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6. Prime Residueclass Groups

6.1. Let m > 1 be an odd natural number. Information on the orders of special elements in the
prime residueclass group A×

m provide information on the prime factors of m and sometimes also
used to prove that m is prime, in particular, if sufficient information on the prime factorisation
of m− 1 is known. The following example (and their variants) are classical and were already
known to Lucas, Lehmer and many other number theorist use them.

a). ( F e r m a t ’s t e s t f o r p r i m e n u m b e r s ) Suppose that : for every prime divisor p of
m− 1 , there exists a n ∈ Z such that nm−1 ≡ 1 (mod m) and

n(m−1)/p �≡ 1 (mod m) . Show that m is a prime number. Moreover, if a natural number
n ∈ Z satisfy these conditions simultaneusly, then n is a primitive residue modulo m .

b). Let m− 1 = ab with relatively prime natural numbers a and b . Suppose that : for every
prime divisor p of a there exists a (dependent on p ) n ∈ Z such that

nm−1 ≡ 1 mod m and gcd(n
m−1
p − 1,m) = 1 .

Then for every factor q of m show that q ≡ 1 (mod a) . (Hint : If q is prime and if there exists
a natural number n ∈ Z such that n �≡ 1 (mod m) and nb ≡ 1 (mod m), then q − 1 is divisible by
the prime factors of a which are not prime factors of b .) Moreover, show that if a > b , then m
must be prime.

6.2. Let p ≥ 3 be a prime number, α ∈ N∗ and n ∈ Z be a primitive residue modulo p .
Then show that : a). n or n(1 + p) is a primitive root modulo pα . b). np(1 + p) is a
primitive root modulo pα .

6.3. Let p be a prime number ≥ 3 . For n ∈ Z with n ≡ 1 (mod p) and arbitrary γ ∈ N

show that vp(np
γ − 1) = γ + vp(n− 1) . (Hint: Induction on γ .)

6.4. Let p be a prime number ≥ 3 and let α ∈ N∗ , q := pα . Further, let ψ× : A×
q → A×

p be
the canonical homomorphism. Then show that the map x �→ (ψ×(x), xp−1) is an isomorphism
of groups from A×

q onto A×
p × A×

q (p) , where A×
q (p) the (isomorphic to Zq/p ) p– primary

component of A×
q .

6.5. Let p be a prime number ≥ 3 and α ∈ N∗ . For n ∈ Z with p � ∣∣a , let να(n) denote
the order of the residue class of n in A×

q , q := pα . Then show that :

να(n) = ν1(n)p
β , where β := max {0, α − vp(n

p−1 − 1)} .
(Hint : Use the earlier two exericses.) If α ≥ 2 , then n is a primitive residue modulo pα if and
only if n is a primitive residue modulo p and np−1 �≡ 1 (mod p2) . (Hint : Look for the prime
numbers p (say < 107 ) with 2p−1 ≡ 1 (mod p2) resp. 3p−1 ≡ 1 (mod p2) . They are very rare!.)

6.6. Prove the following generalization of the theorem of Wilson : For m ∈ N∗ , we have∏
0≤n<m
gcd(n,m)=1

n ≡
{

−1 (mod m), if A×
m is cyclic ,

1 (mod m) otherwise .

6.7. For m ∈ N∗ , let e(m) denote the exponent of the group A×
m .
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a). Let n,m ∈ N∗ be such that gcd(n,m) = 1 . Then e(nm) = lcm(e(n), e(m)) .

b). Let m = nn1 · · · nr be the prime decomposition of m ∈ N∗, where n is a power of
2 and the ni are powers of r distinct odd prime divisors of m . Then show that e(m) =
lcm(e(n), ϕ(n1), . . . , ϕ(nr)) .

6.8. Show that A×
24 is not isomorphic to any other prime residueclass group A×

m, m �= 24 .

6.9. a). Let p be a prime number ≥ 3 and let α ∈ N∗. Further, let a be an integer which
is not divisible by p . For n ∈ N∗, let d := gcd(n, r) with r := ϕ(pα) = pα−1(p − 1) .
Show that the congruence xn ≡ a mod pα has a solution if and only if ar/d ≡ 1 (mod pα) .
Moreover, in this case the congruence has exactly d incongruent solutions. — For n = 2 and
α = 1 , this is the Euler’s criterion for quadratic residue.

b). How many solutions are there for the equation xn = x in Am , n ≥ 2 , m ∈ N∗?

