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3. The Natural Numbers — The Fundamental Theorem of Arithmetic1), Factorisation in Monoids

3.1. a). Let a, b, m, k ∈ N be such that

(
a

k

)
≤ m <

(
a + 1

k

)
and

(
b

k

)
≤ m <

(
b + 1

k

)
. Show

that a = b . (Hint : Suppose that a < b , i.e., a + 1 ≤ b , then m <
(
a+1

k

) ≤ (
b

k

) ≤ m , since
Pk({1, . . . , a + 1}) ⊆ Pk({1, . . . , b}) a contradiction.)

b). Let k ∈ N+ be a positive natural number and let n ∈ N be an arbitrary natural number. Show
that there exist unique natural numbers a1, . . . , ak ∈ N such that 0 ≤ a1 < a2 < · · · < ak and

n =
k∑

j=1

(
aj

j

)
. (Hint : The existence of a1, . . . , ak is proved by induction on k . If k = 1 ,

then n = (
n

1

)
is the required representation. Assume k > 1 and choose ak ∈ N with

(
ak

k

) ≤ n〈(ak+1
k

)
. For

the number m := n − (
ak

k

) ≥ 0 by induction hypothesis there exists a representation m = ∑k−1
j=1

(
aj
j

)
with

0 ≤ a1 < a2 < · · · < ak−1 . Now we need to show that ak−1 < ak . Since
(
ak+1

k

) = (
ak

k

) + (
ak

k−1

)
, we have

n = ∑k−1
j=1

(
aj
j

) + (
ak+1

k

) − (
ak

k−1

)
<

(
ak+1

k

)
; in particular,

(
ak−1
k−1

)
<

(
ak

k−1

)
and hence ak−1 < ak . Now we prove the

uniqueness of a1, . . . , ak . If k = 1 , this is trivial. Assume k〉1 and suppose that n = ∑k

j=1

(
aj
j

) = ∑k

j=1

(
bj
j

)
with 0 ≤ a1 < a2 < · · · < ak and 0 ≤ b1 < b2 < · · · < bk . It is enough to show that

(
ak

k

) ≤ n <
(
ak+1

k

)
and(

bk

k

) ≤ n <
(
bk+1

k

)
, for then, ak = bk by part a) and by induction hyposthesis to the two representations of m :=

n−(
ak

k

) = n−(
bk

k

)
, we get aj = bj for all k = 1, . . . , k−1 . Now, we show that

(
ak

k

) ≤ n <
(
ak+1

k

)
. If ak < k , then

aj = j − 1 for all j = 1, . . . , k and
(
ak

k

) = (
k−1

k

) = 0 = n <
(
ak+1

k

) = (
k

k

) = 1 . Therefore suppose that ak ≥ k .

Then
(
ak+1

k

) = ∑k

i=0

(
ak−i

k−i

)
(by recursion formula) and hence

(
ak

k

) = (
ak+1

k

) − ∑k

i=1

(
ak−i

k−i

)
and n = ∑k

i=0

(
ai

i

) =∑k−1
j=1

(
ak−j

k−j

)+ (
ak

k

) = (
ak+1

k

)− (
ak−k

0

)+∑k−1
j=1

((
ak−j

k−j

) − (
ak−j

k−j

)) = (
ak+1

k

)− 1 −∑k−1
j=1

((
ak−j

k−j

) − (
ak−j

k−j

))
. Now, since

ak − 1 ≥ ak−1 and by induction ak − j ≥ ak−j for every 1 ≤ j ≤ k − 1 and hence
∑k−1

j=1

((
ak−j

k−j

) − (
ak−j

k−j

)) ≥ 0 .

This proves that n <
(
ak+1

k

)
, the other inequality

(
ak

k

) ≤ n is trivial.)

c). For k ∈ N , k ≥ 1 , show that the map Nk → N defined by

(m1, m2, . . . , mk) �→
(

m1

1

)
+

(
m1 + m2 + 1

2

)
+ · · · +

(
m1 + m2 + · · · + mk + k − 1

k

)

is bijective. (Hint : Use part b).)

3.1. ( G ö d e l i s a t i o n ) Let p1 = 2, p2 = 3, p3 = 5, . . . be (infinite) sequence of the prime numbers.

a). Let A be a countable set with an enumeration A = {a1, a2, a3, . . .} , ai 	= aj for i 	= j . Then
the map (ai1 , . . . , ain ) �→ p

i1
1 · · · pin

n is an injective map from the set W(A) := ⊎
n∈N

An of finite
sequences (of arbitrary lengths) of elements from A - such sequences are also called w o r d s over the
a l p h a b e t A - into the set N∗ of positive natural numbers. ( Remark : Such a coding of the words over
A is called a G ö d e l i s a t i o n (due to K. Gödel). The natural number associated to a word is called the G ö d e l
n u m b e r of this word.)
b). Let A be a finite alphabet {a1, a2, . . . , ag} with g letters, g ≥ 2 , and a0 	∈ A be another
letter. A word W = (ai1 , . . . , ain ) over A can be identified by filling a0 with the infinite sequence

1) The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclids elements,
although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation
with proof seems to have been given by Gauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801). It
was, of course, familier to earlier mathematicians; but GAUSS was the first to develop arithmetic as a systematic
science.
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3.2 MA-217 Discrete Mathematics / January-April 2007 3. The Fundamental Theorem of Arithmetic

(ai1 , . . . ain , a0, a0, . . .) . Show that: the map (aiν )ν∈N∗ �→ ∑∞
ν=1 iνg

ν−1 is a bijective map from the set
of words over A onto the set N of the natural numbers and in particular, is a Gödelisation. ( Remark :
This is a variant of the g-adic expansion (see T3.4.)

3.2. Let g ∈ N∗, g ≥ 2, n be a natural number with digit-sequence (ri)i∈N in the g-adic expansion of
n and let d ∈ N∗. (see T3.4.)

a). Suppose that d is a divisor of gα for some α ∈ N∗. Then n ≡ (rα−1, . . . , r0)g mod d . In particular,
d divides the number n if and only if d divides the number (rα−1, . . . , r0)g .

b). Suppose that d is a divisor of gα − 1 for some α ∈ N∗ and

S := (rα−1, . . . , r0)g + (r2α−1, . . . , rα)g + · · · .

Then n ≡ S mod d . In particular, d divides the number n if and only if d divides the sum S.

c). Suppose that d is a divisor of gα + 1 for some α ∈ N∗ and

W := (rα−1, . . . , r0)g − (r2α−1, . . . , rα)g + · · · .

Then n ≡ W mod d . In particular, d divides the number n if and only if d divides the alternating sum
W . ( Remark : With the help of this exercise one can find criterion, which one can decide on the basis the
digit-sequence of the natural number n in the decimal system whether d is a divisor of n with 2 ≤ d ≤ 16. (with
d = 3 and d = 9 one uses the simple check-sum, with d = 11 the simple alternating sum. The divisibility by
7, 11 and 13 at the same time can be tested with the alternating sum of the 3- groupped together in view of the
part c). See T3.4. for details.)

3.3. a). For a, m, n ∈ N∗ with a ≥ 2 and d := gcd(m, n) , show that gcd(am − 1 , an − 1) = ad − 1 .
In particular, am − 1 and an − 1 are relatively prime if and only if a = 2 and m and n are relatively
prime. ( Hint : By substituting ad by a one may assume that d = 1 . Then show that
(am − 1)/(a − 1) = am−1 + · · · + a + 1 and (an − 1)/(a − 1) = an−1 + · · · + a + 1 are relatively prime.)
b). Suppose that a1, . . . , an ∈ N∗ are relatively prime. Show that there exists a natural number f ∈ N

such that every natural number b ≥ f ca be represented as b = u1a1 +· · ·+anan with natural numbers
u1, . . . , un . In the case n = 2 , we have f := (a1 − 1)(a2 − 1) is the smallest such number; further
in this case there are exactly f/2 natural numbers c , which donot have a representation of the form
u1a1 + u2a2, u1, u2 ∈ N . (Hint : For 0 ≤ c ≤ f − 1, exactly one of the number c and f − 1 − c can be
represented in the above form.)

c). Let a, b ∈ N∗ and d := gcd(a, b) = sa + tb with s, t ∈ Z . Then d = s ′a + t ′b for s ′, t ′ ∈ Z if
and only if there exists k ∈ Z such that s ′ = s − k b

d
, t ′ = t + k a

d
.

