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CA -08 MA-312 Commutative Algebra /Jan-Apr 2008
Lectures: Monday/Thursday 11:30-1:00; Lecture Hall-l1l, Department of Mathematics

1. Ideals — Operation on Ideals

Wolfgang Krull (1899-1971)"

All rings we consider in this course are commutative with an identity element, callemhitiye For
aring A, let J, denote the set of ideals IA .

1.1. (Operations on ideals) Letbearingandlet, b,c € 4.

1). (Sums, Products and Intersectionsg) The operations sum, intersection and
product ord, are commutative and associative.

b). (Distributive law) a(b+¢) = ab+ ac. (Remark: Inthe ringZ the operations) and+ are
distributive over each other. This is not the case for general rings.)

c). (Modular law) Ifa2>bora2>c,thenan(b+c¢)=anb+anc.
d). (a+b)(anb) Cab. (Remark: Inthe ringZ the equality(a + b)(a N b) = ab holds.)
e). ab Canb. FurthenaNnb=abif a+b=A.

f). (Comaximal ideals) Twadealsa, b are calledcoprime or comaximal ib+b = A.
Therefore for coprime ideals, b, we haveaNa = ab.

1) Letay,...,a,, n > 2 be pairwise comaximal ideals id, i.e. a; + a; = A whenever
1<i,j<nwithi=#j.Then:i) a;N---Na,_; anda, are also comaximal. i N---Na, =
ap---a,.

2) Letay,...,a,, by,...,b,, n,m € N beideals inA with a; +b; = A for all i, j with
l<i<nand1l1l<j < m. Then the products;---a, and by ---b, are comaximal, i.e.,
ap---a, +by---b, = A. Inparticular, ifa and b are comaximal ideals im , then the powers
a” and b are also comaximal iM forall n,m € N.

g). Letas,...,a,,n>2 beidealsinaringA andfori =1,...,n,letnw; : A — A/a; be the
natural surjective map. Then:
1) The ring homomorphismr : A — A/a; x --- x A/a, defined bya — (w1(a), ..., T, (a)) is

a ring homomorphism with kernel Ker=a; N---Na, . Inparticular, is injective if and only
if agN---Na,=0.

2)(Chinese Remainder Theorem) Tivg homomorphismr, in 1) above is surjective
if and only if a, ..., a, are pairwise comaximal.

T Wolfgang Krull (1899-1971) Wolfgang Krull was born on 26 Aug 1899 in Baden-Baden,
Germany and died on 12 April 1971 in Bonn, Germany.
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1.2 MA-312 Commutative Algebra/January-April 2008 1. Ideals

2). (Ideal quotient) Fortwadealsa andb in A, the ideal quotient ol by b is

(a:b):={a e A|ab C a} whichisanideal inA. Inparticular,(a: b) is {a € A | ab = 0} the

annihilator of b andisdenoted by arib) . If b is aprincipal idealAb, then we simply write
(a:b) for (a:b).(IntheringA = Z, leta = Zm, b = Zn. Then(a : b) = Zg , Wwhereq = ]—[p prime P

ry, = max(,(m) — v,(n), 0) = v,(m) — min(v,(m) — v,(n)). Thereforeq = m/gcd(m, n).)

Foridealsa, a; ,i € I, b,b; ,i € I, ¢ in J4, we have
a). aC (a:b). b). (a:b)bCa. c). (a:b):c)=(a:be)=(a:c):b).
d). (Nier @ b) = Nies(a; 2 b). e). (a:X ;b)) =nNici(a:h).
3). (Radical of an ideal) Foraideal a in A, the radical ofa is
{a e A|a" eaforsomen e Nt}

which is an ideal inA and is denoted by(#) or \/a.

a). aCa.b). Ja=va. c). Vab=anb) =/anvb d). Va+b=,/Ja+b.
e). Ja=Aifandonlyifa=A. f). If p isaprimeidealim, then./p” = p forall n € N*.

4). (Extensions and Contractions of Ideals) lget A — B be aring homomorphism.

