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Lectures: Monday/Thursday 11:30-1:00; Lecture Hall-1l, Department of Mathematics

02. Modules 1) — Generating Systems, Linear Independence and Free Modules

Max Noether Emmy Amalie Noether'"
(1844-1921) (1882-1935)

2.1. Let A be aring.

a). If V #£0 is an A—-module which does not have maximal submodules, tfietloes not have a
minimal generating system(Hint: Use)

b). Suppose thatd be an integral domain and that the set of all non-zero ideald ihave a
minimal element (with respect to the inclusion). Show tHats a field. In particular, an integeral
domain such that the set of all ideals is an artinian ordered set (with respect to inclusion), is a field.

2.2. Let A be anon-zero ring and let be an infinite indexed set. For eveiye I, let ¢; be the
I-tuple (8;)je; € A" with §;; =1 for j =i and§;; =0 for j #i.

a). e;, i € 1,is aminimal generating system for the left-ide&lf’ in the ring A’ . In particular,
AD is not finitely generated ideal (Remark: Submodules of finitely generated modules need not be
finitely generated! )

b). There exists a generating system fof) as anA’—module that does not contain any minimal
generating system Hint: First consider the caseé = N and the tuplesg + --- +e¢,, n € N.)

2.3. Let K;, i € I, be afamily of fields. For every element= (g;)ic; € [[;c; Ki, let a(a)
denote the zero-sdi € I : a; = 0} of a. For anideala C [],.;, Ki, let a(a) = {a(a) : a €
a} € P(I). Show that: the mam — «(a) is an isomorphism of the lattic® of the ideals of
[lic; Ki onto the lattice of the filter®) defined on! . The ideala is maximal if and only ifo(a)

1) The concept of a module seems to have made its first appearance in Algalgyebiraic Number Theory—

in studying subsets afings of algebraic integers. Modules first became an important tool in Algebra in

late 1920's largely due to the insight afimy NoeTHER, Who was the first to realize the potential of the
module concept. In particular, she observed that this concept could be used to bridge the gap between two
important developments in Algebra that had been going on side by side and independently:the theory of
representations (=homomorphisms) of finite groups by matrices deedeeNius, BURNSIDE, SCHUR et al

and the structure theory of algebras duefterien, CarraN, WEDDERBURN €t al.

2) Lattice. A partially ordered se{X, <) is called alattice if for every two elements;, y € X, the
supremum supx, y} and the infimum inf{x, y} exist. For example, the set of all left-ideals in a ring form

a lattice with respect to the inclusion. What are &up} and inf{a, b} for left-idealsa, b in A?

3) Filter on a set. Let X be any set and lel3(X) denote the power stak . A filter on X is a subset

§ of P(X) suchthat: (1)F is closed under finite intersections, i.e. intersection of finitely many elements

of § belongs tog. (In particular, the empty intersectiog X € §). 2 If Y eFandY C Z, then

Z € §. Note thatyF = P(X) ifandonly if ¥ € §.
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2.2 MA-312 Commutative Algebra/January-April 2008 02. Modules

is an ultra-filter*) on 7 . Deduce the following exercisg from the Krull's theorem. Further, show
that every finitely generated ideal i, K; is a principal ideal.

2.4. LetV be a free module over a ring. Further, lez € A be not a zero divisor i. Then the
homothecyy, : V — V, x > ax isinjective. Let B be aring and letA be a subring ofB such
that B is a free A—-module. Show that:

a). An elementz € A is a zero divisor in4, if and only ifa is a zero divisor inB. Further, show
that(aB) N A = afor all idealsa C A.

b). A= AN B*. Moreover, if B is afield, thensoisA. (Hint: If a € AN B*, thenB=aB.)

2.5. Let U, W be free A-submodules of thes—module V . Further, letx;, i € I, resp.y;, j €
J , be abasis oV resp. W . Show thatx;, y;, i € I, j € J together form a basis o/ + W, if
andonlyifUnw =0.

2.6. Let A be a non-zero commutative ring. Show thatis a principal ideal domain if and only
if every ideal in A is a freeA—submodule ofA. (Remark: In general this assertion is not true for
non-commutative rings. Counter example!)

