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2. Finite Sets — Elementary counting techniques

2.1. Let Xy,..., X, befinitesubsetsof afiniteset 2. For @ = J € {1,...,n},let X, :==();c; X

.....

Prove that

a).

@\ Xx)
i=1

IXI=3j_1(=1/ Y. Since N{_1(Q\ X)) = Q\ U X, = @\ X, weget |N_y (\ X)| =2 —1X])

= Z (—1)7&; . (Hint: By Sylvester's sieve formula (Exercise 1.1-a)),
=0

b). For k =1,...,n,let Y, betheset of al those elementsin X which belongs to exactly k of the

n

r
subsets X4,...,X,,. Then |Y,,| = Z(—l)"m< )Sr foral 1<m<n. (Hint:Letl<k,m<n

m
and let m befixed. Supposethat x Yk_and (may) assumethat x € X1, ..., Xpadx ¢ X, fordl k <i<n.
If k <m,then x ¢ Y,, and hence x does not contribute anythingto &, for r > m . If k =m,then x € Y,, and
in the sum on the LHS it contributes only to one term, namely, to (7')&,,, Since &, ‘= >, .y, (1. |Xs| and
only one of these intersections, namely, X1 N---N X,, contains x . Intheremainingcase k > m, x ¢ ¥,, and
hence x contributes nothing. On the other hand its contribution to &, is (¥) (oneineach J € P, ({1,..., k}).
Thereforeif welet j = r —m , then the problem reduscesto provetheidentity 3"\~¢'(—1)7("+)(, ) = 0 which
is stated in Exercise T2.1-b)-2).)

22. 1 Let Q beafiniteset and let f : Q x P(R) — R be the map defined by (x, A) —

0, ifxgA, .
{1, if xeca, Showtha:

a). Foreach A € P(RQ), the map f(—, A) is the indicator function ¢4 of A. Inparticular, for
any two subsets A, B € P(QR), wehave: (1) f(x,Q\A) =1— f(x,4); @ f(x,ANB) =
f(x,A)-f(x,B); Q) f(x,AUB) = f(x, A)+f(x, B)—f(x, ANB); (4 |Al =} cq f(x, A).
(Hint: Seethe ExerciseT1.2.)

b) Let I = {1,2,...,1’1} and let X1,...,. X, € ‘B(Q) and for each J € s13(1), let Xy = ij]Xj

(and Xy :=Q). Then Y  [|X,/=> ( Y  f(x.X,)). (Hint: usetheparta))

JeB; ) xeQ  JePB;()

c). If anelement x € @ belongsto exactly k of thesubsets X, ..., X, , then Z f(x, Xﬂ:(f) .
JePB, ()

(Here we use the understanding that (J) = 1. — Hint: Wemay assumethat x € X1N---N X, and x ¢ X; for

dl k<i<n.Forevery J e B.({L,....n}), f(x, X)) =[];c, f(x, X)) =1ifandonlyif J € {1,... k},

ie, JePB, (1,..., k}) . This provesthat LHSisequa to the cardinality |3, ({1, ..., = ().)

d). Forevery x € , f(x.M_y(Q\ X)) = Y (-D/( Y f&x.X,). (Hint: Foriel:=
j=0 JeP;(I)

..., n}, put X, := Q\ X,. Then by a-1),2) LHS = [[_;f(x,X) = [[_,(1 — f(x, X)) =

1+ 300D Y gy TThes FOX0) = 14 37017 3 e,y f (. X)) . —Remark: Suming over

the two sides of thisformulaas x variesover Q and using the parts a) and b), we get the proof of the formula

givein the Exercise2.1-b).)

2.3. For k € N*, a k-ary sequence is a sequence with values in a finite set with k elements
(generally intheset {0,1,...,k—1}),i.e. a k-ary sequenceisanelementintheset {0, 1, ..., k—1}V.
For k = 2, 3, 4,5 these sequences are also called binary, ternary, quaternary, quintnary
sequences. (See also ExerciseT2.1-c).)

1) The purpose of this Exerciseisto give an alternative proof of the Exersicse2.1-b).

D. P. Patil / Exercise Set 2 dmO07-e02 ; February 2, 2007 ; 10:33a.m. 3



2.2 MA-217 Discrete Mathematics / January-April 2007 2. Finite Sets — Elementary counting techniques

a). The number of binary sequences of length » in which the digit 1 occurs even number of timesis
21, Thisisalso the number of binary sequences of length » inwhichthedigit 1 occursodd number of

