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2. Finite Sets — Elementary counting techniques

2.1. Let X1, . . . , Xn be finite subsets of a finite set � . For ∅ �= J ⊆ {1, . . . , n} , let XJ := ⋂
i∈J Xi

and X := X∅ := ⋃n
i=1 Xi . Further, for j = 1, . . . , n , put ξj := ∑

J∈Pj ({1,...,n}) |XJ | and ξ0 := |�| .
Prove that

a).

∣∣∣∣∣
n⋂

i=1

(� \ Xi)

∣∣∣∣∣ =
n∑

j=0

(−1)j ξj . (Hint : By Sylvester’s sieve formula (Exercise 1.1-a)),

|X| = ∑n

j=1(−1)j−1ξj . Since ∩n
i=1(� \ Xi) = � \ ∪n

i=1Xi = � \ X , we get | ∩n
i=1 (� \ Xi)| = |�| − |X| .)

b). For k = 1, . . . , n , let Yk be the set of all those elements in X which belongs to exactly k of the

subsets X1, . . . , Xn . Then |Ym| =
n∑

r=m

(−1)r−m

(
r

m

)
ξr for all 1 ≤ m ≤ n . (Hint : Let 1 ≤ k, m ≤ n

and let m be fixed. Suppose that x ∈ Yk and (may) assume that x ∈ X1, . . . , Xk and x �∈ Xi for all k < i ≤ n .
If k < m , then x �∈ Ym and hence x does not contribute anything to ξr for r ≥ m . If k = m , then x ∈ Ym and
in the sum on the LHS it contributes only to one term, namely, to

(
m

m

)
ξm , since ξm := ∑

J∈Pm({1,...,n}) |XJ | and
only one of these intersections, namely, X1 ∩ · · · ∩ Xm contains x . In the remaining case k > m , x �∈ Ym and
hence x contributes nothing. On the other hand its contribution to ξr is

(
k

r

)
(one in each J ∈ Pr ({1, . . . , k}) .

Therefore if we let j = r −m , then the problem redusces to prove the identity
∑k−m

j=0 (−1)j
(
m+j

m

)(
k

m+j

) = 0 which
is stated in Exercise T2.1-b)-2).)

2.2. 1) Let � be a finite set and let f : � × P(�) → R be the map defined by (x, A) 
→{ 0, if x �∈ A ,
1, if x ∈ A .

Show that :

a). For each A ∈ P(�) , the map f (−, A) is the indicator function eA of A . In particular, for
any two subsets A, B ∈ P(�) , we have : (1) f (x, � \ A) = 1 − f (x, A) ; (2) f (x, A ∩ B) =
f (x, A)·f (x, B) ; (3) f (x, A∪B) = f (x, A)+f (x, B)−f (x, A∩B) ; (4) |A| = ∑

x∈� f (x, A) .
(Hint : See the Exercise T1.2.)

b). Let I := {1, 2, . . . , n} and let X1, . . . , Xn ∈ P(�) and for each J ∈ P(I ) , let XJ := ∩j∈J Xj

(and X∅ := � ). Then
∑

J∈Pj (I )

|XJ | =
∑
x∈�

( ∑
J∈Pj (I )

f (x, XJ )
)

. (Hint : use the part a).)

c). If an element x ∈ � belongs to exactly k of the subsets X1, . . . , Xn , then
∑

J∈Pr (I )

f (x, XJ )=
(

k

r

)
.

(Here we use the understanding that
(0

0

) = 1 . — Hint : We may assume that x ∈ X1 ∩ · · · ∩ Xk and x �∈ Xi for
all k < i ≤ n . For every J ∈ Pr ({1, . . . , n}) , f (x, XJ ) = ∏

j∈J f (x, Xj ) = 1 if and only if J ⊆ {1, . . . , k} ,

i.e., J ∈ Pr ({1, . . . , k}) . This proves that LHS is equal to the cardinality | Pr ({1, . . . , k})| = (
k

r

)
. )

d). For every x ∈ � , f (x, ∩n
i=1(� \ Xi)) =

n∑
j=0

(−1)j
( ∑

J∈Pj (I )

f (x, XJ )
)

. (Hint : For i ∈ I :=

{1, . . . , n} , put X′
i := � \ Xi . Then by a)-1) , 2) LHS = ∏n

i=1 f (x, X′
i ) = ∏n

i=1(1 − f (x, Xi)) =
1 + ∑n

j=1(−1)j
∑

J∈Pj (I )(
∏

k∈J f (x, Xk)) = 1 + ∑n

j=1(−1)j
∑

J∈Pj (I ) f (x, XJ )) . —Remark : Suming over
the two sides of this formula as x varies over � and using the parts a) and b), we get the proof of the formula
give in the Exercise 2.1-b).)

2.3. For k ∈ N+ , a k- a r y s e q u e n c e is a sequence with values in a finite set with k elements
(generally in the set {0, 1, . . . , k −1} ), i.e. a k-ary sequence is an element in the set {0, 1, . . . , k −1}N .
For k = 2, 3, 4, 5 these sequences are also called b i n a r y , t e r n a r y , q u a t e r n a r y , q u i n t n a r y
sequences. (See also Exercise T2.1-c).)

