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Lectures : Tuesday/Thursday 15:45-17:15; Lecture Hall-1, Department of Mathematics

3. The Natural Numbers — The Fundamental Theorem of Arithmeticl), Factorisation in Monoids

1 b b+1
3.1. a). Let a, b, m, k € N be such that (i) <m< (a: )and (k) §m<< : ) Show

that a = b. (Hint: Supposethat a < b,ie, a+1<b,then m < (') < (}) < m, since
Br({l,...,a+1}) CB({1,...,b}) acontradiction.)

b). Let k € NT be a positive natural number and let » € N be an arbitrary natural number. Show

that there exist unique natural numbers ai,...,a; € N suchthat 0 < a1 < a» < --- < a; and
k aj . . . . .

n = Z 7). (Hint: The existence of a1, ...,a; isproved by inductionon k. If k = 1,
. J
j=1

then n = (}) isthe required representation. Assume k > 1 and choose a; € N with (%) < n{(*"). For

the number m := n — (%) > 0 by induction hypothesis there exists a representation m = ij (/) with

0<ap <ap < - < a_1. Now we need to show that a;_1 < a. Since (1) = (%) + (%), we have

n= Y07 () + (47 = () < (47 inparticular, (41) < () and hence @;_1 < a, . Now we prove the

uniqueness of ai, ..., a . If k =1, thisistrivial. Assume k)1 and supposethat n = 37/_; (%) = 3/ (*)

withO<a; <ap < -~ <a and 0 < by < bz < --- < b. Itisenough to show that () <n < (“",jl) and

(") <n< (”k,fl) , for then, a; = b, by part @) and by induction hyposthesis to the two representations of m :=

n—(“kk) =n—("),weget a; = b; forall k=1,...,k—1. Now,weshowthat (%) <n < (*™). If @ < k,then

=j—1foral j=1,....k and (%) = () =0=n < (*71) = (£) = 1. Therefore suppose that a; > k.

Then () = 3o (4 (by recursion formula) and hence (%) = (") — 3, (“7) and n = Y5 o (¢) =
E )+ () = () =)+ DA (6 - (9) = ()~ 1= Z5 ((5) - (1) - Now,since

—1> a1 andby induction a; — j > a;_; forevery 1 < j <k —1 and hence Z,-=1 ((‘;{":]f) — (“kk_‘j")) > 0.
This provesthat n < (), the other inequality (%) < n istrivial.)

c). For k e N, k > 1, show that the map N* — N defined by

1 ce k—1
(e M. - ) > mi n my+my+ 4t my+my+ +my +
1 2 k
is bijective. (Hint: Use part b).)
3.1. (Godelisation) Let p1 =2, p, =3, p3= . be (infinite) sequence of the prime numbers.

a). Let A be a countable set with an enumeration A = {al,az, as, ...}, a; # aj for i # j. Then
themap (ai,,...,a;,) — pi---p isaninjective map from the set W(A) = |4, A" of finite
sequences (of arbitrary lengths) of elementsfrom A - such sequences are also called words over the
alphabet A -intotheset N* of positive natural numbers. ( Remark: Such acoding of the words over
A iscdleda Godelisation (dueto K. Godel). The natural number associated to aword is called the Godel
number of thisword.)

b). Let A be a finite alphabet {ai,ay,...,a,} with g letters, ¢ > 2, and ap ¢ A be another
letter. A word W = (a;,,...,a;) over A can beidentified by filling ap with the infinite sequence

1) The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in EucLIDS elements,
athough some of the propositions in book V11 and/or IX are ailmost equivalent to it. Itsfirst clear formulation
with proof seems to have been given by Gauss in Disquisitiones arithmeticae 816 (Leipzig, Fleischer, 1801). It
was, of course, familier to earlier mathematicians; but GAUSS was the first to develop arithmetic as a systematic
science.
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3.2 MA-217 Discrete Mathematics/January-April 2007 3. The Fundamental Theorem of Arithmetic

(aiy, - - -ai,, ao, ap, ...). Show that: the map (a;,)ven+ — Z‘U’ili,,g”—l is a bijective map from the set
of wordsover A onto theset N of the natural numbers and inparticular, isa Godelisation. ( Remark :
Thisisavariant of the g-adic expansion (see T3.4.)

3.2. Letg € N*, g > 2, n beanatural number with digit-sequence (r;);cn in the g-adic expansion of
n andlet d € N*. (seeT3.4.)

a). Supposethat d isadivisor of g for somea € N*. Then n = (r4—1, ..., r0), mod d . Inparticular,
d dividesthe number » if and only if d dividesthe number (r,_1, ..., o).

b). Supposethat 4 isadivisor of g — 1for some « € N* and

S = (roe—l’ ---arO)g+(r2a—1’ ---;roe)g + -
Then n = S mod d . Inparticular, d divides the number n if and only if d dividesthe sum §S.
c). Supposethat d isadivisor of g* + 1 for somea € N* and

W= (roc—ly---arO)g_(r20{—17~~~aroc)g+"' .
Then n = W mod d . Inparticular, d divides the number » if and only if d divides the aternating sum
W. ( Remark : With the help of this exercise one can find criterion, which one can decide on the basis the

digit-sequence of the natural number » in the decimal system whether 4 isadivisor of n with2 < d < 16. (with
d = 3and d = 9 one uses the simple check-sum, with d = 11 the simple alternating sum. The divisibility by
7,11 and 13 at the same time can be tested with the alternating sum of the 3- groupped together in view of the
part ¢). See T3.4. for details.)

3.3. a). For a,m,n € N* with a > 2 and d := gcd(m, n) , show that ged(a™ —1,a" —1) = a — 1.
Inparticular, ™ — 1 and a”" — 1 arerelatively primeif andonly if a =2 and m and n arerelatively
prime. ( Hint: By substituting a? by a one may assume that d = 1. Then show that
@ -1D/fa-D=a"14+. - 4a+1lad (@ -1/(a—1) =a" 1+ +a+1 aerdatively prime)

b). Supposethat ay, ..., a, € N* arerelatively prime. Show that there exists anatural number f € N
such that every natural number b > f caberepresentedas b = uja; +- - - +a,a, withnatural numbers

ui,...,u,. Inthecase n = 2, wehave f := (a1 — 1)(az — 1) isthe smallest such number; further
in this case there are exactly f/2 natural numbers ¢, which donot have a representation of the form
uiay + usas, ui, up € N. (Hint: For 0 < ¢ < f — 1, exactly one of the number ¢ and f — 1 — ¢ can be

represented in the above form.)

c). Let a,b e N* and d := gcd(a, b) = sa+tb with s,t € Z. Then d = s'a +t'b for s',t' € Z if
and only if there exists k € Z suchthat s’ =s — k2, ¢ =1+ k%.

34. a). Let x,y € Qf and y = c¢/d be the canonical representation of y with ¢,d € N* and
gcd(c,d) = 1. Show that x” isrational if and only if x isthe d-th power of arational number.

b). Show that other than (2, 4) thereisno pair (x, y) of positive rational numbers with x < y and
x¥ = y*. (Hint: Provethat for each real positive number of x with 1<x <e there exists exactly one real
number y > x suchthat x¥ = y*. (observe that necessarily y > ¢.) For the proof of the above assertion: note
that x> = y* if and only if (Inx)/x = (Iny)/y and consider the function (Inx)/x on R*.)