Foranideala in A, the extension ofa in B under ¢ istheidealByp(a) generated by
e(a); (explicitly Bp(a) = {chl bip(a;) | J is afinite set b; € B, a; € a}. — In generalp(a) need
not be an ideal irB, for example, lety : Z — Q be the natural inclusion and:= Zn, n # 0. )

For anidealb in B, the contraction of b in A under ¢ istheidealp=1(b); (This
is always an ideal i. )

Fora e J4 (resp. b e J3) the extensionBy(a) of a (resp. the contractiop—1(b) of b) is
usually denoted by B (resp. b N A), when there is no possibility of confusion over which ring
homomorphism is under discussion.

Let C5 € J, (resp.&5 < ;) be the set of ideals i which are contracted ta from B underg
(resp. the set of ideals iB which are extended t8 from A underyp), i.e.

Cl:={bNA|belp) and €8 :={aB |aeTy,}.

a). The mapsC? — &8, a+> aB and € — €%, b — bN A are inclusion preserving
bijective maps which are inverses to each oth@ifint: Fora € J, (resp.b € Jz),a C aB N A, (resp.
b2 (bNA)B)and hencé N A = (bNA)BNAandaB = (aBNA)B.)

b). The set(:’ﬁ is closed under intersections and radicals. Further, for ideals, € Jp,

(i) (b1 +b2)NAD(b1NA)+ (b2NA). (i) (b1b2) N A 2 (b N A)(b2N A).

(i) (bp:bx)NAC (byNA):(baNA).

c). The seté® is closed under sums and products. Further, for ideals, a, € 7,4,

() (axNap)B C (a1B) N (az2B). (i) (a1:a2)B C (11B: axB). (i) +/aB C vaB.

d). Suppose thap is surjective. ThenC? = {a € J, | Kerp C a} and § = Jp. Inparticular,
the map{a € J4 | Kergp C a} — Jp, a— ¢(a) isinclusion preserving bijective map with inverse
b—bNA.

e). Let a beanidealinA andletr : A — A/a be the natural surjective map. Let A — A[X]
be the naturalinclusionandlet:= = [X] : A[X] — (A/a) [X] be the ring homomorphsim defined
by Y " qai X' — Y om(a;)X'. Then:
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1. Ideals MA-312 Commutative Algebra/January-April 2008 1.3

1) Kern =aA[X] ={ Y/ qa; X' € A[X] |neN,q €aforalli=0,...,n}.

2) aA[X]N A = a. Inparticular, €41 =7,

3) TheringsA[X]/aA[X] and (A/a)[X] are isomorphic.

4) Foridealsay, ..., a, € J4 prove that(a; N ---Na,)A[X] = (@ A[X]D) N ---N (a,A[X]) .
f). Extend the results of e) to the polynomial rilf X4, ..., X,].

g). Find an ideal in the polynomial rin@[X] which is not extended fron¥ under the natural
inclusion Z — Z[X], i.e. notin 21X

1.2. (Prime ideals and Maximal ideals) Let be aring.

1). Anidealp in Aiscalledaprime ideal ifp # A andif ab € p for arbitrary elements, b
in A, then eithera € p or b € p. The set of all prime ideals i is denoted by Spe#t .

a). For anidealp in A, the following statements are equivalent:
(i) p isaprime ideal.
(i) A\ p is a multiplicatively closed set id containing 1.

(i) The residue class ringd /p is an integral domain.
(iv) p # A and for arbitrary idead, b in A with ab C p, eitheraCp orb Cp.

b). Let p be a prime ideal in aringd and letas, ..., a, beideals inA. Show that the following
statements are equivalent:

() p2a forsomej with 1< j <n. (i) p2 N'_ja;. (i) p2 [['yo.

c). Let p be anideal inA. Show thatp is a prime ideal inA if and only if the extensionp A[ X]

is a prime ideal inA[X], where A[X] is the polynomial ring in one indeterminaté over A .