3.4. a). Let x, y ∈ Q×
+ and y = c/d be the canonical representation of y with c, d ∈ N∗ and

gcd(c, d) = 1 . Show that xy is rational if and only if x is the d-th power of a rational number.

b). Show that other than (2, 4) there is no pair (x, y) of positive rational numbers with x < y and
xy = yx . ( Hint : Prove that for each real positive number of x with 1<x <e there exists exactly one real
number y > x such that xy = yx . (observe that necessarily y >e .) For the proof of the above assertion : note
that xy = yx if and only if (ln x)/x = (ln y)/y and consider the function (ln x)/x on R×

+ .)

c). Let x ∈ Q×
+ and a be a positive natural number which is not of the form bd with b, d ∈ N∗, d ≥ 2 .

Then show that loga x is either integer or irrational.

d). For which x, y ∈ Q×
+ , y 	= 1 , the real number logy x rational ? For which x ∈ Q×

+ , the real
number log10 x rational ?
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e). Let n ∈ N∗ , n ≥ 2 and y ∈ Q×
+ \ N∗ . Then both the numbers n

√
n! and (n!)y are irrational.

( Hint : The natural number n! has simple prime factors.)

3.5. a). ( M e r s e n n e N u m b e r s ) Let a, n∈ N with a, n≥2. If an−1 is prime, then a = 2 and n is
prime. (Hint : Use geometric series an −1 = (a−1)(an−1 +an−2 +· · ·+a+1) to conclude that a = 2 ; if n = rs

with r > 1, s > 1 , then 2n − 1 = (2r )s − 1 = (2r − 1)(1 + 2r + 22r + · · · + (2r )s−1) . — The natural numbers
of the form ap − 1 , p ∈ P prime, are called M e r s e n n e n u m b e r s . For p = 2, 3, 5, 7 the corresponding
Mersenne numbers 3, 7, 31, 127 are prime, but corresponding to p = 11 , it is M11 = 211 − 1 = 2047 = 23 · 89
which is not prime. — Remarks : It was asserted by Mersenne in 1644 that : Mp = 2p − 1 is prime for
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, , 127 , and composite for the other remaining 44 values of p ≤ 257 . For
example, 47

∣∣M23 , 233
∣∣M29 , 223

∣∣M37 , 431
∣∣M43 and 167

∣∣M83 . The first mistake was found in 1886 byPerusin

and Seelhoff that M61 is prime. Subsequently four further mistakes were found and it need no longer be taken
seriously. In 1876 Lucas found a method for testing whether Mp is prime and used it to prove that M127 is
prime. This remained the largest known prime until 1951. The problem of Mersenne’s numbers is connected
with that of “perfect” numbers which are defined in the part c) below. Every two distinct Mersenne numbers
are relatively prime. It is not known whether there are infinitely many Mersenne numbers that are prime. The
biggest known2) prime is the Mersenne number Mp corresponding to p = 25964951 ; this prime number has
[log10(2

25964951)] + 1 = [25964951 · log10 2] + 1 = 7816230 digits!)

b). ( F e r m a t N u m b e r s ) Let a, n ∈ N∗ with a ≥ 2 . If an + 1 is prime, then a is even and n

is a power of 2 . (Hint : If a is odd then an + 1 is even and if n = 2t · m with t, m ∈ N and m

odd, then (put k := 2t ) 2n + 1 = 1 − (−2k)m = (1 + 2k)(1 − 2k + 22k − · · · + 2(m−1)k) and if m > 1 , then
k < n and hence 1 < 1 + 2k < 1 + 2n . Therefore m = 1 . — Remarks : The natural number of the form
22n + 1 , n ∈ N is called the n - t h F e r m a t n u m b e r and is denoted by Fn := 22n + 1 , n ∈ N . The Fermat
numbers corresponding to n = 0, 1, 2, 3, 4 are F0 = 2, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 are prime
(already discovered by Fermat himself) and hence conjectured that all were prime, but in 1732 Euler proved that :
F5 = 225 +1 = 232 +1 = 641 ·6700417 , since 641 = 54 +24 = 5 ·27 +1 divides 54 ·228 +232 and 54 ·228 −1
and hence the difference 232 +1 = F5 . In 1880 Landry proved that F6 = 226 +1 = 274177 ·67280412310721 .
More recently it is proved that Fn is composite for 7 ≤ n ≤ 16 n = 18, 19, 23, 36, 38, 39, 55, 63, 73 and many
larger alues of n . Morehead and Western proved that F7 and F8 are composite without determining a
factor. No factor is known for F13 or for F14 , but in all the other cases proved to be composite a factor is
known. No prime Fn has been found beyond F4 , so that Fermat’s conjecture has not proved a very happy one.
It is perhaps more probable that the number of primes Fn is finite. is not prime. Fermat numbers are of great
interest in many ways, for example, it was proved by Gauss that : if Fn is a prime p , then a regular polygon
of p sides cane be inscribed in a circle by Euclidean methods. The property of the Fermat numbers which is
relevant here is : No two Fermat numbers have a common divisor greater than 1 , i.e., gcd(Fn, Fm) = 1 , n 	= m .
For, suppose that d divides both the Fermat numbers Fn and Fn+k , k > 0 . Then putting x = 22n

, we have
Fn+k−2

Fn
= 22n+k −1

22n +1
= x2k −1

x+1 = x2k−1−x2k−2+· · ·−1 and so Fn

∣∣Fn+k −2 . This proves that d
∣∣Fn+k and d

∣∣Fn+k −2

and therefore d
∣∣2 . But Fn is odd and so d = 1 . Therefore each of the Fermat numbers F1, F2, . . . , Fn is divisible

by an odd prime number which does not divide any of the others and hence there are at least n odd primes not
exceeding Fn . This proves (proof due to Pólya) Euclid’s theorem (see T3.1.-3)-b)). Moreover, we have the
inequality pn ≤ Fn = 22n + 1 which is little stronger than the inequality in T3.1.-3)-d)-(1)-(i).)

c). ( P e r f e c t n u m b e r s ) A natural number n ∈ N∗ is called p e r f e c t if σ(n) = 2n . ( T h e o r e m
o f E u c l i d - E u l e r ) An even number n ∈ N∗ is perfect if and only if n is of the form 2s(2s+1 − 1)

with s ∈ N∗ and 2s+1 − 1 prime. ( Hint : Suppose that n is perfect, n = 2sb s, b ∈ N∗ and b odd.
Then 2s+1b = 2n = σ(n) = (2s+1 − 1)σ (b) and so there exists c ∈ N∗ such that σ(b = 2s+1c , b = (2s+1 − 1)c ,
σ(b) = b + c .)

2) On February 18, 2005, Dr. Martin Nowak, an eye surgeon from Germany, found the new largest known prime
number, 225964951 − 1 . This prime number has 7816230 digits! It took more than 50 days of calculations on Dr.
Nowak’s 2.4 GHz Pentium 4 computer. This discovery was part of the Great Internet Mersenne Prime Search
(GIMPS) project in which more than 60000 volunteers from around the world took part. Such huge numbers are
used in problems related to Cryptography.
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3.4 MA-217 Discrete Mathematics / January-April 2007 3. The Fundamental Theorem of Arithmetic

3.6. Let m, n ∈ N∗ be relatively prime numbers and let a0, a1, . . . be the sequence defined recursively
as a0 = n, ai+1 = a0 · · · ai + m, i ∈ N . Then ai+1 = (ai − m)ai + m = a2

i − mai + m for all i ≥ 1 .

a). gcd(ai, aj ) = 1 for all i, j ∈ N with i 	= j . The prime divisors of ai, i ∈ N supply infinitely
many different prime numbers. ( Remark : The ai are suitable well for testing prime factorizing procedures.)

b). For all i ∈ N , show that 1
a0

+ m
a1

+· · ·+ mi

ai
= m + 1

n
− mi+1

ai+1 − m
. Deduce that

∞∑
i=0

mi

ai
= m + 1

n
.

c). For m = 2 and n = 1 , from b) prove that ai+1 = Fi = 22i + 1, i ∈ N. In particular,
∞∑
i=0

2i

Fi

= 1 .