6.10. Let p be a prime number and let t ∈ N∗. For p consecutive integers a1, . . . , ap , show

that : at1 + · · · + atp ≡
{

0 (mod p) if t � ∣∣p − 1 ,
−1 (mod p), if t

∣∣p − 1 .
. (Hint : The group A×

p is cyclic.)

6.11. Let m ∈ N∗ and N be (may be empty) the set of the primitive residue classes in A×
m .

Then
∏
x∈N x = 1 except in the cases m = 3, 4, 6 . (Hint : Use the following assertion : If A is

a commutative ring with 1 �= −1 and if A has finitely many units, then
∑

ε∈A× ε = 0 , since A× can
be decomposed into the 2–sets {ε,−ε} .)

6.12. ( G a u s s ) Let p be a prime and let N be the set of primitive roots modulo p , i.e., in
A×
p . Then

∑
x∈N x = µ(p − 1) , where µ is the Möbius function. (Hint: Decompose

A×
p in its primary components : A×

p = G1G2 · · ·Gr , and consider N = N1N2 · · ·Nr , where Ni is the
set of generating elements of Gi .) Further, if p is odd > 3 , then the product of primitive roots
modulo p is ≡ 1 (mod p) .

6.13. Let p be a prime number and let α ∈ N∗ . Show that there exists infinitely many
prime numbers of the form npα + 1 , n ∈ N . (Hint : For a proof consider the function
N → N∗ defined by f (x) := xp

α−1(p−1) + xp
α−1(p−2) + · · · + xp

α−1 + 1 . Let p0, . . . , pr be prime
numbers with pi ≡ 1 (mod pα) . Let q be a prime factor of f (m) , where m := pp0 · · ·pr . Then
mpα − 1 = (mpα−1 − 1)f (m) and hence mpα ≡ 1 (mod q) . Further, mpα−1 �≡ 1 (mod q) , since
otherwise p ≡ f (m) ≡ 0 (mod q) . It follows that pα is an order of an element in A×

q , and hence
q ≡ 1 (mod pα) . Therefore pr+1 := q is a new prime number ≡ 1 (mod pα) . — Remark : This
proof also shows that : If p ≥ 3 , then there are infinitely many prime numbers of the form n2pα + 1 ,
n ∈ N . For example, there are infinitely many prime numbers of the form 6n+ 1 .)

6.14. Every finite abelian group is isomorphic to a subgroup and to a residue class group of a
prime residue class grooup. (Hint : Use the Exercise 6.13.)

6.15. ( P r i m e - t e s t ) Let m > 1 be an odd integer. If m is prime, then am−1 ≡ 1 (mod m)
for every relatively prime integer a to m (by Fermat’s little theorem). Conversely, if the
condition am−1 ≡ 1 (mod m) is fullfilled for one (or more) a ∈ Z , then m is expected to be
prime (with very high probablity). The following remarks show that one must be very careful
to apply this prime-test.

a). An odd integer m > 1 is called a p s e u d o p r i m e n u m b e r if 2m−1 ≡ 1 (mod m) . The
smallest pseudo-prime number which is not prime is 341 = 11 · 31 . (Remark : Pseudo-prime
numbers are also called C h i n e s e prime numbers, since 25 centuries ago Chinese mathematicians
made (prime-test with a = 2 ) a claim that : a natural number n is prime if and only if n

∣∣2n − 2 . This
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criterion is reliable for all integers n ≤ 340 . Needless to say that our example 341 lays the conjecture
to rest; this was discovered in 1819 . It can be shown that there are infinitely many pseudo- primes, the
smallest being 341 , 561 , 645 and 1105 .)

b). If m is a pseudo-prime number, then 2m − 1 is a larger pseudo-prime. In particular, there
infinitely many pseudo-prime numbers which are not prime numbers.

c). Every Mersenne-number Mp = 2p−1 , p prime and every Fermat-number Fn = 22n +1 ,
n ∈ N , is a pseudo-prime number. (Remark : In 1963 it has been shown (in analogy with the
Dirichlet’s theorem on primes in arithmetic progression) that any arithmetic progression an + b with
gcd(a, b) = 1 contains infinitely many pseudo-primes. These “false primes” are much rarer than actual
primes, for instance, there are only 245 pseudo-primes smaller than one million, in comparison with
78492 primes. The first example of an even pseudo-prime, namely the number 161038 = 2 · 73 · 1103
was found in 1950 .)