Xodd(1) be the set of al binary sequences of length n in which the digit 1 occurs even (respectively, odd)
number of times. Then clearly X = Xgyen(1) W Xogg(1) . First assumethat » isodd. Thenthemap f: X — X
defined by f((as,...,a,) = (aj,...,a,), where a; =0 or 1 accordingas a; =1 or O foral i =1,...n,
is a bijection. Moreover, if n isodd, then f(Xeen(1) = Xogg(1) and f(Xogd(1) = Xewen() . Therefore
| Xeven(D| = [Xogd (D] and 2" = [X| = [Xeven(D)|+[Xodd (D] = 2-| Xeven(D)| = 2-|Xoad(1)| . Now, if n iseven,
then one can reduce the computation to the case when r isodd: Let A := {(a1,...,d,, aus1) € X | apy1 =1
and B := {(a1,...,a,,a,11) € X | a1 = 0. Then |A| = |B| = 2"~! and hence X = A w B. Further,
Xeven(1) = (AN Xeven(D) W (B N Xeven(1)) and hence [Xeen(D)] = [(A N Xeven(1)| + [(B N Xeven(D)] =
202 4 202 = 271 'gnce n — 1 isodd. Finally, |Xodgd(1)| = |X| — | Xeven(1))| = 20 — 21 =20 1))

b). The number of k-ary sequences of length » in which the digit 1 occurs even number of timesis
k" 4+ (k —2)"

n whichdonot contain O or 1 andlet Z : X\ Y. Classify the sequencesin Z by their pattern, i.e., consider the
equivalence classes ~ (see ExerciseT2.3-Q)) Z1, ..., Z, with respect to the equivalence relation on Z. Then
|Z| = |Z1] + - -- + | Z,| . Note that by definition Z; isthe set of all k-ary sequences of length n which have the
same pattern of the symbols 2, 3, ...,k — 1 and hence |Z;| = 2", where r isthe number of places filled by
the symbols 2,3,...,k — 1. Now by part @) half of these sequences have even number of 1's and thisis true
foral i =1,...,s. Thisprovesthat |Zeen(1)| = Y i_1 31Zi| = 31Z| = 3(k" — (k — 2)"). Therefore, since
Xeven(1) = Y W Zeven(1) , we get [Xeven| = Y[+ [Zeven(D)| = (K — 2)" + %(k” —(k=2").)

c). For positive natural numbers n, k € N*, k > 2, prove the formula:

K"+ (k—2)"
Z (; )(k — Y = % . (Hint: Follows from the part b), since the
-
reN

sum on the left isthe number of k-ary sequences of length n inwhichthedigit 1 occurs even number of times.)

d). The number of k-ary sequences of length » in which both 0 and 1 occur even number of timesis
K" +2(k = 2)" + (k = 4"

2 , k> 2.(Hint: Let 1 occur 2r timesin a k-ary sequences of length n. Then
the remaining (k — 1)-ary sequenceis of length n — 2r . If O occur in an even number of times, then by part b),
thereare ("*1)"72";("*3)"72' such sequences. Now the assertion follows by applying the part c) twice (once for k
and then for £k — 2) and adding.)

e). Find the number of k-ary sequences of length » in which thedigit 1 occurs even number of times
and the digit 0 occurs odd number of times. ~ (Hint: Theanswer is “=4=%" — Fromthe k-ary sequences
of length » inwhich thedigit 1 occur even number of times, remove the k-ary sequences of length » inwhich

the digit O occur even number of times, i.e., compute Y°, _ (5)[(k — )"~ — ("‘1)"72}("‘3)"72'"] )

2.4. Prove the following (marriage?)) theorem: Let Y, , x € X, be afinite family of sets. For every
subset N of X assumethat theset Yy = U,nyY, hasat least |N| elements, i.e., |Yy| > |N| for
every N € B(X). Thenthereexistsaninjectivemap f : X — Yx with f(x) € Y, forevery x € X .

(Proof: Proof by induction on n = |X|. The case of n = 1 and a single pair liking each other requires a mere
technicality to arrange amatch. For the inductive step consider two cases: Casel: |Yy| > |N| for every subset

2) Thistheoremispopularly knownasthe(marriage-theorem) andit providesthesolutionfor the marriage
problem whichrequiresto match n girlswiththeset of n boys. Each girl (after along and no doubt exhausting
deliberation) submits a list of boys she likes. We also make an assumption that being of noble character no
boy will break a heart of a girl who likes him by turning her down. Sometimes all the girls can be given away,
sometimes no complete match is possible. Therefore for a complete match a (marriage) condition is necessary;
the marriage condition can be formulated in several equivalent ways, for example, For each r = 1,...,n every
set of r girlslikes at least » boys. (or equivalently, For each » = 1,...,n every set of r boys likes at |east
r girls) The marriage condition and the marriage theorem are due to the English mathematician PHILIP HALL
(1935). Therefore Marriage theoremis precisely: Hall’s marriage condition is both sufficient and necessary for
a complete match. The necessecity is obvious. The sufficient part is shown by inductionon n = | X| .
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NCX,N#@,N #X.Inthiscasefor x € X,choose y € Y, andconsider X" := X\{x} and Y/, ;= Y, \{y},
x" € X . Thenclearly the marriage condition still holds and hence by theinductive hypothesis, thereisan injective
map f': X' — Yy, with f'(x’) € Y/,. Now, define f: X — Yx by f(x) =y and f(x") = f'(x).