3.7. Let M be a commutative monoid with cancellation law. Suppose that every element x ∈ M is a
product of irreducible elements. Show that the following statements are equivalent :

(i) M is factorial. (ii) Every irreducible element of M is prime. (iii) lcm(a, b) exists for every
a, b ∈ M . (iv) gcd(a, b) exists for every a, b ∈ M . ( Hint : Use T3.6.-8) and T3.6.-11).)

3.8. ( T h e S i e v e o f E r a t o s t h e n e s 3)) The so-called sieve of Eratosthenes is an alogrithm for
singling out the prime from among the set of natural numbers ≤ N for arbitrary natural number N . It
depends on the fact that if a natural number n > 1 has no divisior d with 1 < d ≤ √

n , then n must
be a prime number (See T3.1.-3)-d)-(5)). Let N be a positive natural number and let π(N) denote the
number of prime numbers ≤ N . Let p1, . . . , pr be all prime numbers ≤ √

N , i.e, r = π(
√

N) . Prove
the following well-known formula4) :

π(N) = N + r − 1 −
∑

1≤i≤r

[
N

pi

]
+

∑
1≤i1<i2≤r

[
N

pi1pi2

]
− · · · + (−1)r

[
N

p1 · · · pr

]
.

(Proof : For each i = 1, . . . , r , let Mi := {n ∈ N∗ | n ≤ N and pi

∣∣n} = {pi, 2pi, . . . ,
[

N

pi

]
· pi} and hence

|Mi | =
[

N

pi

]
. For an index ν-tuple (i1, . . . , iν) with 1 ≤ i1 < i2 < · · · < iν ≤ r , we have Mi1 ∩ · · · ∩ Miν =

{n ∈ N∗ | n ≤ N and pi1
∣∣n, . . . , pinu

∣∣n equivalently pi1 · · · piν

∣∣n} and so |Mi1 ∩ · · · ∩ Miν | =
[

N

pi1 ···piν

]
. This

proves that π(N) = N − 1 − | ∪r
i=1 Mi | + r . Now use the Sylvester’s sieve formula. )

3.9. Let n ∈ N∗ and let p be a prime number. Show that

a). The multiplicity of p in n ! is vp(n!) =
[
n
p

]
+

[
n
p2

]
+

[
n
p3

]
+ · · · .

In particular, ( L e g e n d r e ’s f o r m u l a : n! =
∏
p≤n

p
∑

r≥1[n/pr ] .

(Proof : Note that
[

n

pr

]
= 0 if pr > n and hence the sum on the right hand side is really a finite sum. The assertion

is proved by induction. It is trivial for 1! . Assume n > 1 and the asertion is true for (n− 1)! and let j = vp(n) ,
i.e., pj

∣∣n but pj+1 	 ∣∣n . Since n! = n · (n − 1)! , it is enough to prove that
∑

[n/pi] − ∑
[(n − 1)/pi] = j .

3) This process is named after the Greek scientist who invented it. Eratosthenes Cyrene (276-194BC), a
contemporary of Archimedes, was a many-sided scholar; nicknamed “Beta” because he stood at least second in
every field. He gave a mechanical solution of the problem of duplicating the cube, and he calculated the diameter
of the earth with considerable accuracy. Chief librarian of the Museum in Alexandria, he became blind in his old
age and committed suicide by starvation.
4) Proved by the French mathematician Legendre Adrien-Marie (1752-1833). It was Legendre’s fate
to be eclipsed repeatedly by younger mathematicians. He invented the method of least squares in 1806, but
Gauss revealed in 1809 that he had done the same in 1795. He laboured for 40 years on elliptic integrals and
then Abel and Jacobi revolutionized the subject in the 1820s with the introduction of elliptic functions. He
conjectured the prime number theorem and the law of quadratic reciprocity, but could not prove either. Still, he
created much beautiful mathematics, including the determination of the number of representations of an integer
as a sum of two squares, and the exact conditions under which the equation ax2 + by2 + cz2 = 0 holds for
some (x, y, z) 	= (0, 0, 0) . He also wrote an elementary geometry text in which, in 39 editions of the English
translations, replaced Euclid’s Elements in America schools.
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But
[
n/pi

] = [
(n − 1)/pi

] =
{

1, if pi
∣∣n ,

0, if pi
∣∣n ,

and hence
∑ [

n/pi
] = ∑ [

(n − 1)/pi
] = j . This proof is rather

short and artificial. Another proof : First note that
[

n

pr+1

]
=

[ [
n

pr

]
p

]
for every r ∈ N (this follows easily from

[x/m] = [ [x]/m] for all x ∈ R and all m ∈ N∗ .) Among the natural numbers 1 < K < n , those which are

divisible by p are p , 2p , . . . ,
[

n

p

]
· p ; among these that are divisible by p2 are p2 , 2p2 , . . . ,

[
n

p2

]
· p2 ;

among these that are divisible by p3 are p3 , 2p3 , . . . ,
[

n

p3

]
· p3 and so on. This lead us to conclude that∑

r≥1 [n/pr ] = ∑n

K=1 vp(K) = vp(1 · 2 · · · · n) = vp(n!) . — More generally : If ni , i ∈ I , is a finite family of
positive natural numbers, then the prime number p occurs in the product

∏
i∈I ni with the multiplicity

∑
k∈N∗ νk ,

where for each k ∈ N∗ , νk is the number i ∈ I for which ni is divisible by pk .

b). Show that (2n)!/(n!)2 is an even integer. Further, vp((2n)!/(n!)2) = ∑
k≥1

(
[2n/pk] − 2[n/pk]

)
and if n < p < 2n , then vp((2n)!/(n!)2) = 1 .

c). Let n = (rt , . . . , r0)p be the p-adic expansion of n , where 0 ≤ ri < p for all i = 0, . . . , t . Then
vp(n!) = (

n − ∑
i≥0 ri

)/
(p−1) . (Hint : The sum on the right hand side of part a) can be easily computed by

recursion :
∑

i≥1[n/pi] = (
n − ∑

i≥0 ri

)/
(p−1) .)

d). vp((pk − 1)!) = [pk − (p − 1)k − 1]/(p − 1) . ( Hint : Use the identity (pk − 1) =
(p − 1)(pk−1 + · · · + p2 + p + 1) .)
e). Find v3(80!) and v7(2400!) .

f). Find n ∈ N∗ such that vp(n!) = 100 . ( Hint : For instance for p = 5 , begin by considering the equation
(n − 1)/4 = 100 .))

Next pages one can see Class-Notes and (simple) test-exercises.
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Class-Notes/Test-Exercises

T3.1. ( D i v i s i o n a l g o r i t h m / D i v i s i b i l i t y / P r i m e n u m b e r s )

1). Let a, b ∈ Z with b ≥ 1 . Then there exists unique integers q and r such that a = qb + r with
0 ≤ r < b . Moreover, in the case a ≥ 0 , we have q ≥ 0 . — The integers q and r are called q u o t i e n t
and r e m a i n d e r , respectively, in the division of a by b . (Existence of q and r : The subset
A := {x ∈ N | x = a − zb with z ∈ Z} ⊆ N is non-empty : if a ≥ 0 , then a ∈ A : if a < 0 , then
a − ab = a(1 − b) ≥ 0 and hence a − ab ∈ A . Therefore by the minimality principle A has a minimal element
r . Then r = a − qb ≥ 0 for some q ∈ Z . Further, r < b ; otherwise a − (q + 1)b = r − b ≥ 0 and hence
r − b ∈ A a contradiction to the minimality of r . Therefore a = qb + r is the required equation. If a ≥ 0 ,
then q ≥ 0 ; otherwise q ≤ −1 , i. e., −q ≥ 1 and r = a − qb ≥ b a contradiction. Uniqueness of q and r : If
a = qb + r = q ′b + r ′ with q, q ′, q, r ′ ∈ Z with 0 ≤ r, r ′ < b . Then r − r ′ = (q ′ − q)b and so b