d). An odd integer m > 1 is called a C a r m i c h a e l – n u m b e r if the exponent e(m) (see
Exercise 6.7) of the prime residue class group modulo m is a proper divisor of m−1 . Show that
this is equivalent to : For every relatively prime integer a to m , we have am−1 ≡ 1 (mod m) ;
neverthless m is not prime. Every Carmichael–number is the product of at least 3 distinct prime
numbers. The smallest Carmichael–number 561 = 3 · 11 · 17 . The pseudo-prime number 341
is not a Carmichael-number, since 31 � ∣∣11341 −11 , we have 11341 �≡ 11 (mod 341) .(Remark :
These exceptional numbers are also called a b s o l u t e p s e u d o - p r i m e s . R.C. Carmichael was
the first (1909) to notice their existence.)

e). Let n = p1p2 · · ·pr be a composite, square-free natural number, where pi are distinct
prime numbers. If pi − 1

∣∣n − 1 for all i = 1, . . . , r , then n is a Carmichael- number.
— (D. S h a n k s ) If t is a positive integer such that p1 := 6t + 1 , p2 := 12t + 1 and
p3 := 18t + 1 are prime numbers, then m := p1p2p3 is a Carmichael-number. (Remark : The
natural numbers 1729 = 7·13·19 , 6601 = 7·23·41 , 10585 = 5·29·73 are Carmichael-numbers. It is
widely believed that there are infinitely many Carmichael-numbers, but this conjecture remains unproven
and there are just 43 of them less than one million.) The natural number 9091 · 18181 · 27271 is a
Carmichael- number. How many percent of the residue classes modulo this number are prime
residues? (Remark : For a refined version of this test see : D. E. K n u t h , The Art of Computer
Programming, Vol. 2, 4.5.4 : Algorithm P.)

6.16. Let m ∈ N∗ be a square-free natural number and let a ∈ N∗. Show that the power-map
Am → Am , x �→ xa is bijective if and only if a and ϕ(m) are relatively prime. Moreover,
in this case the map x �→ xb , where b ∈ N∗ and ab ≡ 1 (mod ϕ(m)) is the the inverse map
of the map x �→ xa . If m is not square- free, then there is no a ∈ N∗, a ≥ 2 , such that the
map x �→ xa is a bijective map. (Remark : One can apply the power- map in coding theory. (
R SA – C o d e s due to R. Rivest, A. Shamir and L. Adleman. See also Exercise T6.2 for more
details). Let m = pq be two distinct big prime numbers p, q (of more than hundred digits) and let
a ∈ N∗ be a relatively prime to ϕ(m) = (m + 1) − (p + q) . Let the message be given through the
integer x ∈ N with 0 ≤ x < m , which is interpreted as an element of Am (for longer messages one
can use the blocks of numbers of the form as x ). The number x will be sent to the number y ∈ N with
0 ≤ y < m and y ≡ xa mod m . The decoding x ≡ yb mod m simply depends on the knowledge of
b ∈ N with ab ≡ 1 (mod ϕ(m)) , and therefore on ϕ(m) , which require the knowledge of the prime
factorisation m = pq . Note that m and a are known to a third party. The power map Am → Am ,
x �→ xa is required to be less expensive and this can be achieved if one use one of the following method.
Let a = ∑r

i=0 bi2
i with bi ∈ {0, 1} be the dual-expansion of a . — Method 1 : Compute xi := x2i ,

i = 0, . . . , r , sucessively by using the squares xi+1 = x2
i and there by take xa as the product of 1

with those xi for which bi = 1 . — Method 2 : At the end of the sequence xr+1, . . . , x0 contructed by
xr+1 := 1, x2

i = x2
i+1x

bi for i = r, . . . , 0 , we have x0 = xa .)
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Below one can see Class-Notes and (simple) test-exercises.

Class-Notes/Test-Exercises

T6.1. Let m ∈ N∗. In this section we investigate the prime residue class group modulo m , that is, the
unit group A×

m of the prime ring Am of charateristic m . (Recall that the c h a r a c t e r i s t i c
of a ring A is the order 1) of 1A in the additive group (A,+) of A and is denoted by Char(A) . If
n ∈ Z Char(A) , then na = 0 for all a ∈ A . All subrings of a have the same characteristic, namely
Char(A) . For every ring A, , there is a unique ring homomorphism χA : Z → A such that n �→ n ·1A .
The kernal of the ring homomorphism χA is generated by Char(A) , i.e., Ker(χA) = Z Char(A) .