1) The purpose of this Exercise is to give an alternative proof of the Exersicse 2.1-b).
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2.2 MA-217 Discrete Mathematics / January-April 2007 2. Finite Sets — Elementary counting techniques

a). The number of binary sequences of length n in which the digit 1 occurs even number of times is
2n−1 . This is also the number of binary sequences of length n in which the digit 1 occurs odd number of
times. (Hint : Let X := {0, 1}{1,...,n} be the set of all binary sequences of length n and let Xeven(1) (respectively,
Xodd(1) be the set of all binary sequences of length n in which the digit 1 occurs even (respectively, odd)
number of times. Then clearly X = Xeven(1) � Xodd(1) . First assume that n is odd. Then the map f : X → X

defined by f ((a1, . . . , an) = (a′
1, . . . , a

′
n) , where a′

i = 0 or 1 according as ai = 1 or 0 for all i = 1, . . . n ,
is a bijection. Moreover, if n is odd, then f (Xeven(1)) = Xodd(1) and f (Xodd(1)) = Xeven(1) . Therefore
|Xeven(1)| = |Xodd(1)| and 2n = |X| = |Xeven(1)|+|Xodd(1)| = 2 · |Xeven(1)| = 2 · |Xodd(1)| . Now, if n is even,
then one can reduce the computation to the case when n is odd : Let A := {(a1, . . . , an, an+1) ∈ X | an+1 = 1
and B := {(a1, . . . , an, an+1) ∈ X | an+1 = 0 . Then |A| = |B| = 2n−1 and hence X = A � B . Further,
Xeven(1) = (A ∩ Xeven(1)) � (B ∩ Xeven(1)) and hence |Xeven(1)| = |(A ∩ Xeven(1))| + |(B ∩ Xeven(1))| =
2n−2 + 2n−2 = 2n−1 , since n − 1 is odd. Finally, |Xodd(1)| = |X| − |Xeven(1))| = 2n − 2n−1 = 2n−1 .)

b). The number of k-ary sequences of length n in which the digit 1 occurs even number of times is
kn + (k − 2)n

2
. (Hint : Let Y := {2, 3, . . . , k − 1}{1,...,n} denote the set of all those k-ary sequences of length

n which do not contain 0 or 1 and let Z : X \ Y . Classify the sequences in Z by their pattern, i.e., consider the
equivalence classes ∼ (see Exercise T2.3-g)) Z1, . . . , Zs with respect to the equivalence relation on Z . Then
|Z| = |Z1| + · · · + |Zs | . Note that by definition Zi is the set of all k-ary sequences of length n which have the
same pattern of the symbols 2, 3, . . . , k − 1 and hence |Zi | = 2n−r , where r is the number of places filled by
the symbols 2, 3, . . . , k − 1 . Now by part a) half of these sequences have even number of 1’s and this is true
for all i = 1, . . . , s . This proves that |Zeven(1)| = ∑s

i=1
1
2 |Zi | = 1

2 |Z| = 1
2 (kn − (k − 2)n) . Therefore, since

Xeven(1) = Y � Zeven(1) , we get |Xeven| = |Y | + |Zeven(1)| = (k − 2)n + 1
2 (kn − (k − 2)n) . )

c). For positive natural numbers n, k ∈ N+ , k ≥ 2 , prove the formula :
∑
r∈N

(
n

2r

)
(k − 1)n−2r = kn + (k − 2)n

2
. (Hint : Follows from the part b), since the

sum on the left is the number of k-ary sequences of length n in which the digit 1 occurs even number of times.)

d). The number of k-ary sequences of length n in which both 0 and 1 occur even number of times is
kn + 2(k − 2)n + (k − 4)n

4
, k ≥ 2 .(Hint : Let 1 occur 2r times in a k-ary sequences of length n . Then

the remaining (k − 1)-ary sequence is of length n − 2r . If 0 occur in an even number of times, then by part b),

there are (k−1)n−2r+(k−3)n−2r

2 such sequences. Now the assertion follows by applying the part c) twice (once for k

and then for k − 2 ) and adding.)

e). Find the number of k-ary sequences of length n in which the digit 1 occurs even number of times
and the digit 0 occurs odd number of times. (Hint : The answer is kn−(k−4)n

4 — From the k-ary sequences
of length n in which the digit 1 occur even number of times, remove the k-ary sequences of length n in which

the digit 0 occur even number of times, i.e., compute
∑

r∈N

(
n

2r

)[
(k − 1)n−2r − (k−1)n−2r+(k−3)n−2r

2

]
.)

2.4. Prove the following (marriage2)) theorem : Let Yx , x ∈ X , be a finite family of sets. For every
subset N of X assume that the set YN := ∪x∈NYx has at least |N | elements, i. e., |YN | ≥ |N | for
every N ∈ P(X) . Then there exists an injective map f : X → YX with f (x) ∈ Yx for every x ∈ X .

(Proof : Proof by induction on n = |X| . The case of n = 1 and a single pair liking each other requires a mere
technicality to arrange a match. For the inductive step consider two cases : Case 1: |YN | > |N | for every subset

2) This theorem is popularly known as the ( m a r r i a g e - t h e o r e m ) and it provides the solution for the m a r r i a g e
p r o b l e m which requires to match n girls with the set of n boys. Each girl (after a long and no doubt exhausting
deliberation) submits a list of boys she likes. We also make an assumption that being of noble character no
boy will break a heart of a girl who likes him by turning her down. Sometimes all the girls can be given away,
sometimes no complete match is possible. Therefore for a complete match a (marriage) condition is necessary;
the marriage condition can be formulated in several equivalent ways, for example, For each r = 1, . . . , n every
set of r girls likes at least r boys. (or equivalently, For each r = 1, . . . , n every set of r boys likes at least
r girls.) The marriage condition and the marriage theorem are due to the English mathematician Philip Hall
(1935). Therefore Marriage theorem is precisely: Hall’s marriage condition is both sufficient and necessary for
a complete match. The necessecity is obvious. The sufficient part is shown by induction on n = |X| .
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MA-217 Discrete Mathematics / January-April 2007 2. Finite Sets — Elementary counting techniques 2.3

N ⊆ X , N �= ∅ , N �= X . In this case for x ∈ X , choose y ∈ Yx and consider X′ := X\{x} and Y ′
x′ := Yx \{y} ,

x ′ ∈ X . Then clearly the marriage condition still holds and hence by the inductive hypothesis, there is an injective
map f ′ : X′ → Y ′

X′ with f ′(x ′) ∈ Y ′
x′ . Now, define f : X → YX by f (x) = y and f (x ′) = f ′(x ′) .