∣∣(r − r ′) . But
since 0 ≤ r, r ′ ≤ b we have −b ≤ r − r ′ ≤ b and hence r − r ′ = 0 , i.e., r ′ = r . Now from (q ′ − q)b = 0 and
b 	= 0 , it follows that q ′ = q . )

2). ( D i v i s i b i l i t y ) An integer d is called a d i v i s o r of a ∈ Z in Z, and is denoted by d
∣∣a, if there exists

v ∈ Z such that a = dv . In this case we also say that d d i v i d e s a or a is a m u l t i p l e of d (in Z ). If
d is not a divisor of a , then we write d 	 ∣∣a . If 0 	= d is a divisor of a , then v ∈ Z in the equation a = dv

is uniquely determined by the cancellation law. An integer a, ∈ Z is called e v e n (respectively o d d ) if 2
∣∣a

(respectively, 2 	 ∣∣a ), i. e., a is of the form 2v (respectively, 2v + 1 ).

a). The divisibility defines a relation on Z and it satisfies the following basic rules : For all a, b, c, d ∈ Z , we
have : (i) (Reflexivity) a

∣∣a . (ii) (Transitivity) If a
∣∣b and b

∣∣c , then a
∣∣c . (iii) If a

∣∣b and c
∣∣d , then ac

∣∣bd .
(iv) If a

∣∣b and a
∣∣c , then a

∣∣(xb + yc) for all x, y ∈ Z . (Remarks : The rule (iii) does not hold if one replaces
ac (respectively, bd ) by a + c (respectively, b + d ). The number 0 is divisible by every integer d ∈ Z , since
0 = d · 0 ; this is the only case of an integer which has infinitely many distinct divisors. This is proved in the part
b) below which is an important connection between divisibility relation

∣∣ and the (standard) order.)

b). Let a ∈ Z , a 	= 0 and let d ∈ Z be a divsor of a . Then : 1 ≤ |d| ≤ |a| . In particular, every non- zero
integer a has at most finitely many divisors.

c). Let a, d ∈ Z , a > 0 , d > 0 . If d
∣∣a and a

∣∣d then d = a .

(Remarks : Every integer a has the four (distinct) divisors a, −a, 1, −1 ; these are called the t r i v i a l d i v i s o r s
of a ; other divisors are called p r o p e r d i v i s o r s of a . Therefore from b) it follows that : If d is a proper
divisor of a 	= 0 , then 1 < |d| < |a| . Since a = dv if and only if −a = d(−v) , the integers a and −a havs
the same divisors. Therefore, since for every integer a , exactly one of a or −a is a natural number, for the
divisibility questions, we may without loss of generality assume that a ∈ N . Further, if d is a divisor of a , then
−d is also divisor of a (since if a = dv with v ∈ Z , then a = (−d)(−v) ) Therefore if one knows all divisors
of an integer a are known if one knows all positive divisors of |a| . On this basis many considerations in number
theory can be reduced to the set N∗ of positive integers.)

3). ( P r i m e n u m b e r s ) A natural number p is called a p r i m e n u m b e r or an i r r e d u c i b l e (in N ) if
p > 1 and p = ab with a, b ∈ N , then either a = 1 or b = 1 . A natural number n > 1 is called c o m p o s i t e
if it is not a prime number. The set of all prime numbers is denoted by P . Then by definition 1 	∈ P . For a
natural number p > 1 , the following statements are equivalent : (i) p ∈ P . (ii) 1 and p are the only positive
divisors of p . (iii) p has no proper divisor. (Remark : On the basis of the property (iii) prime numbers are
also called irreducible.)

a). ( E x i s t e n c e T h e o r e m ) Every natural number a > 1 has a smallest (positive) divisor t > 1 . Moreover,
this divisor t is a prime number. (Proof : The set T = {d ∈ N∗ | d

∣∣a and d > 1} is non-empty, since a ∈ T .
Therefore by the minimality principle T has a minimal element t . This integer t is a prime number. For, if
not, then there is a divisor t ′ of t with 1 < t ′ < t . But then t ′∣∣t and t

∣∣a and hnce t ′∣∣a a contradiction to the
minimality of t in T .)

b). ( E u c l i d ’s T h e o r e m 5)) There are infinitely many prime numbers, i. e., the set P is infinite. (Proof :
In the text of Euclid the word “infinite” is not mentioned; this theorem was formulated as : Given any finite set
of prime numbers, one can always find a prime number which does not belong to the given set. Show that : Let
q1, . . . , qn be finite set of prime numbers. Then the smallest (positive) divisor t > 1 of the natural number
a := q1 · q2 · · · qn + 1 is a prime number which is different from all the prime numbers q1, . . . , qn . — Since

5) Proved in the “Elements (Book IX, Theorem 20)” of Euclid. Euclid’s argument is universally regarded as a
model of mathematical elegance.
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a > 1 , t exists and hence t is a prime number by the Exitence theorem in part a). If t is one of the numbers
q1, . . . , qn , then t

∣∣q1 · q2 · · · qn . Then t
∣∣a − q1 · q2 · · · qn = 1 a contradiction.)

c). ( I r r e d u c i b i l i t y a n d P r i m e p r o p e r t y ) Let p be a natural number. Then : (1) ( E u c l i d ’s L e m m a )
If a prime number p divides a product ab of two natural numbers a and b , then p divides one of the factor a

or b . (Proof : The set A := {x ∈ N∗ | p
∣∣ax} contains p and b and hence by the minimality principle it has a

smallest element c . We claim that c
∣∣y for every y ∈ A . For, by division algorithm y = qc + r with q, r ∈ N

and 0 ≤ r < c . Then, since p
∣∣ay and p

∣∣ac , p
∣∣ay − q(ac) = ar . This proves that r = 0 ; otherwise r ∈ A

and r < c a contradiction to the minimality of c in A . Theorefore c
∣∣y for every y ∈ A ; in particular, c

∣∣p and
hence c = 1 or c = p . If c = 1 , then p

∣∣ac = a . If c = p , then (since b ∈ A ) by the above claim p
∣∣b . )

(2) If a prime number p divides a product a1 · · · an of n positive natural numbers a1, . . . , an , then p divides
one of the factor ai for some 1 ≤ i ≤ n .(Hint : Prove by induction on n using (1) above.)

(3) For a natual number the following statements are equivalent : (i) p is a prime number. (ii) If p divides a
product ab of two integers a and b , then p

∣∣a or p
∣∣b .(Proof : We may assume that a and b are both positive.

The implication (i)⇒(ii) is proved in (1). For the implication (ii)⇒(i) Let d be any positive divisor of p , i.e.,
p = dd ′ with d ′ ∈ N . This means that p

∣∣dd ′ and hence by (ii) either p
∣∣d or p

∣∣d ′ . But since 1 ≤ d ≤ p

and 1 ≤ d ′ ≤ p it follows that either p = d or p = d ′ , i.e., either d = p or d = 1 . This proves that the only
positive divisors of p are 1 and p and hence p is a prime numebr. — Remark : The property (ii) is (usually
distinguished from the irreducibility property of p ) called the p r i m e p r o p e r t y . Therefore we can reformulate
(3) as : A natural number p > 1 is irreducible if and only if p has the prime property. See also ???.)

d). Let P denote the set of all prime numbers.

(1). Let pn denote the n-th prime (in the natural order ≤ ). Then show that : (i) pn ≤ 22n−1
. (Hint : Note that

pn+1 ≤ p1 ·p2 · · · pn +1 .) (ii) pn > 2n−1 for n ≥ 5 . (iii) none of the natural number Pn := p1 ·p2 · · · pn +1
is a perfect square. (Hint : Each Pn is of the form 4m + 3 .) (iv) the sum 1

p1
+ 1

p2
+ · · · + 1

pn
is never an

integer. (v) Give another proof of infiniteness of P by assuming that there are only finitely many primes, say,
p1, . . . , pn and using the natural number N = p2 · p3 · · · pn + p1 · p3 · · · pn + · · · + p2 · p3 · · · pn−1 .