1/e 0 Inx

(In2)/2 >

0 /'1 > ¢ i "

c). Let x € Q¥ and a beapositive natural number whichisnot of theform 5¢ with b,d € N*, d > 2.
Then show that log, x is either integer or irrational.

d). For which x,y € Qf, y # 1, the real number log, x rational ? For which x € QZ, the red
number log,,x rational ?
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e). Let n e N*, n > 2 and y € Q \ N*. Then both the numbers /n! and (n!)* areirrational.
(Hint: The natural number ! has simple prime factors.)

3.5. a). (Mersenne Numbers)Let a,ne N witha,n>2. If a"—1isprime,thena =2 and n is
prime. (Hint: Usegeometricseries a” —1 = (a—1)(a" 1 +a"?+-.-+a+1) toconcludethat a = 2;if n =rs
withr>1s>1,then2'—1=(2) -1=(2 —1)A+2 4+2% + ...+ (2)*1). — The natural numbers
of theform a? —1, p € P prime, arecalled M ersenne numbers. For p = 2,3, 5, 7 the corresponding
Mersenne numbers 3, 7, 31, 127 are prime, but correspondingto p = 11, itis M1y = 211 — 1 = 2047 = 23-89
which is not prime. — Remarks: It was asserted by MERSENNE in 1644 that: M, = 2? — 1 is prime for
2,3,5,7,13,17, 19, 31, 61, 89, 107, , 127, and composite for the other remaining 44 values of p < 257. For
example, 47| Mz, 233| Mg, 223|M37, 431|Maz and 167| Mgz . Thefirst mistakewasfoundin 1886 by PERUSIN
and SEELHOFF that Mg; isprime. Subsequently four further mistakes were found and it need no longer be taken
seriously. In 1876 Lucas found a method for testing whether M, is prime and used it to prove that M7 is
prime. This remained the largest known prime until 1951. The problem of Mersenne's numbers is connected
with that of “perfect” numbers which are defined in the part ¢) below. Every two distinct Mersenne numbers
are relatively prime. It is not known whether there are infinitely many Mersenne numbers that are prime. The
biggest known?) prime is the Mersenne number M, corresponding to p = 25964951 ; this prime number has
[log,((22596495L)] 4 1 = [25964951 - log,; 2] + 1 = 7816230 digits!)

b). (Fermat Numbers) Let a,n € N* with a > 2. If a" + 1 isprime, then a isevenand n

is a power of 2. (Hint: If a isoddthen a" + 1 isevenand if n = 2' - m with t,m € Nand m
odd, then (put k :=2') 20 +1=1— (25" = 14+ 2@A -2k +2% — ... 4 20=Dky gnd if m > 1, then
k<nandhence 1 < 1+ 2 <14 2". Therefore m = 1. — Remarks: The natural number of the form

22" +1,neNiscaledthe n-th Fermat number andisdenotedby F, :=2%' +1, n € N. The Fermat
numbers correspondingto n = 0,1,2,3,4 are Fp = 2, F1 = 5, F», = 17, F3 = 257, F, = 65537 are prime
(already discovered by Fermat himself) and hence conjectured that all were prime, butin 1732 EULER proved that :
Fs=22°4+1=2%211=641.6700417, since 641 = 5*+ 2% = 5.27 1 1 divides 5*- 28+ 232 and 5*.28 1
and hencethedifference 232+ 1 = Fs. In 1880 LANDRY provedthat Fg = 22°+1 = 274177-67280412310721 .
Morerecently itisproved that F, iscompositefor 7 <n < 16 n = 18, 19, 23, 36, 38, 39, 55, 63, 73 and many
larger alues of n. MoOREHEAD and WESTERN proved that F7 and Fg are composite without determining a
factor. No factor is known for Fy3 or for Fi4, but in al the other cases proved to be composite a factor is
known. No prime F, has been found beyond F,, so that Fermat’s conjecture has not proved a very happy one.
It is perhaps more probable that the number of primes F,, isfinite. is not prime. Fermat numbers are of great
interest in many ways, for example, it was proved by Gauss that: if F, isaprime p, then aregular polygon
of p sides cane be inscribed in a circle by Euclidean methods. The property of the Fermat numbers which is
relevant hereis: No two Fermat numbers have a common divisor greater than 1,i.e., gcd(F,, F,,)) =1, n #m.
For, suppose that d divides both the Fermat numbers F, and F,.., k > 0. Then putting x = 22, we have

F";’;‘Z = 2;;::‘11 = “‘i:‘ll =x?1_x?-24 ... _1ands0 F,|F, . —2. Thisprovesthat d|F,; and d|F,.;—2
andtherefore d|2. But F, isoddandso d = 1. Thereforeeach of theFermat numbers Fi, Fo, ..., F, isdivisble
by an odd prime number which does not divide any of the others and hence there are at least » odd primes not
exceeding F,. This proves (proof due to P6Lya) Euclid’s theorem (see T3.1.-3)-b)). Moreover, we have the

inequality p, < F, = 22" + 1 whichislittle stronger than the inequality in T3.1.-3)-d)-(1)-(i).)

c). (Perfect numbers) A natural number n € N* iscalled perfect if o(n) =2n. (Theorem
of Euclid-Euler) Aneven number n € N* is perfect if and only if n is of the form 2°(2°+1 — 1)
with s € N* and 2°*1 — 1 prime. ( Hint: Supposethat » is perfect, n = 2°b s,b € N* and b odd.
Then 21 = 2n = o (n) = (21 — 1)o (b) and sothereexists ¢ € N* suchthat o (b = 2°t1c, b = (21 — 1),
o(b)=b+c.)

2) On February 18, 2005, Dr. Martin Nowak, an eye surgeon from Germany, found the new largest known prime
number, 225964951 _ 1 | This prime number has 7816230 digits! It took more than 50 days of calculations on Dr.
Nowak's 2.4 GHz Pentium 4 computer. This discovery was part of the Great Internet Mersenne Prime Search
(GIMPS) project in which more than 60000 volunteers from around the world took part. Such huge numbers are
used in problems related to Cryptography.

D. P. Patil / Exercise Set 3 dmO07-e03 ; February 19, 2007 ; 1:26 p.m. 13



34 MA-217 Discrete Mathematics/January-April 2007 3. The Fundamental Theorem of Arithmetic

3.6. Let m,n € N* berelatively prime numbersand let ag, a1, ... bethe sequence defined recursively
aSag=n, a1 =ag---a+m,i € N. Then a;;1 = (a; —m)a; + m =ai2—mal~—|—m foral i > 1.
a). gcd(a;,a;) = 1foral i, j e N with i # j. Theprimedivisorsof a;, i € N supply infinitely
many different prime numbers. ( Remark: The a; are suitable well for testing prime factog(i) zing procedures.)

i i+1 i
b). Foral i € N, showthat 1omoqym_m+l m .Deducethatzm—:m"'l.
ag ai = a;

a; n aiy1 —m n

o0 .
c). For m =2 and n =1, fromb) provethat a; 11 = F; = 2% + 1, i € N. Inparticular, Y 12:— =1.
i=0 "1
3.7. Let M be acommutative monoid with cancellation law. Suppose that every element x € M isa
product of irreducible elements. Show that the following statements are equivalent :
(i) M isfactorial. (i) Every irreducible element of M isprime. (iii) lcm(a, b) exists for every
a,be M. (iv) gcd(a, b) existsfor every a,b € M. (Hint: Use T3.6.-8) and T3.6.-11).)