Case2: Thereexistsasubset ¥ = N C X, with |Yy| = |N|. Inthiscase, by theinductive hypothesis, there exists
an injective (in fact bijective) map g : N — Yy . Thetrickistoshow that X” := X \ N and Y/, :=Y,» \ Yy,
x" e X" satisfy the marriage condition, then by the inductive hypothesis, there is an injective map X” — Yy,
with f”(x") € Y/, . Now, define f : X — Yx by f(x)=g(x) for x e N and f(x")=f"(x") for x" € X". )

a). Let p = (Xy1,...,X,) andlet q = (Y1,...,7Y,) bepartitionsof theset X into r pairwisedigoint
subsets each of them with n > 1 elements. Show that p and g has a common representative system,
i.e. there exist r distinct elements xi, ..., x, in X such that each x; belongs to exactly one of the
subset X1, ..., X, and exactly one of thesubset Y;,...,Y,. (Hint: Using the above Marriage-theorem
find a permutation o € &, suchthat X; NY,,, # ¥ forevery 1 <i < r. — Remark: The assumption
that |X;| = |Y;| =n foradl i = 1,...,r can be replaced by some what weaker condition: for every subset
JC{l,...,r},thesubset X, := U,;.,X; containsat most |J| components Yy, ..., Y, of q.)

b). Let 2 bethe n x r integral matrix

1 2 e
r+1 r+2 cee 2r
™A= : : - :
m—Dr+1 mn—Lr+2 --- nr
and let B beanother n x r integeral withentries 1, 2, ..., nr (at arbitrary positions). Show that there
exists apermutation o € &, suchthat forevery i = 1,...,r, the i-th column of 2 and the o (i)-th
column of 9B contain at |least one element in common. (Hint: Usethe part a).)

c). Let G beafinitegroupandlet H beasubgroupof G. Let G = Hy; U---U Hy, (respectively,
G =z71HU-.-Uz H) bearight-coset (respectively, |eft-coset) decomposition for G . Show that there
exist lements xi1,...,x, € G suchthat G = Hx;U---UHx, =x;HU---Ux,H. (Hint: Usethe
part a).)

d). Let X be afinite set with n elements. For i € N, let 3, (X) be the set of all subsets Y of X with
Y| = i. Show that: If i € Nwith0 < i < n/2 (resp. withn/2 < i < n), then there exists an
injectivemap f; : P (X) - Pira(X) suchthat Y € f;(Y) foral Y € B;(X) (resp. an injective map
gi Bi(X) = Pi_1(X) such that gY)ycy fordl Y e ‘,BZ(X)) (Hint: LetO<i <n/2
A par (Y,Y) € B;(X) x P;1(X) iscaled amicableif Y C Y'. Let R be a subset of B; (X) with |R] =: r.
Further, let R’ bethe set of al those Y’ € B;,.1(X) which areamicableto at leastoneY € R. Puts := |R/|. Then
r(n —i) < s(i +1) and hencer < s. Now use the marriage-theorem.)

2.5. Let X beafinite set with n elements.

a). Let (my,...,m,) € N' besuchthat m; + --- +m, = n. Show that the number of partitions
p=(X1,...,X,) of X with |X;|=m;,fordl i=1,...,r,isthepolynomial coefficient

n\ n! n!
m) ml mql---m,l "’

(Hint: Fix apartition q = (Y4, ...,, Y,) of X with |Y;|=m;, i=1,..., r and defineamap S(X) — 3 1=
{p=(X1,...,X,) € Bar,(X) | |X;|=m;,i=1...,r},bethemapdefindby f — p(f) :=(f(X1),..., f(X,)).
Show that all the fibres of this map have the same cardinality = m! = m1! ---m,!. Now use the Shepherd-rule.
b). (Stirling numbers of second kind?®) For n,r € N with 0 <r < n, put S(n,r) :=
[Par, (X)|, where Par, (X) isthe set of al partitions p = (X1, ..., X,) of X into r subsets. For al
other pairs (n,r) € Z?,weput S(n, r) = 0. Show that

(1) Forn>1,Sn,2) =2""1-1.

3) JAaMES STIRLING (1692-1770) was a Scottish mathematician whose most important work Methodus Dif-
ferentialisin 1730 is atreatise on infinite series, summation, interpolation and quadrature.
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1 I T y e (DR =
(@ S(n,r)= ﬁerapssurj(X’ {1,....rhl = ﬁ;(—l) (k>(r - k)" = ; 0 o_f-D
Inparticular, r! = Z(—l)" (r)(r — k).

(3) Zk' () S(n k) =r".

(Hmt. To prove (1) show that each fibre of themap P(X) \ {4, X} — Par,(X) definedby Y — (¥, X\ Y) has
cardinality 2 andhence 2" —2 = |/B(X)\ {@, X}| = 2- |Par,(X)| by Shepherd-rule. To prove (2) show that each
fibre of the map Mapsy,;(X.{1.....r}) — Par,(X) defined by 7 — (f~(D)...., f71(r)) has cardinality
r! and hence by the Shepherd ruIe and Exercise 1.2-b), we have r! - |Bar, (X)| = |MapsSurJ X, {1,...,rP].