(vi) ( C o n j e c t u r e s / O p e n q u e s t i o n s ) (a) If qn is the smallest prime which is > Pn = p1 · p2 · · · pn + 1 ,
then the difference (p1 · p2 · · · pn) − qn is always a prime. Verify this for first 5 values of n . (b) Let
dn = pn+1 − pn . An open question is : whether the equation dn = dn+1 has infinitely many solutions. Give 5
solutions.

(2). Let n ∈ N∗ . Show that (i) if n > 2 , then there exists a prime number p with n < p < n! . (Hint : Consider
a prime divisor p of n! − 1 .) (ii) if n > 1 , then every prime divisor of n! + 1 is an odd integer > n .
(Remark : This shows again that there are infinitely many prime numbers. It is unknown whether infinitely many
of n! + 1 are prime.)
(3). For n ∈ N∗, none of the n natural numbers (n+1)! + 2, . . . , (n+1)! + n+1 are prime. (Remark : Therefore
there are gaps of any size between prime numbers.)
(4). For a = 3, 4, 6, show that in the sequence an + (a − 1), n ∈ N , there are infinitely many prime numbers.
(Hint : Make an argument with ap1 · · · pr + (a − 1).) (Remark : More generally, if a, b are relatively prime
positive natural numbers, then there are infinitely many prime numbers of the form an + b, n ∈ N (Dirichlet’s
Theorem).)
(5). Let n, r ∈ N∗, n ≥ 2 . If n has no prime divisor ≤ r+1√n, then n is a product of at the most r (not necessarily
different) prime numbers. In particular, if n has no prime divisor ≤ √

n, then n is prime.

(6). For n ∈ N , n ≥ 2 , the natural number 4n + n4 is never prime. (Hint : For odd n, we have n4 + 4n =
(n2 − 2

n+1
2 · n + 2n)(n2 + 2

n+1
2 · n + 2n) .)

T3.2. ( G C D and L C M / E u c l i d e a n a l g o r i t h m )

1). ( G C D ) For an integer a ∈ Z , let D(a) denote the set of all positive divisors of a . Then 1 and a ∈ D(a) ;
D(a) = N ⇐⇒ a = 0 ; if a 	= 0 , then D(a) is a finite subset of N . For a, b ∈ Z , the intersection D(a) ∩ D(b)

is precisely the set of all common divisors of a and b . Moreover, if (a, b) 	= (0, 0) , then D(a) ∩ D(b) is a
finite subset of N and hence it has a largest element, this element is called the g r e a t e s t c o m m o n d i v i s o r
of a and b and is denoted by gcd(a, b) . Therefore for a, b ∈ Z with (a, b) 	= (0, 0) , the gcd(a, b) is the
positive integer d satisfying : (i) d

∣∣a and d
∣∣b ; (ii) if c is a positive integer with c

∣∣a and c
∣∣b , then c ≤ d .

We put gcd(0, 0) := 0 . Two integers a, b ∈ Z with (a, b) 	= (0, 0) are said to be r e l a t i v e l y p r i m e if
gcd(a, b) = 1 .

a). ( B e z o u t ’ s L e m m a ) For integers a, b ∈ Z with (a, b) 	= (0, 0) there exists integers s, t ∈ Z such
that gcd(a, b) = sa + tb . Deduce that : (i) For two non-zero integers a, b ∈ Z∗ with (a, b) 	= (0, 0) , show
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that the set {sa + tb | s, t ∈ Z} is precisely the set of all multiples of d = gcd(a, b) . (ii) if d = gcd(a, b) ,
then gcd(a/d, b/d) = 1 , i.e., a/d and b/d are relatively prime. (iii) if a, b, c ∈ Z and a

∣∣c and b|c with
gcd(a, b) = 1 , then ab

∣∣c . (iv) if a, b, c ∈ Z and a
∣∣bc and gcd(a, b) = 1 , then a

∣∣c . (v) ( E u c l i d ’s
l e m m a ) Let p be an irreducible element in N∗ (i.e. 1 and p are the only divisors of p in N ). If p divides a
product a1 · · · an of positive natural numbers, then p divides at least one of the factor ai for some 1 ≤ i ≤ n .
(vi) For integers a, b ∈ Z with (a, b) 	= (0, 0) , a positive integer d is a gcd of a and b if and only if (i) d

∣∣a
and d

∣∣b and (ii) whenever a positive integer c divides both a and b , then c
∣∣d . (Remark : The assertion (vi)

often serves as a definition of gcd(a, b) . The advantage is the order relationship is not involved.)

(vii) D(a) ∩ D(b) = D(gcd(a, b)) . (viii) For integers a, b ∈ Z with b 	= 0 and a = qb + r , q, r ∈ Z , show
that gcd(a, b) = gcd(b, r) .

b). ( R u l e s f o r G C D ) For integers a, b, c ∈ Z , we have :

(i) gcd(a, a) = |a| ; (ii) a
∣∣b ⇐⇒ a = gcd(a, b) .

(iii) (Commutativity) gcd(a, b) = gcd(b, a) . (iv) (Associativity) gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) .

(iv) (Distributivity) gcd(ca, cb) = |c| gcd(a, b) . (v) (Product formula) gcd(ab, c) = gcd(gcd(a, c) · b, c) .
(Remark : These rules are elementary to prove, but gives unwieldy impression; probably because of the un-
accountability of the classical notation gcd . If instead of gcd one uses an elegante symbol, for example,
a � b := gcd(a, b) , then these rules are more suggesstive : (i) a � a = |a| ; (ii) a

∣∣b ⇐⇒ a = a � b ;
(iii) (Commutativity) a � b = b � a ; (iv) (Associativity) (a � b) � c = a � (b � c) ; (iv) (Distributivity)
(c · a) � (c · b) = |c| · (a � b) ; (v) (Product formula) (a · b) � c = ((a � c) · b) � c ; and the use of the terms
“associativity” and “distributivity” is immediately clear. This example shows the importance of the good notation;
unfortunately in literature till today everybody use the tradational noatation gcd(a, b) .)

c). For positive natural numbers a, b, c, d , m, n ∈ N∗ , show that : (i) gcd(a, 1) = 1 .

(ii) gcd(a, a + n)
∣∣n and hence gcd(a, a + 1) = 1 .

(iii) If gcd(a, b) = 1 and gcd(a, c) = 1 , then gcd(a, bc) = 1 . (Hint : 1 = sa + tb = ua + vc for some
s, t, u, v ∈ Z . Then 1 = (sa + tb)(ua + vc) = (aus + cvs + btu)a + (tv)bc .)

(iv) If gcd(a, b) = 1 , then gcd(am, bn) = 1 .(Hint : Use the above part (iii).)

(v) The relation an|bn implies that a|b . (Hint : Let d := gcd(a, b) and write a = rd and b = sd . Then
gcd(r, s) = 1 and hence gcd(rn, sn) = 1 by (ii). Now show that r = 1 , whence a = d , i.e, a

∣∣b .)

(vi) If gcd(a, b) = 1 and c
∣∣a , then gcd(b, c) = 1 .

(vii) If gcd(a, b) = 1 , then gcd(ac, b) = gcd(c, b).

(viii) If gcd(a, b) = 1 and c
∣∣(a + b) , then gcd(a, c) = gcd(b, c) . (Hint : Let d = gcd(a, c) . Then d

∣∣a and
d
∣∣c∣∣(a + b) and hence d

∣∣(a + b) − a = b .)

(ix) If gcd(a, b) = 1 , then gcd(a + b, ab) = 1 .

(x) If gcd(a, b) = 1 , d
∣∣ac and d

∣∣bc , then d
∣∣c .

(xi) If d
∣∣n , then 2d − 1

∣∣2n − 1 .

(xii) Show that there are no positive natural numbers a, b ∈ N∗ and n ∈ N with n > 1 and an − bn divides
an + bn .(Hint : We may assume that b < a and gcd(a, b) = 1 .)
(xiii) Show that for a, b ∈ N∗ , b > 2 , 2a + 1 is not divisible by 2b − 1 .(Hint : Prove that a > b .)