3.8. (The Sieve of Eratosthenes®) The so-caled sieve of Eratosthenes is an aogrithm for
singling out the prime from among the set of natural numbers < N for arbitrary natural number N . It
depends on the fact that if anatural number » > 1 hasno divisior d with 1 < d < /n, then n must
be a prime number (See T3.1.-3)-d)-(5)). Let N be a positive natural number and let 7 (N) denote the
number of primenumbers < N . Let p,, ..., p, bedl primenumbers < VN ,ie r =n(/N). Prove
the following well-known formula®) :

n(N)=N+r—1—Z[E]+ > [N ]—---+(—1)’[$].

1§l§r pl 1§ll<12§r pllplz
roof: Foreach i = 1,...,r, i = {n € n < N and p;|n} = {p;, 2pi,...,| = |- pi} and hence
IMiI:[g].Foranindex v-tuple (i, ....i,) with1<iy <ip <--- <i, <r,wehave M;y N---NM;, =

(neN|n<Nad p,-1|n,...,p,-nu n equivaently p;, ---p;, |n} andso |[My N---NM;,| = [p_ _’ﬁp_ ] This
i1 iy
provesthat 7(N) = N —1—|U_; M;| 4 r. Now usethe Sylvester's sieve formula. )

3.9. Let n € N* andlet p beaprime number. Show that
a). Themultiplicity of p inn!is v,(n!) = [’—1] + [%] + [%} +-e

P p P
Inparticular, (Legendre’s formula: n! =[] p==t"/71.
p=n
(Proof: Notethat [pi] = 0if p” > n and hencethe sum ontheright hand sideisreally afinite sum. Theassertion

isproved by induction. Itistrivial for 1!'. Assume » > 1 and theasertionistruefor (n —1)! andlet j = v,(n),
i.e, p/ln but p/*1 Jn. Since n! = n - (n — 1!, itisenough to provethat Y [n/p'] — > [(n — 1)/p']l = j.

3) Thisprocessisnamed after the Greek scientist who invented it. ERATOSTHENES CYRENE (276-194 BC), a
contemporary of ARCHIMEDES, was a many-sided scholar; nicknamed “Beta’ because he stood at least second in
every field. He gave amechanical solution of the problem of duplicating the cube, and he calculated the diameter
of the earth with considerable accuracy. Chief librarian of the Museum in Alexandria, he became blind in his old
age and committed suicide by starvation.

4) Proved by the French mathematician LEGENDRE ADRIEN-MARIE (1752-1833). It was Legendre's fate
to be eclipsed repeatedly by younger mathematicians. He invented the method of least squares in 1806, but
Gauss revealed in 1809 that he had done the same in 1795. He laboured for 40 years on élliptic integrals and
then ABEL and JacoBr revolutionized the subject in the 1820s with the introduction of eliptic functions. He
conjectured the prime number theorem and the law of quadratic reciprocity, but could not prove either. Still, he
created much beautiful mathematics, including the determination of the number of representations of an integer
as a sum of two squares, and the exact conditions under which the equation ax? + by? + cz2 = 0 holds for
some (x, y,z) # (0,0,0). He aso wrote an elementary geometry text in which, in 39 editions of the English
trangdlations, replaced Euclid’'s Elements in America schools.
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. . 1, if pf
But [/p') = [0 -1/ ] = g i

n,

andhence Y [n/p'] =Y [(n — 1)/p'] = j . Thisproof israther

n,

short and artificial. Another proof: First note that [ . ] = [[];T]} for every r € N (this follows easily from

pr+1

[x/m] = [[x]/m] foral x € R andal m € N*.) Among the natural numbers 1 < K < n, those which are

divisibleby p are p,2p, ... [%] - p; among these that are divisible by p? are p?,2p?, ... [;"z] - p?;
among these that are divisible by p3 are p3,2p3, ... | [;’lg] . p3 and so on. Thislead us to conclude that

Yo ln/p 1= 10 (K) =v,(1-2----n) = v,(n!). — Moregeneraly: If n;, i € I,isafinitefamily of
positive natural numbers, then the prime number p occursin the product [, , n; withthemultiplicity », . vk,
where for each k € N*, v, isthenumber i € I for which »n; isdivisibleby p*.

b). Show that (27)!/(n!)? isan even integer. Further, v,((2n)!/(n")?) = >",_, ([22/p*] — 2[n/p"])
andif n < p < 2n,then v,((2n)!/(n")?) = 1.

c). Let n = (ry, ..., ro), bethe p-adic expansionof n,where 0 <r; < p foral i =0,...,7. Then
vp(n!) = (n — Y ;.0r:)/(p—1) . (Hint: The sum on theright hand side of part a) can be easily computed by
recursion: Y,_4[n/p'l = (n — ¥,o07)/(p—1) )

d). v,(PF—DH =[p"—(p—Dk—-1/(p - 1). ( Hint: Use the identity (p* — 1) =
(P—DP T+ +p*+p+D)

e). Find v3(80!) and v7(2400!) .

f). Find n € N* suchthat v,(n!) = 100. (Hint: Forinstancefor p =5, begin by considering the equation
(n —1)/4 = 100.))

Next pages one can see Class-Notes and (simple) test-exercises.
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Class-Notes/Test-Exercises

T3.1. (Division algorithm/Divisibility/Prime numbers)

1). Let a,b € Z with b > 1. Then there exists unique integers ¢ and r such that « = gb + r with
0<r <b. Moreover, inthecase a > 0, wehave ¢ > 0. — Theintegers ¢ and r are called quotient
and remainder, respectively, in the division of a by 5. (Existence of ¢ and r : The subset
A={xeN|x=a—-zbwithz € Z} € N isnon-empty: if a > 0,then a € A: if a < 0, then
a—ab =a(l—b) >0 andhence a —ab € A. Therefore by the minimality principle A hasaminimal element
r. Then r =a —qgb > 0 for some ¢ € Z. Further, r < b; otherwise a — (¢ + )b = r — b > 0 and hence
r — b € A acontradiction to the minimality of r. Therefore a = gb + r isthe required equation. If a > 0,
then ¢ > 0; otherwise ¢ < —1,i.e, —g > 1 and r = a — gb > b acontradiction. Uniqueness of g and r : If
a=qgb+r=q'b+r withq,q',q,r e ZwithO<r,r <b.Then r —r' = (¢’ — q)b and so b|(r—r’). But
since0<r,r <bwehave -b<r—r"<bandhence r —r'=0,i.e, r =r. Nowfrom (¢’ — ¢)b =0 and
b +#0,itfollowsthat ¢’ =¢.)

