 1]) .

3) Let a be any non-unit ideal in CR([0, 1]) . Show that all functions ina have a common zero in
[0, 1] . (Hint : Use (2) and the compact ness of [0, 1] . )

3). Let ϕ : A → B be a ring homomorphism.

a). If q be a prime ideal inB , then the contractionq ∩ A is a prime ideal inA . —In fact, the map
ϕ induces an injective ring homomorphismϕ : A/q ∩ A → B/q . If n is a maximal ideal inB, then
contractionn ∩ A need not be a maximal ideal inA.

b). Suppose thatϕ is surjective. Then

1) There a bijection between the prime ideals ofA containing Kerϕ onto the set of all prime ideals
in B. (Hint : In fact, the mapp 	→ pB is a bijection with inverseq 	→ q ∩ A . See 1.1-(4)-d) )
2) Then there a bijecction between the maximal ideals ofA containing Kerϕ onto the set of all
maximal ideals inB. (Remark : In the case whenϕ is injective, the general situation is very complicated.
In fact the behavaour of prime ideals under extensions of this sort is one of the central problems ofalgebraic
number theory. )

c). Consider the natural inclusionZ → Z[i] , where i := √−1 . A prime idealZp in Z may or
may not remain prime when it is extended toZ[i] . For example :

1) The extension of the prime idealp = Z2 to Z[i] is the square of the prime ideal(1 + i)2 in
Z[i] .
2) Let p be a prime number withp ≡ 1(mod 4) , then pZ[i] is a product of two distinct prime
ideals inZ[i] . (for example 5Z[i] = (2 + i)(2 − i) .)
3i) Let p be a prime number withp ≡ 3(mod 4) , then pZ[i] is a prime ideal inZ[i] .

1.3. ( N i l - r a d i c a l and J a c o b s o n - r a d i c a l )

1). The set of all nilpotent elements in a ringA is an ideal. This ideal is called the n i l - ra d i c a l
o f A and is denoted bynA.

a). The nil-radical ofA is the intersection of all the prime ideal inA . i.e. nA =
⋂

p∈SpecA

p .

b). For the polynomail ringA[X] over a ring A , show thatnA[X] = (nA)[X] and Z(A[X]) =
Z(A) + (nA)[X] . (Hint : Use T1.12-1) and 3).)

2). The intersection of all maximal ideals in a ringA is called theJ a c o b s o n - r a d i c a l o fA
and is denoted bymA.

a). For an elementx ∈ A , the following statements are equivalent :

(i) x ∈ mA .
(ii) For every a ∈ A , 1− ax is a unit in A .

b). Let P := A[Xi ]i∈I with I �= ∅ . Then the Jacobson-radicalmP and the nil-radicalnP of P
are equal. (Hint : 1 + XimP ⊆ P×.))

c). Let R := A[[X]] be the formal power series ring one indeterminateX over A . Then :

1) The Jacobson-radicalmR = {f ∈ R | f (0) ∈ mA} and the nil-radicalnR = {f ∈ R |
all coefficients off ⊆ nA} . (Hint : Use T1.13.)

2) If M ∈ Max (R) , then M is generated by(M ∩ A) ∪ {X} and the contractionM ∩ A of M
is a maximal ideal ofA .

3) Show that each prime ideal ofA is a contarction of a prime ideal of R,.
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1. Ideals MA-312 Commutative Algebra / January-April 2008 1.5

1.4. ( P r i m e A v o i d a n c e T h e o r e m ) Letp1, . . . , pn , n ≥ 2 , be ideals inA such that at
most two of p1, . . . , pn are not prime and letS be an additive subgroup ofA which is closed
under multiplication. (for example,S could be an ideal ofA or a subring ofA .) Suppose that
S ⊆ ∪n

i=1pi . Then S ⊆ pj for somej with 1 ≤ j ≤ n . (Remark : The Prime Avoidance Theorem
is most frequently used in situations whereS is actually an ideal ofA and p1, . . . , pn are all prime ideals
of A . However, there are some occasions when it is helpful to have more of the full force of the above
statament available. The name ‘‘Prime Avoidance Theorem’’ is explained in the following reformulation of
its statement :If p1, . . . , pn , n ≥ 2 , be ideals in A and at most two of p1, . . . , pn are not prime and if,
for each i = 1, . . . , n , we have S �⊆ pi , then there exists c ∈ S \ ∪n

i=1pi so that c ‘‘ avoids’’ all the ideals
pi , . . . , pn , ‘‘ most’’ of which are prime. )