Case 2: There exists a subset ∅ �= N ⊂ X , with |YN | = |N | . In this case, by the inductive hypothesis, there exists
an injective (in fact bijective) map g : N → YN . The trick is to show that X′′ := X \ N and Y ′′

x′′ := Yx′′ \ YN ,
x ′′ ∈ X′′ satisfy the marriage condition, then by the inductive hypothesis, there is an injective map X′′ → Y ′′

X′′
with f ′′(x ′′) ∈ Y ′′

x′′ . Now, define f : X → YX by f (x)=g(x) for x ∈ N and f (x ′′)=f ′′(x ′′) for x ′′ ∈ X′′ . • )

a). Let p = (X1, . . . , Xr) and let q = (Y1, . . . , Yr) be partitions of the set X into r pairwise disjoint
subsets each of them with n ≥ 1 elements. Show that p and q has a common representative system,
i.e. there exist r distinct elements x1, . . . , xr in X such that each xi belongs to exactly one of the
subset X1, . . . , Xr and exactly one of the subset Y1, . . . , Yr . ( Hint : Using the above Marriage-theorem
find a permutation σ ∈ Sr such that Xi ∩ Yσ(i) �= ∅ for every 1 ≤ i ≤ r . — Remark : The assumption
that |Xi | = |Yi | = n for all i = 1, . . . , r can be replaced by some what weaker condition : for every subset
J ⊆ {1, . . . , r} , the subset XJ := ∪j∈J Xj contains at most |J | components Y1, . . . , Yr of q .)

b). Let A be the n × r integral matrix

A =




1 2 · · · r

r + 1 r + 2 · · · 2r
...

...
. . .

...

(n − 1)r + 1 (n − 1)r + 2 · · · nr




and let B be another n × r integeral with entries 1, 2, . . . , nr (at arbitrary positions). Show that there
exists a permutation σ ∈ Sr such that for every i = 1, . . . , r , the i-th column of A and the σ(i)-th
column of B contain at least one element in common. ( Hint : Use the part a).)

c). Let G be a finite group and let H be a subgroup of G . Let G = Hy1 ∪ · · · ∪ Hyr (respectively,
G = z1H ∪ · · · ∪ zrH ) be a right-coset (respectively, left-coset) decomposition for G . Show that there
exist elements x1, . . . , xr ∈ G such that G = Hx1 ∪ · · · ∪ Hxr = x1H ∪ · · · ∪ xrH . ( Hint : Use the
part a).)
d). Let X be a finite set with n elements. For i ∈ N, let Pi (X) be the set of all subsets Y of X with
|Y | = i. Show that: If i ∈ N with 0 ≤ i < n/2 (resp. with n/2 < i ≤ n), then there exists an
injective map fi : Pi (X) → Pi+1(X) such that Y ⊆ fi(Y ) for all Y ∈ Pi (X) (resp. an injective map
gi : Pi (X) → Pi−1(X) such that gi(Y ) ⊆ Y for all Y ∈ Pi (X)). ( Hint : Let 0 ≤ i < n/2.
A pair (Y, Y ′) ∈ Pi (X) × Pi+1(X) is called amicable if Y ⊆ Y ′. Let R be a subset of Pi (X) with |R| =: r .
Further, let R′ be the set of all those Y ′ ∈ Pi+1(X) which are amicable to at least one Y ∈ R. Put s := |R′|. Then
r(n − i) ≤ s(i + 1) and hence r ≤ s. Now use the marriage-theorem.)

2.5. Let X be a finite set with n elements.

a). Let (m1, . . . , mr) ∈ Nr be such that m1 + · · · + mr = n . Show that the number of partitions
p = (X1, . . . , Xr) of X with |Xi | = mi , for all i = 1, . . . , r , is the polynomial coefficient(

n

m

)
:= n!

m!
= n!

m1! · · · mr !
.

(Hint : Fix a partition q = (Y1, . . . , , Yr ) of X with |Yi |=mi , i = 1, . . . , r and define a map S(X) −→ Z :=
{p=(X1, . . . , Xr) ∈ Parr (X) | |Xi |=mi, i = 1, . . . , r} , be the map defind by f 
→ p(f ) :=(f (X1), . . . , f (Xr)) .
Show that all the fibres of this map have the same cardinality = m! = m1! · · · mr ! . Now use the Shepherd-rule.

b). ( S t i r l i n g n u m b e r s o f s e c o n d k i n d 3)) For n, r ∈ N with 0 ≤ r ≤ n , put S(n, r) :=
|Parr (X)| , where Parr (X) is the set of all partitions p = (X1, . . . , Xr) of X into r subsets. For all
other pairs (n, r) ∈ Z2 , we put S(n, r) = 0 . Show that

(1) For n ≥ 1 , S(n, 2) = 2n−1 − 1 .

3) James Stirling (1692-1770) was a Scottish mathematician whose most important work Methodus Dif-
ferentialis in 1730 is a treatise on infinite series, summation, interpolation and quadrature.
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(2) S(n, r) = 1

r!
|Mapssurj(X, {1, . . . , r})| = 1

r!

r∑
k=0

(−1)k
(

r

k

)
(r − k)n =

r∑
k=0

(−1)k(r − k)n−1

k! · (r − k − 1)!
.

In particular, r! =
r∑

i=0

(−1)k
(

r

k

)
(r − k)r .

(3)
n∑

k=1

k! ·
(

r

k

)
· S(n, k) = rn .