1). ( P r i m e r i n g s ) Let A be a ring. A p r i m e r i n g of A is the smallest subring of A ; it is the
subring Z · 1A of all integer multiples of the multiplicative identity 1A . If a = Z · 1A , then A is a
prime ring of itself and in this case we say that A is a p r i m e r i n g . For example, the ring of integers
Z is a prime ring.

a). A ring A is a prime ring if and only if its additive group (A,+) is a cyclic group. In particular,
prime rings are commutative and have no proper subrings.

b). ( S t r u c t u r e o f t h e p r i m e r i n g s ) Let A be a prime ring of charateristic m . Then :

(1) If m > 0 , then : |A| = m and A = {n · 1A := 0 ≤ n < m} . Two elements r · 1A, s · 1A ∈ A with
r, s ∈ Z are equal if and only if r ≡ s (mod m) . An element r · 1A ∈ A with r ∈ Z is a non-zero
divisor if and only if it is a unit; this is exactly the case if and only if gcd(r,m) = 1 .

(2) If m = 0 , then : A = {n · 1A : n ∈ Z} , where the elements n · 1A are distinct for distinct n ∈ Z .
Further, A is an integeral domain with exactly two units elements 1A and −1A .

c). The prime rings of rings of equal characteristic are canonically isomorphic. In particular, prime
rings of equal characteristic are canonically isomorphic. Therefore for every natural number m ∈ N∗ ,
we can choose the concrete modell Am = Z/Zm .

d). For a prime ring A of characteristic m > 0 , the following statements are equivalent :

(i) A is a field. (ii) A is an integral domain. (iii) m is a prime number.

e). Let A be a prime ring of characteristic m > 0 . Then the order of the unit group A× is ϕ(m) ,
where ϕ is the Euler’s totient function.

f). ( E u l e r ’s t h e o r e m ) Let m ∈ N∗ and let a ∈ Z with gcd(a,m) = 1 . Then : aϕ(m) ≡ 1 (mod m) .

g). ( F e r m a t ’s l i t t l e t h e o r e m ) Let p ∈ P be a prime number and let a ∈ Z be such that p � ∣∣a .
Then : ap−1 ≡ 1 (mod p) .

2). ( U n i t g r o u p o f a p r i m e r i n g - - - P r i m e r e d i s u e c l a s s e s ) For r ∈ Z , let r denote
the residue class of r in Z/Zm . Then : r is a unit in the ring Z/Zm if and only if gcd(r,m) = 1 , i.e.,
if r and m are relatively prime. In particular, we have Ord A×

m = ϕ(m) , where ϕ denote the Euler’s
totient function. Therefore the units in Z/Zm are called the p r i m e r e s i d u e c l a s s e s m o d u l o
m and the unit group (Z/Zm)× is called the p r i m e r e s i d u e c l a s s g r o u p m o d u l o m . An
integer r ∈ Z is called a p r i m e r e s i d u e m o d u l o m if r is a prime residue class modulo m , i.e,
if r ∈ (Z/Zm)× .

3). If d is a divisor of m , then there is a unique, surjective ring homomorphism Am → Ad which
induce a canonical group homomorphism A×

m → A×
d on unit groups which is also surjective. (Proof :

1) Note that we define the notion of an order of an element in a group slightly different from the standard
text books, which is in many ways more convenient to work with : Let G be an arbitrary group with
neutral element e , a ∈ G and let H(a) be the subgroup generated by a , i.e., H(a) is the smallest
subgroup of G containing a , in fact H(a) = {an | n ∈ Z} . Then the o r d e r of a is defined by

Ord(a) :=
{ |H(a)|, if H(a) is finite,

0, if H(a) is not finite.
For every element a ∈ G , we have an = e if and only

if n ∈ Z · Ord(a) . In particular, aOrd(a) = e and if Ord(a) > 0 , then Ord(a) is the smallest natural
number n ∈ N∗ such that an = e . Moreover, if G is finite, then every element a ∈ G has order
Ord(a) > 0 and Ord(a) divides Ord(G) , in particular, aOrd(G) = e .
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If a ∈ Z with gcd(a, d) = 1 then there exists r ∈ N such that gcd(a + rd,m) = 1 ; for example, the
product of those prime factors of m , which are not prime factors of either a or d .)

4). For every decomposition m = m1 · · ·mr of m into factors mi ∈ N∗, let Am → Ami denote the
canonical ring homohomorphism and let ψ : Am → Am1 × · · · × Amr be the ring homomorphism
defined by a �→ (ψ1(a), . . . , ψr(a)) . Then : ψ is bijective if and only if m1, . . . , mr are pairwise
relatively prime, i.e., gcd(mi,mj ) = 1 for every 1 ≤ i, j ≤ r , i �= j . (Proof : Since the rings
under consideration are finite, ψ is bijective if and only if ψ is injective. The kernel of ψ is generated
by n := lcm (m1, . . . , mr), i.e., kerψ = Zn/Zm . Therefore ψ is injective if and only if m = n or
equivalently m1, . . . , mr are pairwise relatively prime.)