2.7. Let K be afield and letA be a subring ofK such thatK is a finite A—-module. Show that
A is afield. (Hint: Thisis a generalisation of the Test-Exercise T2.5. Note fhatontains a quotient
field Q(A) of A. Let x1,...,x, be aA-generating system ok and letys,...,y, be a QA)-basis
of K with y; = 1. Thenyj(x1),..., yj(x,) is an A—generating system of @), where y; is the first
coordinate function with respect to the basis . . ., y, . Now use the Test-Exercise T2.5.)

2.8. a). The Z—mdouleQ does not have minimal generating systengdint: In fact the additive
group (Q, +) does not have a subgroup of finite index 1. This follows from the fact that the group
(Q, +) is divisible ®) and hence every quoteint group 6@, +) is also divisible. Furthenf H finitely
generated divisible abelian group, then H =0.)

b). The Z-algebraQ is not finite type overz.

2.9. Let x;, i € I, be afamily ofn—tuples fromZ" . For a prime numbep, let K,(= Z/Zp
denote the prime field of charateristic. Show that the following statements are equivalent:

(i) The x; are linearly independent ovét .

(i) Theimages ofx;, i € I,in Q", are linearly independent ovép .

(iii) There exists a prime numbep such that the images of;, i € I, in K, are linearly
independent over K.

(iv) Foralmost all prime numberg, the images ofx;, i € 7, in K7, are linearly independent
over K, .

— If |I] = n , then the above statements are further equivalent to the following statement:

4) Ultra-filters on a set. The set of filters on a seX is ordered by inclusion and it forms a lattice. Maximal
elements in the set of filters o different from 3(X) are called utra-filters on X.

5) Exercise. Show that if X # ¢, then the set of of filters orX different from $3(X) is inductively
ordered with respect to the inclusion and that every filterordifferent from 3(X) is contained in an
ultra-filter on X .

6) Divisible abelian groups. An abelian (additively written) groupd is divisible if foreveryn € Z,,
the group homomorphism, : H — H , defined bya — na is surjective. For example, the grouy, +)

is divisible, the group(Z, +) and finite groups are not divisible. Furtheuotient of a divisible group is
also divisible. Free abelian groups of finitern are not divisible.
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(v) There exists a non-zero integer such thatmZ" C >"._, Zx; .

iel
2.10. Let x;, i € I, be afamily ofn—tuples fromZ" . For every prime numbep let K, denote
a field with p elements. Show that the following statements are equivalent:

(i) The x;, i € I, generate (th&Z—module)Z" . (ii) For every prime numebp , the images of
xi, i €l,in K7, generate the Jcvector space K. (Hint: ((i)) = (i): Let U :=}_,., Zx;. Note
that by Exercise 2.11, there exists a non-zero integenith mZ" € U . Further: to every prime number
p and everyx € Z" there existx’ € U, y € Z" such thatx = x" + py, i.e. Z" C U + pZ" for every
prime numberp . From this deduce thaly = 7" .)

2.11. Let I be a non-empty open interval iR and let G (/) (respectively, &(7)) be the R-
vector space of all real-analyfic(respectively, continuous) real-valued functions bn Then
Ce (1) € CX(I) and if U is a R-subspace of &(7) with C%(/) € U, then show that DimU
has the cardinality of the continuum. (Hint: Without loss of generality lett =] — 1, 1].
Let (a;)ien, j € J, be a linearly independent family of 0-1-sequenceR'in where [J| = 8 = |R|,
see Exercise 4.11. Then the functions> }_,_q a;;t', j € J,in C3(I) are linearly independent ov&.
Alternative hint: the family of the functions — exp(at), a € R, on I is linearly independent. Similarly,
the rational functions — 1/(t —a), a € R, |a| > 1, are linearly independent ingQ — 1, 1[) .) Prove
the analogous results for the complex vector spa¢& )Hof holomorphic functions defined on a
domainU < C.

2.12. Foragivem € N, letay, ..., a, € K ben distinctelementsin afield. Then the sequences
g ‘= (a/)ven € KN, i =1,...,n, are linearly independent ovéf. (Hint: Suppose that the
g are linearly dependent. Without loss of generality we may assume that @iet (g1, ..., g.)) = 1,
see Exercise T2.8-a). Léhy, ..., b,) be a basis element of relations. Then the elenent,, ..., b,a,) is
also a relation of the;. This is a contradiction.)