2). The setJ, is ordered by the natural inclusion, i.e. the natural inclusiols a partial order
onJ,. Anidealm in Ais called a maximalideal if it is amaximal element in the partially
ordered setJ, \ {A}, ©). Therefore an ideai is a maximal ideal imA if and only if m £ A
andifa e Jy with m C a C A, then eithera = m or a = A. The set of all maximal ideals in
A is denoted by MaxA. Aring A is called(quasi)-local if Max(A) is singleton, i.e.,A
has exactly one maximal ideal. (Remark: Prime ideals and maximal ideals play fundamental
role in commutative algebra and algebraic geometry. The folloingeorEM OF KRULL and its
corollaries ensure that there are maximal (and hence prime) ideals, i.e AMad .

Theorem ( KrULL) Everynon-zeroring A hasat least one maximal ideal.
Corollary 1 Let a beanideal in A, a # A. Then there existsa maximal ideal in A which conatin a.
Corollary 2. Every non-unitin A iscontained in some maximal ideal. )

a). Prove that an ideain in A is a maximal ideal if and only if the residue class ridgm is a
field. In particular, every maximal ideal i is a prime ideal inA , i.e. Max A C SpecA .

b). Let m be a maximal ideal inA. When exactly the extensiomA[X] is a maximal ideal in
A[X]?, where A[X] is the polynomial ring in one indeterminaté over A .

c). Let k be afield and lets;, ...,a, € K, n € N*. The the idealm, :={f € k[ X1, ..., X,] |
f(a) = 0} is a maximal ideal in the polynomial ring[ X1, ..., X,,] and is generated by the linear
polynomials X; — as, ..., X, — a, . Further, the maw : k" — Max (k[ X3, ..., X,]) defined by
a — m, Iis injective. In general this map is not surjective, for examplé; is any prime field,
then the mapy is not surjective!.

d). Let Cg([0, 1]) bethering of all continuous real valued functions on the closed interval [@
R (with pointwise addition and pointwise multiplication of functions). Then:

1) Foreveryt € [0, 1], m, := {f € Cg([0, 1)) | f(r) = O} is a maximal ideal in ([0, 1]).
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14 MA-312 Commutative Algebra/January-April 2008 1. Ideals

2) Let f1,..., fu € Cr([O, 1]) be suchthatfy, ..., f, does not have any common zero in 0.
Then f2+---+ f? isaunitin G([0, 1]).

3) Let a be any non-unitideal in [0, 1]) . Show that all functions i have a common zero in
[0,1]. (Hint: Use (2) and the compact ness of 10. )

3). Lety: A — B be aring homomorphism.

a). If q be a prime ideal inB, then the contractiom N A is a prime ideal inA . —in fact, the map
¢ induces an injective ring homomorphisgh: A/qN A — B/q. If n is a maximal ideal inB, then
contractionn N A need not be a maximal ideal k.

b). Suppose thap is surjective. Then

1) There a bijection between the prime idealgiafontaining Kekp onto the set of all prime ideals
in B. (Hint: Infact, the map — pB is a bijection with inverse; — qN A. See 1.1-(4)-d) )

2) Then there a bijecction between the maximal ideald ebntaining Kekp onto the set of all
maximal ideals imB. (Remark: Inthe case whew is injective, the general situation is very complicated.
In fact the behavaour of prime ideals under extensions of this sort is one of the central proldéysisrafc
number theory. )

c). Consider the natural inclusiod — Z[i], where i := +/—1. A prime idealZp in Z may or
may not remain prime when it is extendedZfi] . For example :

1) The extension of the prime ideal= Z2 to Z[i] is the square of the prime ideall + i) in
Zli] .

2) Let p be a prime number witlp = 1 (mod 4, then pZ][i] is a product of two distinct prime
ideals inZ[i]. (for example ¥[i] = 2+)(2—-1).)

3i) Let p be a prime number witlp = 3(mod 4 , then pZ][i] is a prime ideal inZ][i] .

1.3. (Nil-radical and Jacobson-radical)

1). The set of all nilpotent elements in a ridgis an ideal. This ideal is called the niladical

of A andis denoted by ,.

a). The nil-radical of A is the intersection of all the prime ideal . i.e. ny = m p.
peSpecA

b). For the polynomail ringA[X] over aring A, show thatn,x) = (ns)[X] and Z(A[X]) =
Z(A) + (ny)[X]. (Hint: UseT1.12-1) and 3).)