2). (Divisibility) Aninteger d iscalleda divisor of a € Z in Z, and isdenoted by d|a, if there exists
veZ suchthat a = dv. Inthiscaseweadsosay that d divides a or a isamultipleof d (in Z). If
d isnot adivisor of a, then we write d /fa. If 0+# d isadivisor of a,then v € Z inthe equation a = dv

is uniquely determined by the cancellation law. Aninteger a, € Z iscaled even (respectively odd) if 2|a
(respectively, 2 /fa), i.e, a isof theform 2v (respectively, 2v + 1).

a). Thedivisibility definesarelation on Z and it satisfies the following basic rules: For al a,b,c,d € Z, we
have: (i) (Reflexivity) ala. (i) (Transitivity) If a|b and b|c,then alc. (iii) If a|b and c|d ,then ac|bd .
(iv) If a|b and ac,then a|(xb+ yc) forall x, y € Z. (Remarks : Therule iii) does not hold if one replaces
ac (respectively, bd) by a + ¢ (respectively, b + d ). Thenumber O isdivisible by every integer d € Z, since
0 =4d-0; thisistheonly case of an integer which hasinfinitely many distinct divisors. Thisis proved in the part
b) below which is an important connection between divisibility relation | and the (standard) order.)

b). Let a € Z,a #0 andlet d € Z beadivsor of a. Then: 1 < |d| < |a|. Inparticular, every non- zero
integer a has at most finitely many divisors.

o). Leta,deZ,a>0,d>0.If d|a and a|d thend =a.

(Remarks : Every integer a hasthefour (distinct) divisors a, —a, 1, —1; thesearecaledthe trivial divisors
of a; other divisorsare called proper divisors of a. Therefore from b) it followsthat: If d isa proper
divisor of a # 0,then 1 < |d| < |a|. Since a = dv if andonly if —a = d(—v), theintegers a and —a havs
the same divisors. Therefore, since for every integer a, exactly one of a or —a is a natural number, for the
divisibility questions, we may without loss of generality assumethat a € N. Further, if 4 isadivisor of a, then
—d isasodivisor of a (sinceif a = dv with v € Z, then a = (—d)(—v) ) Therefore if one knows all divisors
of aninteger a areknownif one knowsall positive divisorsof |a|. On thisbasis many considerationsin number
theory can be reduced to the set N* of positive integers.)

3). (Prime numbers) A natural number p iscaleda prime number oran irreducible (in N) if
p>1land p=ab with a,b € N,theneither a =1 or b = 1. A natural number n > 1 iscalled composite
if it is not a prime number. The set of al prime numbers is denoted by P. Then by definition 1 ¢ P. For a
natural number p > 1, thefollowing statementsareequivalent: (i) p € P. (ii) 1 and p aretheonly positive
divisorsof p. (iii) p hasno proper divisor. (Remark: On the basis of the property (iii) prime numbers are
also called irreducible.)

a). (Existence Theorem) Every natural number a > 1 hasasmallest (positive) divisor ¢+ > 1. Moreover,
thisdivisor ¢ isaprime number. (Proof: Theset T = {d € N* | d|a andd > 1} isnon-empty, since a € T .
Therefore by the minimality principle 7 has a minimal element ¢. Thisinteger ¢ is a prime number. For, if
not, then thereisadivisor 1 of ¢ with 1 <+ <. Butthen ¢'|r and ¢|a and hnce ¢'|a acontradiction to the
minimality of ¢ in T'.)

b). (Euclid’s Theorem ®)) Thereareinfinitely many prime numbers, i. e, theset P isinfinite.  (Proof:
In the text of Euclid the word “infinite” is not mentioned; this theorem was formulated as: Given any finite set
of prime numbers, one can always find a prime number which does not belong to the given set. Show that: Let
q1, - - -, q, befinite set of prime numbers. Then the smallest (positive) divisor ¢ > 1 of the natural number
a'=gq1-q2- -q, + 1 isaprime number which is different from all the prime numbers ¢1,...,¢,. — Since

5) Proved in the “Elements (Book I X, Theorem 20)” of Euclid. Euclid’s argument is universally regarded as a
model of mathematical elegance.
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a > 1, t existsand hence r is a prime number by the Exitence theorem in part @). If ¢ is one of the numbers
q1, ..., 4, ,then t|q1 ~q2--+q,. Then t|a —q1-92---q, = 1 acontradiction.)

c). (Irreducibility and Prime property) Let p beanatural number. Then: (1) (Euclid’s Lemma)
If aprimenumber p dividesa product ab of two natural numbers a and b, then p divides one of the factor a
or b. (Proof: Theset A := {x € N* | p|ax} contains p and » and hence by the minimality principleit has a

smallest element ¢. We claim that c|y for every y € A. For, by division algorithm y = gc + r with ¢,r € N
and 0 <r < c. Then, since play and plac, play — q(ac) = ar. Thisprovesthat » = 0; otherwise r € A
and r < ¢ acontradiction to the minimality of ¢ in A. Theorefore c|y for every y € A;inparticular, c|p and
hence c=1or c = p.If c=1,then plac=a. If c = p,then(since b € A) by theaboveclam p|b.)

(2) If a prime number p dividesa product a; - --a, of n positive natural numbers as, ..., a,, then p divides
one of the factor a; for some 1 <i < n.(Hint: Prove by induction on » using (1) above.)

(3) For anatual number the following statements are equivalent: (i) p isaprime number. (ii) If p dividesa
product ab of twointegers a and b, then p|a or p|b .(Proof: Wemay assumethat « and » areboth positive.
The implication (i)=(ii) is proved in (1). For theimplication (ii)=(i) Let d be any positive divisor of p, i.e,
p = dd with &’ € N. Thismeansthat p|dd’ and hence by (ii) either p|d or p|d'. Butsince 1 <d < p
and 1 <d' < p itfollowsthat either p=d or p =d’,i.e, either d = p or d = 1. This provesthat the only
positive divisorsof p are 1 and p and hence p isaprime numebr. — Remark : The property (ii) is (usually
distinguished from theirreducibility property of p)caledthe prime property. Thereforewe canreformulate
(3) as: Anatural number p > 1 isirreducibleif and only if p hasthe prime property. See also 7??.)

d). Let P denote the set of all prime numbers.

(1). Let p, denotethe n-th prime (in the natural order <). Then show that: (i) p, < 22t (Hint: Note that
Pnil < p1-p2---pa+1) (ii) p,>2n—1forn>5. (iii) noneof thenatural number P, := p1-p2---p,+1
isaperfect square.  (Hint: Each P, isof theform 4m +3.) (iv) thesum -1 + L 4 ...+ L isnever an
integer. (v) Give another proof of infiniteness of P by assuming that there are only finitely many primes, say,
P1, -, p, and using the natural number N = pz - p3- - p,+p1-p3 - pat+ -+ p2-p3 - pa-i.

(vi) (Conjectures/Open questions) (a) If g, isthesmallest primewhichis > P, = p1-p2--- p, +1,
then the difference (p1 - p2--- p,) — g, is always a prime. Verify this for first 5 values of n. (b) Let
d, = p.+1 — p. . Anopen question is: whether the equation d, = d,,1 hasinfinitely many solutions. Give 5
solutions.

(). Let n € N*. Show that (i) if n > 2, then there existsaprime number p with n < p < n!.(Hint: Consider
aprime divisor p of n! —1.) (i) if n > 1, then every prime divisor of n! + 1 isan odd integer > n.
(Remark : This shows again that there are infinitely many prime numbers. It is unknown whether infinitely many
of n! + 1 areprime.)