2.13. Let K be afield and lef be an infinite set. Then Dig(K') = |K]. (Hint: In view
of8), it is enough to prove thak | < DimgK'. Leto : N — I be injective and fou € K, let g, denote
the 7—tuple with(g,), () := a” forv e Nand(g,); :=0for i € I ~imo. Then by Exercise 2.12g,).cx
are linearly independent.) Deduce that RikY > Dimg K", —Remark: This dimension formula fok’
is also valid for division ring«k’. Proof!.)

2.14. LetK be adivisionring. Further, let = (a;1,...,a;,) € K", i =1, ..., n. Withthe j—th
components of this—tuple we form the new—tuplesy; := (ayj, ..., a,j), j = 1,...,n. Show
that: the elements,, .. ., x, of the K—Left-vector spac&” are linearly independent if and only if
the elementsy, ..., y, oftheK—ight-vector spac&” are linearly independengint : Suppose that
X1, ..., x, arelinearly independentangb,+- - - +y,b, =0, b; € K. Thenxy, ..., x, € Relg(b1, ..., by,),
and a dimension argument shows that{R#&l, ...,b,) = K", thismean®$; =--- = b, =0.)

2.15. LetK beadivisionring/ beasetandlefi, ..., f, € K, n € N. The following statements
are equivalent:

() The f1,..., f, are linearly independent ovéf.
(i) There exists a subset C I such thatJ| = n and that the restrictiong|J, ..., f,|J € K’
are linearly independent (and hence form a basi& 6.

7y Afunction f : I — R iscalledreal-analytic ata € I, if there exist a open neighbourhoad of
a and a convergent power seri®s’ g a;(x —a)’ suchthatf(x) = > -qa;(x —a) forall x e UNI. A
function f : I — R iscalled realanalytic if itisreal-analytic atevery: € I .

8) Let A be a ring and letV be a freeA—-module of infinite rank. Then|V| = |A| - rank, V =
Suf]A|, rank, V}.
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2.4 MA-312 Commutative Algebra/January-April 2008 02. Modules

(i) The value u—tuples(f1(i), ..., f,(i)) € K", i € I, generat&k” as aK —right-vector space.

(Hint: The implication (i)= (ii) can be proved by induction ot Suppose that there exists a subset 1
with (n — 1)—elements is found fofi, ..., f,_1 such thatf|J’, ..., f,_1|J' are linearly independent over
K and so form a basis &”’'. Thenf,|J’ = a1(fi|J) + -+ ap_1(fo_1|J) With aq, ..., a,_1 € K. Now,
by (i) there exists an elemerite I ~ J’ such thatf,(j) # a1f1(j) + -+ + a._1f._1(j). Now, choose
J :=J' U{j}. — For the equivalence (i (iii) use the Exercise 2.15.)

2.16. Let K be a division ring and lety, ...,a, € K. Letg = (a@'),eny € KN and f; :=

L a;, ..., a{l‘l) e K", i=1,...,n. Thengy, ..., g, arelinearly independent ové&r if and only
if f1,..., f, are linearly independent ovéf. (Hint: Leth; = (af,...,a)) € K", j € N. Note that
fi=glO0,....,n="1and(f1(j),.... fu(j)) = (81(j). ..., g.(j)) = h; forall j = 1,..., n. Therefore by
Exercise 2.17g1, ..., g, are linearly independent if and only/if, j = 1, ..., n generates theght-vector
spacekK”". Suppose that the elemerits, ... s, are linearly independent in thié—right-vector space&™,

but the elementay, ..., 1,41 are not linearly independent, 8g_1 and hencé; for every; > m + 1lisa
linear combination ohy, ..., i,,. Now again use the Exercise 2.15.)

2.17. Let K be afield and leby, . .., b,, be elements oK, all of which are not equal to 0. Then
there exist atmost distinct elements € K, which satisfy the equation

O=bo-14+bix+---+bux™.

(Hint: If x1,...,x,41 are distinct elements ifr, then by Exercise 2.12 and Exercise 2.16, the elements
hj = (x{, e, x,{l+1), 0 < j < m, arelinearly independent ov&r. — Remark: The same resultis also true

for integral domains, since every integral domain is contained in a field, for example, in its quotient field.
With the help of concept of polynomials the above assertion can be formulatedres::zero polynomial

of degree < m over afield (or anintegral domain) K has atmost m zerosin K.)