(Hint : To prove (1) show that each fibre of the map P(X) \ {∅, X} → Par2(X) defined by Y 
→ (Y, X \ Y ) has
cardinality 2 and hence 2n −2 = |P(X)\{∅, X}| = 2 · |Par2(X)| by Shepherd-rule. To prove (2) show that each
fibre of the map Mapssurj(X, {1, . . . , r}) → Parr (X) defined by f 
→ (f −1(1), . . . , f −1(r)) has cardinality
r! and hence by the Shepherd-rule and Exercise 1.2-b), we have r! · |Parr (X)| = |Mapssurj(X, {1, . . . , r})| .
The last part follows from the equality π(r, r) = 1 . For the proof of (3), compute the cardinality of each

fibre of the map Maps(X, {1, . . . , r}) →
n⊎

k=1

Pk

({1, . . . , r}) × Park(X)
)

defined by f 
→ (f (X), p(f )) , where

p(f ) := (f −1(i))i∈f (X) and then use (2). — Remarks : The Stirling numbers appear in many other problems.
Clearly S(n, r) = 0 for r > n , S(n, n) = 1 , S(n, 1) = 1 ; S(n, n − 1) = (

n

2

)
; a less trivial result is the formula

for S(n, 2) given in the part (1). For r > 2 , there is no easy formula for S(n, r) . For small values of n and
r one can find S(n, r) by actually considering all partitions of a set with n elements. For higher values this
becomes impracticable and also unreliable. The important recurrence relation given below in c) which allows us
to compute a Stirling numbers by first computing the lower Stirling numbers.

Consider the polynomial F(T ) := T n −
n∑

k=0

k! ·S(n, k) ·
(

T

k

)
, where

(
T

k

)
:= T (T − 1) · · · (T − k + 1)

k!
are the

b inomia l po lynomia l s of degree k . Then, since F(T ) is a polynomial of degree ≤ n with integer coefficients
and by (3), the integers 0, 1, . . . , n are n + 1 distinct zeroes of F , we conclude that F = 0 and therefore the

Stirling numbers od second kind are also defined by the polynomial equation T n =
n∑

k=0

k! · S(n, k) ·
(

T

k

)
. If

one takes this as the definition of the Stirlings numbers S(n, r) of second kind, then (1) and (3) are immediate by
putting T = 2 and T = r respectively.

This also leads to the definition of the S t i r l i n g n u m b e r s o f f i r s t k i n d : For r, n ∈ N with 0 ≤ r ≤ n ,

let s(n, r) ∈ Z be defined by the polynomial equation :
(

T

n

)
= 1

n!
·

n∑
r=0

(−1)n−r · s(n, r) · T r . (Put s(n, r)=0

otherwise. For the existence of the numbers s(n, r) use the fact that 1, T , . . . , T n and
(
T

0

)
,
(
T

1

)
, . . . ,

(
T

n

)
are two

bases of the Q-vector space Q[T ]n of polynomials with rational coefficients of degree ≤ n.))

c). The Stirling numbers of second kind satisfy the recursion relations :

S(0, r) = δ0r , and S(n + 1, r) = rS(n, r) + S(n, r − 1) ,

where δij denote the Kronecker’s delta. ( Hint : From
(

T

k+1

) = T · (
T

k

) − k · (
T

k

)
, we get

T n+1 = ∑n

k=0 k! ·S(n, k) ·T ·(T

k

) = ∑n+1
k=0 k! · [k · S(n, k) + S(n, k − 1)] ·(T

k

)
. — Remark : The Stirling numbers

of first kind satisfy the recursion relations : s(0, r) = δ0r , and s(n + 1, r) = n · s(n, r) + s(n, r − 1) .)

d). Prove that βn =
n∑

r=0

S(n, r) for every n ∈ N . (Hint : See Exercise T2.4-k). Use Exercise T2.5-b).)

e). Prove that S(n + 1, r) =
n∑

k=1

(
n

k

)
S(k, r − 1) =

n∑
k=0

rn−kS(k, r − 1) . (Hint : The second equality

is proved by induction and using recursion relations (see part c)) : S(n + 1, r) = rS(n, r) + S(n, r − 1) =∑n−1
k=r−1 r · rn−1−kS(k, r − 1) + S(n, r − 1) = ∑n

k=r−1 rnS(k, r − 1) = ∑n

k=0 rnS(k, r − 1) .

For the first equality consider the map �k
k=0

( �I∈Pk (X) {I } × Parr−1(I )
) −→ Park(X � {y}) defined by

(I, (I1, . . . , Ir−1)) 
→ ((X \ I ) � {y}, I1, . . . , Ir−1) .)

On the other side one can see (simple) test-exercises.
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Test-Exercises — Relations, Equivalence relations, Partitions

T2.1. a). Let X , Y be finite sets and Z := X × Y . For x ∈ X , let Px := {y ∈ Y | (x, y) ∈ Z} and for y ∈ Y ,
let Qy := {x ∈ X | (x, y) ∈ Z} . Then show that

∑
x∈X |Px | = ∑

y∈Y |Qy | .

b). Let r, k, n, m ∈ N . 1). If r ≤ k ≤ n , then
(
n

k

)(
k

r

) = (
n

r

)(
n−r

k−r

)
. (Hint : Just compute both sides!.

