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E m m y A m a l i e N o e t h e r ††

(1882-1935)

2.1. Let A be a ring.

a). If V �= 0 is anA–module which does not have maximal submodules, thenV does not have a
minimal generating system.(Hint : Use )

b). Suppose thatA be an integral domain and that the set of all non-zero ideals inA have a
minimal element (with respect to the inclusion). Show thatA is a field. In particular, an integeral
domain such that the set of all ideals is an artinian ordered set (with respect to inclusion), is a field.

2.2. Let A be a non-zero ring and letI be an infinite indexed set. For everyi ∈ I , let ei be the
I -tuple (δij )j∈I ∈ AI with δij = 1 for j = i and δij = 0 for j �= i .

a). ei, i ∈ I , is a minimal generating system for the left-idealA(I) in the ring AI . In particular,
A(I) is not finitely generated ideal.(Remark : Submodules of finitely generated modules need not be
finitely generated! )

b). There exists a generating system forA(I) as anAI –module that does not contain any minimal
generating system.(Hint : First consider the caseI = N and the tuplese0 + · · · + en, n ∈ N .)

2.3. Let Ki, i ∈ I , be a family of fields. For every elementa = (ai)i∈I ∈ ∏
i∈I Ki , let α(a)

denote the zero-set{i ∈ I : ai = 0} of a . For an ideala ⊆ ∏
i∈I Ki , let α(a) = {α(a) : a ∈

a} ⊆ P(I ) . Show that : the mapa �→ α(a) is an isomorphism of the lattice2) of the ideals of∏
i∈I Ki onto the lattice of the filters3) defined onI . The ideala is maximal if and only ifα(a)

1) The concept of a module seems to have made its first appearance inAlgebra inAlgebraic Number Theory–
in studying subsets ofrings of algebraic integers. Modules first became an important tool in Algebra in
late 1920’s largely due to the insight ofEmmy Noether, who was the first to realize the potential of the
module concept. In particular, she observed that this concept could be used to bridge the gap between two
important developments in Algebra that had been going on side by side and independently:the theory of
representations (=homomorphisms) of finite groups by matrices due toFrobenius, Burnside, Schur et al
and the structure theory of algebras due toMolien, Cartan, Wedderburn et al.
2) Lattice. A partially ordered set(X, ≤) is called al a t t i c e if for every two elementsx, y ∈ X , the
supremum sup{x, y} and the infimum inf{x, y} exist. For example, the set of all left-ideals in a ring form
a lattice with respect to the inclusion. What are sup{a, b} and inf {a, b} for left-idealsa, b in A ?
3) Filter on a set. Let X be any set and letP(X) denote the power st ofX . A f i l t e r on X is a subset
F of P(X) such that : (1)F is closed under finite intersections, i.e. intersection of finitely many elements
of F belongs toF . (In particular, the empty intersection= X ∈ F ). (2) If Y ∈ F and Y ⊆ Z , then
Z ∈ F . Note thatF = P(X) if and only if ∅ ∈ F .
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2.2 MA-312 Commutative Algebra / January-April 2008 02. Modules

is an ultra-filter4) on I . Deduce the following exercise5) from the Krull’s theorem. Further, show
that every finitely generated ideal in

∏
i∈I Ki is a principal ideal.

2.4. Let V be a free module over a ringA. Further, leta ∈ A be not a zero divisor inA. Then the
homothecyϑa : V → V , x �→ ax is injective. LetB be a ring and letA be a subring ofB such
that B is a freeA–module. Show that:

a). An elementa ∈ A is a zero divisor inA, if and only if a is a zero divisor inB. Further, show
that(aB) ∩ A = a for all idealsa ⊆ A.

b). A× = A ∩ B×. Moreover, if B is a field, then so isA . (Hint : If a ∈ A ∩ B×, then B = aB .)

2.5. Let U, W be freeA-submodules of theA–moduleV . Further, letxi, i ∈ I , resp.yj , j ∈
J , be a basis ofU resp.W . Show thatxi, yj , i ∈ I, j ∈ J together form a basis ofU + W , if
and only if U ∩ W = 0 .

2.6. Let A be a non-zero commutative ring. Show thatA is a principal ideal domain if and only
if every ideal inA is a freeA–submodule ofA . (Remark : In general this assertion is not true for
non-commutative rings. Counter example!)

2.7. Let K be a field and letA be a subring ofK such thatK is a finite A–module. Show that
A is a field. (Hint : This is a generalisation of the Test-Exercise T2.5. Note thatK contains a quotient
field Q(A) of A . Let x1, . . . , xm be a A-generating system ofK and let y1, . . . , yn be a Q(A) –basis
of K with y1 = 1 . Theny∗

1(x1), . . . , y
∗
1(xm) is an A– generating system of Q(A) , wherey∗

1 is the first
coordinate function with respect to the basisy1, . . . , yn . Now use the Test-Exercise T2.5.)