2.18. Let A be an integral domain (which is contained in a figl{l Further, letU be a subgroup
of the unit groupA* of A withanexponen?®) m # 0. ThenU is cyclic (and finite). In particular,
every finite subgroup ofA > is cyclic; further, the unit group of every finite field (for example, the
unit group of a prime ring of characteristic p prime, is cyclic.)  (Hint: The equation” = 1
has atmost: solutions inA by Exercise 2.17. Now use the following Exercise on groupst .G be afinite
group with neutral elements e. Suppose that for every divisor d € N* of the order OrdG there are atmost d
elements x € G suchthat x? = e. Then G isacyclic group.))

2.19. A non-zeroringA is calledirreducible or connected if it is nabsmorphic to a
direct product of two non-zero rings. For example, Integral domains are ireducible rings.

a). For a non-zero ringA , the following statements are equivalent: #4) is irreducible. (i)
there are no non- unit comaximal idealsand b in A with anb = 0. (iii) The only idempotents
in A are 0 and 1. (Hint: If e € A is idempotent, then % e is also idempotent inA and
l=e+(1—-¢),e(l—e)=0.)

b). The characteristic of an irreducible ring is O or a power of a prime number. The number of
elements in a finite irreducible ring is a power of a prime number.

9) Exponent of agroup. LetG be a group with neutral elemeat Then the set of integerswith a” = e
for all « € G forms a subgrou/; of the additive group o7, i.e. Ug :={n € Z | a" = e forall a € G}
and hence there is a uniquee N such thatUs = Zm . This natural numben is called theexponent
of G and usually denoted by Exp. For example, ifG is a finite cyclic group, then Exg = OrdG ;
ExpG3 = OrdS3; Ingeneral: Exgr and Ord G have the same prime divisors. (proof!).
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c). Let I be afinite setand leA be anirreducible ring. Show that: 1) The canonical projections
m . Al — A, i e I are the only A—algebra homomorphisma’ — A. 2) The map
S(I) — Auty_ag A’ defined byo > (a,-14) is an isomorphism of groups.

d). 1) For n € N, show that the canonical projections : Z' — Z, i = 1,...,n are the only
ring homomorphismsZ® — Z. 2) The projectionsr; : ZY¥ — Z, i € N are the only ring
homomorphismsZY — Z. 3) Compute the automorphism groups of the rir#js n € N and
ZN .

2.20. Let f : V — W be an A—-module homomorphism of modules over a ridg and for
me Max(A),let fo, : V/mV - W/mW, X — f(x), betheA/m—homomorphism induced by
I

a). Suppose that Inf is a co-finite A—submodule of W and f,, is surjective for everym €
Max (A), then f is also surjective.

b). Let V be a finite A-module and letf € Ends(V). Then the following statements are
equivalent: (i) f is bijective. (ii) f., is bijective for everym € Max(A). (i) fu isinjective
foreverym € Max(A). (iv) fum is surjective for everym € Max (A) .

Below one can see (simple) test-exercises which are meant to test the basic concepts and definitions.

Test-Exercises

T2.1. Let V be an A-module and leta € A be a unit. Then the homotheay, : V — V x — ax is
bijective. Give an example of a non-zersmodule and a non-unié € A such that the homothecy, is
bijective. Hint: ConsiderZ-modules.)

T2.2. Let U, W,U’, W' be submodules of ad—moduleV . Then:
a). (Modular Law)lfU CW,then WnNnWU+U)=U+WnNU.
b If UNW =U'NnW,then U istheintersectionol/ + (WNU’) andU + (WNW').

T2.3. Let A be aring and letV;, i € I, be an infinite family of non-zeraA—modules. Prove that
W =, V: is not afinite A-module.

T2.4. Let K be afield and letA be a subring ofK such that every element && can be expressed as a
quotienta/b with a,b € A, b # 0. (i.e. K is the quotient field ofA). If K is a finite A—module, then
prove thatA = K . Inparticular,Q is not a finite Z—module.  fint: SupposeK = Axj + --- + Ax,
andb e A, b # 0, with bx; € A for i =1,...,n. Now, try to express /b? as a linear combination of
Xi, I :1,...,1’1.)

T2.5. Let A be an integral domain. Then:

a). If V is atorsion module ovenr , then Hom,(V, A) = 0.

b). Homy (K, A) # 0 ifand only if A = K. Inparticular, Hom(Q,Z) = 0. (Hint: Every element
f € Hom, (K, A) isahomothecy oK bythe elementf (1) .)If K isfinite module, themd = K .(Remark:
If K isa A—submodule of a arbitrary direct sum of finike-modules, themd = K .)