The following refinements of the Prime Avoidance Theorem are extremely useful :

a). Let p1, . . . , pn be prime ideals inA , a be an ideal inA and leta ∈ A be such thatAa + a �⊆⋃n
i=1 pi . Then show that there existsc ∈ a such thata + c �∈ ∪n

i=1p1 .

b). Let A be a ring which contain an infinite field as subring. and leta, b1, . . . , bn , n ≥ 2 , be
ideals inA such thata ⊆ ∪n

i=1bi , then prove thata ⊆ bj for somej with 1 ≤ j ≤ n .

1.5. ( M i n i m a l p r i m e i d e a l s ) LetA be a ring and leta be an ideal inA . A minimal
element in the set V(a) = {p ∈ SpecA | a ⊆ p} (partially ordered by the inclusion) is called a
m i n i m a l p r i m e i d e a l o fa . If A �= 0 , then a minimal prime ideal of the zero ideal 0 inA

is called am i n i m a l p r i m e i d e a l inA . The set of minimal prome ideals ofa is denoted by
Min(a) .

a). Every prime ideal inA containing the ideala in A contains a minimal prime ideal ofa. (Hint :

For p ∈ V(a), the set{p′ ∈ SpecA | a ⊇ p′ ⊇ p} is inductively ordered with respect to the reverse inclusion
and hence by Zorn’s lemma has a maximal elements with respect to the reverse inclusion, i. e., has a minimal
element with respect to the inclusion.) )

b). The radical of the ideala is the intersection of the minimal prime ideals ofa , i.e.
√

a =⋂
p∈Min(a)

p . In particular,the nil-radical of A is the intersection of the minimal prime ideals of A .

c). If a is a radical ideal, i. e.a = √
a , then the set of elements{a ∈ A | a is a zero-divisor inA/a}

is the union of the minimal prime ideals ofa , i. e, Z(A/a) = a =
⋃

p∈Min(a)

p . In particular,the set

of zero-divisors in A is the union of the minimal prime ideals of A and hence all elements of a
minimal prime ideals of A are zero-divisors.

d). Suppose thatA is noetherian. Then the set of minimal prime ideals ofa is finite. (Hint :

Let a be a maximal in the set of the ideals{a | Min(a) is not finite} in A . There exist elementsa, b ∈ A

such thata �∈ a , b �∈ a , ab ∈ a . Now, consider the minimal prime ideals ofa + Aa , a + Ab .))

1.6. ( Z e r o - d i v i s o r s ) Inthis Exercise an important assertions proved in the Exercise 1.5 -
c), d) about the set Z(A) of zero divisors in noetherian ringA are proved by using an idea of
I. Kaplansky). If A is reduced then by Exercise 1.5-c) and d) is a union of the finitely minimal
prime ideals inA . We would like to show that :the set of zer-divisors in a noetherian ring is a finite
union of prime ideals – For this first assume thatA, aia an arbitrary ring. The set of zero-divisors
in A is the union of the annihilators AnnA a := {b ∈ A | ba = 0} , a ∈ A \ {0} .

a). In the set of ideals{AnnA a | a ∈ A \ {0}} , a maximal element with respect to the natural
inclusion is a prime ideal. (Remark : The prime ideals of the form AnnA a a ∈ A \ {0} are called the
a s s o c i a t e d p r i m e i d e a l s ofA )
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b). If A is noetherian the set{AnnA a | a ∈ A \ {0}} has only finitely many maximal elements
(with respect to the natural inclusion). In particular, the set of zero-divisors inA|, is a finite union
of prime ideals which are precisely the annihilators of elements ofA . (Hint : Let AnnA ai ,
i ∈ I be the maximal elements and letai1, . . . , ain be a finite generating system for the ideal