5). Let m1, . . . , mr be pairwise relatively prime natural numbers in N∗ and let m := m1 · · ·mr . Then
the canonical group homomorphism A×

m → Am1 ×· · ·×A×
mr

is an isomorphism of groups. In particular,
ϕ(m) = ϕ(m1) · · ·ϕ(mr) , i.e., the Euler’s totient function ϕ is multiplicative. (Proof : The canonical
ring homomorphism in (4) is bijective and hence induces a group isomorphism from the unit group A×

m

onto the unit group of the product of rings which is nothing but the direct product of the unit groups A×
mi

.
— Remark : Let m = p

α1
1 · · ·pαrr be the canonical prime decomposition of m . Then for understanding

the structure of the prime residue class group modulo m , it is enough to understand the structure of the
prime residue class group modulo a power pα of a prime number p .)

6). Let p be a prime number. Then the prime residue class group A×
p modulo p is a cyclic group.

More generally, if G is a finite subgroup of the multiplicative group K× of a field K , then G is
cyclic.(Remark : The assumption that G is finite is very important. The multiplicative groups C× and
R× are not cyclic, since they are uncountable. The multiplicative groups Q× is not cyclic, not even
finitely generated (use the Fundamental Theorem of Arithmetic). It is also interesting to note that : if
the multiplicative grou K× of a field is cyclic, then K must be a finite field.)

7). Let m ∈ N∗ and let a ∈ A×
m . Let νm(a) denote the order of the element a in the group A×

m . Then :

a). ar ≡ as (mod m) if and only if r ≡ s (mod νm(a)) . b). ar ≡ 1 (mod m) if and only if r ≡
0 (mod νm(a)) . In particular, νm(a)

∣∣ϕ(m) . c). If a, b be integers with gcd(a,m) = gcd(b,m) = 1
and gcd(νm(a), νm(b)) = 1 , then νm(ab) = νm(a) · νm(b) . d). The elements 1, a, a2, . . . , aνm(a)−1 are
incongruent modulo m . e). Show that m is prime if and only if νm(a) = m − 1 for some a ∈ A×

m.
f). The element a is called a p r i m i t i v e p r i m e r e s i d u e c l a s s if it generates the group A×

m ,
or equivalently, νm(a) = ϕ(m) , i.e., A×

m = {1, a, a2, . . . , aϕ(m)−1} . An integer n ∈ Z is called a
p r i m i t i v e r e s i d u e m o d u l o m if its residue class modulo m is a primitive prime residue class.
(Remark : A primitive residue modulo m is also called a p r i m i t i v e r o o t m o d u l o m . In this
language, the primitive residue classes modulo m are the solutions of the pure equation xn = 1 . If a
primitive residue modulo m exists, then each prime residue system modulo m can be expressed as a
geometric progression. This gives a powerful tool that can be used in problems involving prime residue
systems. Unfortunately, not all prime residue class groups A×

m have primitive roots. See 13) below for
more precise assertion. )

a). Let x be an odd integer and let α ∈ N , α ≥ 3 . Then xϕ(2
α)/2 ≡ 1 (mod 2α) . In particular, there

are no primitive roots modulo 2α . (Hint : First prove the case α = 3 and then prove the assertion by
induction on α .)

b). Let m ∈ N∗ and let a ∈ Z be relatively prime integer to m . For any integer k ∈ Z , show that
νm(a) = νm(a)/ gcd(k, νm(a)) . In particular, νm(ak) = νm(a) if and only if gcd(k, νm(a)) = 1 .

c). Let p be an odd prime number and let d be a divisor of p− 1 . Then in every prime residue system
modulo p , i.e., in the group A×

p , there are exactly ϕ(d) elements a such that νm(a) = d . In particular,
there are exactly ϕ(p) = p − 1 primitive roots modulo p .

d). Let p be an odd prime number and let g be a primitive root modulo p . Show that νp(−g) ={
νp(g), if p ≡ 1 (mod 4) ,
(p − 1)/2, if p ≡ 3 (mod 4) . . In particular, −g is a primitive root modulo p if and only if

p ≡ 1 (mod 4) . Further, show that the even powers g2, g4, . . . , gp−1 are the quadratic residues
modulo p and the odd powers g, g3, . . . , gp−2 are the non-quadratic residues modulo p .