T2.6. Let K be afield and letv be a K—vector space. Suppose thét, . . ., V, be distinctk -subspaces
of V. If K has at leask elements (in particular, iiK is infinite), thenvVy U ... UV, # V. (Hint:
Induction onr . By induction we may assume th&f ¢ V4 U --- U V,_1. Then there exist an elements
xeV,x¢gViU.-..UV,_1 andy e V, y ¢ V,. Now, consider the linear combinatioas + y, a € K .)

T2.7. a). An elementa inthering A is a basis of theA—module A , if and only if ¢ isa unitin A.
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b). The elements 1g € R are linearly independent ovép, if and only if a is irrational (i.e. not rational).
(Remark: Two real number$, ¢, which are linearly independent ov@rare calledncommensurable.
Classical example: the length of the side and the length of the diagonal of a square are incommensurable,

since the real numbey2 € R is irrational.)

c). Let P be the set of all prime numbegs € N*. Show that the family(log p),p is linearly independent
over Q.

d). Let a,b € N* and d := gcd(a, b). Then the relation submodule Rét, b) of 72 is generated by
(bd™t, —ad™1) e 72.

e). In the subspace/ of the R—vector spaceR® of all funktions from R into itself, generated by the
functions x — sin(x + a), a € R, show that the two functions > sinx, x — cosx(= sin(x + 7/2))
form a basis ofU .

f). Every Q—vector space&/ # 0 is not free over the subring of Q.

T2.8. Let K be adivision ring and leV be a K— vector space. Then:

a). Let x1,...,x,41, n € N, be linearly independent elements &f. Suppose thak elements among
X1, ..., x,41 are linearly independent ovek . Then show that Dim(Relg (x1, ..., x,11)) = 1.

b). Suppose tha¥ is finite dimensional ovelX . If V;, i € I, is a family of subspaces df , then there
exists a finite subsef of 7 suchthat(),_, Vi=(),, Viand) ., Vi=> .., V.

c). Suppose thatv is not finite generated. Then construct recursively a linearly independent sequence

(x)neny Of elements inV . (Hint: Let x1,...,x,, x,11, n € N, be elements ofv. Then
xi, 1<i<n+1,arelinearly independent if and onlyif with 1 <i < n are linearly independent and
x,+1 does not belong to thE— subspace o/ generated by, ..., x,.)

d). Suppose thav is not finite dimensionalk—vector space. Construct an infinite sequentgs. U C
QU C---andWoD Wy D --- D W, D -+ of subspaces o .

e). Suppose thaty, ..., x, is a basis ofV over K and y := aix1 + --- + a,x, With ¢; € K. Give
necessary and sufficient condition on the coeficients. . ., a, such thatx; — y, ..., x, — y is a basis of
V.

T2.9. Let V be amodule overaringi. Then:
a). If V isfinite A—-module, then every generating systemibtcontains a finite generating system for.

b). If Y isaninfinite generating systemfaf, then every generating systemn, i € I contains agenerating
systemx;, jeJ, J CI,with |[J] <|Y]|.

c). Every basis of a freei—module V is a minimal generating system fof .

d). If V isafreeA—module and ifV has an infinite basis, then everbasis ofV is infinite. Moreover,
any two bases oV have the same cardinalityHigt: Use the parts b) and c). )

e). If V isafreeA—-module and ifV has a finite basis, then ever~basis ofV is finite. Moreover, any
two bases ofV have the same cardinalitydiqt: For the first part use the parts a) and c).)

T2.10. (Minimal generating systems) denerating systen¥ of an A-module V is called
minimal generating system fov if it is minmial (with respect to the natural inclusion) in the
set{) | 9 C isagenerating system fof}. If V is finite A-module, thenu, (V) := min{|X| | X C

V is a generating system féf} is called the minimal number of generators fgr. By Exercise T2.10-a)
every minimal generating sysytem of a finitt—module is finite. More generally, a generating system

X ={x; |i € I} ofan A—moduleV is called minimal if no propersubset | j € J}, J C I generate

V. For example,{1}, {2, 3}, {p,q | gcd(p, qg) = 1} are minimal generateing systems for tdemodule

Z and uz(Z) = 1. An arbitrary module need not have a minimal generating system. For example, see
Exercise 2.?7.

a). Let f:V — W, be an A—module homomorphism of modules over a riag If ker f and Imyf are
finite A—modules, therV is also a finite A—-module andu (V) < p(ker f) + u (Im f).

b). For every natural number > 1, give a minimal generating system for temoduleZ consisting of
m elements.
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T2.11. Let I be a non-empty open interval iR and let & (7) be theR-vector space of all continuous
real-valued functions o . Show that|C(I)| = |R|. (Hint: The map €(7) — R© defined by
f — flQ is injective.)