2.8. a). The Z–mdouleQ does not have minimal generating system.(Hint : In fact the additive
group (Q, +) does not have a subgroup of finite index�= 1 . This follows from the fact that the group
(Q, +) is divisible 6) and hence every quoteint group of(Q, +) is also divisible. Further,If H finitely
generated divisible abelian group, then H = 0 . )

b). The Z–algebraQ is not finite type overZ .

2.9. Let xi, i ∈ I , be a family ofn–tuples fromZn . For a prime numberp , let Kp(= Z/Zp

denote the prime field of charateristicp . Show that the following statements are equivalent:

(i) The xi are linearly independent overZ .
(ii) The images ofxi, i ∈ I , in Qn , are linearly independent overQ .
(iii) There exists a prime numberp such that the images ofxi, i ∈ I , in Kn

p , are linearly
independent over Kp .
(iv) For almost all prime numbersp , the images ofxi, i ∈ I , in Kn

p , are linearly independent
over Kp .

— If |I | = n , then the above statements are further equivalent to the following statement:

4) Ultra-filters on a set. The set of filters on a setX is ordered by inclusion and it forms a lattice. Maximal
elements in the set of filters onX different from P(X) are called ul t r a - f i l t e r s on X .
5) Exercise. Show that if X �= ∅ , then the set of of filters onX different from P(X) is inductively
ordered with respect to the inclusion and that every filter onX different from P(X) is contained in an
ultra-filter on X .
6) Divisible abelian groups. An abelian (additively written) groupH is d i v i s i b l e if for every n ∈ Z,,
the group homomorphismλn : H → H , defined bya �→ na is surjective. For example, the group(Q, +)

is divisible, the group(Z, +) and finite groups are not divisible. Further,quotient of a divisible group is
also divisible. Free abelian groups of finitern are not divisible.
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(v) There exists a non-zero integerm such thatmZn ⊆ ∑
i∈I Zxi .

2.10. Let xi, i ∈ I , be a family ofn–tuples fromZn . For every prime numberp let Kp denote
a field with p elements. Show that the following statements are equivalent:

(i) The xi, i ∈ I , generate (theZ–module)Zn . (ii) For every prime numebrp , the images of
xi, i ∈ I , in Kn

p , generate the Kp-vector space Knp . (Hint : ((ii) ⇒ (i): Let U := ∑
i∈I Zxi . Note

that by Exercise 2.11, there exists a non-zero integerm with mZn ⊆ U . Further: to every prime number
p and everyx ∈ Zn there existx ′ ∈ U, y ∈ Zn such thatx = x ′ + py , i.e. Zn ⊆ U + pZn for every
prime numberp . From this deduce thatU = Zn .)

2.11. Let I be a non-empty open interval inR and let Cω
R(I ) (respectively, C0R(I ) ) be theR-

vector space of all real-analytic7) (respectively, continuous) real-valued functions onI . Then
Cω

R(I ) ⊆ C0
R(I ) and if U is a R-subspace of C0R(I ) with Cω

R(I ) ⊆ U , then show that DimR U

has the cardinality of the continuum. (Hint : Without loss of generality letI =] − 1, 1[ .
Let (aij )i∈N, j ∈ J , be a linearly independent family of 0-1–sequences inRN, where |J | = ℵ := |R| ,
see Exercise 4.11. Then the functionst �→ ∑

i≥0 aij t
i , j ∈ J , in Cω

R(I ) are linearly independent overR.
Alternative hint : the family of the functionst �→ exp(at), a ∈ R , on I is linearly independent. Similarly,
the rational functionst �→ 1/(t − a), a ∈ R, |a| ≥ 1 , are linearly independent in Cω

R(] − 1, 1[) .) Prove
the analogous results for the complex vector space H(U) of holomorphic functions defined on a
domainU ⊆ C .

2.12. For a givenn ∈ N, leta1, . . . , an ∈ K ben distinct elements in a fieldK. Then the sequences
gi := (aν

i )ν∈N ∈ KN, i = 1, . . . , n, are linearly independent overK. (Hint : Suppose that the
gi are linearly dependent. Without loss of generality we may assume that DimK(RelK(g1, . . . , gn)) = 1,
see Exercise T2.8-a). Let(b1, . . . , bn) be a basis element of relations. Then the element(b1a1, . . . , bnan) is
also a relation of thegi . This is a contradiction.)