(xiv) For m, n ∈ N with m > n , show that a2n + 1 divides a2m − 1 . Moreover, if m, n, a ∈ N∗ , m 	= n , then

gcd(a2m + 1, a2n + 1) =
{ 1, if a is even,

2, if a is odd.
(Hint : a2n + 1

∣∣a2n+1 − 1 . For the second part use the first part.)

(xv) Suppose that 2n + 1 = xy , where x, y ∈ N∗ , x > 1, y > 1 and n ∈ N∗ . Show that 2a divides x − 1 if
and only if 2a divides y − 1 . (Hint : Write x − 1 = 2a · b and y − 1 = 2c · d with b and d odd.)

(xvi) Show that gcd(n! + 1, (n + 1)! + 1) = 1 .

2). ( L C M ) The concept parallel to that of a gcd is the concept of the least common multiple. For an integer
a ∈ Z , let M(a) = Za = {na | n ∈ Z} denote the set of all multiples of a . Then M(a) = {0} ⇐⇒ a = 0 ; if
a 	= 0 , then M(a) = N · a � Z− · a . Further, for a, b ∈ Z∗ , the intersection M(a) ∩ M(b) is precisely the set of
all common multiples of a and b . Moreover, ab ∈ M(a) ∩ M(b) , in particular, |ab| ∈ N · a ∩ N · b and hence
by minimality principle, it has a minimal element, this element is called the l e a s t c o m m o n m u l t i p l e of a

and b and is denoted by lcm(a, b) . Therefore for a, b ∈ Z∗ , the lcm(a, b) is the positive integer m satisfying :
(i) a

∣∣m and b
∣∣m ; (ii) if c is a positive integer with a

∣∣c and b
∣∣c , then m ≤ c . We put lcm(0, 0) := 0 . It is

clear that for any two non-zero integers a, b ∈ Z , lcm(a, b) always exists and lcm(a, b) ≤ |ab| .
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a). Let a, b ∈ Z∗ . Then gcd(a, b) divides lcm(a, b) and gcd(a, b) · lcm(a, b) = ab . Moreover, (i) gcd(a, b) =
lcm(a, b) if and only if a = b . (ii) gcd(a, b) = 1 if and only if lcm(a, b) = ab .

b). For a, b, c ∈ Z∗ , show that the following statements are equivalent : (i) a
∣∣b . (ii) gcd(a, b) = a . (iii)

lcm(a, b) = b .

c). For a, b, c ∈ Z , show that lcm(ca, cb) = |c| lcm(a, b) .

d). For non-zero integers a, b ∈ Z , a positive integer m is a lcm of a and b if and only if (i) a
∣∣m and b

∣∣m and
(ii) whenever a positive integer c is a multiple of both a and b , then m

∣∣c . (Hint : Put v = lcm(a, b) and use
division algorithm to write m = qt + r with q, r ∈ Z , 0 ≤ r < t . Then r is common multiple of a and b . —
Remark : This assertion often serves as a definition of lcm(a, b) . The advantage is the order relationship is not
involved.)

e). For integers a, b ∈ Z , show that M(a) ∩ M(b) = M(lcm(a, b)) .

3). ( E u c l i d e a n a l g o r i t h m 6)) Let a, b ∈ N∗ with a ≥ b . We put r0 := a and r1 := b and consider
the system of equations obtained by the repeated use of division algorithm : r0 = q1r1 + r2 , 0 < r2 < r1 ;
r1 = q2r2 + r3 , 0 < r3 < r2 ; · · · rk−1 = qkrk + rk+1 , 0 < rk+1 < rk ; rk = qk+1rk+1 . Then :

(i) gcd(a, b) = rk+1 . (Hint : By repeated use of 1)-vii) we have gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = · · · =
gcd(rk, rk+1) = gcd(rk+1, 0) = rk+1 .)

(ii) For i = 0, . . . , k + 1 , define si and ti recursively by : s0 = 1 , t0 = 0 ; s1 = 0 , t1 = 1 ; si+1 = si−1 − qisi ,
ti+1 = ti−1 − qi ti , i = 1, . . . , k . Then a = r0 = s0a + t0b , r1 = s1a + t1b and ri+1 = ri−1 − qiri =
si−1a + ti−1b − qisia − qi tib = si+1a + ti+1b for all i = 1, . . . , k . (Remark : This proves once again Bezout’s
Lemma.)

4). The notion of greatest common divisor can be extended to more than two integers in an obvious way. Let
a1, . . . , an ∈ N , n ≥ 1 , not all zero. Then gcd(a1, . . . , an) is defined to be the positive integer d satisfying
the following two properties : (i) d

∣∣ai for every i = 1, . . . , n ; (ii) if c is a positive integer with c
∣∣ai for

every i = 1, . . . , n , then c ≤ d . Note that gcd(a1, . . . , an−1, an) = gcd(gcd(a1, . . . , an−1), an) = · · · =
gcd(a1, gcd(a2, . . . , an)) by T3.2-1)-b) and hence the gcd depends only on a1, . . . , an and not on the order in
which they are written.

a). Let a1, . . . , an ∈ N∗ , n ≥ 1 and let a = a1 · · · an . Show that the following statements are equivalent:

(i) a1, . . . , an are pairwise relatively prime. (ii) If each of the numbers a1, . . . , an divide the natural number c ,
then a also divide the number c . (iii) lcm(a1, . . . , an) = a . (iv) The natural numbers b1 := a/a1, . . . , bn :=
a/an are relatively prime. (v) There exist integers s1, . . . , sn such that 1

a
= s1

a1
+ · · · + sn

an
. (Remark : lcm

and gcd of finite many numbers a1, . . . , an are defined like in the case n = 2 . If gcd(a1, . . . , an) = 1 , then
a1, . . . , an are called r e l a t i v e l y p r i m e . Note that this concept is different from that of pairwise relatively
prime.)

b). For a1, . . . , an ∈ N∗ , n ≥ 1 , show that there exist integers u1, . . . , un ∈ Z such that gcd(a1, . . . , an) =
u1a1 + · · · + unan . In particular, a1, . . . , an are relatively prime if and only if there exist integers u1, . . . , un

such that 1 = u1a1 + · · · + unan . (Remark : One can find the coefficients u1, . . . , un algorithmically
by succesive use of the lemma of Bezout (see T3.2-1)-a)). This algorithm supplies frequently disproportionately
large coefficients u1, . . . , un. It is better to proceed as follows : First by renumbering assume that a1 is minimal
in {a − 1, . . . , an} , and goes then to tuple (a1, r2, . . . , rn), where rj the remainder of aj after dividing by a1, after
removing the zeros among rj , consider the new tuple as at the beginning. One has to control, how the coefficients
of the tuple constructed are represented as linear combinations of the a1, . . . , an, beginning with ai = ∑n

k=1 δikak .)
Find integers u1, u2, u3 such that 1 = u1 · 88 + u2 · 152 + u3 · 209.

T3.3. ( F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c ) Proposition 14 of Book IX of Euclid’s “Elements”
embodies the result which later became known as the Fundamental Theorem of Arithmetic :

1). Every Natural number a > 1 is a product of prime numbers and this representation is “essentially” unique,
apart from the order in which the prime factors occur.