(3). For n € N*, none of the n natural numbers (n+1)! + 2, ..., (n+1)! +n+ 1 are prime. (Remark : Therefore
there are gaps of any size between prime numbers.)

(4). For a = 3, 4, 6, show that in the sequence an + (a — 1), n € N, there are infinitely many prime numbers.
(Hint: Make an argument withapy --- p, + (@ — 1).)  (Remark: More generally, if a, b are relatively prime
positive natural numbers, then there are infinitely many prime numbers of the form an + b, n € N (Dirichlet’s
Theorem).)

(). Let n,r e N*, n > 2. If n hasno prime divisor < "*i/n, then n isaproduct of at the most » (not necessarily
different) prime numbers. In particular, if n has no prime divisor < /n, then n is prime.

6). For n € N, n > 2, the natural number 4" 4 n* is never prime.  (Hint: For odd n, we have n* + 4" =
2 =2 L2242 nt2Y)

T3.2. (GCD and LCM/Euclidean algorithm)

1). (GCD) Foraninteger a € Z, let D(a) denote the set of all positivedivisorsof a. Then 1 and a € D(a);
Da)=N&=a=0;if a #0,then D(a) isafinitesubset of N. For a, b € Z, theintersection D(a) N D(b)
is precisely the set of all common divisors of ¢ and b. Moreover, if (a,b) # (0,0), then D(a) N D(b) isa
finite subset of N and hence it has alargest element, thiselement is called the greatest common divisor
of a and b and is denoted by gcd(a, b). Therefore for a, b € Z with (a,b) # (0,0), the gcd(a, b) isthe
positive integer d satisfying: (i) d|a and d|b; (i) if ¢ isapositive integer with c|a and c|b, then ¢ < d.
We put gcd(0,0) := 0. Two integers a, b € Z with (a,b) # (0,0) aresaidto be relatively prime if
gcd(a,b) = 1.

a). (Bezout’'s Lemma) For integers a,b € Z with (a,b) # (0,0) there exists integers s,¢t € Z such
that gcd(a, b) = sa + tb. Deducethat: (i) For two non-zero integers a, b € Z* with (a, b) # (0, 0), show
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that the set {sa +tb | s,t € Z} is precisely the set of all multiplesof d = gcd(a, b). (ii) if d = gcd(a, b),
then gcd(a/d, b/d) = 1,i.e, a/d and b/d arerelatively prime. (iii) if a,b,c € Z and a|c and b|c with
gcd(a, b) = 1, then ablc. (iv) if a,b,c € Z and a|bc and ged(a,b) = 1, then alc. (v) (Euclid’s
lemma) Let p beanirreducible elementin N* (i.e. 1 and p aretheonly divisorsof p in N). If p dividesa
product a; - - - a, of positive natural numbers, then p dividesat least one of thefactor a; forsome 1 <i <n.
(vi) For integers a, b € Z with (a, b) # (0, 0), apositiveinteger d isagcd of a and & if and only if (i) d|a
and d|b and (ii) whenever a positive integer ¢ dividesboth a and b, then ¢|d . (Remark: The assertion (vi)
often serves as a definition of gcd(a, b) . The advantage isthe order relationship is not involved.)

(vii) D(a) N D(b) = D(gcd(a, b)) . (viii) For integers a,b € Z with b #0 and a = gb +r, q,r € Z, show
that gcd(a, b) = ged(b, r) .

b). (Rules for GCD) Forintegers a, b, c € Z , we have:
(i) ged(a, a) = |al; (i) a|b & a = gcd(a, b).
(iii) (Commutativity) gcd(a, b) = gcd(b, a) . (iv) (Associativity) ged(ged(a, b), ¢) = gcd(a, ged(b, ¢)) .

(iv) (Digtributivity) gcd(ca, cb) = |c|gcd(a, b). (V) (Product formula) ged(ab, ¢) = ged(ged(a, ¢) - b, c) .
(Remark : These rules are elementary to prove, but gives unwieldy impression; probably because of the un-
accountability of the classical notation gcd. If instead of gcd one uses an elegante symbol, for example,
a b = gcd(a, b), then these rules are more suggesstive: (i) ana = lal; (ii) a|b &< a =anb,
(iii) (Commutativity) anb = bna; (iv) (Associaivity) (a@nb)nec =an (bnc); (iv) (Distributivity)
(c-a)n(c-b) =|c|-(@nb); (v) (Product formula) (a-b)rnc = ((anc)-b)nc; andthe use of the terms
“associativity” and “distributivity” isimmediately clear. Thisexample showstheimportance of the good notation;
unfortunately in literature till today everybody use the tradational noatation gcd(a, b) .)

c). For positive natural numbers a, b, ¢,d ,m,n € N*, show that: (i) gcd(a,1) =1.
(i) ged(a,a +n)|n and hence ged(a, a + 1) = 1.

(iii) If ged(a,b) = 1 and gcd(a, c) = 1, then ged(a, bc) = 1.  (Hint: 1= sa + tb = ua + vc for some
s,t,u,v € Z. Then 1= (sa + tb)(ua + vc) = (aus + cvs + btu)a + (tv)bc.)

(iv) If ged(a, b) = 1, then gcd(a™, b™") = 1 (Hint: Use the above part (iii).)

(v) Thereation a"|p" impliesthat alb. (Hint: Let d := gcd(a, b) and write a = rd and b = sd . Then
gcd(r, s) = 1 and hence ged(r", s") = 1 by (ii). Now show that » =1, whence a =d , i.g, a\b.)

(vi) If ged(a, b) =1 and c|a, then ged(b, ¢) = 1.

(vii) If gcd(a, b) = 1, then gcd(ac, b) = ged(c, b).

(viii) If ged(a, b) = 1 and c|(a + b) , then ged(a, ¢) = ged(b, ). (Hint: Let d = ged(a, ¢). Then d|a and
d|c|(a+b) andhence d|(a+b) —a=b.)

(ix) If gcd(a,b) =1,then gcd(a + b,ab) = 1.

(x) If ged(a, b) =1, d|ac and d|bc, then d|c.

(xi) If d|n,then 2 —1|2" — 1.

(xii) Show that there are no positive natural numbers a, b € N* and n € N with n > 1 and «" — »" divides
a" + b" .(Hint: We may assumethat » < a and gcd(a, b) = 1.)

(xiii) Show that for a, b € N*, b > 2, 2* + 1 isnot divisibleby 2 — 1 (Hint: Provethat a > b.)

(xiv) For m,n € N with m > n, show that ¢®' + 1 divides a®" — 1. Moreover, if m,n,a € N*, m % n , then

ged@® +1,a% +1) = {% :; Z :2(%3”’(Hint: a® + 1|az"+l — 1. For the second part use the first part.)

(xv) Supposethat 2" +1=xy,where x,y e N*, x > 1,y > 1 and n € N*. Show that 2* divides x — 1 if
andonly if 2* divides y — 1. (Hint: Write x —1=2%-p and y — 1= 2°-d with » and 4 odd.)
(xvi) Show that ged(n! + 1, (n + D! + 1) = 1.