e). Let p be a prime number of the form p = 2n + 1 , n > 1 . Show that 3 is a primitive root modulo
p , i.e., νp(3) = p − 1 .
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f). Let p be a prime number of the form p = 4q + 1 , where q is an odd prime number. Show that 2
is a primitive root modulo p , i.e., νp(2) = p − 1 .

g). Let p be an odd prime number. Show that if g is a primitive root modulo p , then g is also a
primitive root modulo pα with α ∈ N∗ if and only if gp−1 �≡ 1 (mod p2) . Further, show that there
exists a primitive root g modulo p such that gp−1 �≡ 1 (mod p2) . In particular, there exists at least
one primitive root modulo pα if α ≥ 2 .

h). Show that 7 is a primitive root modulo p = 71 . Find all primitive roots modulo 71 . Further, find
primitive roots modulo p2 and modulo 2p2 .

8). Let p be a prime number and let α ∈ N∗. For an integer n ∈ Z which is relatively prime to
p , we put να(n) := νpα (n) = the order of the residue class of n in the group A×

pα . Then either
να+1(n) = να(n) or να+1(n) = να(n)p . (Proof : The canonical group homomorphism A×

pα+1 → A×
pα

is surjective and its kernel is of order p .)

9). Let p be a prime number. If n is a primitive residue modulo p , then either n or n+p is a primitive
residue modulo p2 .(Proof : We have ν1(n) = ν1(n+p) = ϕ(p) = p−1 . Further, ν2(n) is either p−1
or (p−1)p . It follows that n is a primitive residue modulo p2 if and only if np−1 �≡ 1 (mod p2) and
by the cancelattion law in the prime residue class group, this is further equivalent to np �≡ n (mod p2) .
Analogously, for n+ p . Now, if n is not a primitive residue modulo p2 , then np ≡ n (mod p2) . By
the Binomial theorem (n + p)p = ∑p

i=0

(
p

i

)
np−ipi ≡ np + pnp−1p ≡ np ≡ n �≡ n + p (mod p2) .

Therefore n+ p is a primitive residue modulo p2. )

10). Let p be a prime number and let α ∈ N∗; if p = 2 , then assume that α ≥ 2 . Further, let n ∈ Z

be relatively prime to p . Then : if να+1(n) = να(n)p , then να+2(n) = να+1(n)p . (Proof : Let
r := να(n) . Then να+1(n) = rp . We consider m := nr − 1 . Then clearly, m ≡ 0 (mod pα), but
m �≡ 0 (mod pα+1). Then, for i ∈ N, i ≥ 3 , mi is divisible by pα+2 , since iα ≥ α + 2 . Therefore,
modulo pα+2, we have : nrp = (1+m)p = ∑p

i=0

(
p

i

)
mi ≡ 1+pm+ (p2)m2 . In the case p = 2, α ≥ 2 ,

m2 is also divisible by pα+2. If p ≥ 3 , then
(
p

2

)
m2 is divisible by pp2α and hence by pα+2 .

Therefore nrp ≡ 1 + pm (mod pα+2) . Since pm is divisible by pα+1 , but not by pα+2, it follows
that nrp �≡ 1 (mod pα+2) and hence να+2(n) �= rp = να+1(n) . Therefore να+2(n) = να+1(n)p . )

11). Let p be a prime number ≥ 3 and let α ∈ N∗. Then :

(1) A×
pα is a cyclic group. (2) If n ∈ Z is a primitive residue p2 , then n is primitive residue modulo

pα . (Proof : By 6) and 9) there exists a primitive residue modulo p and modulo p2. Therefore it is
enough to prove (2). Therefore, let n ∈ Z be a primitive residue modulo p2. Then ν2(n) = ν1(n)p .
Now, the assertion follows by induction on α and 10). )

12). Let α ∈ N∗. Then :

(1) If α ≤ 2 , then A×
2α is a cyclic group.

