1. Inclusion-Exclusion Principle

1.1. (Sylvester's Sieve--formula) Let X_{1}, \ldots, X_{n} be finite sets. For $J \subseteq\{1, \ldots, n\}$, let $X_{J}:=\bigcap_{i \in J} X_{i}$ with $X_{\emptyset}:=\bigcup_{i=1}^{n} X_{i}$. Prove that

$$
\sum_{J \in \mathfrak{P}(\{1, \ldots, n\})}(-1)^{|J|}\left|X_{J}\right|=0, \quad \text { i.e. } \quad|X|=\sum_{\emptyset \neq J \in \mathfrak{P}(\{1, \ldots, n\})}(-1)^{|J|-1}\left|X_{J}\right|
$$

(Hint: By induction on n. - Variant: For $k=1, \ldots, n$, let Y_{k} be the set of elements $x \in X_{\emptyset}$ which belong to exactly k of the sets X_{1}, \ldots, X_{n}. Then $Y_{k}, 1 \leq k \varsigma_{n} n$ are pairwise disjoint. Using Exercise T1.3 b) show that

$$
\left.\sum_{\substack{J \in \mathfrak{P}((11, \ldots, n) \\ \text { FI leven }}}\left|X_{J}\right|=\sum_{k=1}^{n} 2^{k-1}\left|Y_{k}\right|=\sum_{\substack{J \in \mathfrak{P}(11, \ldots, n) \\|J| \text { odd }}}\left|X_{J}\right| .\right)
$$

1.2. a). Let X be a finite set with m elements. Let p_{m} denote the number of permutations of X which donot have fixed points and let $s_{m}=m$! be the number of all permutations of X. Show that:

$$
\frac{p_{m}}{s_{m}}=\frac{1}{0!}-\frac{1}{1!}+\cdots+(-1)^{m} \cdot \frac{1}{m!}
$$

(Hint: Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$. Set $X_{i}:=\left\{\sigma \in \mathfrak{S}(X): \sigma\left(x_{i}\right)=x_{i}\right\}$ and compute $s_{m}-p_{m}=\left|\bigcup_{i=1}^{m} X_{i}\right|$ using the Sieve formula in Exercise 1.1. - Remark : Note that $\lim _{m \rightarrow \infty}\left(p_{m} / s_{m}\right)=e^{-1}$, where $e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=$ $2.71828182845904523536 \ldots$ is the Euler's number which is base of the natural logarithm.) - The number of permutations of X with exactly r fixed points is $\binom{m}{r} p_{m-r}, 0 \leq r \leq m$. (Proof!)
b). Let X be a finite set with m elements and let Y be a finite set with n elements. The number of surjective maps from X in Y is

$$
n^{m}-\binom{n}{1}(n-1)^{m}+\binom{n}{2}(n-2)^{m}-\cdots+(-1)^{n}\binom{n}{n}(n-n)^{m}
$$

(Hint: Let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. Set $P_{i}:=\left\{f \in Y^{X}: y_{i} \notin \operatorname{im} f\right\}$ and compute the number $\left|\bigcup_{i=1}^{n} P_{i}\right|$ of non-surjective maps using the Sieve formula in Exercise 1.1.)
1.3. Let I be a finite index set with n elements and let $\sigma_{i} \in \mathbb{N}$ for $i \in I, \pi:=\prod_{i \in I} \sigma_{i}, \sigma:=\sum_{i \in I} \sigma_{i}$ and $\sigma_{H}:=\sum_{i \in H} \sigma_{i}$ for $H \subseteq I$. Then

$$
\sum_{H \subseteq I}(-1)^{|H|}\binom{\sigma_{H}}{n}=(-1)^{n} \pi \quad \text { and } \quad \sum_{H \subseteq I}(-1)^{|H|}\binom{\sigma_{H}}{n+1}=\frac{(-1)^{n}}{2}(\sigma-n) \pi
$$