Variant : Suppose from n objects we choose k and put a white tag on the selected objects. Then out of these
k objects we select r objects and put a black tag on those selected. This is equivalent to selecting r objects
(and putting white and a black tag on each) and then selecting k − r objects from the remaining n − r putting
a white tag on the the selected objects.) 2). If m ≤ k , then

∑k−m

j=0 (−1)j
(
m+j

m

)(
k

m+j

) = 0 . (Hint :∑k−m

j=0 (−1)j
(
m+j

m

)(
k

m+j

) = ∑k−m

j=0 (−1)j
(

k

m

)(
k−m

j

) = (
k

m

) ∑k−m

j=0 (−1)j
(
k−m

j

) = 0 by Exercise T1.4-d).)

c). Let k ∈ N+ be a positive natural number. 1). Find how many palindromes4) of length n can be formed with
an alphabet of k letters. (Ans : km if n = 2m and km+1 if n = 2m + 1 .) 2). How many k-ary sequences
of length n are there? (Ans : kn = |{0, 1, . . . , k − 1}{1,...,n}| .) 3). How many k-ary sequences of length n

are there in which no two consecutive entires are the same? (Ans : k(k − 1)n−1 .) 4). How many ternary
sequences of length n are there which either start with 012 or end with 012 ? (Ans : 0 if n ≤ 2 ; 2 · 3m−3 , if
3 ≤ n ≤ 5 ; and 2 · 3n−3 − 3n−6 , if n ≥ 6 .)

T2.2. ( R e l a t i o n s ) Let X and Y be sets. A ( b i n a r y ) r e l a t i o n 5) R from X and Y is a subset R ⊆ X×Y ,
i.e. an element R ∈ P(X × Y ) . For the expression “(x, y) ∈ R” we shall write “xRy” and say that “x is
related to y with respect to R”, x ∈ X, y ∈ Y . The set of relations P(X × Y ) from X to Y is also denoted by
Rel (X, Y ) and its elements are also denoted by the symbols ∼ , ∼= ≡ , ≤ , � · · · . In the case Y = X , we put
Rel (X) = Rel (X, X) = P(X, X) and its elements are called r e l a t i o n o n X .

a). The map � : Maps(X, Y ) → P(X × Y ) defined by f 
→ �f := {(x, f (x)) | x ∈ X} the graph of f is
injective. (Remark : Therefore (if we identify maps with its graphs) every map from X to Y is a
relation from X to Y . Further, since the map � is not surjective if X �= ∅ and (|X|, |Y |) �= (1, 1) , in this
case there are relations from X to Y which are not maps from X to Y . For example, each of the relations
{(x, y), (x, y ′) | x ∈ X ; y, y ′ ∈ Y, y �= y ′} and (if |X| > 1 ) {(x, y) | x ∈ X, y ∈ Y } from X to Y is not a
map from X to Y . The graph of the identity map idX : X → X is the d i a g o n a l �X := {(x, x) | x ∈ X}
and hence the d i a g o n a l r e l a t i o n �X from X to X is also called the i d e n t i t y r e l a t i o n on X . The
relation R = ∅ and R = X × Y are called the e m p t y - r e l a t i o n and the a l l - r e l a t i o n from X to Y ,
respectively. Furthermore, we can also define i n t e r s e c t i o n and u n i o n of arbitrary family of relations.)

b). The map P(X × Y ) → P(Y )X defined by R 
→ (
x 
→ {y ∈ Y | xRy}) is bijective. What is the inverse of

this map? (Remark : With this bijection, one can identify every relation R ⊆ X × Y between X and Y as a map
from X into P(Y ).)

c). ( I n v e r s e r e l a t i o n ) If R is a relation from X to Y , then R−1 := {(y, x) ∈ Y × X | (x, y) ∈ R} is a
relation from Y to X and is called the i n v e r s e of the relation R . (Remarks : For example, (�X)−1 = �X and
(X × Y )−1 = Y × X . Even if a relation R from X to Y is a map, i.e., R = �f for some f ∈ Maps(X, Y ) , the
inverse relation R−1 need not be a map from Y to X . For example, the inverse relation R−1

c = {(c, x) | x ∈ X}
of the c o n s t a n t r e l a t i o n Rc := {(x, c) | x ∈ X} , c ∈ Y is not a map from Y to X if either |X| > 1 or
|Y | > 1 . Further, see the part d) below.)

d). ( C o m p o s i t i o n o f r e l a t i o n s ) Let R be a relation from X to Y and let S be a relation from Y to Z .
We may define the c o m p o s i t i o n of these relations by

S ◦ R = {(x, z) ∈ X × Z | there exists y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S} .

which is a relation from X to Z . Show that

(1) If R = �f and S = �g , then S ◦ R = �g◦f . (Remarks : This mean that we have extended the definition of
the composition from the set of maps to the set of relations. If R is a relation from X to Y with R−1 ◦ R ⊆ �X

and if for every x ∈ X , there exists y ∈ Y with (x, y) ∈ R , then R is a map from X to Y .)

(2) (A s s o c i a t i v i t y o f c o m p o s i t i o n ) If furthermore T is a relation from Z to W , then

T ◦ (S ◦ R) = (T ◦ S) ◦ R .

(3) (S ◦ R)−1 = R−1 ◦ S−1 .

4) A p a l i n d r o m e is a word which reads the same backward or forward, e. g., “MADAM”, “ANNA”.
5) More generally, for every positive integer n , one can define n- a r y r e l a t i o n as a subset of Xn := X×· · ·×X

(n-times). We shall rarely consider n-ary relation for n �= 2 and so by relation from now on we shall mean a
binary relation unless otherwise specified.
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e). For any set X , (Rel(X), ◦) is a monoid with neutral element �X . Moreover, (XX, ◦) and (S(X), ◦) are
submonoids of (Rel(X), ◦) . What is the unit group (Rel(X), ◦)× ? (Hint : Show that a relation R on X is a
bijection if and only if R ◦ R−1 = R−1 ◦ R = �X .)

f). ( P r o d u c t r e l a t i o n s ) Let R be a relation from X to Y and let R′ be a relation from X′ to Y . We may
define the p r o d u c t of these relations by

R × R′ := {((x, x ′), (y, y ′)) ∈ X × X′) × (Y × Y ′) | (x, y) ∈ R and (x ′, y ′) ∈ R′} .

which is a relation from X × X′ to Y × Y ′ .