2). (LCM) The concept parallel to that of a ged is the concept of the least common multiple. For an integer
a€Z,letM(a) = Za = {na | n € Z} denote the set of all multiplesof a. Then M(a) = {0} &= a =0 ; if
a#0,then M(a) =N-aWwZ -a. Further, for a, b € Z* , theintersection M(a) N M(b) is precisely the set of
al common multiplesof a and . Moreover, ab € M(a) N M(b) , inparticular, |ab| e N-a NN - b and hence
by minimality principle, it hasaminimal element, thiselement iscalled the |east common multiple of a
and b andisdenoted by Icm(a, b) . Thereforefor a, b € Z* , the Icm(a, b) isthe positiveinteger m satisfying:
(i) a|m and b|m; (i) if ¢ isapositive integer with a|c and b|c, then m < c. Weput lem(0,0) := 0. Itis
clear that for any two non-zero integers a, b € Z, lcm(a, b) awaysexistsand Icm(a, b) < |ab|.
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a). Let a,b € Z*. Then gcd(a, b) divides Icm(a, b) and gcd(a, b) -lcm(a, b) = ab. Moreover, (i) gcd(a, b) =
lcm(a, b) ifandonly if a =5b. (ii) gcd(a, b) =1 if andonly if Icm(a, b) = ab.

b). For a, b, c € Z*, show that the following statements are equivalent: (i) a|b. (ii) ged(a,b) = a. (iii)
lem(a,b) =b.

c). For a, b, c € Z, show that lcm(ca, cb) = |c|lcm(a, b) .

d). For non-zerointegers a, b € Z, apositiveinteger m isalcmof a and b if and only if (i) a|m and b|m and

(if) whenever a positive integer ¢ isamultiple of both ¢ and 4, then m\c. (Hint: Put v = lcm(a, b) and use
division algorithm towrite m = gt +r with ¢,r € Z, 0 <r < ¢t. Then r iscommon multipleof « and b. —
Remark : This assertion often serves as a definition of lcm(a, b) . The advantage is the order relationship is not
involved.)

e). Forintegers a, b € Z, show that M(a) N M(b) = M(lcm(a, b)) .

3). (Euclidean algorithm®) Let a,b € N* with @ > b. Weput ro := a and r1 := b and consider
the system of equations obtained by the repeated use of division algorithm: rog = gqir1 +r2,0 < r2 < r1;
r1=qor2+r3,0<rz<rz; - ne1=qre+r41,0 < g1 <1y 1= qrearier . Then:

(i) ged(a, b) = rir1. (Hint: By repeated use of 1)-vii) we have gcd(a, b) = gcd(rg, r1) = ged(ry, r2) =
ged(rk, riv1) = ged(res1, 0) = rey1.)

(iYFori =0,...,k+1,defines; and ¢; recursivelyby: so=1,1700=0;s1=0,t1=1; si01=15,_1—¢q;s;,

tivi = tica—qit;, i = 1,...,k. Then a = rg = spa + tob, r1. = s1a +11b and ri1 = ri_1 — qiri =
si_1a + ti_1b — g;sia — qit;b = s;;1a + 1,410 foral i =1, ..., k. (Remark: This proves once again Bezout’s
Lemma.)

4). The notion of greatest common divisor can be extended to more than two integers in an obvious way. Let
ai,...,a, € N, n > 1, notal zero. Then ng(al,...,a,,) is defined to be the positive integer d satisfying
the following two properties: (i) d|a,~ forevery i = 1,. ; (i) if ¢ is a positive integer with c|a, for
every i = 1,...,n,then ¢ < d. Notethat gcd(as, ... a,, 1, a,) = gcd(gcd(al,.. ,Apn_1), p) = =
gcd(as, gcd(ay, . . ., a,)) by T3.2-1)-b) and hence the gecd depends only on as,...,a, and not on the order in
which they are written.

a). Letaj,...,a, e N*, n>1andlet a =a;---a,. Show that the following statements are equival ent:

() a1, ...,a, areparwisereatively prime. (ii) If each of the numbers as, ..., a, dividethe natural number c,
then a aso divide the number ¢. (iii) lem(as,...,a,) = a. (iv) The natural numbers bl =aj/ay,..., b, :=
a/a, arerelatively prime. (v) There exist integers sq, ..., s, suchthat = 1 = + +—. (Remark: Icm
and gcd of finite many numbers as, ..., a, are defined like in the case n= 2 If gcd(al,...,a,,) =1, then
ai,...,a, arecaled relatively prime. Notethat this concept is different from that of pairwise relatively
prime.)

b). For ai,...,a, € N*, n > 1, show that there exist integers u1,...,u, € Z such that gcd(ay,...,a,) =
uia1 + - -+ + uqa, . Inpartticular, as, ..., a, arereatively primeif and only if there exist integers us, ..., u,

suchthat 1 = ujag + --- + u,a, . (Remark: One can find the coefficients us, ..., u, algorithmically
by succesive use of the lemma of Bezout (see T3.2-1)-a)). This agorithm supplies frequently disproportionately
large coefficients uy, . . ., u,. It isbetter to proceed asfollows: First by renumbering assumethat a; isminimal
infa—1,...,a,},andgoesthento tuple (a1, r2, ..., r,), wherer; the remainder of q; after dividing by a1, after
removing the zeros among r;, consider the new tuple as at the beginning. One hasto control, how the coefficients
of thetuple constructed arerepresented aslinear combinationsof theay, . . ., a,, beginningwitha; = > _; §xax .)
Find integersu1, uo, uz suchthat 1 = uq - 88 + us - 152 + u3 - 209.

T3.3. (Fundamental Theorem of Arithmetic) Proposition 14 of Book IX of Euclid’s “Elements’
embodies the result which later became known as the Fundamental Theorem of Arithmetic:

1). BEvery Natural number a > 1 isaproduct of prime numbers and this representation is “essentially” unique,
apart from the order in which the prime factors occur.

6) A more efficient method involving repested application of division agorithm is given in theV11-th book of the
Elements and it isreferred to asthe Euclidean algorithm. The French mathematician GABRIEL LAME
(1795-1870) proved that the number of steps required to find ged in the Euclidean algorithm is at most five
times the number of the digits in the smaller integer, i.e., 5log;pb = (2.17...)logh. Lamé was a primarily a
mathematical physicist. isonly other known contributions to number theory were thefirst proof of Fermat’s Last
Theorem for the exponent 7 and afallacious “proof” for the general n .
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a). (Existence of prime decomposition) Every natural number ¢ > 1 hasa prime decomposition
a = p1---p,, where we may choose p; asthe smallest (prime) divisor ¢ of a. (Proof: Either
a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by T3.1-3)-a)
there exists a smallest prime divisor p1 of a,i.e, a = p1-b with 1 <b < a (since 1 < p1 < a). Now,
by induction hypothesis » has a prime decomposition » = P> --- p, and hence a has a prime decomposition
a=pi-p2---pn)