∑
i∈I Aai

and pν := AnnA aiν for ν = 1, . . . , n . Then from∩n
ν=1pν ⊆ AnnA ai it follows that pν0 ⊆ AnnA ai and

hencepν0 = AnnA ai for someν0 ∈ {1, . . . , n} . )

c). Let a be an ideal in a noetherian ringA . Then a contains a non-zero divisor if and only if
AnnA a = 0 . (Hint : Use the part b) and the Prime Avoidance Theorem, See Exercise 1.4.)

Below one can see (simple) test-exercises which are meant to test the basic concepts and definitions.

Test-Exercises

T1.1. For n ∈ N∗ , let Zn denote a cyclic (additively written) group of ordern . If N ⊆ N∗ is an infinite
subset of the set of positive natural numbers, then the additive group

⊕
n∈N Zn is not a ring (with unity)

with any multiplication.

T1.2. Let A be a ring.

1). Suppose that CharA �= 1, �= 2 and the unit groupA× of A is cyclic. ThenA× is finite and the
cardinality |A×| is an even number.

2). If u ∈ A is unipotent, then so isu−1 . If u, v ∈ A are unipotent and commute, thenuv is also unipotent.
Therefore the set of unipotent elements inA is a subgroup ofA× .

3). Suppose that the characteristic ofA is pn , wherep is a prime number. An elementu ∈ A is unipotent
if and only if u is a unit in A and the order ofu in A× is a power ofp . If A has no non-zero nilpotent
elements and ifa ∈ A× is an element of finite order, then gcd(p, Orda) = 1 .

4). Let a, b be idempotent elements inA .

a). a + b is idempotent if and only ifab = ba and 2ab = 0 . Further,a − b idempotent if and only if
ab = ba and 2(1 − a)b = 0 .

b). If ab = ba , then ab, a + b − ab and (a − b)2 = a + b − 2ab are idempotent.

c). If ab = ba and a − b nilpotent, thena = b .

5). Let Idp(A) be the set of all idempotent elements inA . Then (Idp(A), �, ·) is a Boolean ring, with
the additiona�b := (a − b)2 and the multiplication induced from the multiplication fromA . (the rings
(Idp(A), �, ·) and (A, +, ·) are equal if and only ifA if A is a Boolean ring).

T1.3. Let Q be the quotient field of the integral domainA . Then card(Q) = card(A) . (Hint : For an
infinite setX, card(X × X) = card(X) — this can be easily proved by using Zorn’s lemma.)

T1.4. In a finite ring every non-zero divisor is a unit. In particular, a non-zero domain is a divison ring.
(Remark : A famous theorem of We d d e r b u r nstates that :every finite division ring is commutative and
hence a field.)

T1.5. Let m1, . . . , mr be non-zero pairwise relatively prime natural numbers andm := m1 · · · mr . Then
A := ∏r

i=1 Ami
is a prime ring of the characteristicm . the unit group ofA is the direct product of the unit

groups of the prime rings Ami
. What can you now conclude for the Euler’sϕ-function?

T1.6. Let A be a ring.

1). Let e be an idempotent element inA . For everya ∈ A , show thatAa ∩ Ae = Aae .

2). Let a, b ∈ A with ab = 0 . Suppose that the idealAa + Ab contain a non-zero divisor. Then show
that Aa ∩ Ab = 0 , and thata + b is a non-zero divisor inA .
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T1.7. 1). Let Ai, 1 ≤ i ≤ n , be rings and letA be the product ring
∏n

i=1 Ai and pi : A → Ai be the
canonical projections. Leta ⊆ A be an ideal. Show that for everyi , ai := pi(a) is an ideal inAi , and
that a = ∏n

i=1 ai . Conversely, ifai ⊆ Ai , are ideals, then show thata := ∏n

i=1 ai is an ideal inA .