2.13. Let K be a field and letI be an infinite set. Then DimK(KI ) = |KI |. (Hint : In view
of 8), it is enough to prove that|K| ≤ DimKKI . Let σ : N → I be injective and fora ∈ K, let ga denote
theI–tuple with(ga)σ(ν) := aν for ν ∈ N and(ga)i := 0 for i ∈ I � im σ . Then by Exercise 2.12,(ga)a∈K

are linearly independent.) Deduce that DimKKI > DimKK(I). – Remark : This dimension formula forKI

is also valid for division ringsK. Proof!.)

2.14. Let K be a division ring. Further, letxi = (ai1, . . . , ain) ∈ Kn, i = 1, . . . , n. With thej–th
components of thisn–tuple we form the newn–tuplesyj := (a1j , . . . , anj ), j = 1, . . . , n. Show
that : the elementsx1, . . . , xn of theK–Left-vector spaceKn are linearly independent if and only if
the elementsy1, . . . , yn of theK–right-vector spaceKn are linearly independent.(Hint : Suppose that
x1, . . . , xn are linearly independent andy1b1+· · ·+ynbn = 0, bj ∈ K. Thenx1, . . . , xn ∈ RelK(b1, . . . , bn),
and a dimension argument shows that RelK(b1, . . . , bn) = Kn, this meansb1 = · · · = bn = 0.)

2.15. LetK be a division ring,I be a set and letf1, . . . , fn ∈ KI , n ∈ N. The following statements
are equivalent:

(i) Thef1, . . . , fn are linearly independent overK.
(ii) There exists a subsetJ ⊆ I such that|J | = n and that the restrictionsf1|J, . . . , fn|J ∈ KJ

are linearly independent (and hence form a basis ofKJ ).

7) A function f : I → R is calledr e a l - a n a l y t i c a ta ∈ I , if there exist a open neighbourhoodU of
a and a convergent power series

∑∞
i=0 ai(x − a)i such thatf (x) = ∑∞

i=0 ai(x − a)i for all x ∈ U ∩ I . A
function f : I → R is called r e a l -a n a l y t i c if it is real-analytic at everya ∈ I .
8) Let A be a ring and letV be a freeA–module of infinite rank. Then |V | = |A| · rankA V =
Sup{|A|, rankA V }.
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(iii) The value –n–tuples(f1(i), . . . , fn(i)) ∈ Kn, i ∈ I , generateKn as aK–right-vector space.

(Hint : The implication (i)⇒ (ii) can be proved by induction onn: Suppose that there exists a subsetJ ′ ⊆ I

with (n − 1)–elements is found forf1, . . . , fn−1 such thatf1|J ′, . . . , fn−1|J ′ are linearly independent over
K and so form a basis ofKJ ′

. Thenfn|J ′ = a1(f1|J ′) + · · · + an−1(fn−1|J ′) with a1, . . . , an−1 ∈ K. Now,
by (i) there exists an elementj ∈ I � J ′ such thatfn(j) �= a1f1(j) + · · · + an−1fn−1(j). Now, choose
J := J ′ ∪ {j}. — For the equivalence (ii)⇔ (iii) use the Exercise 2.15.)

2.16. Let K be a division ring and leta1, . . . , an ∈ K. Let gi := (aν
i )ν∈N ∈ KN andfi :=

(1, ai, . . . , a
n−1
i ) ∈ Kn, i = 1, . . . , n. Theng1, . . . , gn are linearly independent overK if and only

if f1, . . . , fn are linearly independent overK. (Hint : Let hj := (a
j

1, . . . , a
j
n) ∈ Kn, j ∈ N. Note that

fi = gi |{0, . . . , n−1} and(f1(j), . . . , fn(j)) = (g1(j), . . . , gn(j)) = hj for all j = 1, . . . , n. Therefore by
Exercise 2.17,g1, . . . , gn are linearly independent if and only ifhj , j = 1, . . . , n generates theright-vector
spaceKn. Suppose that the elementsh0, . . . hm are linearly independent in theK–right-vector spaceKn,
but the elementsh0, . . . , hm+1 are not linearly independent, sohm+1 and hencehj for everyj ≥ m + 1 is a
linear combination ofh0, . . . , hm. Now again use the Exercise 2.15.)

2.17. Let K be a field and letb0, . . . , bm be elements ofK, all of which are not equal to 0. Then
there exist atmostm distinct elementsx ∈ K, which satisfy the equation

0 = b0 · 1 + b1x + · · · + bmxm .

(Hint : If x1, . . . , xm+1 are distinct elements inK, then by Exercise 2.12 and Exercise 2.16, the elements
hj := (x

j

1, . . . , x
j

m+1), 0 ≤ j ≤ m, are linearly independent overK. — Remark : The same result is also true
for integral domains, since every integral domain is contained in a field, for example, in its quotient field.
With the help of concept of polynomials the above assertion can be formulated as :A non-zero polynomial
of degree ≤ m over a field (or an integral domain) K has atmost m zeros in K .)