T2.3. Let X be a set. A relation R ∈ P(X × X) on X is called (1) r e f l e x i v e if xRx for all x ∈ X ; (2)
s y m m e t r i c if for x, y ∈ X , xRy implies yRx ; (3) t r a n s i t i v e if for x, y, z ∈ X , xRy and yRz implies
xRz ; (4) a n t i - s y m m e t r i c if for x, y ∈ X , xRy and yRx implies x = y .

a). ( E q u i v a l e n c e r e l a t i o n s ) A relation R on X is called an e q u i v a l e n c e r e l a t i o n if it is reflexive,
symmetric and transitive. The identity relation δX and the all-relation X × X on X are clearly equivalence
relations on X .

Let R be an equivalence relation on X . Then for x ∈ X , the subset [x]R = [x] = {a ∈ X | (a, x) ∈ R} is called
the e q u i v a l e n c e c l a s s of x under R (sometimes equivalence classes are also denoted by a ).

(1) For every x ∈ X , x ∈ [x] . In particular, [x] �= ∅ for every x ∈ X and X = ⋃
x∈X[x] .

(2) For all x, y ∈ X , the following statements are equivalent : (i) [x] = [y] . (ii) [x]∩[y] �= ∅ . (iii) (x, y) ∈ R .

(3) ( Q u o t i e n t s e t o f a n e q u i v a l e n c e r e l a t i o n ) The set of equivalence classes in X under the
relation R is denoted by X/R (read : “ X modulo R ”) and is called the q u o t i e n t s e t of X with respect to
R . The canonical map π : X → X/R , x 
→ [x]R is clearly surjective and is called c a n o n i c a l p r o j e c t i o n
o f X onto X/R . The fibres of the canonical projection are precisely the equivalence classes (in X ) under R .
An element x ∈ X is called a r e p r e s e n t a t i v e of the equivalence class [x]R ; any other element y ∈ is
a representative of [x]R if and only if y ∈ [x]R or equivalently (x, y) ∈ R . A ( f u l l ) r e p r e s e n t a t i v e
s y s t e m for the quotient set X/R is a family xi , i ∈ I of elements in X such that the map I → X/R defined
by i 
→ [xi] is bijective, i. e., every equivalence class in X is represented by a unique element xi , i ∈ I .
In particular, a subset X ⊆ X is a representative system for X/R if and only if the restriction π |X′ : X′ → X/R

of the canonical projection to X′ is bijective.

b). The restriction of the map α : P(X × X) → P
(
P(X)

)
, R 
→ {{y ∈ X | xRy} | x ∈ X

}
is injective on the

subset Eq(X) ⊆ P(X × X) of all equivalence relations on X .

c). On the set N∗ of poistive natural numbers, let | be the divisibility relation, i.e., x | y if and only if x is a divisor
of y. What is the inverse relation |−1 on N ? Show that | is an order on N∗ and 1 is the smallest element. The
mininal elements (with respect to |) in N∗ − {1} are precisely the prime numbers.

d). Let f :X → Y be a map. The relation ∼ defined by x ∼ y if and only if f (x) = f (y) , is an equivalence
relation on X . The equivalence classes with respect to ∼ are precisely the non-empty fibres of f .

e). Give examples of relations which satisfy the two of the three properties of the equivalence relations, but not
the third one. How many relations are there on the set with n elements?

f). ( C o n g r u e n c e r e l a t i o n s ) Let n ∈ N+ be a positive natural number Two integers a and b are called
c o n g r u e n t m o d u l o n, if their difference is divisible by n . In this we write a ≡ b mod n or a ≡ b (n) .
This relation on the set of integers Z is an equivalence relation. Two integers are congruent modulo n if and
only if their remainders (betweeen 0 and n − 1 ) after the division by n are equal. Therefore the numbers
0, . . . , n−1 form a full reprasentative system for the quotient set Z/ ≡ ; there are exactly n equivalence classes
these are called the r e s i d u e c l a s s e s m o d u l o n. The set of these residue classes is usually denoted
by Z/Zn . In the case n = 2 , the residue class 0 = [0] is the set of all even integers and the residue class
1 = [1] is the set of all odd integers. 6) More generally, For a real number T �= 0 , the relation on R defined by
a ≡ b mod T or a ≡ b (T ) if the difference b−a is an integral multiple of T , is an equivalence relation on
R . For a ∈ R , the equivalence class a = a +ZT of a is precisely the set of elements a + kT , k ∈ Z . The real
numbers T and |T | define the same relation. The numbers in the interval [ 0 , |T | [ := {

x ∈ R | 0 ≤ x < |T |}
form a full representantive system for the quotient set R/ZT . The unique representative of the equivalence class
a = a + ZT in [ 0 , |T | [ is a − [a/|T | ] · |T | , where [−] denote the Gauss-bracket. If T = n ∈ N∗, then
Z/Zn ⊆ R/Zn is the set of those equivalence classes which have an integral representative.

g). On the set X := {0, 1, . . . , k − 1}{1,...,n} of all k-ary sequences of length n define a relation ∼ by :
(a1, . . . , an) ∼ (b1, . . . , bn) if ai = bi whenever xi �= 0 or 1 , i = 1, . . . , n . For example, if k = 4 ,

6) The congruence relations were first time systematically studied by von C.F.Gauss in the “Disquisitiones
arithmeticae” (1801).
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then 012311220330 ∼ 112301220331 . Show that ∼ is an equivalence relation on X . The equivalence class
with respect to ∼ is called the p a t t e r n o f t h e s y m b o l s 2, 3, . . . , k − 1 . Two k-ary sequences represent
the same pattern of the symbols 2, 3, . . . , n if and only if all the symbols 2, 3, . . . , k − 1 appear exactlly at the
same positions in them.

h). Let � be a reflexive and transitive relation on the set A. Then the relation ∼ defined by a ∼ b if and only if
a � b and b � a, is an equivalence relation on A. On the set A of the equivalence classes of A with respect to ∼
the relation defind by [a] ≤ [b] if and only if a � b, is a well-defined relation and is an order. (Remark : It is to
be shown in particular that the ≤ -relationship for two equivalence classes does not depend on the representatives
used for the definition. The problem to verify s u c h i n d e p e n d e n c e f r o m t h e c h o i c e o f t h e
r e p r e s e n t a t i v e s is typical for computation of equivalence classes.)