2). Let A1, . . . , An be principal ideal rings. Show that the direct product
∏n

i=1 Ai ring is also a principal
ideal ring.

3). All subrings of Q are principal ideal domains. (Hint : Let A be a subring ofQ . Show that
a = (a ∩ Z)A for every ideala in A .)

T1.8. 1). Compute the Jacobson-radicalsmZ , mAm
and the nil-radicalsnZ , nAm

, where Am is a prime ring
of characteristic ofm > 0.

2). Let Ai, i ∈ I , be a family of rings. For the product ringA = ∏
i∈I Ai , show thatmA = ∏

i∈I mAi
and

nA ⊆ ∏
i∈I nAi

(give example where the inclusion is proper!).

T1.9. Let A be a ring,a be a left ideal inA , which contain only nilpotent elements (a need not be a
nilpotent ideal!), andm be an arbitrary maximal ideal inA . Show thata ⊆ m . ( Hint : Considera + m ;
if 1 = a + x ∈ a + m with a ∈ a and x ∈ m , then x = 1 − a ∈ A×.)

T1.10. Show that the ringA := R[X, Y, Z]/(X2 + Y 2 + Z2) is an integral domain.

T1.11. Let k be a field and leta1, . . . , an ∈ K , n ∈ N∗ . Show that the chain

0 � (X1 − a1) � (X1 − a1, X2 − a2) � · · · � (X1 − a1, . . . , Xn − an)

is a strictly ascending chain of prime ideals in the polynomial ringk[X1, . . . , Xn] over k .

T1.12. Let A be a ring, P be the polynomial algebraA[Xi ]i∈I and f = ∑
aνX

ν ∈ P .

1). f is nilpotent if and only if all the coefficients off are nilpotent.

2). f is a unit in P if and only ifa0 is a unit in A and all coefficientsaν , ν �= 0 , of f are nilpotent.
(Hint : We may assume that P= A[X] . Let m := degf > 0 . It is enough to prove thatam is nilpotent.
But fg = 1 with g = b0 + · · ·+ bnX

n , and so by inductionai+1
m bn−i = 0 for i = 0, . . . , n . Variant : Pass

to the ringAS , S := S(am) , and apply the degree formula.)

3). ( T h e o r e m o f M c C o y ) f is a zero-divisor in P if and only if there existsa ∈ A , a �= 0 such
that af = 0 . (Hint : We may assume thatI is finite. First suppose that P= A[X] , fg = 0 , m := degf ,
degg > 0. In the caseaig = 0 for all i is the assertion is trivial. Otherwise, letr the maximum ofi with
1 ≤ i ≤ m andaig �= 0. Then deg(arg) < degg and f · (arg) = 0. — Now, suppose thatn ≥ 1 and
f = ∑m

i=0 fiX
i
n with fi ∈ Q := A[X1, . . . , Xn−1] . If fg = 0 with g ∈ Q , g �= 0 , thenhg = 0 for all

h = ∑m

i=0 fiX
si
n−1 in Q with si ∈ N arbitrary. Apply the induction hypothesis toh and choosesi so that

si+1 enough bigger thansi .)

4). f is idempotent if and only iff = a0 is a constant polynomial anda0 is idempotent inA . (Hint : We
may assume that P= A[X] . Since f is idempotent so area0 and (f − a0)

2 , and hence(f − a0)
2 = 0

and f = a0 . )

T1.13. Let A be a ring, R be the formal power series ringA[[X]] in one indeterminateX over A and
f = ∑∞

n=0 aνX
ν ∈ R .

1). If f is nilpotent, then all the coefficients off are nilpotent. Is the converse true?

2). f is a unit in R if and only ifa0 is a unit in A .