2.18. Let A be an integral domain (which is contained in a fieldQ). Further, letU be a subgroup
of the unit groupA× of A with an exponen t9) m �= 0. ThenU is cyclic (and finite). In particular,
every finite subgroup ofA× is cyclic; further, the unit group of every finite field (for example, the
unit group of a prime ring of characteristicp, p prime, is cyclic.) (Hint : The equationxm = 1
has atmostm solutions inA by Exercise 2.17. Now use the following Exercise on groups :Let G be a finite
group with neutral elements e. Suppose that for every divisor d ∈ N∗ of the order OrdG there are atmost d

elements x ∈ G such that xd = e. Then G is a cyclic group.))

2.19. A non-zero ringA is called i r r e d u c i b l e or c o n n e c t e d if it is notiosmorphic to a
direct product of two non-zero rings. For example, Integral domains are ireducible rings.

a). For a non-zero ringA , the following statements are equivalent : (i)A is irreducible. (ii)
there are no non- unit comaximal idealsa andb in A with a∩b = 0 . (iii) The only idempotents
in A are 0 and 1 . (Hint : If e ∈ A is idempotent, then 1− e is also idempotent inA and
1 = e + (1 − e) , e(1 − e) = 0 . )

b). The characteristic of an irreducible ring is 0 or a power of a prime number. The number of
elements in a finite irreducible ring is a power of a prime number.

9) Exponent of a group. Let G be a group with neutral elemente. Then the set of integersn with an = e

for all a ∈ G forms a subgroupUG of the additive group ofZ, i.e. UG := {n ∈ Z | an = e for all a ∈ G}
and hence there is a uniquem ∈ N such thatUG = Z m . This natural numberm is called thee x p o n e n t
o f G and usually denoted by ExpG. For example, ifG is a finite cyclic group, then ExpG = OrdG ;
ExpS3 = OrdS3 ; In general : ExpG and OrdG have the same prime divisors. (proof!).
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c). Let I be a finite set and letA be an irreducible ring. Show that : 1) The canonical projections
πi : AI → A , i ∈ I are the onlyA–algebra homomorphismsAI → A . 2) The map
S(I ) → AutA−alg AI defined byσ �→ (aσ−1(i)) is an isomorphism of groups.

d). 1) For n ∈ N , show that the canonical projectionsπi : Zn → Z , i = 1, . . . , n are the only
ring homomorphismsZn → Z . 2) The projectionsπi : ZN → Z , i ∈ N are the only ring
homomorphismsZN → Z . 3) Compute the automorphism groups of the ringsZn , n ∈ N and
ZN .

2.20. Let f : V → W be an A–module homomorphism of modules over a ringA and for
m ∈ Max (A) , let fm : V/mV → W/mW , x �→ f (x) , be theA/m–homomorphism induced by
f .

a). Suppose that Imf is a co-finite A–submodule ofW and fm is surjective for everym ∈
Max (A) , then f is also surjective.

b). Let V be a finite A–module and letf ∈ EndA(V ) . Then the following statements are
equivalent : (i)f is bijective. (ii) fm is bijective for everym ∈ Max (A) . (iii) fm is injective
for every m ∈ Max (A) . (iv) fm is surjective for everym ∈ Max (A) .

Below one can see (simple) test-exercises which are meant to test the basic concepts and definitions.

Test-Exercises

T2.1. Let V be anA-module and leta ∈ A be a unit. Then the homothecyϑa : V → V x �→ ax is
bijective. Give an example of a non-zeroA-module and a non-unita ∈ A such that the homothecyϑa is
bijective. (Hint : ConsiderZ-modules.)

T2.2. Let U, W, U ′, W ′ be submodules of anA–moduleV . Then :

a). ( M o d u l a r La w ) If U ⊆ W , then W ∩ (U + U ′) = U + (W ∩ U ′) .

b). If U ∩ W = U ′ ∩ W ′ , then U is the intersection ofU + (W ∩ U ′) and U + (W ∩ W ′) .

T2.3. Let A be a ring and letVi, i ∈ I , be an infinite family of non-zeroA–modules. Prove that
W := ⊕

i∈I Vi is not a finiteA–module.

T2.4. Let K be a field and letA be a subring ofK such that every element ofK can be expressed as a
quotienta/b with a, b ∈ A, b �= 0 . (i.e. K is the quotient field ofA ). If K is a finite A –module, then
prove thatA = K . In particular,Q is not a finite Z–module. (Hint : SupposeK = Ax1 + · · · + Axn

and b ∈ A, b �= 0 , with bxi ∈ A for i = 1, . . . , n . Now, try to express 1/b2 as a linear combination of
xi , i = 1, . . . , n .)