T2.12. Let K be a division ring and le¥ be a non- zero vector space over Let & = (g;),c; be afinite
system of linear equations inunknowns inV over K. Use Gauss elimination to show that:

a). IfL(®B)#A£@ andg € K" x V with ¢ ¢ K&, then (&) #L(& U {g}).

b). Let $ be another finite system of linear equationzininknowns inV over K . Suppose that (&) # ¢
and L(H) #0. Then L&) =L(®H) ifandonlyif K& =K$.

c). Suppose that be a subfield ofk and that® is a finite system of linear equations inunknowns over
k and let L(®) denote the solution set ik’ . The system® is also a system of linear equations over
and let the solution set of this system K7 be denoted by k(&). Then L (&) = k" N Lx (&) and use
Gauss elimination process to prove: 1)(&) # ¢ if and only if Lx(®) # @. 2)If & homogeneous,
then Ly (&) = K - L;(&). 3)If & homogeneous, theé has a non-trivial solution ovet if and only if
& has a non-trivial solution ovek .

T2.13. Let L be a division ring and leK be a sub-division ring of.. Further, letV; be anL—vector space

with the L-basisxy, .. ., x, andV be theK—vector spac& x1 + --- + Kx, C V,.(For examplelV, .= L";
x1, ..., x, is the standard basi¥; = K".)
a). Show that :y1, ..., y, € V are linearly independent ovéf (resp. form ak—generating system of

resp. form ak—basis ofV) if and only if they are linearly independent over(resp. form aL—generating
system ofV; resp. form aL—basis ofV,).

b). Let U be aK—-subspace o¥. Let U, denote theL-subspace o/, generated by. Show that:
Dimg U = Dim, U, andU = V N U,. If W is anotherK—subspace oV, thenU C W (resp.U = W) if
and only ifU;, € W, (resp.U;, = W;).

c). Prove the analogous assertions in the dgses not finite dimensional (ovet.).
T2.14. LetK be afield,/ be asetand let € K’ be a function o into K, such that the image ifg) is an
infinite subset ofK. Then the powerg", v € N of g are linearly independent ovéf. (For example from

this it follows that: the functions— cos'z, v € N, fromR to itself are linearly independent; similarly, the
functionsx — x", v € N, from K to itself for an arbitrary infinite fieldk, are linearly independent.)

T2.15. LetL be adivision ringK be a subdivision ring of. and/ be a set. For an arbitrary family;);<,
of functionsf; € K’ showthat: thef;, j € J, arelinearly independent ov&rif and only if they are linearly
independent ovek as a family of functions ir.”. (Use the Exercise 2.17 and and Exercise T2.11(a).)

T2.16. Let A be anon-zeroring and |6t be a freeA — module of rank> 2. Show that the endomomor-
phism ring End (V) of V is neither commutative nor an integral domain.

T2.17. Let A be a non-zero ring. Show that the following statements are equivalent:

() A isafield (ii) Every A-module is free (iii) Every cyclicA—module is free (iv) TheA—module A,

is simplel0)

T2.18. Let V, W be two modules over aring .

a). For an A—-module homomorphism, the following statements are equivalenty {§surjective. (ii) f
maps every generating systemwfonto a generating system & . (iii) f maps at least one generating
system of V onto a generating system o .

b). Suppose thak = {x; | i € I} is a generating system df and f, g € Hom,(V, W). Then f = g if
and only if f(x;) = g(x;) foreveryi e I.

c). Suppose thak = {x; | i € I} is afamily of elements iV and f € Hom,(V, W). Then:

10y Simple Modules. Let A be a ring andA—module V is calledsimple if 0 andV are the only
A-submodules ofv .
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If x;,i el inV arelinearly independent over and if f isinjective, then the imageg(x;),ci eI
in W are also linearly independent ovdr.