b). (Uniqueness of prime decomposition) A prime decomposition of every natural number a > 1
is essentially unique. More precisely, if a = p1 --- p, and a = q1 --- g, are two prime decompositions of
a with prime numbers p1, ..., p.; g1, ..., 9m , then m = n and there exists a permutation o € &, such that
g = poyy forevery i =1,...,n. (Proof: We prove the assertion by inductionon n. If n = 1,
then py=a=gq1---gn,l.€, p1|q1 -+~ g, and hence by the prime property T3.1-3)-¢)-(2) pl\qj for some j,
1 < j < m. Renumering if necessary, we may assume that j = 1; further, since g1 is a prime number, we
must have p1 = g1 by theirreducibility of ¢1. Now, by cancelling p1, we get two prime decompositions of
the number ¢’ = p2--- p, = g2---q. . Therefore by induction hypothesis m — 1 = n — 1 and there exists a
permutation o’ € 6({2, ..., n}) suchthat ¢,;, = p; foral i =2,...,n. Now, define o € S, by 0(1) =1
and o (i) =o’(i) fordl i =2,...,n. —Remarks: The above proof for uniqueness use the Euclid’slemmaon
the prime property (see T3.1-3)-c)) and hence usesimplicitly the division algorithm and therefore make use of the
additive structure of N. The existence of prime decomposition only uses the multiplicative structure on N and
not the additive structure on N. Thisleadsto the question: Can one give a proof of the uniqueness of the prime
decomposition which only depends on the multiplicative structure of N ? The answer to this question is negative
aswe can see in the example given in ¢). The uniqueness of the decomposition of a positive natural number into
product of irreducible elements is less obvious than the existence of such adecomposition. This can also be seen
in the examplesin c¢) and d).)

c). Let M betheset of al natural numberswhich haveremainder 1 upondivisionby 3,i.e, M ={3n+1|n €
N}. Then M isamultiplicativesubmonoidof N,i.e, 1€ M andif a1,...,a, € M,thenay---a, € M. For, it
is enough (by induction) to notethat (3rn1 + 1)(3n2 + 1) = 3(3n1no +n1 +n2) + 1. Similar to theirreducibility
in Z,we say that an element ¢ € M isirreducibleif ¢ > 1 andif ¢ = ab with a,b € M ,theneither a =1 or
b = 1. Thefirst few irreducible elementsin M are: 4,7, 10, 13, 19, 22, 25, 31 ; the elements 16 = 4 - 4 and
28 = 4.7 arenctirreduciblein M . Onecan easily (by induction— anal ogous proof asin the existence of aprime
decomposition) : Every dlement a € M isa (finite) product a = c1 - - - ¢, of irreducible elements c1, ..., ¢, in
M . However, the uniqueness of this representation does not hold, for example, the element 100 € M has two
irreducible decompositions 100 = 4 - 25 and 100 = 10 - 10 which are not essentially unique. One can (similar
tothose of in Z) also define divisibility and prime property in M , with these definitions 4|100 =10-10in M,
but 4 /(10 in M, i.e., theelement 4 isirreduciblein M, but does not have the prime property in M . In this
example what ismissing isthat the set M is not additively closed, for example, 4 € M ,but 8=4+4¢ M or
moregeneraly, 3ny1=1e M and 3no+1e€ M ,but (3n1+ 1)+ B+ 1) =3(n1+n2) +2¢ M. Wefurther
note that gcd of 40 and 100 doesnot existsin M and Icm of 4 and 10 doesnot exitsin M (since 4 )(10 in
M).

d). Let ¢ € N* be an arbitrary prime number (eg. ¢ := 2 or ¢ := 12345678917)) and N := N* — {g}.
Then N isamultiplicatively closed and every element in N is a product of irreducible elements of N ; such a
decomposition is not any more, in general unique. More precisely, prove that: The irreducible elementsin N
are usual prime numbers p # ¢ and their products pg with ¢ and both the elements ¢» := ¢2 and ¢3 := ¢°.
The element n := ¢® € N hastwo essentially different decompositions n = ¢» - g2 - g2 = q3 - g3 as product of
irreducible elements of N . Theirreducible element g3 divides (in N) the product g2 - g2 - g2, but none of its
factor. Similarly, ¢» divides(in N) the product g3 - g3, but not ¢s. Similarly, m := pg® = (pq)q? has(in N)
two essentaily different decompositions ( p prime number # g).

2). (Zermelo’s proof of uniqueness of prime decomposition)

T3.4. (¢-adic expansion) Let g € N*, ¢ > 2. For every natural number n € N, there exists a uniquely
determined sequence (r;);cy Of natural numbersalmost all of whichare 0 suchthat n =Y ;-5 r;ig’ and 0 < r; <
g forall i € N.(Remark: Thisunique representation of n iscalledthe g -adic expansion of n andther,
i e N,arecdledthe digitsof ninthe g-adic system. Ifr, =0fori > ¢, thenwewrite n = (r, ..., r0),
and say that the g-adic expansionn = ) ;_, r;g' of n, which can lead to no misunderstandings. Moreover, if
r. #0,thenr,, ..., ro arecaledthe essential digits of n. —For g = 2resp. g = 10 we aso usethe terms

) One can check thiswith asmall computer programm that this number is really a prime number. |sthe number
12345678901 also prime?
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dual—resp. decimal system.) Let n € N* and let 4,,10" + a,,_110" 1 + ... + 41104+ a9, m € N and
a; €{0,1,...,9} bethedecimal expansion of n. Then

a). 3n < 3|(ag+ar+---+a,); 5Bn < bBlag; 9Yn < 9Yao+a1+---+ay); 1ln <
1lj(ag— a1+ ---+ (—=D"a,).

b). 7ln <= 7|(az, a1, a0)10— (as, a4, az)i0+---; 1lln <= 11|(az, a1, ao)10 — (as, as, az)io+- - - ;
3n <— 13|(ap+ 2a1+---+ 2"a,,);

T3.5. (Irrational numbers) A rea number whichisnot rational iscaled an irrational number.

1). Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or division; The
sum, difference, product and quotient of two real numbers, one irrational and the other a non-zero rational, are
irrational.

2. LetneN*, yeQ, y>0andlet y=pj* - p™ bethecanonical primefactorisation of y. Show that the
following statements are equivalent : (i) There exists a positive rational number x with x” = y. (ii) n divides
al theexponents m; , i =1,...,r.

3). (Lemma of Gauss) Let x :=a/b € Q beanormalisedfraction,i.e., a,b € Z, b > 0 and gcd(a, b) = 1.
Suppose that a,x" + --- + ai1x +ag = 0 with ag,...,a, € Z and a, # 0, n > 1,i.e, x isazero of the
polynomial function a,t" + --- + ag. Then a isadivisior of ag and b isadivisor of a,. Deduce that:

(i) if theleading coefficient a, = 1,then x € Z. (ii) For any integer a € Z and anatural number n € N*,
every rational solution of x" — a isan integer, inparticular, x” — a has arational solution if and only if a is
the n- th power of an integer. (Remark: It follows at once that +/2 (Phythagoras)®) /3, V5, ..., /P,
where p isprimenumber, areirrational numbers.)  Moregenerally: (iii) Let » € N*, p1,..., p, bedistinct

prime numbers and let my, ..., m, € N* Thenfor every n € N*, n > 1, thereal number ,/p1p52--- p/ isan

irrational number. (iv) For a,b € Z, a > 0,b > 0 with gcd(a, b) = 1 and anatural number n € N*, the
equation x" — a/b hasarational solution if and only if both ¢ and b are n- th power of integers.