2). The intersection of all maximal ideals in a riagis called theJacobson-radical ofA
and is denoted byn 4.

a). For an elemenk € A, the following statements are equivalent:

() xemyu.
(i) Foreveryae A, 1—ax isaunitin A.

b). Let P = A[X;];c; With I # #. Then the Jacobson-radicalp and the nil-radicainp of P
are equal. (Hint: 1+ X;mp C P*.))

c). Let R := A[ X] be the formal power series ring one indeterminateover A. Then:

1) The Jacobson-radicahgr = {f € R | f(0) € m,} and the nil-radicalng = {f € R |
all coefficients off Cny}.  (Hint: Use T1.13))

2) If M e Max(R), then is generated byMt N A) U {X} and the contractio®t N A of 9
is a maximal ideal ofA .

3) Show that each prime ideal of is a contarction of a prime ideal of ,R
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1.4. (Prime Avoidance Theorem) Let;,...,p,, n > 2, beideals inA such that at
most two of pq, ..., p, are not prime and le§ be an additive subgroup ol which is closed
under multiplication. (for example§ could be an ideal ofA or a subring ofA.) Suppose that

S C U pi. ThenS C p; forsomej with 1 < j <n. (Remark: The Prime Avoidance Theorem

is most frequently used in situations whefes actually an ideal ofA and py, ..., p, are all prime ideals

of A. However, there are some occasions when it is helpful to have more of the full force of the above
statament available. The name “Prime Avoidance Theorem” is explained in the following reformulation of
its statement if py,...,p,, n > 2, beidealsin A and at most two of ps,...,p, arenot prime and if,
foreachi=1,...,n,wehave S Z p; , thenthereexists ¢ € S\ U'_;p; sothat ¢ “avoids’ all theideals
Pis.eo, Pu, -most” of which areprime.)

The following refinements of the Prime Avoidance Theorem are extremely useful :

a). Let p1,...,p, be primeidealsind, abe anideal inA andleta € A be such thatAa +a &
\U:_; p: . Then show that there existse a such thata + ¢ & U!_;p; .

b). Let A be aring which contain an infinite field as subring. anddeb;, ..., b,, n > 2, be
ideals in A such thata € U!_;b; , then prove thatt C b; for somej with 1 < j <n.

1.5. (Minimal prime ideals) LetA be aring and leta be an ideal inA. A minimal
element in the set W) = {p € SpecA | a C p} (partially ordered by the inclusion) is called a
minimal prime ideal ofa. If A3 0, then a minimal prime ideal of the zero ideal 0An
is calledaminimal prime ideal inA. The set of minimal prome ideals af is denoted by
Min(a) .

a). Every prime ideal il containing the ideal in A contains a minimal prime ideal @f (Hint:

For p € V(a), the sefyp’ € Speca | a D p’ D p} isinductively ordered with respect to the reverse inclusion

and hence by Zorn's lemma has a maximal elements with respect to the reverse inclusion, i. e., has a minimal
element with respect to the inclusion.) )

b). The radical of the ideah is the intersection of the minimal prime ideals of i.e. Va =

ﬂ p . Inparticularthe nil-radical of A isthe intersection of the minimal primeidealsof A.
peMin(a)
c). If aisaradicalideal,i.ea = i/a,thenthesetofelementa € A | ais a zero-divisor im /a}
is the union of the minimal prime ideals af, i.e, Z(A/a) = a = U p . Inparticularthe set
peMin(a)
of zero-divisorsin A isthe union of the minimal primeideals of A and hence all elements of a
minimal primeidealsof A are zero-divisors.

d). Suppose thatd is noetherian. Then the set of minimal prime idealsiois finite.  (Hint:
Let a be a maximal in the set of the idedls | Min(a) is not finite} in A. There exist elements, b € A
suchthata ¢ a, b € a, ab € a. Now, consider the minimal prime ideals of+ Aa, a + Ab.))