(2) If α ≥ 3 , then A×
2α is not cyclic. Moreover, it is a direct product of two cyclic groups one of order

2 and the other of order 2α−2 which are generated by the residue classes of −1 and 5 modulo 2α ,
respectively. (Proof : For α ≤ 3 the assertions can be verified directly. Since ν3(5) = 2ν2(5) , it
follows by induction on α and 10) that να(5) = 2α−2 for all α ≥ 2 . If α ≥ 3 , then the residue class of
−1 does not belong to the subgroup generated by the residue class of 5 , since this is not true modulo
8 . This proves the assertion. )

13). ( G a u s s ) Let m ∈ N∗. The prime residue class group A×
m modulo m is cyclic if and only if m

is of the form 1, 2, 4, pα, 2pα , where p is an arbitrary odd prime number and α ∈ N∗ is arbitrary.
(Proof : Let p ≥ 3 be a prime number and let α ∈ N∗. Then ϕ(pα) = (p− 1)pα−1 is an even number
and hence it follows that there is an element in the group A×

pα of order 2 . Let m ∈ N∗ be such that A×
m

is cyclic. Then there are at most one element of order 2 in the cyclic group A×
m. Threrfore, in a direct

decomposition of A×
m given in 5) corresponding to the canonical prime decomposition of m , there is

only one factor of even order. Now, from 12) it follows that m must of the form given in the theorem.
Conversely, if m is of the form given in the theorem, then it follows that the prime residue class group
A×
m modulo m is cyclic by 11) and the remark : If m = 2n with n odd, then A×

m
∼= A×

n by 5). )

14). Let m ∈ N∗ . Suppose that g is a primitive root modulo m . Then there are exactly ϕ(ϕ(m))

incongruent primitive roots modulo m . Moreover, the set S = {gn | gcd(n, ϕ(m)) = 1 , 1 ≤ n ≤ ϕ(m)}
is the set of all primitive roots modulo m .
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15). Let m ∈ N∗ be a natural number which is not of the form 1, 2, 4, pα or p2α , where p is an odd
prime number. Then for any relatively prime integer a , we have aϕ(m)/2 ≡ 1 (mod m) .

16). ( I n d e x c a l c u l u s ) Let m ∈ N∗ . Suppose that g is a primitive root modulo m . Then
A×
m = {1, g, g2, . . . , gϕ(m)−1} . For each a ∈ Z which is relatively prime to m , there exists an unique

integer k with 0 ≤ k ≤ ϕ(m)− 1 such that a ≡ gk (mod m) . This integer k is called the i n d e x of
a to the base g (mod m) and we write k = indg(a) . The following properties of indices are analogous
to those of logarithms.

a). If gcd(a,m) = gcd(b,m) = 1 , then indg(ab) = indg(a)+ indg(b) .

b). If n ∈ N∗, then indg(an) ≡ n · indg(a) (mod ϕ(m)) .

c). indg(1) = 0 and indg(g) = 1 .

d). If m > 2 , then indg(−1) = ϕ(m)/2 .

e). If g′ is another primitive root modulo m , then indg(a) ≡ indg′(a) · indg(g′) (mod ϕ(m)) .

17). The following examples illustrate the use of indices in solving congruences. Let m ∈ N∗ be such
that there is a primitive root g modulo m and let a, b ∈ Z be integers each of which is relatively prime
to m . Then

a). ( L i n e a r C o n g r u e n c e s ) The linear congruence ax ≡ b (mod m) is equivalent to the linear
congruence indg(a)+ indg(x) ≡ indg(b) (mod ϕ(m)) .

b). ( B i n o m i a l C o n g r u e n c e s ) The binomial congruence xn ≡ b (mod m) is equivalent to the
linear congruence n · indg(x) ≡ indg(a) (mod ϕ(m)) . Therefore, if d = gcd(indg(a), ϕ(m)) , then
the above linear congruence has a solution if and only if d

∣∣indg(a) ; moreover, in this case there are
exactly d solutions. For example, the binomial congruence x8 ≡ a (mod 17) , the corresponding
index congruence is 8ind3(x) ≡ ind3(a) (mod 16) . Since d = gcd(8, 16) = 8 and 1, 16 are the
only residues mod 17 whose index is divisible by 8 . In fact ind3(1) = 0 and ind3(16) = 8 .
Therefore the above congruence has no solutions if a �≡ 1 (mod 17) or a �≡ 16 (mod 17) . For
a = 1 , the index congruence is 8ind3(x) ≡ 0 (mod 16) and for a = 16 , the index congruence
is 8ind3(x) ≡ 8 (mod 16) . Each of these has exactly eight solutions modulo 16 , namely those
x whose ind3 is even : x ≡ 1, 2, 4, 8, 9, 13, 15, 16 (mod 17) and those x whose ind3 is odd ;
x ≡, 10, 11, 12, 14 (mod 17) , respectively.

c). ( E x p o n e n t i a l C o n g r u e n c e s ) The exponential congruence ax ≡ b (mod m) is equivalent
to the linear congruence x · indg(a) ≡ indg(b) (mod ϕ(m)) . Therefore, if d = gcd(indg(a), ϕ(m)) ,
then the above linear congruence has a solution if and only if d

∣∣indg(b) ; moreover, in this case there
are exactly d solutions. For example, the exponential congruence 25x ≡ 17 (mod 47) , we have
ind5(25) = 2 , ind5(17) = 16 and d = gcd(2, 46) = 2 and hence this congruence becomes 2x ≡
16 (mod 46) which has two solutions x ≡ 8 and 31 (mod 46) .. These are also solutions of the
original exponential congruence (mod 47) .