6) A more efficient method involving repeated application of division algorithm is given in the VII-th book of the
Elements and it is referred to as the E u c l i d e a n a l g o r i t h m . The French mathematician Gabriel Lamé

(1795-1870) proved that the number of steps required to find gcd in the Euclidean algorithm is at most five
times the number of the digits in the smaller integer, i.e., 5 log10 b = (2.17 . . .) log b . Lamé was a primarily a
mathematical physicist. is only other known contributions to number theory were the first proof of Fermat’s Last
Theorem for the exponent 7 and a fallacious “proof” for the general n .
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a). ( E x i s t e n c e o f p r i m e d e c o m p o s i t i o n ) Every natural number a > 1 has a prime decomposition
a = p1 · · · pn , where we may choose p1 as the smallest (prime) divisor t of a . (Proof : Either
a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by T3.1-3)-a)
there exists a smallest prime divisor p1 of a , i.e., a = p1 · b with 1 ≤ b < a (since 1 < p1 ≤ a ). Now,
by induction hypothesis b has a prime decomposition b = P2 · · · pn and hence a has a prime decomposition
a = p1 · p2 · · · pn .)

b). ( U n i q u e n e s s o f p r i m e d e c o m p o s i t i o n ) A prime decomposition of every natural number a > 1
is essentially unique. More precisely, if a = p1 · · · pn and a = q1 · · · qm are two prime decompositions of
a with prime numbers p1, . . . , pn ; q1, . . . , qm , then m = n and there exists a permutation σ ∈ Sn such that
qi = pσ(i) for every i = 1, . . . , n . (Proof : We prove the assertion by induction on n . If n = 1 ,
then p1 = a = q1 · · · qm , i.e., p1

∣∣q1 · · · qm and hence by the prime property T3.1-3)-c)-(2) p1
∣∣qj for some j ,

1 ≤ j ≤ m . Renumering if necessary, we may assume that j = 1 ; further, since q1 is a prime number, we
must have p1 = q1 by the irreducibility of q1 . Now, by cancelling p1 , we get two prime decompositions of
the number a′ = p2 · · · pn = q2 · · · qm . Therefore by induction hypothesis m − 1 = n − 1 and there exists a
permutation σ ′ ∈ S({2, . . . , n}) such that qσ(i) = pi for all i = 2, . . . , n . Now, define σ ∈ Sn by σ(1) = 1
and σ(i) = σ ′(i) for all i = 2, . . . , n . — Remarks : The above proof for uniqueness use the Euclid’s lemma on
the prime property (see T3.1-3)-c)) and hence uses implicitly the division algorithm and therefore make use of the
additive structure of N . The existence of prime decomposition only uses the multiplicative structure on N and
not the additive structure on N . This leads to the question : Can one give a proof of the uniqueness of the prime
decomposition which only depends on the multiplicative structure of N ? The answer to this question is negative
as we can see in the example given in c). The uniqueness of the decomposition of a positive natural number into
product of irreducible elements is less obvious than the existence of such a decomposition. This can also be seen
in the examples in c) and d).)

c). Let M be the set of all natural numbers which have remainder 1 upon division by 3 , i.e., M = {3n+ 1 | n ∈
N} . Then M is a multiplicative submonoid of N , i.e., 1 ∈ M and if a1, . . . , an ∈ M , then a1 · · · an ∈ M . For, it
is enough (by induction) to note that (3n1 + 1)(3n2 + 1) = 3(3n1n2 + n1 + n2) + 1 . Similar to the irreducibility
in Z , we say that an element c ∈ M is irreducible if c > 1 and if c = ab with a, b ∈ M , then either a = 1 or
b = 1 . The first few irreducible elements in M are : 4, 7, 10, 13, 19, 22, 25, 31 ; the elements 16 = 4 · 4 and
28 = 4·7 are not irreducible in M . One can easily (by induction — analogous proof as in the existence of a prime
decomposition) : Every element a ∈ M is a (finite) product a = c1 · · · cn of irreducible elements c1, . . . , cn in
M . However, the uniqueness of this representation does not hold, for example, the element 100 ∈ M has two
irreducible decompositions 100 = 4 · 25 and 100 = 10 · 10 which are not essentially unique. One can (similar
to those of in Z ) also define divisibility and prime property in M , with these definitions 4

∣∣100 = 10 · 10 in M ,
but 4 	 ∣∣10 in M , i.e., the element 4 is irreducible in M , but does not have the prime property in M . In this
example what is missing is that the set M is not additively closed, for example, 4 ∈ M , but 8 = 4 + 4 	∈ M or
more generally, 3n1 = 1 ∈ M and 3n2 + 1 ∈ M , but (3n1 + 1) + (3n2 + 1) = 3(n1 + n2) + 2 	∈ M . We further
note that gcd of 40 and 100 does not exists in M and lcm of 4 and 10 does not exits in M (since 4 	 ∣∣10 in
M ).

d). Let q ∈ N∗ be an arbitrary prime number (e.g. q := 2 or q := 1234567891 7) ) and N := N∗ − {q} .
Then N is a multiplicatively closed and every element in N is a product of irreducible elements of N ; such a
decomposition is not any more, in general unique. More precisely, prove that: The irreducible elements in N

are usual prime numbers p 	= q and their products pq with q and both the elements q2 := q2 and q3 := q3 .
The element n := q6 ∈ N has two essentially different decompositions n = q2 · q2 · q2 = q3 · q3 as product of
irreducible elements of N . The irreducible element q3 divides (in N ) the product q2 · q2 · q2 , but none of its
factor. Similarly, q2 divides (in N ) the product q3 · q3 , but not q3 . Similarly, m := pq3 = (pq)q2 has (in N )
two essentaily different decompositions ( p prime number 	= q).

2). ( Z e r m e l o ’s p r o o f o f u n i q u e n e s s o f p r i m e d e c o m p o s i t i o n )

T3.4. (g- a d i c e x p a n s i o n ) Let g ∈ N∗, g ≥ 2. For every natural number n ∈ N , there exists a uniquely
determined sequence (ri)i∈N of natural numbers almost all of which are 0 such that n = ∑∞

i=0 rig
i and 0 ≤ ri <

g for all i ∈ N .(Remark : This unique representation of n is called the g - a d i c e x p a n s i o n of n and the ri ,
i ∈ N, are called the d i g i t s of n in the g - a d i c s y s t e m . If ri = 0 for i > t , then we write n = (rt , . . . , r0)g

and say that t h e g-adic expansion n = ∑t

i=0 rig
i of n, which can lead to no misunderstandings. Moreover, if

rt 	= 0, then rt , . . . , r0 are called the e s s e n t i a l d i g i t s of n. — For g = 2 resp. g = 10 we also use the terms

7) One can check this with a small computer programm that this number is really a prime number. Is the number
12345678901 also prime?
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d u a l – resp. d e c i m a l s y s t e m .) Let n ∈ N∗ and let am10m + am−110m−1 + · · · + a110 + a0 , m ∈ N and
aj ∈ {0, 1, . . . , 9} be the decimal expansion of n . Then

a). 3|n ⇐⇒ 3|(a0 + a1 + · · · + am) ; 5|n ⇐⇒ 5|a0 ; 9|n ⇐⇒ 9|(a0 + a1 + · · · + am) ; 11|n ⇐⇒
11|(a0 − a1 + · · · + (−1)mam) .

b). 7|n ⇐⇒ 7|(a2, a1, a0)10 − (a5, a4, a3)10 +· · · ; 11|n ⇐⇒ 11|(a2, a1, a0)10 − (a5, a4, a3)10 +· · · ;
13|n ⇐⇒ 13|(a0 + 2a1 + · · · + 2mam) ;

T3.5. ( I r r a t i o n a l n u m b e r s ) A real number which is not rational is called an i r r a t i o n a l number.

1). Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or division; The
sum, difference, product and quotient of two real numbers, one irrational and the other a non-zero rational, are
irrational.

2). Let n ∈ N∗ , y ∈ Q , y > 0 and let y = p
m1
1 · · · pmr

r be the canonical prime factorisation of y . Show that the
following statements are equivalent : (i) There exists a positive rational number x with xn = y . (ii) n divides
all the exponents mi , i = 1, . . . , r .

3). ( L e m m a o f G a u s s ) Let x := a/b ∈ Q be a normalised fraction, i.e., a, b ∈ Z, b > 0 and gcd(a, b) = 1 .
Suppose that anx

n + · · · + a1x + a0 = 0 with a0, . . . , an ∈ Z and an 	= 0 , n ≥ 1 , i.e., x is a zero of the
polynomial function ant

n + · · · + a0 . Then a is a divisior of a0 and b is a divisor of an . Deduce that :

(i) if the leading coefficient an = 1 , then x ∈ Z . (ii) For any integer a ∈ Z and a natural number n ∈ N∗ ,
every rational solution of xn − a is an integer, in particular, xn − a has a rational solution if and only if a is
the n- th power of an integer. (Remark : It follows at once that

√
2 (Phythagoras)8)

√
3,

√
5, . . . ,

√
p ,

where p is prime number, are irrational numbers.) More generally : (iii) Let r ∈ N∗ , p1, . . . , pr be distinct

prime numbers and let m2, . . . , mr ∈ N∗ Then for every n ∈ N∗ , n > 1 , the real number
√

p1p
m2
2 · · · pmr

r is an
irrational number. (iv) For a, b ∈ Z , a > 0, b > 0 with gcd(a, b) = 1 and a natural number n ∈ N∗ , the
equation xn − a/b has a rational solution if and only if both a and b are n- th power of integers.