2) If the imagesf(x;), i € I in W are linearly independent ovet, thenx;, i € I in V are linearly
independent oveA and the restriction off to the A—submodule ofV generated by; , i € I isinjective.

d). Suppose thaV is a free A-module with basis;;, i € I and f : V — W is an A—-module homomor-
phism into an arbitraryA—module W . Then f is bijective if and only if f(x;), i € I is an A-basis of
w.

e). Suppose thav is a free A-module with basis; , i € I and W is an arbitrary module. Then for every
family y;, i € I of elements inW , there exists a uniqgué-module homomorphisny : V — W, such
that f(x;) = y; foreveryi e I.

f). Suppose thav is a free A—module with basis;; , i € I and W is an arbitrary module. Then the map
o : Hom,(V, W) — W! defined by f — (f(x:))ie; IS anisomorphism ofA—modules.

g). Two free A-modules are isomorphic if and only if they have the same ranks. In particular, two vector
spaces are isomorphic f and only if they have the same dimension.

T2.19. (Maximal submodules and Co-finite submodules) Kebe aring and letv be
an A—module.

1). Maximal elements (with respect to the natural inclusion) in theSg€V’) of all A—submodules of vV
are calledmaximal A—submodules ofY. Maximal A— submodules of theA—-module A are
precisely are maximal ideals iA and by Krull's theorem maximal ideals existsAf #0. If A=0isa
zero ring, then theA—module A has no maximalA—submodules.

2). An A—submodulew of V is calledco-finite if there exists finitely many elements, ..., x, € V
such thatV = W + (Ax1 + - - - + Ax,) . Equivalently, the quotiendi—module V/ W is finitely generated.
If W is afinite A—submodule ofV , then everyA—submodulew’ with W € W’ C V is also co-finite.
Every A—submodule of a finiteA—module is co-finite. Prove thatlet W be a co-finite A—submodule
of an A-module V with W £ V. Then there exists a maximal A—submodule of V which contain W' .
Inparticular, inafinitenon-zero A—module V therearemaximal A—submodules. (Remark: As a corollary
to the above assertion we note thdkrull’s Theorem)Let A bearingandlet a beanideal in A
with a £ A . Then there existsamaximal ideal m in A with a € m. Inparticular, inanon-zeroring Al,,
there are maximal ideals.

3). (Krull-Nakayama Lemma) lett be anideal in aringA with a € m,(= Jacobson radical of
,A)and letU be a co-finite A—submodule of amA— moduleV . If V=U +aV ,thenV =U .

T Max Noether (1844-1921) Max Noether was born on 24 Sept 1844 in Mannheim, Baden, Germany and died on 13 Dec 1921

in Erlangen, Germany. Max Noether suffered an attack of polio when he was 14 years old and it left him with a handicap for the rest of his life.
He attended the University of Heidelberg from 1865 and obtained a doctorate from there in 1868. After this he lectured at Heidelberg and moved
from Heidelberg to a chair at Erlangen where he remained for the rest of his life.

Max Noether was one of the leaders of nineteenth century algebraic geometry. He was influenced by Abel, Riemann, Cayley and Cremona.
Following Cremona, Max Noether studied the invariant properties of an algebraic variety under the action of birational transformations. In 1873
he proved an important result on the intersection of two algebraic curves. Nine years later, in 1882, his daughter Emmy Noether was born. Emmy
became interested in many similar topics to her father and generalised some of his theorems.

Tt Emmy Amalie Noether (1882-1935) EmmyAmalie Noether was born on 23 March 1882 in Erlangen, Bavaria, Germany

and died on 14 April 1935 in Bryn Mawr, Pennsylvania, USA. Emmy Noether’s father Max Noether was a distinguished mathematician and a
professor at Erlangen. Her mother was Ida Kaufmann, from a wealthy Cologne family. Both Emmy’s parents were of Jewish origin and Emmy
was the eldest of their four children, the three younger children being boys.

Emmy Noether attended the Héhere Tochter Schule in Erlangen from 1889 until 1897. She studied German, English, French, arithmetic and
was given piano lessons. She loved dancing and looked forward to parties with children of her father’s university colleagues. At this stage her
aim was to become a language teacher and after further study of English and French she took the examinations of the State of Bavaria and,
in 1900, became a certificated teacher of English and French in Bavarian girls schools. However Noether never became a language teacher.
Instead she decided to take the difficult route for a woman of that time and study mathematics at university. Women were allowed to study at
German universities unofficially and each professor had to give permission for his course. Noether obtained permission to sit in on courses at the
University of Erlangen during 1900 to 1902. Then, having taken and passed the matriculation examination in Niirnberg in 1903, she went to the
University of Géttingen. During 1903-04 she attended lectures by Blumenthal, Hilbert, Klein and Minkowski.