T2.5. Let A be an integral domain. Then :

a). If V is a torsion module overA , then HomA(V, A) = 0 .

b). HomA(K, A) �= 0 if and only if A = K . In particular, HomZ(Q, Z) = 0 . (Hint : Every element
f ∈ HomA(K, A) is a homothecy ofK by the elementf (1) .)If K is finite module, thenA = K .(Remark :
If K is a A–submodule of a arbitrary direct sum of finiteA–modules, thenA = K .)

T2.6. Let K be a field and letV be aK–vector space. Suppose thatV1, . . . , Vn be distinctK-subspaces
of V . If K has at leastn elements (in particular, ifK is infinite), thenV1 ∪ · · · ∪ Vn �= V . (Hint :
Induction onn . By induction we may assume thatVn �⊆ V1 ∪ · · · ∪ Vn−1. Then there exist an elements
x ∈ Vn, x /∈ V1 ∪ · · · ∪ Vn−1 and y ∈ V, y /∈ Vn . Now, consider the linear combinationsax + y, a ∈ K .)

T2.7. a). An elementa in the ring A is a basis of theA–moduleA , if and only if a is a unit in A .
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b). The elements 1,a ∈ R are linearly independent overQ , if and only if a is irrational (i.e. not rational).
(Remark : Two real numbersb, c , which are linearly independent overQ are calledincommensurab le .
Classical example: the length of the side and the length of the diagonal of a square are incommensurable,
since the real number

√
2 ∈ R is irrational.)

c). Let P be the set of all prime numbersp ∈ N∗ . Show that the family(logp)p∈P is linearly independent
over Q .

d). Let a, b ∈ N∗ and d := gcd(a, b) . Then the relation submodule RelZ(a, b) of Z2 is generated by
(bd−1, −ad−1) ∈ Z2 .

e). In the subspaceU of the R–vector spaceRR of all funktions from R into itself, generated by the
functions x �→ sin(x + a), a ∈ R , show that the two functionsx �→ sinx, x �→ cosx(= sin(x + π/2))

form a basis ofU .

f). Every Q–vector spaceV �= 0 is not free over the subringZ of Q .

T2.8. Let K be a division ring and letV be aK– vector space. Then :

a). Let x1, . . . , xn+1, n ∈ N , be linearly independent elements ofV . Suppose thatn elements among
x1, . . . , xn+1 are linearly independent overK . Then show that DimK(RelK(x1, . . . , xn+1)) = 1 .

b). Suppose thatV is finite dimensional overK . If Vi, i ∈ I , is a family of subspaces ofV , then there
exists a finite subsetJ of I such that

⋂
i∈I Vi = ⋂

i∈J Vi and
∑

i∈I Vi = ∑
i∈J Vi .

c). Suppose thatV is not finite generated. Then construct recursively a linearly independent sequence
(xn)n∈N of elements inV . (Hint : Let x1, . . . , xn, xn+1, n ∈ N, be elements ofV . Then
xi, 1 ≤ i ≤ n + 1 , are linearly independent if and only ifxi with 1 ≤ i ≤ n are linearly independent and
xn+1 does not belong to theK– subspace ofV generated byx1, . . . , xn . )

d). Suppose thatV is not finite dimensionalK–vector space. Construct an infinite sequencesU0 � U1 �
· · · � Ui � · · · and W0 ⊃ W1 � · · · � Wi � · · · of subspaces ofV .

e). Suppose thatx1, . . . , xn is a basis ofV over K and y := a1x1 + · · · + anxn with ai ∈ K . Give
necessary and sufficient condition on the coeficientsa1, . . . , an such thatx1 − y, . . . , xn − y is a basis of
V .

T2.9. Let V be a module over a ringA . Then :

a). If V is finite A–module, then every generating system ofV contains a finite generating system forV .

b). If Y is an infinite generating system forV , then every generating systemxi , i ∈ I contains a generating
systemxj , j ∈ J , J ⊆ I ,with |J | ≤ |Y | .

c). Every basis of a freeA–moduleV is a minimal generating system forV .

d). If V is a freeA–module and ifV has an infinite basis, then everyA–basis ofV is infinite. Moreover,
any two bases ofV have the same cardinality. (Hint : Use the parts b) and c). )

e). If V is a freeA–module and ifV has a finite basis, then everyA–basis ofV is finite. Moreover, any
two bases ofV have the same cardinality. (Hint : For the first part use the parts a) and c).)