4). Let a1, . . . , ar ∈ Q×
+ be positive rational numbers. Show that

√
a1 + · · · + √

ar is rational if and only if each
ai , i = 1, . . . , r is a square of rational number.

5). Determine all rational zeros of the polynomial functions t3+ 3
4 t2+ 3

2 t+3 and 3t7+4t6−t5+t4+4t3+5t2−4 .

6). Let t be a rational multiple of π 9), i.e. t = rπ with r ∈ Q . Then cos t , sin t and tan t are irrational numbers
apart from the cases where tan t is undefined and the exceptions cos t = 0, ±1/2, ±1 ; sin t = 0, ±1/2, ±1 ;
tan t = 0, ±1 .

7). The real numbers log6 9 and log 3/ log 2 are irrational numbers.

8). Let z be a real number. Show that the following statments are equivalent : (i) z is rational. (ii) There
exists a positive integer k such that [kz] = kz . (iii) There exists a positive integer k such that [(k!)z] = (k!)z .

9). Use the above part 8) to prove that the number e is irrational. (Hint : The number e = ∑∞
i=0

1
i! is called the

Euler’s number. For any positive integer k , we have [(k!)e] = k!
∑k

i=0 1/i! < (k!)e .) (Remark : The proof of
irrationality of the number π is not quite so easy!)

T3.6. In this Exercise we investigate some simple results and rules concerning the divisibility relation in a
commutative monoid M with cancellation law. An element u ∈ M is called i n v e r t i b l e if there exists v ∈ M

such that uv = vu = eM} . Moreover, the element v is unique and is called the inverse of u (in M ) and therefore
is denoted by u−1 . The set M× := {u ∈ M | u is invertible in M} is a group with respect to the same binary
operation of M and is called the u n i t g r o u p of M . A monoid M is called p o i n t e d if the unit group M×

is the trivial group {eM} . For example, the monoid (N∗, ·) of non-zero natural numbers, is a pointed monoid, but
the monoid (Z∗, ·) of non-zero integers, is not a pointed monoid, since (Z∗, ·)× = {±1} .

In all statements below M denote a commutative monoid with cancellation law, e = eM denote the neutral
(identity) element of M and let a, b, c be elements of M .

8) Phythagoras (569-500 B. C.) deserve the credit for being the first to classify numbers into odd and even,
prime and composite. The following elementary short proof was given by (T.Estermann in Math. Gazette
59 (1975), pp. 110) : If

√
2 is tradational, then there exists k ∈ N∗ such that k

√
2 ∈ Z . By the principle of

the minimality chhose a minimal k with this property. Then, since 1 <
√

2 < 2 , m := (
√

2 − 1)k ∈ N∗ with
m < k , but m

√
2 = (

√
2 − 1)k

√
2 = 2k − k

√
2 ∈ Z a contradiction.

9) What is the definition of the number π ?,
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1). If M is pointed, i.e., if M× = {e} , then the divisiblity relation on M is an order on M , i.e., it is a reflexive,
transitive and anti-symmetric relation on M . For example, the divisibility is an order on N∗ .

2). Two elements a, b in any monoid M are called a s s o c i a t e s (in M ) if b = ua with u ∈ M× . The relation
on M defined by a ∼ b if a and b are associates in M is an equivalence relation. Show that a ∼ b if and only
if a divides b and b divides a , i.e., a

∣∣b and b
∣∣a .

3). An element a ∈ M is called i r r e d u c i b l e if a 	∈ M× and if the only divisors of a ∈ M are the units
and the associates of a in M , i.e., if a = bc with b, c ∈ M , then either b ∈ M× or c ∈ M× . —An element
a ∈ M is called p r i m e if a 	∈ M× and if a

∣∣bc with b, c ∈ M , then either a
∣∣b or c

∣∣c in M . Every prime
lement in a monoid M is irreducible in M . (Proof : If a ∈ M is a prime element in M and if p = bc ,
then p 	∈ M× and p

∣∣bc and hence either p
∣∣b or p

∣∣c . We may assume p
∣∣b , i.e., b = pq for some q ∈ M .

Then p = bc = pqc and so 1 = qc , since M has cancellative law. This proves that c ∈ M× and hence p is
irreducible. The converse is not true in general, i.e., there are irrducible elements in a commutative cancellative
monoids which are not prime. For example, in the monoid M of example T3.3-1)-c) the element 4 is irreducible
but not prime. See also Examples in T3.3.-1)-d).)

4). The quotient set M := M/ ∼ of M with respect to the relation ∼ of “associates” defined in the part 2)
above, is a monoid with (well-defined) multiplication defined by a · b := ab and the unit group M

× = {e} , i.e,
M is a pointed monoid. Moreover, a

∣∣b if and only if a
∣∣b .

5). The element a ∈ M is irreducible (resp. prime) if and only if a ∈ M is irreducible (resp. prime).

6). ( F a c t o r i a l M o n o i d s ) A commutative monoid M with cancellation law is called a f a c t o r i a l m o n o i d
or u n i q u e f a c t o r i s a t i o n m o n o i d if every element a ∈ M , a 	∈ M× is a product of irreducible elements
in M and such a factorization is unique upto permutation and upto units in M , i.e., if a = p1 · · · pr = q1, · · · qs

with p1, . . . , pr ; q1, . . . , qs are irreducible elements in M , then r = s and there exists a permutation σ ∈ Sr

such that qi = uipσ(i) with ui ∈ M× for every i = 1, . . . , r .

7). Show that the following statements are equivalent : (i) M is factorial (or a unique factorisation monoid).
(ii) M is factorial. (iii) M is isomorphic to the monoid (N(I ), +) for some set I . Moreover, in this case
the monoid M is isomorphic to the product monoid M× × M .

8). In the ordered set (M,
∣∣) , if inf (a, b) ∈ M exists, then any of its representative in M is called the g r e a t e s t

c o m m o n d i v i s o r of a and b and is denoted by gcd(a, b) . Similarly, if sup (a, b) ∈ M exists, then any of
its representative in M is called the l e a s t c o m m o n m u l t i p l e of a and b and is denoted by lcm(a, b) .
Prove the formula : gcd(a, b) lcm(a, b) = ab if both gcd(a, b) and lcm(a, b) exist.

9). Show that if gcd(ac, bc) exists, then gcd(a, b) exists. and gcd(ac, bc) = gcd(a, b) · c . Similarly, show that
if lcm(ac, bc) exists, then lcm(a, b) exists and lcm(ac, bc) = lcm(a, b) · c .

10). Show that the following statements are equivalent : (i) lcm(a, b) exists (ii) lcm(ax, bx) exists for all
x ∈ M . (iii) gcd(ax, bx) exists for all x ∈ M .

11). Give an example of a monoid M to show that gcd(a, b) exists, but lcm(a, b) does not.

12). Show that the following statements are equivalent : (i) lcm(x, y) exists for all x, y ∈ M .

(ii) gcd(x, y) exists for all x, y ∈ M . (iii) M is a lattice with respect to the divisibility order. (Remark : An
ordered set (X, ≤) is called a l a t t i c e if x � y := sup (x, y) and x � y := Inf (x, y) exist for all x, y ∈ M . In
this case the binary operations � and � on M are associative, commutative and fullfill the following merging
rules : x � (x � y) = x and x � (x � y) = x for all x, y ∈ M . Conversely, if � and � are binary operations
on a set X , then X is lattice with respect to the order on ≤ on X defined by “ x ≤ y if and only if x � y = x ”
and the operations (x, y) �→ sup (x, y) and (x, y) �→ inf (x, y) are given binary operations � and � .)
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