In 1904 Noether was permitted to matriculate at Erlangen and in 1907 was granted a doctorate after working under Paul Gordan. Hilbert's basis
theorem of 1888 had given an existence result for finiteness of invariants in n variables. Gordan , however, took a constructive approach and
looked at constructive methods to arrive at the same results. Noether’s doctoral thesis followed this constructive approach of Gordan and listed
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systems of 331 covariant forms. Having completed her doctorate the normal progression to an academic post would have been the habilitation .
However this route was not open to women so Noether remained at Erlangen, helping her father who, particularly because of his own disabilities,
was grateful for his daughter’s help. Noether also worked on her own research, in particular she was influenced by Fischer who had succeeded
Gordan in 1911. This influence took Noether towards Hilbert's abstract approach to the subject and away from the constructive approach of
Gordan.

Noether’s reputation grew quickly as her publications appeared. In 1908 she was elected to the Circolo Matematico di Palermo, then in 1909 she
was invited to become a member of the Deutsche Mathematiker Vereinigung and in the same year she was invited to address the annual meeting
of the Society in Salzburg. In 1913 she lectured in Vienna.

In 1915 Hilbert and Klein invited Noether to return to Géttingen. They persuaded her to remain at Gottingen while they fought a battle to have
her officially on the Faculty. In a long battle with the university authorities to allow Noether to obtain her habilitation there were many setbacks
and it was not until 1919 that permission was granted. During this time Hilbert had allowed Noether to lecture by advertising her courses under
his own name. For example a course given in the winter semester of 1916-17 appears in the catalgtleeasatical Physics Seminar:

Professor Hilbert, with the assistance of Dr E Noether, Mondays from 4-6, no tuition.

Emmy Noether's first piece of work when she arrived in Géttingen in 1915 is a result in theoretical physics sometimes referred to as Noether’s
Theorem, which proves a relationship between symmetries in physics and conservation principles. This basic result in the general theory of
relativity was praised by Einstein in a letter to Hilbert when he referred to Noether's penetrating mathematical thinking. It was her work in
the theory of invariants which led to formulations for several concepts of Einstein’s general theory of relativity. At Goéttingen, after 1919,
Noether moved away from invariant theory to work on ideal theory, producing an abstract theory which helped develop ring theory into a major
mathematical topic. Idealtheorie in Ringbereichen (1921) was of fundamental importance in the development of modern algebra. In this paper
she gave the decomposition of ideals into intersections of primary ideals in any commutative ring with ascending chain condition. Lasker (the
world chess champion) had already proved this result for polynomial rings. In 1924 B L van der Waerden came to Gottingen and spent a year
studying with Noether. After returning to Amsterdam van der Waerden wrote his book Moderne Algebra in two volumes. The major part of

the second volume consists of Noether's work. From 1927 on Noether collaborated with HelImut Hasse and Richard Brauer in work on non-
commutative algebras. In addition to teaching and research, Noether helped edit Mathematische Annalen. Much of her work appears in papers

written by colleagues and students, rather than under her own name.

Further recognition of her outstanding mathematical contributions came with invitations to address the International Mathematical Congress at
Bologna in 1928 and again at Zurich in 1932. In 1932 she also received, jointly with Artin, the Alfred Ackermann-Teubner Memorial Prize for
the Advancement of Mathematical Knowledge. In 1933 her mathematical achievements counted for nothing when the Nazis caused her dismissal
from the University of Géttingen because she was Jewish. She accepted a visiting professorship at Bryn Mawr College in the USA and also
lectured at the Institute for Advanced Study, Princeton in the USA.

Weyl in his Memorial Address said-er significancefor algebra cannot beread entirely fromher own papers, shehad great stimulating
power and many of her suggestions took shape only in the works of her pupils and co-workers.

van der Waerden writesFFor Emmy Noether, relationships among numbers, functions, and operations became transparent, amenable
togeneralisation, and productive only after they have been dissociated fromany particul ar objectsand have been reduced to general
conceptual relationships.
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