1.6. (Zero-divisors) Inthis Exercise an important assertions proved in the Exercise 1.5 -
c), d) about the set @) of zero divisors in noetherian ring are proved by using an idea of

[. KAPLANSKY). If A isreduced then by Exercise 1.5-c) and d) is a union of the finitely minimal
prime idealsinA . We would like to show thatthe set of zer-divisorsin a noetherianringisafinite
union of primeideals— For this first assume that, aia an arbitrary ring. The set of zero-divisors

in A is the union of the annihilators Anmi :={b € A |ba =0}, a e A\ {0}.

a). Inthe set of ideal§Ann,a | a € A\ {0}}, a maximal element with respect to the natural
inclusion is a prime ideal. (Remark: The prime ideals of the form Anmu a € A\ {0} are called the
associated prime ideals of )
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b). If A is noetherian the setAnn,ya | a € A\ {0}} has only finitely many maximal elements
(with respect to the natural inclusion). In particular, the set of zero-divisorg s a finite union
of prime ideals which are precisely the annihilators of elementd of (Hint: Let Ann,a;,

i € I be the maximal elements and lef,, ..., a, be a finite generating system for the ideal,_, Ag;
andp, := Ann,a;, for v=1,...,n. Thenfromn’_;p, € Ann, g, it follows that p,, < Ann, a; and
hencep,, = Ann, a; for somewg € {1,...,n}.)

c). Let a be an ideal in a noetherian ring. Then a contains a non-zero divisor if and only if
Annya=0. (Hint: Use the part b) and the Prime Avoidance Theorem, See Exercise 1.4.)

Below one can see (simple) test-exercises which are meant to test the basic concepts and definitions

Test-Exercises

T1.1. For n € N*, let Z, denote a cyclic (additively written) group of order. If N € N* is an infinite
subset of the set of positive natural numbers, then the additive giouR, Z, is not a ring (with unity)
with any multiplication.

T1.2. Let A be aring.

1). Suppose that Char # 1, # 2 and the unit groupA™ of A is cyclic. Then A* is finite and the
cardinality |A*| is an even number.

2). If u € A isunipotent, thensois~t. If u, v € A are unipotentand commute, then is also unipotent.
Therefore the set of unipotent elements4nis a subgroup ofA* .

3). Suppose that the characteristic4fis p", where p is a prime number. An elemente A is unipotent
if and only if « is a unitin A and the order of: in A* is a power ofp. If A has no non-zero nilpotent
elements and iz € A* is an element of finite order, then ggd Orda) = 1.

4). Let a, b be idempotent elements iA .

a). a + b is idempotent if and only ilub = ba and Zb = 0. Further,a — b idempotent if and only if
ab=ba and 21— a)b =0.

b). If ab = ba,thenab, a +b —ab and (a — b)2 =a + b — 2ab are idempotent.
c). If ab =ba anda — b nilpotent, thena =b.

5). Let Idp(A) be the set of all idempotent elements4n Then (Idp(A), A, -) is a Boolean ring, with
the additionaAb := (a — b)? and the multiplication induced from the multiplication from. (the rings
(Idp(A), A, -) and (A, +, -) are equal if and only ifA if A is a Boolean ring).

T1.3. Let Q be the quotient field of the integral domain. Then cardQ) = cardA). (Hint: For an
infinite setX, card X x X) = card X) — this can be easily proved by using Zorn’s lemma.)

T1.4. In a finite ring every non-zero divisor is a unit. Inparticular, a non-zero domain is a divison ring.
(Remark : Afamous theorem of VEdd e rb ur nstates that every finite division ring is commutative and
hence afield.)

T1.5. Let m1, ..., m, be non-zero pairwise relatively prime natural numbers ang= m1 ---m, . Then
A :=T[;_; A, isaprime ring of the characteristig . the unit group ofA is the direct product of the unit
groups of the prime rings ,A . What can you now conclude for the Euleggunction?

T1.6. Let A be aring.
1). Let ¢ be anidempotent element ih. For everya € A, show thatAa N Ae = Aae.