T2.4. Let X be a set and let R be a relation on X . Then :

a). 1). (R−1)−1 = R . 2). R is reflexive if and only if R ⊇ �X . 3). R is reflexive (respectively symmetric,
transitive, equivalence relation) if and only if R−1 is reflexive (respectively symmetric, transitive, equivalence
relation). 4). R is symmetric if and only if R = R−1 . 5). R ∪ R−1 is the smallest symmetric relation
containing R . It is therefore called the s y m m e t r i c c l o s u r e of R . 6). If R is reflexive then R is an
equivalence relation if and only if R ◦R = R and R = R−1 . 7). If R is reflexive and transitive then R ∩R−1

is an equivalence relation. 8). Intersections of equivalence relations is also an equivalence relation on X , but
unions of equivalence relations need not be equivalence relation on X . Example? 9). If R (respectively S )
is an equivalence relation on X (respectively Y ) then the product relation R × S is an equivalence relation on
X × Y . What do the equivalence classes under the product relation R × S looks like?

b). In each of the following cases : Is R reflexive ? symmetric ? transitive ? antisymmetric ? an equivalence rela-
tion ? 1). Let X be a set of books and (i) R := {(a, b) ∈ X ×X | a cost more and contains fewer pages than b} .
(ii) R := {(a, b) ∈ X × X | a cost more or contains fewer pages than b} . 2). Let X := Z+ and (i)
R := {(a, b) ∈ X×X | a−b is an odd integer} (ii) R := {(a, b) ∈ X×X | a = b2} . 3). Let X be the set of all
living people and (i) R := {(a, b) ∈ X×X | a is a brother of b} . (ii) R := {(a, b) ∈ X×X | a is a father of b} .
4). On the power set P(X) of a set X , the relation R := {(A, B) | A �= ∅, B �= ∅, A ∩ B = ∅} .

c). Suppose that X is a finite set with n elements. How many reflexive (respectively, , symmetric, reflexive and

symmetric) relations on X are there? (Ans : 2n(n−1) , 2(n+1
2 ) and 2(n

2) .)

d). Suppose that R is symmetric and transitive. Then : 1). If for every x ∈ X there exists y ∈ X such that
(x, y) ∈ R , then R is an equivalence relation on X . 2). Let S be a relation on X such that (x, y) ∈ S if
and only if (x, y) and (y, x) ∈ R . Show that S is an equivalence relation on X . 3). Let S be a relation
on X such that (x, y) ∈ S if and only if there exists z ∈ X with (x, z) and (z, x) ∈ R . Show that if R is an
equivalence relation on X , then S is also an equivalence relation on X . Moreover, S ⊆ R . 4). Prove that
there exists a subset Y of X such that R ⊆ Y ×Y and R regarded as a relation on Y is an equivalence relation.

e). Suppose that R is reflexive. Then R is an equivalence relation on X if and only if (x, y), (x, z) ∈ R implies
that (y, z) ∈ R .

f). In each of the following cases show that the relation ∼ is an equivalence relation :

1). On X = Z × Z \ {0} , let ∼ be the relation on X defined by (a, b) ∼ (c, d) if and only if ad = bc .

2). On X = R , let ∼ be the relation on X defined by x ∼ y if and only if |x − y| is a rational number.

g). Let R and R′ be relations on a set X . 1). If R and R′ are reflexive and symmetric, then show that the
following statements are equivalent : (i) R ◦ R′ is symmetric. (ii) R ◦ R′ = R′ ◦ R . (iii) R ◦ R′ = R ∪ R′ .
2). If R and R′ are equivalence relations, then show that the following statements are equivalent : (i) R ◦ R′

is an equivalence relation. (ii) R ◦ R′ = R′ ◦ R . (iii) R ◦ R′ = R ∪ R′.

h). ( T r a n s i t i v e c l o s u r e o f a r e l a t i o n ) For n ∈ N we define the powers Rn of R recursively as :
R0 := �X and Rn+1 := R ◦ Rn . Then the relation R+ := ∪∞

n=1R
n is called the t r a n s i t i v e c l o s u r e of R ,

and the relation R∗ := ∪∞
n=0R

n is called the r e f l e x i v e - t r a n s i t i v e c l o s u r e of R .

1). If x, y ∈ X then (x, y) ∈ R ∗ is either x = y or there exist x1, x2, . . . , xn ∈ X such that (x, x1), (x1, x2), . . . ,