The last part follows from the equality n(r r) = 1. For the proof of (3), compute the cardinality of each

k)nfl

fibre of themap Maps(X, {1,...,r}) — U‘Bk 1,...,r) x ‘Batk(X)) defined by f — (f(X), p(f)), where
k=1

P(f) = (f1i))icsx) andthenuse (2). — Remarks: The Stirling numbers appear in many other problems.
Clearly S(n,r) =0 for r > n, S(n,n) =1, S(n,1) = 1; S(n,n — 1) = (3) ; alesstrivial result isthe formula
for S(n, 2) givenin the part (l) For r > 2, thereis no easy formulafor S(n, r). For small values of n and
r one can find S(n, r) by actualy considering all partitions of a set with n elements. For higher values this
becomes impracticable and also unreliable. The important recurrence relation given below in ¢) which allows us
to compute a Stirling numbers by first computing the lower Stirling numbers.

Consider the polynomia F(T) = T" — Zkl S(n, k) - (T> , Where (Z) A G 1)“k.'(T —k+D
k=0 ’

binomial polynomialsofdegree k. Then,since F(T) isapolynomial of degree < n withinteger coefficients
and by (3), theintegers 0, 1, .. ., n are n + 1 digtinct zeroes of F, we conclude that F = 0 and therefore the

arethe

Stirling numbers od second kind are also defined by the polynomial equation 7" = Zk' S(n, k) - ( )

one takesthis as the definition of the Stirlings numbers S(», r) of second kind, then (1) and (3) areimmediate by
putting T = 2 and T = r respectively.

This also leadsto the definition of the Stirling numbers of first kind: For r,n e Nwith0<r <n,

let s(n, r) € Z be defined by the polynomial equation: (T> = 1| -Z( "7 -s(n,r)y-T". (Put s(n,r)=0
n n:
=0
otherwise. For the existence of the numbers s(n, r) usethefactthat 1, 7,..., 7" and (7). (7).....(}) aretwo

bases of the Q-vector space Q[T], of polynomialswith rational coefficients of degree < n.))
c). The Stirling numbers of second kind satisfy the recursion relations:

SO,r)=8p, and Sn+1,r)=rShn,r)+Sh,r —1),

where §;; denote the Kronecker’s delta. (Hint: From (1) =T -(;) — k- (;), we get

T =Y k!-S(n, k)-T- ( ) = Y4tk [k - S(n, k) + S(n, k — 1] - (1) . —Remark : The Stirling numbers
of first kind satisfy the recursion relatlons s(0,r)=68g, and sn+1,r)=n-sSn,r)+Ssn,r—1.)

d). Provethat g, = Y S(n.r) forevery n € N. (Hint: See Exercise T2.4-k). Use ExerciseT25-b).)
r=0

e). Provethat S(n + 1,r) = Z (Z) Stk,r —1) = Zr”‘kS(k, r — 1). (Hint: The second equality

k=1 k=0
is proved by induction and using recursion relations (see part €)): S(n + 1,r) = rS(n,r) + S(n,r — 1) =

Zk Cqr ' kSk,r — 1)+ S(n,r — 1) = Yooy g r"Sk,r = 1) =3 _or"Stk,r — 1).
For the first equality consider the map Wi_o( Wieyp, ) (I} x Par,_1(1)) — Par, (X W {y}) defined by
(I, ..., L) > (X\DW{y} I1,..., I,1).)

On the other side one can see (simple) test-exercises.
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Test-Exercises — Relations, Equivalence relations, Partitions

T2.1. a). Let X, Y befinitesetsand Z =X xY.Forx e X,let P, :={yeY | (x,y) € Z} andfor ye Y,
let O, :={xe X |(x,y)€Z}. Thenshowthat 3" . IP|=3 ., 10,l.

b). Let r.k,n,m € N. 1. If r <k <n,then ()(5) = ()(}7)). (Hint: Just compute both sides!.
Variant: Suppose from n objects we choose & and put a white tag on the selected objects. Then out of these
k objects we select r objects and put a black tag on those selected. This is equivalent to selecting r objects
(and putting white and a black tag on each) and then selecting k — r objects from the remaining » — r putting

a white tag on the the selected objects)) 2). If m < k, then Zf;(’)"(—l)f(”’“)( *)=o0. (Hint:

m m+j

ij;g(_l)/ ('"Jj)(mi j) = Zf;g’(_n/ (r';)(k—,'") = (”;) ij;g(_l)/ (k;f") = 0 by Exercise T1.4-d).)