T2.10. ( M i n i m a l g e n e r a t i n g s y s t e m s ) Agenerating systemX of an A–moduleV is called
m i n i m a l g e n e r a t i n g s y s t e m forV if it is minmial (with respect to the natural inclusion) in the
set {Y | Y ⊆ is a generating system forV } . If V is finite A-module, thenµA(V ) := min {|X| | X ⊆
V is a generating system forV } is called the minimal number of generators forV . By Exercise T2.10-a)
every minimal generating sysytem of a finiteA–module is finite. More generally, a generating system
X = {xi | i ∈ I } of an A– moduleV is called m i n i m a l if no proper subsetxj | j ∈ J } , J � I generate
V . For example,{1}, {2, 3}, {p, q | gcd(p, q) = 1} are minimal generateing systems for theZ–module
Z and µZ(Z) = 1 . An arbitrary module need not have a minimal generating system. For example, see
Exercise 2.??.

a). Let f : V → W, be anA–module homomorphism of modules over a ringA . If ker f and Imf are
finite A–modules, thenV is also a finiteA–module andµA(V ) ≤ µ(kerf ) + µA(Im f ) .

b). For every natural numberm ≥ 1 , give a minimal generating system for theZ–moduleZ consisting of
m elements.
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T2.11. Let I be a non-empty open interval inR and let C0
R(I ) be theR-vector space of all continuous

real-valued functions onI . Show that|C0
R(I )| = |R| . (Hint : The map C0R(I ) → RQ defined by

f �→ f |Q is injective.)

T2.12. Let K be a division ring and letV be a non- zero vector space overK. Let G = (gi)i∈I be a finite
system of linear equations inn unknowns inV overK. Use Gauss elimination to show that :

a). If L (G) �= ∅ and g ∈ Kn × V with g �∈ KG , then L(G) �= L(G ∪ {g}) .

b). Let H be another finite system of linear equations inn unknowns inV overK . Suppose that L(G) �= ∅
and L(H) �= ∅ . Then L(G) = L(H) if and only if KG = KH .

c). Suppose thatk be a subfield ofK and thatG is a finite system of linear equations inn unknowns over
k and let Lk(G) denote the solution set inkn . The systemG is also a system of linear equations overK

and let the solution set of this system inKn be denoted by LK(G) . Then Lk(G) = kn ∩ LK(G) and use
Gauss elimination process to prove: 1) Lk(G) �= ∅ if and only if LK(G) �= ∅ . 2) If G homogeneous,
then LK(G) = K · Lk(G) . 3) If G homogeneous, thenG has a non-trivial solution overk if and only if
G has a non-trivial solution overK .

T2.13. Let L be a division ring and letK be a sub-division ring ofL. Further, letVL be anL–vector space
with theL–basisx1, . . . , xn andV be theK–vector spaceKx1 + · · · + Kxn ⊆ VL.(For example:VL := Ln;
x1, . . . , xn is the standard basis;V = Kn.)

a). Show that :y1, . . . , ym ∈ V are linearly independent overK (resp. form aK–generating system ofV
resp. form aK–basis ofV ) if and only if they are linearly independent overL (resp. form aL–generating
system ofVL resp. form aL–basis ofVL).

b). Let U be aK–subspace ofV . Let UL denote theL-subspace ofVL generated byU . Show that:
DimK U = DimL UL andU = V ∩ UL. If W is anotherK–subspace ofV , thenU ⊆ W (resp.U = W ) if
and only ifUL ⊆ WL (resp.UL = WL).

c). Prove the analogous assertions in the caseVL is not finite dimensional (overL).

T2.14. Let K be a field,I be a set and letg ∈ KI be a function onI into K, such that the image im(g) is an
infinite subset ofK. Then the powersgν, ν ∈ N of g are linearly independent overK. (For example from
this it follows that: the functionst �→ cosν t, ν ∈ N, from R to itself are linearly independent; similarly, the
functionsx �→ xν, ν ∈ N, from K to itself for an arbitrary infinite fieldK, are linearly independent.)

T2.15. Let L be a division ring,K be a subdivision ring ofL andI be a set. For an arbitrary family(fj )j∈J

of functionsfj ∈ KI show that: thefj , j ∈ J , are linearly independent overK if and only if they are linearly
independent overL as a family of functions inLI . (Use the Exercise 2.17 and and Exercise T2.11(a).)

T2.16. Let A be anon-zero ring and letV be a freeA – module of rank≥ 2 . Show that the endomomor-
phism ring EndA(V ) of V is neither commutative nor an integral domain.

T2.17. Let A be a non-zero ring. Show that the following statements are equivalent :

(i) A is a field (ii) Every A–module is free (iii) Every cyclicA–module is free (iv) TheA–moduleA,

is simple.10)

T2.18. Let V, W be two modules over a ringA .

a). For anA–module homomorphism, the following statements are equivalent: (i)f is surjective. (ii)f
maps every generating system ofV onto a generating system ofW . (iii) f maps at least one generating
system ofV onto a generating system ofW .

b). Suppose thatX = {xi | i ∈ I } is a generating system ofV and f, g ∈ HomA(V, W) . Then f = g if
and only if f (xi) = g(xi) for every i ∈ I .

c). Suppose thatX = {xi | i ∈ I } is a family of elements inV and f ∈ HomA(V, W) . Then :

10) Simple Modules. Let A be a ring andA–module V is called s i m p l e if 0 andV are the only
A-submodules ofV .
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1) If xi , i ∈ I in V are linearly independent overA and if f is injective, then the imagesf (xi) , ∈ i ∈ I

in W are also linearly independent overA .