(Hint: Let $X=\bigcup_{i \in I} X_{i}$, where X_{i} are pairwise disjoint subsets with $\left|X_{i}\right|=\sigma_{i}$. For a proof of the first formula consider the set $\mathfrak{P}_{n}(X)$ and its subsets $Y_{i}:=\left\{A \in \mathfrak{P}_{n}(X) \mid A \cap X_{i}=\emptyset\right\}$ and use the Sieve formula in Exercise 1.1 to find $\left|\bigcup_{i \in I} Y_{i}\right|$.
1.4. Let m, n be two natural numbers.
a). Let $\mathrm{a}(m, n)$ (resp. $\mathrm{b}(m, n)$) denote the number of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$ with $x_{1}+\cdots+x_{m} \leq$ n (resp. $\left.x_{1}+\cdots+x_{m}=n\right)$. Show that $\mathrm{a}(m, n)=\binom{n+m}{m}$ and $\mathrm{b}(m, n)=\binom{n+m-1}{m-1}$. (Hint: Remember to put $\binom{-1}{-1}:=1$. Note that $\mathrm{a}(m-1, n)=\mathrm{b}(m, n)$ and $\mathrm{a}(m, n)=\mathrm{a}(m, n-1)+\mathrm{a}(m-1, n)$ if $m \geq 1$ and use induction on $n+m$. - Variant: The map $\left(x_{1}, \ldots, x_{m}\right) \mapsto\left\{x_{1}+1, x_{1}+x_{2}+2, \ldots, x_{1}+\cdots+x_{m}+m\right\}$ maps the set of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}$ with $x_{1}+\cdots+x_{m} \leq n$ bijectively onto the set of m-element subsets of $\{1,2, \ldots, n+m\}$.
b). Suppose that $m \geq 1$. Prove that the number of m-tuples $\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{N}^{+}\right)^{m}$ of positive natural numbers with $x_{1}+\cdots+x_{m}=n$ is $\binom{n-1}{m-1}$.
c). Let $k \in \mathbb{N}$ with $k \leq n$. Prove that the subset $\mathfrak{X}=\left\{A \in \mathfrak{P}_{k}(\{1, \ldots, n\}) \mid\right.$ if $a \in A$, then $\left.a+1 \notin A\right\}$ of $\mathfrak{P}_{k}(\{1, \ldots, n\})$ has cardinality $\binom{n-k+1}{k}$.
d). Let $X=\left\{x_{1}, \ldots, x_{2 n+1}\right\}, n \in \mathbb{N}$ be a set with $2 n+1$ elements. For $k=0,1, \ldots, n$, let \mathfrak{X}_{k} be the set of all those subsets of X of cardinality $\geq n+1$ which contain x_{n+k+1} and exactly n elements from x_{1}, \ldots, x_{n+k}, i.e. $\mathfrak{X}_{k}=\left\{A \in \mathfrak{P}_{\geq n+1}(X)| | A \cap\left\{x_{1}, \ldots x_{n+k}\right\} \mid=n\right.$ and $\left.x_{n+k+1} \in A\right\}$. Show that $\bigcup_{k=0}^{n} \mathfrak{X}_{k}=\mathfrak{P}_{\geq n+1}(X)$ and hence deduce that $\sum_{k=0}^{n} 2^{n-k}\binom{n+k}{k}=4^{n}$. (Note that subsets of X which are elements of \mathfrak{X}_{k} may contain some elements from $x_{n+k+2}, \ldots, x_{n+1}$. See also Exercise T1.3-b), T1.4-e) and i).)

On the other side one can see (simple) test-exercises.

Test-Exercises

T1.1. (Tower of Hanoi) The puzzle consists of n disks of decreasing diameter placed on a pole. There are two other poles. The problem is to move the entire pile to another pole by moving one disk at a time to any other pole, except that no disk may be placed on top of a smaller disk. Find a formula for the least number of moves needed to move n disks from one pole to another, and prove the formula by induction.
T1.2. (Indicator functions) Let I be a set. For a subset $J \in \mathfrak{P}(I)$, let $e_{J}: I \rightarrow\{0,1\}$ be the indicator function of J (with respect to I), i.e. $e_{J}(i)=\left\{\begin{array}{ll}1, & \text { if } i \in J, \\ 0, & \text { if } i \in I \backslash J .\end{array}\right.$. Note that $e_{I}=1$ and $e_{\emptyset}=0$. Show that
a). The map $J \mapsto e_{J}$ is a bijective map from the poer set $\mathfrak{P}(I)$ onto the set $\{0,1\}^{I}$ of all maps $I \rightarrow\{0,1\}$.
b). For subsets $J, K \subseteq I$, prove that: $e_{J \cap K}=e_{J} e_{K}, \quad e_{J \cup K}=e_{J}+e_{K}-e_{J} e_{K}, \quad e_{J \backslash K}=e_{J}\left(1-e_{K}\right)$. In particular, $e_{I \backslash J}=1-e_{J}$ and $e_{J \Delta K}=e_{J}+e_{K}-2 e_{J} e_{K}$.
c). For $J, K \in \mathfrak{P}(I)$, let $J+K:=J \Delta K:=(J \cup K) \backslash(J \cap K)$ denote the symmetric difference of J and K. Show that: 1) $J+K=K+J$ and $J+\emptyset=J, J+J=\emptyset . \quad 2)(J+K)+L=J+(K+L)$ for all $J, K, L \in \mathfrak{P}(I)$. 3) For every $J, L \in \mathfrak{P}(I)$, there exists a unique K such that $J+K=L$.
4) $(J+K) \cap L=(J \cap L)+(K \cap L)$ for all $J, K, L \in \mathfrak{P}(I)$.
(Remark : For verification of these properties use indicator functions and their rules given in b). These properties of the symmetric difference Δ show that the power set $\mathfrak{P}(I)$ with the symmetric difference Δ as addition and the intersection \cap as multiplication is a commutative ring with \emptyset as the zero element 0 and I as the unit element 1 . This ring $(\mathfrak{P}(I), \Delta, \cap)$ is called the set-ring of I. Moreover, it is a finite dimensional algebra over the prime field \mathbb{Z}_{2} of dimension $|I|$; if $|I|=1$, then it is the prime field \mathbb{Z}_{2}; in the case $|I|>1$, it is not a field - nor even an integral domain.)