J

c). Let k e N* beapositive natural number. 1). Find how many palindromes®) of length » can be formed with
an alphabet of k letters. (Ans: k" if n =2m and k"1 if n=2m +1.) 2). How many k-ary sequences
of length n arethere? (Ans: k" = [{0,1,..., k — 1} ) 3). How many k-ary sequences of length n
are there in which no two consecutive entires arethe same? ~ (Ans: k(k — 1)*~1.)  4). How many ternary
sequences of length n are there which either start with 012 or end with 012? (Ans: 0if n < 2; 2. 33 jf
3<n<5;and2-33-3"% ifn>6)

T2.2. (Relations) Let X and Y besets. A (binary) relation®) R from X and Y isasubset R € X x Y,
i.e. anelement R € P(X x Y). For the expression “(x,y) € R” we shal write “xRy” and say that “x is
related to y with respectto R”, x € X,y € Y. The set of relations (X x Y) from X to Y isalso denoted by
Rel (X, Y) andits elements are also denoted by thesymbols ~, = =, <, < .... Inthecase Y = X, we put
Rel (X) = Rd (X, X) = B(X, X) anditselementsarecaled relation on X .

a). Themap T' : Maps(X,Y) — P(X x Y) defined by f — T’y := {(x, f(x)) | x € X} thegraph of f is
injective. (Remark: Therefore (if we identify maps with its graphs) every map from X to Y isa
relation from X to Y. Further, sincethe map I' is not surjectiveif X # ¢ and (|X|, |Y]) # (1, 1), in this
case there are relations from X to Y which are not maps from X to Y. For example, each of the relations
{(x, ), x,y) |xe X; y,yv e, y#y}ad(if |X|] >1) {(x,y)|xe X,yeY} fromX toY isnota
map from X to Y. The graph of the identity map idy : X — X isthe diagonal Ay = {(x,x) | x € X}
and hencethe diagonal relation Ay from X to X isasocaledthe identity relation on X. The
relation R =¥ and R = X x Y arecdledthe empty-relation andthe all-relation from X to Y,
respectively. Furthermore, we can also define intersection and union of arbitrary family of relations.)

b). Themap P(X x ¥) — P(Y)* definedby R — (x — {y € Y | xRy}) ishijective. What is the inverse of
thismap? (Remark: With this bijection, one can identify every relation R € X x Y between X and Y asamap
from X into P(Y).)

c¢). (Inverse relation)If R isarelationfrom X to Y,then R~ := {(y,x) e Y x X | (x,y) € R} isa
relationfrom Y to X andiscalledthe inverse of therelation R . (Remarks: For example, (Ax)~t = Ay and
(X xY)1=Y x X. Evenif arelation R from X to Y isamap,i.e, R = I'; forsome f € Maps(X,Y), the
inverserelation R~ need not beamap from Y to X . For example, theinverserelation R:: = {(c, x) | x € X}
of the constant relation R, :={(x,c) | x € X}, c € Y isnotamap from Y to X if either |X| > 1 or
|Y| > 1. Further, seethe part d) below.)

d). (Composition of relations) Let R bearelationfrom X to Y andlet S bearelationfrom Y to Z.
We may definethe composition of these relations by

SoR={(x,z) € X x Z | thereexistsy € Y suchthat (x, y) € Rand (y,z) € S}.

which isareation from X to Z. Show that

(DIf R=Tyand S=T,,then So R =T,,r. (Remarks: Thismean that we have extended the definition of

the composition from the set of mapsto the set of relations. If R isarelationfrom X to Y with R"1o R C Ay
and if for every x € X, thereexists y € Y with (x, y) € R, then R isamapfrom X to Y .)

(2) (Associativity of composition) If futhermore T isarelationfrom Z to W, then
To(SoR)=(ToS)oR.
B (SoR)t=R1os51.

4) A palindrome isaword which reads the same backward or forward, e. g., “MADAM”, “ANNA’".

5) Moregenerally, for every positiveinteger n , onecandefinen-ary relation asasubsetof X" := X x---x X
(n-times). We shall rarely consider n-ary relation for n # 2 and so by relation from now on we shall mean a
binary relation unless otherwise specified.
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e). For any set X, (Rel(X), o) isamonoid with neutral element Ay . Moreover, (X*, o) and (&(X), o) are
submonoids of (Rel(X), o). What isthe unit group (Rel(X),0)*?  (Hint: Show that arelation R on X isa
bijectionif andonly if RoR"™1=R 1o R=Ay))

f). (Product relations)Let R bearelationfrom X to Y andlet R” bearelation from X’ to Y. We may
definethe product of theserelations by

RxR ={((x,x),(y,y) e XxX)x (¥ xY)|(x,y) e Rand (x',y') € R'}.
whichisareationfrom X x X’ to Y x Y.

T2.3. Let X beaset. Arelation R € (X x X) on X iscaled (1) reflexive if xRx foral x € X; (2)
symmetric iffor x,y € X, xRy implies yRx; (3) transitive iffor x,y,z € X, xRy and yRz implies
xRz; (4) anti-symmetric iffor x,y € X, xRy and yRx impliesx = y.

a). (Equivalence relations)Arelation R on X iscaledan equivalence relation if itisreflexive,
symmetric and transitive. The identity relation §y and the all-relation X x X on X are clearly equivalence
relationson X .