2) If the imagesf (xi) , i ∈ I in W are linearly independent overA , then xi , i ∈ I in V are linearly
independent overA and the restriction off to theA–submodule ofV generated byxi , i ∈ I is injective.

d). Suppose thatV is a freeA–module with basisxi , i ∈ I and f : V → W is an A–module homomor-
phism into an arbitraryA–moduleW . Then f is bijective if and only if f (xi) , i ∈ I is an A-basis of
W .

e). Suppose thatV is a freeA–module with basisxi , i ∈ I andW is an arbitrary module. Then for every
family yi , i ∈ I of elements inW , there exists a uniqueA-module homomorphismf : V → W, such
that f (xi) = yi for every i ∈ I .

f). Suppose thatV is a freeA–module with basisxi , i ∈ I and W is an arbitrary module. Then the map
σ : HomA(V, W) → WI defined byf �→ (f (xi))i∈I is an isomorphism ofA–modules.

g). Two free A-modules are isomorphic if and only if they have the same ranks. In particular, two vector
spaces are isomorphic f and only if they have the same dimension.

T2.19. ( M a x i m a l s u b m o d u l e s a n d C o - f i n i t e s u b m o d u l e s ) LetA be a ring and letV be
an A–module.

1). Maximal elements (with respect to the natural inclusion) in the setSA(V ) of all A–submodules of, V
are calledm a x i m a l A– s u b m o d u l e s ofV . Maximal A– submodules of theA–module A are
precisely are maximal ideals inA and by Krull’s theorem maximal ideals exists ifA �= 0 . If A = 0 is a
zero ring, then theA–moduleA has no maximalA–submodules.

2). An A– submoduleW of V is calledc o - f i n i t e if there exists finitely many elementsx1, . . . , xn ∈ V

such thatV = W + (Ax1 + · · · + Axn) . Equivalently, the quotientA–moduleV/W is finitely generated.
If W is a finite A–submodule ofV , then everyA–submoduleW ′ with W ⊆ W ′ ⊆ V is also co-finite.
Every A–submodule of a finiteA–module is co-finite. Prove that :Let W be a co-finite A–submodule
of an A–module V with W �= V . Then there exists a maximal A–submodule of V which contain W .
In particular, in a finite non-zero A–module V there are maximal A–submodules. (Remark : As a corollary
to the above assertion we note that :( K r u l l ’ s T h e o r e m ) Let A be a ring and let a be an ideal in A

with a �= A . Then there exists a maximal ideal m in A with a ⊆ m . In particular, in a non-zero ring A|,,
there are maximal ideals.

3). ( K r u l l - N a k a y a m a Le m m a ) leta be an ideal in a ringA with a ⊆ mA(= Jacobson radical of
, A) and letU be a co-finiteA–submodule of anA– moduleV . If V = U + aV , then V = U .

† M a x N o e t h e r ( 1 8 4 4 - 1 9 2 1 ) Max Noether was born on 24 Sept 1844 in Mannheim, Baden, Germany and died on 13 Dec 1921
in Erlangen, Germany. Max Noether suffered an attack of polio when he was 14 years old and it left him with a handicap for the rest of his life.
He attended the University of Heidelberg from 1865 and obtained a doctorate from there in 1868. After this he lectured at Heidelberg and moved
from Heidelberg to a chair at Erlangen where he remained for the rest of his life.

Max Noether was one of the leaders of nineteenth century algebraic geometry. He was influenced by Abel, Riemann, Cayley and Cremona.
Following Cremona, Max Noether studied the invariant properties of an algebraic variety under the action of birational transformations. In 1873
he proved an important result on the intersection of two algebraic curves. Nine years later, in 1882, his daughter Emmy Noether was born. Emmy
became interested in many similar topics to her father and generalised some of his theorems.

†† E m m y A m a l i e N o e t h e r ( 1 8 8 2 - 1 9 3 5 ) Emmy Amalie Noether was born on 23 March 1882 in Erlangen, Bavaria, Germany
and died on 14 April 1935 in Bryn Mawr, Pennsylvania, USA. Emmy Noether’s father Max Noether was a distinguished mathematician and a
professor at Erlangen. Her mother was Ida Kaufmann, from a wealthy Cologne family. Both Emmy’s parents were of Jewish origin and Emmy
was the eldest of their four children, the three younger children being boys.