(xn−1, xn) are all in R . ( Hint : By induction. In fact n ≤ 2i − 1) 2). If R is symmetric then so is
R∗ . 3). R+ is the smallest transitive relation containing R . 4). R∗ is the smallest reflexive and transitive
relation containing R . 5). If R is symmetric then R∗ is the smallest equivalence relation containing R .
6). Let R 1 be the symmetric closure of the reflexive-transitive closure of R and let R2 be the reflexive-transitive
closure of the symmetric closure R . Then show that R1 ⊆ R2 and give an example showing that the reverse
inclusion does not hold in general. 7). Let M be the set of all males and let F be a relation “being a father
of ...” Then F is not transitive and the transitive closure of F describes the ancestor-descendant relationship
among the males. 8). Is the transitive closure of an antisymmetric relation is always antisymmetric? 9). On
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Z let R be the relation defined by (x, y) ∈ R if y = x + n for some fixed n ∈ Z . What is the equivalence
relation on Z generated by R ?
i). ( R e l a t i o n M a t r i x ) Let X := {x1, . . . , xm} , Y := {y1, . . . , ym} be finite sets and let R be a relation
from X to Y . Then R can be specified by a matrix whose rows are labled by the elements of X and whose
columns are labeled by the elements of Y . In the i-th row and j -th column we write the entry 1 if (xi, yj ) ∈ R

and 0 if (xi, yj ) �∈ R . This matrix is called a r e l a t i o n m a t r i x of R and is usually denoted by A(R) .
For example, if X = {a, b} , Y = {c, d, e} and R = {(a, c), (a, d), (b, e)} , R′ = {(b, c), (b, d), (a, e)} . Then

A(R) =
(

1 1 0
0 0 1

)
and A(R′) =

(
0 0 1
1 1 0

)
. Conversely, each m × n matrix A = (aij ) of 0’s and 1’s

defines a relation R from the set X to the set Y by the rule (xi, yj ) ∈ R if and only if aij = 1 .
Compute the matrices of the following relations : (i) = and ≤ on the sets {−1, 0, 1}, {−2, −1, 0, 1, 2} .
(ii) = and “negative of” on the sets {−1, 0, 1}, {−2, −1, 0, 1, 2} .
j). Show that the following statements are equivalent : (i) R is both symmetric and anti-symmetric. (ii) The
matrix A(R) = (aij ) is diagonal, that is, aij = 0 whenever i �= j . (iii) R ⊆ �X .

k). ( B e l l ’s n u m b e r s 7)) Let X be a finite set with n elements. The number of equivalence relations on X

is called the n- B e l l n u m b e r βn , i. e., |Eq(X)| = βn .
1). The numbers βn staisfy the recursion relations β0 = 1 and βn+1 = ∑n

k=0

(
n

k

)
βk for all n ∈ N .

2). Let m, n ∈ N with m ≤ n and let βm,n := ∑m

i=0

(
m

i

)
βn−i . Then β0,n = βn , β0,n+1 = βn,n and

βm+1,n+1 = βm,n + βm,n+1 for all m, n ∈ N with m ≤ n .
3). Using the above formulas we have the following table :

n 0 1 2 3 4 5 6 7 8 9 10

βn 1 1 2 5 15 52 203 877 4140 21147 115975 .

T2.5. ( P a r t i t i o n s o f a s e t ) Let X be a set. A p a r t i t i o n or d e c o m p o s i t i o n p of the set X is
a subset p ⊆ P(X) of non-empty disjoint subsets of X such that their union is

⋃
Y∈p Y = X . In particular, a

partition p of X is an element of the set P
(
P(X)

)
. More generally, an arbitrary family Xi , i ∈ I of non-empty

pairwise disjoint subsets Xi of X with ∪i∈IXi = X is called a p a r t i t i o n of X (parametrized by the index
set I ); in this we write X = �i∈IXi . If X = ∪i∈IXi without necessarily the condition of pairwise disjointness
of Xi , i ∈ I , then the family Xi , i ∈ I , is called the c o v e r i n g of X .
a). The partition Xi , i ∈ I of X corresponds to the surjective map f : X → I . (The partition Xi , i ∈ I ,
defines the map f (x) := i , if x ∈ Xi and conversely the map f defines the partition Xi := f −1(i) , i ∈ I , of
X .) Therefore partitions are the fibres of the surjective maps. If X is a finite set, then clearly every partition p
of X is finite a finite set and |p| ≤ |X| .

The set of all partitions of X is denoted by Par(X) ; this is a subset of the set P
(
P(X)

)
. As usual for n ∈ N ,

we put Parn(X) = {p ∈ Par(X) | |p| = n} . Clearly the family Parn(X) , n ∈ N is pairwise disjoint and
∪n∈NParn(X) = Par(X) .
b). The map α : P(X × X) → P

(
P(X)

)
, R 
→ {{y ∈ X | xRy} | x ∈ X

}
(see T2.2-e)) maps Eq(X)

bijectively onto Par(X) , i.e. to each equivalence relation R on X , α associates a unique partition α(R) of
X and conversely. The partition corresponding to the equivalence relation R on X is denoted by pR and the
equivalence relation corresponding to the partition p is denoted by Rp , i.e., the maps P(X) → Eq(X) , p 
→ pR

and Eq(X) → Par(X) , R 
→ Rp are bijective and are inverses of each other. Moreover, if Eqr (X) is the
set of all equivalence relations on X with exactly r equivalence classes. Then |Eqr (X)| = |Parr (X)| and
Eq(X) = �n

r=0Eqr (X) .
What are the coarest and the finest partitions of a given set X ? What are the corresponding equivalence relations?
What are the partitions corresponding to the equivalence relations �X and X × X ?

7) Eric Temple Bell (1883-1960) was a Scottish mathematician and attended Bedford Modern School
where excellent mathematics teaching gave him his life-long interest in the subject. In particular, his interest
in number theory came from this time. Bell wrote several popular books on the history of mathematics. He
also made contributions to analytic number theory, Diophantine analysis and numerical functions. The American
Mathematical Society awarded him the Bôcher Prize in 1924 for his memoir, Arithmetical paraphrases which had
appeared in the Transactions of the American Mathematical Society in 1921. Although he wrote 250 research
papers, including the one which received the Bôcher Prize, Bell is best remembered for his books, and therefore
as an historian of mathematics. Bell did not confine his writing to mathematics and he also wrote sixteen science
fiction novels under the name John Taine.
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