Let R beanequivalencerelationon X . Thenfor x € X, thesubset [x]zx =[x] = {a € X | (4, x) € R} iscdled
the equivalence class of x under R (sometimes equivalence classes are also denoted by @).

(1) For every x € X, x € [x] . Inparticular, [x] # ¢ forevery x € X and X = [, ,[x].

(2)Foral x, y € X, thefollowing statementsareequivalent: (i) [x] =[y]. (ii) [x]N[y] #@. (iii) (x,y) € R.
(3 (Quotient set of an equivalence relation) The set of equivalence classesin X under the
relation R isdenoted by X/R (read: “ X modulo R”) andiscaled the quotient set of X with respect to
R . Thecanonical map = : X — X/R, x > [x]r isclearly surjectiveand iscalled canonical projection
of X onto X/R. Thefibres of the canonical projection are precisely the equivalence classes (in X ) under R.
Anedement x € X iscalleda representative of the equivalence class [x]k; any other element y € is
arepresentative of [x]x if and only if y € [x]z or equivalently (x,y) € R. A (full) representative
sy stem for the quotient set X/R isafamily x;, i € I of elementsin X suchthat themap I — X/R defined
by i — [x;] is bijective, i.e., every equivalence classin X is represented by a unique element x;, i € I.
Inparticular, asubset X C X isarepresentative systemfor X/R if and only if therestriction | X’ : X’ — X/R
of the canonical projectionto X’ isbijective.

b). The restriction of themap o : P(X x X) — P(P(X)), R+ {{y € X | xRy} | x € X} isinjective on the
subset Eq(X) C P(X x X) of al equivalencerelationson X .

c). Ontheset N* of poistive natural numbers, let | bethedivisibility relation, i.e., x | y if and only if x isadivisor
of y. What isthe inverse relation |~1 on N? Show that | is an order on N* and 1 is the smallest element. The
mininal elements (with respect to |) in N* — {1} are precisely the prime numbers.

d). Let f:X — Y beamap. Therelation ~ definedby x ~ y ifandonly if f(x) = f(y), isan equivalence
relation on X . The equivalence classes with respect to ~ are precisely the non-empty fibresof 1.

e). Give examples of relations which satisfy the two of the three properties of the equivalence relations, but not
the third one. How many relations are there on the set with n elements?

f). (Congruence relations) Let n € Nt be a positive natural number Two integers a and » are called
congruent modulo n, if their differenceisdivisibleby n. Inthiswewrite a =5 modn or a =b(n).
This relation on the set of integers Z is an equivalence relation. Two integers are congruent modulo » if and
only if their remainders (betweeen 0 and n — 1) after the division by n are equal. Therefore the numbers
0,...,n—1 form afull reprasentative system for the quotient set Z/ = ; there are exactly n equivalence classes
these are called the residue classes modulo n. The set of these residue classes is usually denoted
by Z/Zn. Inthecase n = 2, the residue class 0 = [0] is the set of al even integers and the residue class
1=[1] istheset of al odd integers. ©) More generally, For areal number T + 0, therelationon R defined by
a=bmodT or a=b(T) ifthedifference b —a isanintegral multipleof T ,isanequivalencerelationon
R. For a € R, theequivadenceclass @ = a + ZT of a isprecisely theset of elements a + kT, k € Z . Therea
numbers T and |T| define the same relation. The numbersin theinterval [0, |T|[ = {x e R|0<x < |T|}
form afull representantive system for the quotient set R/ZT . The unique representative of the equivalence class
a=a+ZT in [0,|T|[ isa—[a/IT|]-|T|, where [—] denote the Gauss-bracket. If T = n € N*, then
Z/Zn C R/Zn isthe set of those equivalence classes which have an integral representative.

(a1, ...,a,) ~ (b1,...,b,) if q = b; whenever x;, # 0 or 1, i = 1,...,n. For example, if k = 4,

6) The congruence relations were first time systematically studied by von C. F. GAUSS in the “ Disquisitiones
arithmeticae” (1801).
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then 012311220330 ~ 112301220331. Show that ~ isan equivalence relation on X . The equivalence class
withrespect to ~ iscalled the pattern of the symbols 2,3,...,k— 1. Two k-ary sequences represent
the same pattern of the symbols 2, 3, ..., n if and only if al the symbols 2, 3, ...,k — 1 appear exactlly at the
same positions in them.

h). Let < be areflexive and transitive relation on the set A. Then the relation ~ defined by a ~ b if and only if
a <bandb < a,isan equivalencerelation on A. Onthe set A of the equivalence classes of A with respect to ~
therelationdefind by [a] < [b] ifandonly if a < b, isawell-defined relationandisanorder.  (Remark: Itisto
be shown in particular that the < -relationship for two equival ence classes does not depend on the representatives
used for the definition. The problem to verify such independence from the choice of the
representatives istypical for computation of equivalence classes.)