T1.3. Use induction to prove that : for all $n \in \mathbb{N}: ~ a) . ~ \sum_{k=0}^{n} k \cdot(k!)=(n+1)!-1 . \quad$ b). $\quad \sum_{k=0}^{n} 2^{n-k}\binom{n+k}{k}=4^{n}$. (see also Exercise 1.4-d).) c). $\quad \sum_{k=m}^{n}\binom{k}{m}=\binom{n+1}{m+1}, \quad m \in \mathbb{N}, m \leq n$.

T1.4. Let X be a finite set with n elements.
a). The number of subsets of X is 2^{n}.
(Hint: The map $\mathfrak{P}(X) \rightarrow\{0,1\}^{X}, A \mapsto e_{A}$ is bijective.)
b). If $n \in \mathbb{N}^{*}$, then the number of subsets of X with an even number of elements is equal to the number of subsets of X with an odd number of elements. Moreover, this number is equal to 2^{n-1}.
(Hint: Let $a \in X$. The map defined by $A \mapsto A \cup\{a\}$, if $a \notin A$, resp. $A \backslash\{a\}$, if $a \in A$, is a bijective map from the set of subsets with an even number of elements onto the set of subsets with an odd number of elements.)
c). For $n \in \mathbb{N}$, prove that: $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$.
(Hint: Use part a).)
d). For $n \in \mathbb{N}^{*}$, prove that: $\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n}\binom{n}{n}=0 . \quad\left(\right.$ Hint : Use part b) or $\left.(1-1)^{n}=0.\right)$
e). Prove that $\sum_{k=0}^{n}\binom{2 n+1}{2 k}=4^{n}=\sum_{k=0}^{n}\binom{2 n+1}{2 k+1}$ for $n \in \mathbb{N}$ and $\sum_{k=0}^{n}\binom{2 n}{2 k}=\frac{4^{n}}{2}=\sum_{k=0}^{n-1}\binom{2 n}{2 k+1}$ for $n \in \mathbb{N}^{*}$. (Hint : Use part b).)
f). Let Y be a k-element subset of X. Then the number of m-element subsets of X which contain Y is $\binom{n-k}{m-k}$.
g). For natural numbers m, n with $m \leq n$, show that $\sum_{k=0}^{m}\binom{n}{k}\binom{n-k}{m-k}=2^{m}\binom{n}{m}$. (Hint: Compute the sum of all numbers in the part e), where Y runs through all k-element subsets of X in two different ways or use the formula $\binom{n}{k}\binom{n-k}{m-k}=\binom{n}{m}\binom{m}{k}$.)
h). For $m, n, k \in \mathbb{N},\binom{m+n}{k}=\binom{m}{0}\binom{n}{k}+\binom{m}{1}\binom{n}{k-1}+\cdots+\binom{m}{k}\binom{n}{0}$. In particular, $\binom{2 n}{n}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}$ for $n \in \mathbb{N}$. (Hint: Let X, Y be disjoint sets with $|X|=m,|Y|=n$. The assignment $A \mapsto(A \cap X, A \cap Y)$ defines a bijective map $\mathfrak{P}(X \cup Y) \rightarrow \mathfrak{P}(X) \times \mathfrak{P}(Y)$.)
i). What is the cardinality of the set $\mathfrak{P}_{\geq n+1}(\{1,2, \ldots, 2 n+1\})$? (see also Exercises T1.3-b), T1.4-e) and 1.4-d).)

T1.5. Let X be a finite set with n elements.
a). The number of pairs $\left(X_{1}, X_{2}\right)$ in $\mathfrak{P}(X) \times \mathfrak{P}(X)$ with $X_{1} \cap X_{2}=\emptyset$ is 3^{n}. More generally: The number of m-tuples $\left(X_{1}, \ldots, X_{m}\right)$ of pairwise disjoint subsets $X_{1}, \ldots, X_{m} \subseteq X$ is equal $(m+1)^{n}$.
b). For $n, r \in \mathbb{N}$, prove that $\sum_{m}\binom{n}{m}=r^{n}$, where m run through the set of r-tuples $\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{N}^{r}$ of natural numbers with $m_{1}+\cdots+m_{r}=m$.
(Hint: Use $r^{n}=(1+\cdots+1)^{n}$ or the part a).)