2). Let a,b € A with ab = 0. Suppose that the ideala + Ab contain a non-zero divisor. Then show
that Aa N Ab = 0, and thata + b is a non-zero divisor i .
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T1.7. 1). Let A;, 1 <i < n, berings and letA be the product ring['_; A; and p; : A — A; be the
canonical projections. Lei € A be an ideal. Show that for every, a; := p;(a) is anideal in4;, and
that a = [[/_; a;. Conversely, ifa; € A;, are ideals, then show that:= []_; a; is anideal inA.

2). Let Aq,..., A, be principal ideal rings. Show that the direct prod{iff ; A; ring is also a principal
ideal ring.

3). All subrings of Q are principal ideal domains. Hi{nt: Let A be a subring ofQ. Show that
a=(aNZ)A foreveryideala in A.)

T1.8. 1). Compute the Jacobson-radicatg , ma, and the nil-radicalaz , na
of characteristic ofz > 0.

2). Let A;, i € I, be a family of rings. For the product rirgy = []
na C [[;o; na, (give example where the inclusion is proper!).

where A, is a prime ring

m?

A;, show thatm, = [],_, m4, and

iel iel

T1.9. Let A be aring,a be a left ideal inA, which contain only nilpotent elementa (need not be a
nilpotent ideal!), andn be an arbitrary maximal ideal id . Show thata C m. ( Hint: Considera +m ;
fl=a+xeca+mwithaecaandx em,thenx=1—a e A*))

T1.10. Show that the ringA := R[X, ¥, Z]/(X? 4+ Y2 + Z?) is an integral domain.

T1.11. Let k be afield and letas, ..., a, € K, n € N*. Show that the chain
OCX1—a) C(X1—a1,X2—a2) C---C (X1—a1,..., X, —a,)
is a strictly ascending chain of prime ideals in the polynomial ipg, ..., X,] over k.

T1.12. Let A be aring, P be the polynomial algebrd X;];c; and f = > a, X" € P.
1). f is nilpotent if and only if all the coefficients of are nilpotent.

2). fisaunitin P if and only ifag is a unitin A and all coefficientsa, , v # 0, of f are nilpotent.
(Hint: We may assume that £ A[X]. Let m :=degf > 0. Itis enough to prove that,, is nilpotent.
But fg =1 with g = bo+---+b,X", and so by inductiom!+'h, ; =0 for i = 0,...,n. Variant: Pass
to thering As, S := S(a,,) , and apply the degree formula.)

3. (Theorem of McCoy) f is a zero-divisor in P if and only if there existse A, a # 0 such
thataf = 0. (Hint: We may assume that is finite. First suppose that 2 A[X], f¢g =0, m :=degf,
degg > 0. Inthe casay;g = 0 for all i is the assertion is trivial. Otherwise, letthe maximum of with
1<i <mandagg # 0. Then deda,g) < degg and f - (a,g) = 0. — Now, suppose that > 1 and
f=YrofiXiwith f; € Q == A[X1,..., X,-1]. If fg =0 with g € Q, g #0, thenhg = 0 for all
h=Y%",fiX',in Q withs; € N arbitrary. Apply the induction hypothesis io and choose; so that
s;+1 enough bigger than; .)

4). f isidempotent if and only iff = ag is a constant polynomial angy is idempotentinA . (Hint: We
may assume that 2 A[X]. Since f is idempotent so areg and (f — ag)?, and hence f — ag)? = 0
and f =ap.)

T1.13. Let A be aring, R be the formal power series rid§ X] in one indeterminateX over A and
f = Z;o:oavxv € R.

1). If f is nilpotent, then all the coefficients of are nilpotent. Is the converse true?

2). fisaunitin R ifandonly ifag isa unitin A.