† W o l f g a n g K r u l l ( 1 8 9 9 - 1 9 7 1 ) Wolfgang Krull was born on 26 Aug 1899 in Baden-Baden, Germany and died on 12 April 1971
in Bonn, Germany. Wolfgang Krull’s father was Helmuth Krull and his mother was Adele Siefert Krull. Helmuth Krull had a dentist’s practice
in Baden-Baden and it was in that town that Krull attended school. After graduating from secondary school in 1919 he entered the University
of Freiberg. It was the custom in those days for students in Germany to move around various universities during their period of study and Krull
was no exception. He spent time at the University of Rostock before moving to Göttingen in 1920. From 1920 to 1921 he studied at Göttingen
with Klein but was most influenced by Emmy Noether. He attended Klein’s seminar in the session 1920-21 and he then returned to Freiberg and
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presented his doctoral thesis on the theory of elementary divisors in 1922. Ring theory results from this thesis have recently been found important
in the area of coding theory.

Appointed as an instructor at Freiberg on 1 October 1922 he was promoted to extraordinary professor in 1926. He remained there until 1928 when
he moved to Erlangen. His inaugural address on becoming a full professor at Erlangen was one which says much of how Krull saw mathematics.
He saw the role of a mathematician as:
... not merely ... finding theorems and proving them. He wants to arrange and group these theorems together in such a way that
they appear not only as correct but also as imperative and self-evident. To my mind such an aspiration is an aesthetic one and not
one based on theoretical cognition

If Emmy Noether had the greatest influence on the topics which Krull would spend his life researching, it can be seen from this inaugural address
that it was Klein who had the greatest influence on Krull’s large scale view of mathematics. In 1929 he married Gret Meyer and they would have
two daughters. The ten years Krull spent in Erlangen were the most productive period of his career. The years Krull spent as a full professor in
Erlangen were the high point of his creative life. About thirty-five publications of fundamental importance for the development of commutative
algebra and algebraic geometry date from this period. At Erlangen he was involved in university life as well as concentrating on his research,
being elected Head of the Faculty of Science.

In 1939 Krull left Erlangen to take up a chair at Bonn. However, his career was disrupted by the Second World War which began shortly after
Krull was appointed to the University of Bonn. During the war he undertook war duties, working in the naval meteorological service. When his
war service had ended in 1946, Krull took up again his post at the University of Bonn and he would remain there for the rest of his life. In this
final period of his career Krull continued his high level of productivity (he wrote 50 papers in his post-war years in Bonn) and also broadened
his mathematical interests. He continued his earlier studies, but also dealt with other fields of mathematics: group theory, calculus of variations,
differential equations, Hilbert spaces.

Krull’s first publications were on rings and algebraic extension fields. In 1925 he proved the Krull-Schmidt theorem for decomposing abelian
groups of operators. He then studied Galois theory and extended the classical results on Galois theory of finite field extensions to infinite field
extensions. In passing from the finite to the infinite case Krull introduced topological ideas.

In 1928 he defined the Krull dimension of a commutative Noetherian ring and brought ring theory into in new setting in which he was able to show
that the principal ideal theorem held. Perhaps the reason that the idea of the Krull dimension is such a natural concept is that it encapsulates in an
abstract setting the analogues of geometric dimensions. The principal ideal theorem was quickly recognised as a decisive advance in Noether’s
programme of emancipating abstract ring theory from the theory of polynomial rings.

Krull carried his work forward, defining further concepts which are today central to modern research in ring theory. In 1932 he defined valuations
which are today known as Krull valuations. He then wrote the remarkable treatise Ideal Theory which remains a beautiful introduction to ring
theory but is simply a theory built from the results that Krull had himself proved. One could say that Krull had achieved the goal he had in some
sense set himself in his Erlangen address and arranged his theory to be self-evident.

Another major topic in ring theory is the study of local rings, that is rings having a unique maximal ideal, and they are used in the study of local
properties of algebraic varieties. The concept was introduced by Krull in 1938 and his fundamental results were developed into a major theory
by mathematicians such as Chevalley and Zariski.

He supervised 35 doctoral students, and rather remarkably, 32 of these were students which he supervised after the end of World War II. Krull’s
papers are marked by the profundity of his ideas, the rigour of his proofs, and also by a strong aesthetic sense. Indeed much of modern ring theory
is still following the path which Krull took, building on the foundations which Emmy Noether had laid.
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