Emmy Noether attended the Höhere Töchter Schule in Erlangen from 1889 until 1897. She studied German, English, French, arithmetic and
was given piano lessons. She loved dancing and looked forward to parties with children of her father’s university colleagues. At this stage her
aim was to become a language teacher and after further study of English and French she took the examinations of the State of Bavaria and,
in 1900, became a certificated teacher of English and French in Bavarian girls schools. However Noether never became a language teacher.
Instead she decided to take the difficult route for a woman of that time and study mathematics at university. Women were allowed to study at
German universities unofficially and each professor had to give permission for his course. Noether obtained permission to sit in on courses at the
University of Erlangen during 1900 to 1902. Then, having taken and passed the matriculation examination in Nürnberg in 1903, she went to the
University of Göttingen. During 1903-04 she attended lectures by Blumenthal, Hilbert, Klein and Minkowski.

In 1904 Noether was permitted to matriculate at Erlangen and in 1907 was granted a doctorate after working under Paul Gordan. Hilbert’s basis
theorem of 1888 had given an existence result for finiteness of invariants in n variables. Gordan , however, took a constructive approach and
looked at constructive methods to arrive at the same results. Noether’s doctoral thesis followed this constructive approach of Gordan and listed
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systems of 331 covariant forms. Having completed her doctorate the normal progression to an academic post would have been the habilitation .
However this route was not open to women so Noether remained at Erlangen, helping her father who, particularly because of his own disabilities,
was grateful for his daughter’s help. Noether also worked on her own research, in particular she was influenced by Fischer who had succeeded
Gordan in 1911. This influence took Noether towards Hilbert’s abstract approach to the subject and away from the constructive approach of
Gordan.
Noether’s reputation grew quickly as her publications appeared. In 1908 she was elected to the Circolo Matematico di Palermo, then in 1909 she
was invited to become a member of the Deutsche Mathematiker Vereinigung and in the same year she was invited to address the annual meeting
of the Society in Salzburg. In 1913 she lectured in Vienna.

In 1915 Hilbert and Klein invited Noether to return to Göttingen. They persuaded her to remain at Göttingen while they fought a battle to have
her officially on the Faculty. In a long battle with the university authorities to allow Noether to obtain her habilitation there were many setbacks
and it was not until 1919 that permission was granted. During this time Hilbert had allowed Noether to lecture by advertising her courses under
his own name. For example a course given in the winter semester of 1916-17 appears in the catalogue as:Mathematical Physics Seminar:
Professor Hilbert, with the assistance of Dr E Noether, Mondays from 4-6, no tuition.

Emmy Noether’s first piece of work when she arrived in Göttingen in 1915 is a result in theoretical physics sometimes referred to as Noether’s
Theorem, which proves a relationship between symmetries in physics and conservation principles. This basic result in the general theory of
relativity was praised by Einstein in a letter to Hilbert when he referred to Noether’s penetrating mathematical thinking. It was her work in
the theory of invariants which led to formulations for several concepts of Einstein’s general theory of relativity. At Göttingen, after 1919,
Noether moved away from invariant theory to work on ideal theory, producing an abstract theory which helped develop ring theory into a major
mathematical topic. Idealtheorie in Ringbereichen (1921) was of fundamental importance in the development of modern algebra. In this paper
she gave the decomposition of ideals into intersections of primary ideals in any commutative ring with ascending chain condition. Lasker (the
world chess champion) had already proved this result for polynomial rings. In 1924 B L van der Waerden came to Göttingen and spent a year
studying with Noether. After returning to Amsterdam van der Waerden wrote his book Moderne Algebra in two volumes. The major part of
the second volume consists of Noether’s work. From 1927 on Noether collaborated with Helmut Hasse and Richard Brauer in work on non-
commutative algebras. In addition to teaching and research, Noether helped edit Mathematische Annalen. Much of her work appears in papers
written by colleagues and students, rather than under her own name.

Further recognition of her outstanding mathematical contributions came with invitations to address the International Mathematical Congress at
Bologna in 1928 and again at Zurich in 1932. In 1932 she also received, jointly with Artin, the Alfred Ackermann-Teubner Memorial Prize for
the Advancement of Mathematical Knowledge. In 1933 her mathematical achievements counted for nothing when the Nazis caused her dismissal
from the University of Göttingen because she was Jewish. She accepted a visiting professorship at Bryn Mawr College in the USA and also
lectured at the Institute for Advanced Study, Princeton in the USA.

Weyl in his MemorialAddress said:Her significance for algebra cannot be read entirely from her own papers, she had great stimulating
power and many of her suggestions took shape only in the works of her pupils and co-workers.

van der Waerden writes:For Emmy Noether, relationships among numbers, functions, and operations became transparent, amenable
to generalisation, and productive only after they have been dissociated from any particular objects and have been reduced to general
conceptual relationships.
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