T Wolfgang Krull (1899-1971) Wolfgang Krull was born on 26 Aug 1899 in Baden-Baden, Germany and died on 12 April 1971

in Bonn, Germany. Wolfgang Krull's father was Helmuth Krull and his mother was Adele Siefert Krull. Helmuth Krull had a dentist’s practice

in Baden-Baden and it was in that town that Krull attended school. After graduating from secondary school in 1919 he entered the University
of Freiberg. It was the custom in those days for students in Germany to move around various universities during their period of study and Krull
was no exception. He spent time at the University of Rostock before moving to Géttingen in 1920. From 1920 to 1921 he studied at Géttingen
with Klein but was most influenced by Emmy Noether. He attended Klein’s seminar in the session 1920-21 and he then returned to Freiberg and
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presented his doctoral thesis on the theory of elementary divisors in 1922. Ring theory results from this thesis have recently been found important
in the area of coding theory.

Appointed as an instructor at Freiberg on 1 October 1922 he was promoted to extraordinary professor in 1926. He remained there until 1928 when
he moved to Erlangen. His inaugural address on becoming a full professor at Erlangen was one which says much of how Krull saw mathematics.
He saw the role of a mathematician as:

... hot merely ... finding theorems and proving them. He wants to arrange and group these theorems together in such a way that
they appear not only as correct but also asimperative and self-evident. To my mind such an aspiration is an aesthetic one and not
one based on theoretical cognition

If Emmy Noether had the greatest influence on the topics which Krull would spend his life researching, it can be seen from this inaugural address
that it was Klein who had the greatest influence on Krull's large scale view of mathematics. In 1929 he married Gret Meyer and they would have
two daughters. The ten years Krull spent in Erlangen were the most productive period of his career. The years Krull spent as a full professor in
Erlangen were the high point of his creative life. About thirty-five publications of fundamental importance for the development of commutative
algebra and algebraic geometry date from this period. At Erlangen he was involved in university life as well as concentrating on his research,
being elected Head of the Faculty of Science.

In 1939 Krull left Erlangen to take up a chair at Bonn. However, his career was disrupted by the Second World War which began shortly after
Krull was appointed to the University of Bonn. During the war he undertook war duties, working in the naval meteorological service. When his
war service had ended in 1946, Krull took up again his post at the University of Bonn and he would remain there for the rest of his life. In this
final period of his career Krull continued his high level of productivity (he wrote 50 papers in his post-war years in Bonn) and also broadened
his mathematical interests. He continued his earlier studies, but also dealt with other fields of mathematics: group theory, calculus of variations
differential equations, Hilbert spaces.

Krull's first publications were on rings and algebraic extension fields. In 1925 he proved the Krull-Schmidt theorem for decomposing abelian
groups of operators. He then studied Galois theory and extended the classical results on Galois theory of finite field extensions to infinite field
extensions. In passing from the finite to the infinite case Krull introduced topological ideas.

In 1928 he defined the Krull dimension of a commutative Noetherian ring and brought ring theory into in new setting in which he was able to show
that the principal ideal theorem held. Perhaps the reason that the idea of the Krull dimension is such a natural concept is that it encapsulates in an
abstract setting the analogues of geometric dimensions. The principal ideal theorem was quickly recognised as a decisive advance in Noether’'s
programme of emancipating abstract ring theory from the theory of polynomial rings.

Krull carried his work forward, defining further concepts which are today central to modern research in ring theory. In 1932 he defined valuations
which are today known as Krull valuations. He then wrote the remarkable treatise Ideal Theory which remains a beautiful introduction to ring
theory but is simply a theory built from the results that Krull had himself proved. One could say that Krull had achieved the goal he had in some
sense set himself in his Erlangen address and arranged his theory to be self-evident.

Another major topic in ring theory is the study of local rings, that is rings having a uniqgue maximal ideal, and they are used in the study of local
properties of algebraic varieties. The concept was introduced by Krull in 1938 and his fundamental results were developed into a major theory
by mathematicians such as Chevalley and Zariski.

He supervised 35 doctoral students, and rather remarkably, 32 of these were students which he supervised after the end of World War I1. Krull's
papers are marked by the profundity of his ideas, the rigour of his proofs, and also by a strong aesthetic sense. Indeed much of modern ring theory
is still following the path which Krull took, building on the foundations which Emmy Noether had laid.
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