T2.4. Let X beasetandlet R bearedationon X . Then:

a). 1). (RH1=R. 2. Risreflexiveifandonlyif R 2 Ay. 3). R isreflexive (respectively symmetric,
transitive, equivalence relation) if and only if R~ is reflexive (respectively symmetric, transitive, equivalence
relation). 4). R issymmetricif and only if R = R, 5). R U R~1 isthe smallest symmetric relation
containing R. Itistherefore called the symmetric closure of R.  6). If R isreflexivethen R isan
equivalencerelationif andonlyif RoR = R and R = R~1. 7). If R isreflexiveand transitivethen RN R~1
isan equivalencerelation.  8). Intersections of equivalence relationsis also an equivalence relation on X , but
unions of equivalence relations need not be equivalencerelation on X . Example?  9). If R (respectively S)
isan equivalence relation on X (respectively Y ) then the product relation R x S isan equivalence relation on
X x Y . What do the equivalence classes under the product relation R x S looks like?

b). Ineach of thefollowing cases: Is R reflexive? symmetric ? transitive ? antisymmetric ? an equivalencerela
tion? 1). Let X beaset of booksand (i) R := {(a, b) € X x X | a cost moreand containsfewer pagesthan b} .
(i) R := {(a,b) € X x X | a costmoreor containsfewer pagesthan b} . 2). Let X = Z* and (i)
R:={(a,b) € XxX | a—b isanoddinteger} (ii) R :={(a,b) € XxX |a=05b?. 3). Let X bethesetof al
livingpeopleand (i) R := {(a,b) € Xx X | a isabrotherof b}. (ii) R :={(a,b) € Xx X | a isafatherof b}.
4). Onthe power set PB(X) of aset X, therelation R :={(A,B) | A#@,B#?, AN B =@}.

c). Supposethat X isafinite set with n elements. How many reflexive (respectively, , symmetric, reflexive and
symmetric) relationson X arethere? (Ans: 2D 2('5Y) and 209) )

d). Suppose that R is symmetric and transitive. Then: 1). If for every x € X thereexists y € X such that
(x,y) € R, then R isanequivaencerelationon X . 2). Let S beardationon X suchthat (x,y) € S if
and only if (x,y) and (y,x) € R. Show that S isan equivalence relation on X . 3). Let S beareation
on X suchthat (x,y) € S if and only if there exists z € X with (x,z) and (z,x) € R. Show that if R isan
equivalence relationon X , then S isalso an equivalence relation on X . Moreover, S C R. 4). Prove that
thereexistsasubset Y of X suchthat R C Y x Y and R regarded asarelationon Y isan equivalencerelation.

e). Supposethat R isreflexive. Then R isanequivalencerelationon X if andonlyif (x, y), (x,z) € R implies
that (y,z) € R.

f). In each of the following cases show that the relation ~ isan equivalencerelation:
1). On X =Z x Z\ {0}, let ~ betherelationon X defined by (a, b) ~ (¢, d) if andonly if ad = bc.
2). On X =R, let ~ betherelationon X definedby x ~ y if andonly if |x — y| isarationa number.

g). Let R and R’ berelationsonaset X. 1). If R and R’ arereflexive and symmetric, then show that the
following statements are equivalent: (i) R o R’ issymmetric. (i) RoR =R oR. (iii) RoR*"=RUR'.
2). If R and R’ are equivalence relations, then show that the following statements are equivalent: (i) Ro R’
isan equivalencerelation. (i) RoR' =R oR. (iii) RoR' =RUR.

h). (Transitive closure of a relation) For n € N we define the powers R" of R recursively as:
Ro = Ax and R"*!:= Ro R". Thentherelation R* := U*, R" iscaled the transitive closure of R,
andtherelation R* := U R" iscalledthe reflexive-transitive closure of R.

1). If x,y € X then (x, y) € R* iseither x = y orthereexist x1, x2, ..., x, € X suchthat (x, x1), (x1, x2), ...,
(x,-1,x,) aedlin R. (Hint: By induction. Infactn <2 —1) 2). If R issymmetric then sois
R*. 3). R" isthesmallest transitiverelation containing R.  4). R* isthe smallest reflexive and transitive
relation containing R . 5). If R issymmetric then R* isthe smallest equivalence relation containing R .

6). Let R 1 bethe symmetric closure of the reflexive-transitive closure of R and let R, bethereflexive-transitive
closure of the symmetric closure R. Then show that Ry € R, and give an example showing that the reverse
inclusion does not hold in general. 7). Let M bethe set of al malesand let F be arelation “being a father
of ...” Then F isnot transitive and the transitive closure of F describes the ancestor-descendant relationship
among the males.  8). Isthe transitive closure of an antisymmetric relation is always antisymmetric?  9). On
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7 let R betherelation defined by (x,y) € R if y = x +n for somefixed n € Z. What is the equivalence
relation on Z generated by R ?