4). Let ay, ..., a, € Q} bepositiverational numbers. Show that \/a, + - - -+ /a, isrational if and only if each
a;,i=1...,r isasquare of rational number.

5). Determineall rational zerosof the polynomial functions 13+ 3:2+ 3143 and 3t7+4:8— 15+ 14+ 413+ 52— 4.

6). Let r bearational multipleof = °),i.e. + = rr with r € Q. Then cosr, sint and tan: areirrationa numbers
apart from the cases where tanr is undefined and the exceptions cosr = 0, +1/2, £1; sint = 0, £1/2, +1;
tantr =0, +1.

7). Therea numbers logg 9 and log3/log2 areirrational numbers.

8). Let z bearea number. Show that the following statments are equivalent: (i) z isrationa.  (ii) There
existsapositiveinteger k suchthat [kz] = kz. (i) Thereexistsapositiveinteger k suchthat [(k!)z] = (k!)z.

9). Usethe above part 8) to prove that the number ¢ isirrational. (Hint: The number e = ) ll, iscalled the
Euler’s number. For any positive integer k, we have [(k!)e] = k! Y5 41/i! < (k!)e.) (Remark: The proof of
irrationality of the number 7 isnot quite so easy!)

T3.6. In this Exercise we investigate some simple results and rules concerning the divisibility relation in a
commutative monoid M with cancellation law. Anelement u € M iscaled invertible if thereexists v e M
suchthat uv = vu = ey} . Moreover, theelement v isuniqueandiscalled theinverseof u (in M) andtherefore
isdenoted by u~!. Theset M* := {u € M | u isinvertiblein M} is a group with respect to the same binary
operation of M andiscaledthe unit group of M. A monoid M iscalled pointed if theunit group M*
isthetrivia group {ey} . For example, themonoid (N*, -) of non-zero natural numbers, is a pointed monoid, but
the monoid (Z*, -) of non-zero integers, is not a pointed monoid, since (Z*, -)* = {£1}.

In all statements below M denote a commutative monoid with cancellation law, e = e,, denote the neutral
(identity) element of M and let a, b, ¢ be elementsof M .

8) PuyTHAGORAS (569-500 B. C.) deserve the credit for being the first to classify numbers into odd and even,
prime and composite. The following elementary short proof was given by (T.ESsTERMANN in Math. Gazette

59 (1975), pp. 110): If /2 istradational, then there exists k € N* such that k+/2 € Z. By the principle of
the minimality chhose aminimal & with this property. Then, since 1 < v/2 < 2, m := (v/2 — 1)k € N* with
m <k, but mv2 = (V2 - 1)k«/2 = 2k — k/2 € Z acontradiction.

9) What is the definition of the number = 2,
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1). If M ispointed,i.e,if M* = {e}, thenthedivisiblity relationon M isanorder on M ,i.e, itisareflexive,
transitive and anti-symmetric relation on M . For example, the divisibility isan order on N*.

2). Two elements a, b inany monoid M arecalled associates (in M) if b = ua with u € M* . Therelation
on M definedby a ~ b if a and b areassociatesin M isan equivalencerelation. Show that a ~ b if and only
if a divides b and b divides a,i.e, a|b and b|a.

3). Anelement « € M iscdled irreducible if a ¢ M>* and if the only divisorsof a € M are the units
and the associatesof a in M, i.e, if a = bc with b,c € M, then either b € M* or c € M*. —An element
a € M iscaled prime if a ¢ M* andif a|bc with b,c € M, then either a|b or c|c in M. Every prime
lement in a monoid M isirreduciblein M . (Proof: If a € M isaprimeelementin M andif p = bc,
then p ¢ M>* and p|bc and hence either p|b or p|c. Wemay assume p|b,i.e, b = pg forsome g € M.
Then p = bc = pgec andso 1 = gc, since M has cancellative law. This provesthat ¢ € M* and hence p is
irreducible. The converseis not true in generdl, i.e., there are irrducible elements in a commutative cancellative
monoidswhich are not prime. For example, inthemonoid M of example T3.3-1)-c) theelement 4 isirreducible
but not prime. See also Examplesin T3.3.-1)-d).)

4). The quotient set M := M/ ~ of M with respect to the relation ~ of “associates’ defined in the part 2)
above, is amonoid with (well-defined) multiplication defined by @ - b := ab and the unit group M~ = {e} , i.g,
M isapointed monoid. Moreover, a|b if and only if alb.

5). Theelement a € M isirreducible (resp. prime) if and only if @ € M isirreducible (resp. prime).

6). (Factorial Monoids)A commutativemonoid M with cancellationlaw iscaleda factorial monoid
or unique factorisation monoid if every element « € M, a ¢ M* isaproduct of irreducible elements
in M and such afactorization is unique upto permutation and upto unitsin M ,i.e.,if a=p1---p, =q1, - - g,
with p1,..., pr; q1,...,q, aeirreducibleelementsin M ,then r = s and there exists apermutation o € &,
suchthat ¢; = u; pyy With u; € M* forevery i =1,...,r.

7). Show that the following statements are equivalent: (i) M isfactorial (or a unique factorisation monoid).
(i) M isfactorial.  (iii) M isisomorphic to the monoid (N, +) for someset 7.  Moreover, in this case
the monoid M isisomorphic to the product monoid M>* x M .

8). Intheorderedset (M, |),if inf (a, b) € M exists, then any of itsrepresentativein M iscaledthe greatest
common divisor of a and b and isdenoted by gcd(a, b) . Similarly, if sup (@, b) € M exists, then any of
its representativein M iscalled the least common multiple of ¢ and b and is denoted by Icm(a, b) .
Prove the formula: gcd(a, b) lem(a, b) = ab if both ged(a, b) and lcm(a, b) exist.

9). Show that if gcd(ac, be) exists, then ged(a, b) exists. and ged(ac, be) = ged(a, b) - ©. Similarly, show that
if lem(ac, be) exists, then lem(a, b) existsand Icm(ac, bc) = lem(a, b) -¢.

10). Show that the following statements are equivalent: (i) lcm(a, b) exists  (ii) lecm(ax, bx) exists for al
x e M. (iii) gcd(ax, bx) existsforal x e M.

11). Give an example of amonoid M to show that gcd(a, b) exists, but Icm(a, b) does not.
12). Show that the following statements are equivalent: (i) lcm(x, y) existsforall x,y e M.

(i) ged(x, y) existsforall x,y e M.  (iii) M isalattice with respect to the divisibility order. (Remark: An
ordered set (X, <) iscadledalatticeif xuy:=sup(x,y) and xmy ;= Inf (x, y) existforal x,y e M. In
this case the binary operations L and m on M are associative, commutative and fullfill the following merging
rules: xu(xny)=xandxnxuy) =ux foral x,y e M. Conversdly, if u and r are binary operations
onaset X ,then X islattice with respect totheorder on < on X definedby “x <y ifandonlyif xmy =x"
and the operations (x, y) — sup (x, y) and (x, y) — inf (x, y) aregiven binary operations L and r.)

22 dm07-e03 ; February 19, 2007 ; 1:26 p.m. D. P. Patil / Exercise Set 3