). (Relation Matrix) Let X := {x1,...,x,}, Y = {y1,..., yn} befinitesetsand let R be areation
from X to Y. Then R can be specified by a matrix whose rows are labled by the elements of X and whose
columns are labeled by the elementsof Y . Inthe i-throw and j-th columnwewritetheentry 1 if (x;, y;) € R
and O if (x;,y;)) € R. Thismatrix iscalled a relation matrix of R and is usually denoted by 2A(R).
For example, if X = {a,b}, Y = {c,d,e} and R = {(a, ¢), (a,d), (b,e)}, R = {(b,¢), (b,d), (a,e)}. Then
A(R) = (é é 2) and (R = (2 2 é . Conversely, each m x n matrix 2( = (a;;) of O'sand 1's

definesarelation R fromtheset X totheset Y by therule (x;, y;) € R ifandonly if a;; = 1.

Compute the matrices of the following relations: (i) = and < onthesets {—1,0,1},{—2,-1,0,1, 2}.

(i) = and “negative of” onthesats {—-1,0,1},{-2,-1,0,1,2}.

j). Show that the following statements are equivalent: (i) R isboth symmetric and anti-symmetric.  (ii) The
matrix A(R) = (a;;) isdiagonal, that is, a;; = 0 whenever i # j.  (iii) R € Ax.

k). (Bell’s numbers 7)) Let X bealfinite set with n elements. The number of equivalence relationson X
iscaledthe n-Bell number g,,i.e, |€q(X)| = B, .

1). Thenumbers g, staisfy therecursion relations fo =1 and B,.1 =Y ;_o (;)B foral n e N.

2). Let m,n € N with m <n andlet B, := > "o (7)Bu—i - Then Bo,, = B, Bon+1 = Bun and
Bumitnsl = Bmn + Bunsa fordl m,n e N with m <n.

3). Using the above formulas we have the following table:

n|012345678 9 10
B, 1125 15 52 203 877 4140 21147 115975 .

T2.5. (Partitions of a set) Let X beaset. A partition or decomposition p of theset X is
asubset p € P(X) of non-empty disjoint subsets of X such that their unionis Uy, ¥ = X . Inparticular, a
partition p of X isanelement of theset P(P(X)) . Moregenerally, an arbitrary family X; , i € I of non-empty
pairwise digoint subsets X; of X with U;;X; = X iscaleda partition of X (parametrized by the index
set 1);inthiswewrite X = W, X, . If X = U, X; without necessarily the condition of pairwise digjointness
of X;,iel,thenthefamily X;, i € I,iscaledthe covering of X.

a). The partition X;, i € I of X corresponds to the surjectivemap f : X — I. (The partition X;, i € I,
definesthemap f(x) :=i,if x € X; and conversely themap f definesthe partition X; := f~1(i), i € I, of
X .) Therefore partitions are the fibres of the surjective maps. If X isafinite set, then clearly every partition p
of X isfiniteafinitesetand |p| < |X].

The set of all partitionsof X isdenoted by Par(X); thisisa subset of the set B(P(X)) . Asusua for n € N,
we put Par,(X) = {p € Par(X) | |p| = n}. Clearly the family Bar,(X), n € N is pairwise digoint and
UneNg’Barn (X) = mﬂt(X) .

b). Themap o @ PX x X) - P(PX)), R~ {{y € X | xRy} | x € X} (see T2.2-€)) maps Eq(X)
bijectively onto Bar(X), i.e. to each equivalence relation R on X, « associates a unique partition «(R) of
X and conversely. The partition corresponding to the equivalence relation R on X is denoted by pr and the
equivalence relation corresponding to the partition p isdenoted by R, , i.e., themaps P(X) — Eq(X), ¥ — Pr
and &q(X) — Par(X), R — R, are bijective and are inverses of each other. Moreover, if &q,(X) isthe
set of all eguivalence relations on X with exactly » equivalence classes. Then |€q,(X)| = [Bar,(X)| and
Eq(X) = W'_&q,(X).

What are the coarest and the finest partitions of agiven set X ? What are the corresponding equival ence rel ations?
What are the partitions corresponding to the equivalence relations Ay and X x X ?

7y Eric TEMPLE BELL (1883-1960) was a Scottish mathematician and attended Bedford Modern School
where excellent mathematics teaching gave him his life-long interest in the subject. In particular, his interest
in number theory came from this time. Bell wrote several popular books on the history of mathematics. He
also made contributions to analytic number theory, Diophantine analysis and numerical functions. The American
Mathematical Society awarded him the Bécher Prizein 1924 for his memoir, Arithmetical paraphrases which had
appeared in the Transactions of the American Mathematical Society in 1921. Although he wrote 250 research
papers, including the one which received the Bécher Prize, Bell is best remembered for his books, and therefore
as an historian of mathematics. Bell did not confine hiswriting to mathematics and he also wrote sixteen science
fiction novels under the name JOHN TAINE.
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