T6.2. ( C r y p t o g r a p h y ) Classically, the making and breaking the secrete codes has been confined
to diplomatic and military practices. With the growing quantity of digital data stored and communicated
by eletronic-data processing systems, organizations in both the public and commercial sectors have felt
the need to protect information from unwanted intrusion. Indeed, the widespread use of electronic funds
transfers has made privacy a pressing concern in most financial transactions. Therefore, there has been
a recent surge of interest by mathematicians and computer scientists in cryptography (from the Greek
kryptos meaning hidden and graphein meaaning to write) — the science of making communications
unitelligible to all except authorized parties. Cryptography is the only known practical means for pro-
tecting information transmitted through public communications networks, such as those using telephone
lines, microwaves or satellites.

In the language of cryptography, where codes are called c i p h e r s , the information to be concealed
is called p l a i n t e x t . After the transformation to a secret form, a message is called c i p h e r t e x t .
The process of converting from plaintest to ciphertext is called e n c r y p t i n g or e n c i p h e r i n g ,
while the reverse process of changing from ciphertext back to palintext is called d e c r y p t i n g or
d e c i p h e r i n g .

One of the earliest cryptographic systems was used by the great Roman emperor Julius Caesar

around 50 B C. Carsar using a rudimentary subsitution cipher in which each letter of the alphabest is

D. P. Patil / Exercise Set 6 dm07-e06 ; March 22, 2007 ; 12:47 p.m. 42



6.8 MA-217 Discrete Mathematics / January-April 2007 6. Prime Residueclass Groups

replaced by the letter which occurs three palces down the alphabet with the last three letters cycled back
to the first three letters. For example, the plaintext message caesar was great is transformed into
the ciphertext fdhvdu zdv juhdv .

The Caesar cipher can be described easily by using congruences. Any plaintest is first expressed
numerically by translating the characters of the text into digits by means of the bijection :

{A,B,C, . . . , X, Y, Z} → {01, 02, 03, . . . , 24, 25, 26} , A �→ 01 , . . . , Z �→ 26 .

If P is digital equivalent to a plaintext letter and if C is the digital equivalent to the corresponding
ciphertext letter, then C ≡ P+3 (mod 26) ,. Therefore, for instance, the letters of the above message are
converted to their equivalents : 03 01 05 19 01 18 23 01 19 07 18 05 01 20 and using the congruence
C ≡ P + 3 (mod 26) , this becomes the ciphertext 06 04 08 22 04 21 26 04 22 10 21 08 04 23 .
Now to recover the palintext, the procedure is simply reversed by means of the congruence : P ≡
C − 3 ≡ C + 23 (mod 26) .

The Caesar cipher is very simple and hence extremely insecure. Caesar himself soon abandoned this
scheme, not only because of its insecurity, but also because of he didnot trust Ciecero, with whom he
necessarily shared the secret of the cipher.

In conventional cryptographic systems, such as Caesar’s cipher, the sender and receiver jointly have
a secret key. The sender uses the key to encrypt the plaintext to be sent, while the receiver uses
the same key in order to decrypt the ciphertext obtained. Public-Key crptography differs from the
conventional cryptography in that it uses two keys, an encryption key and a decryption key. Although
the two keys effect inverse operations and therefore related, there is no easily computed method of
deriving the decryption key from the encryption key. Therefore the encryption key can be made public
without compromising the decryption key; each user can encrypt messages, but only the intended
recipient (whose decryption key id kept secret) can decipher them. A major advantage of the public-key
cryptosytem is that it is unnecessary for each sender and receiver to exchange a key in advance of their
decision to communicate with each other.

In 1977, R. Rivest, A. Shamir and L. Adleman proposed a publci cryptosystem which uses only
elementary ideas from number theory. Their enciphering system is called R S A after the initials of
the algorithm’s inventors. Its security depends on the assumption that in the current state of computer
technology, the factorization of the composite numbers with large prime factors is prohibitively time-
consuming.

Each user fo the RSA system chooses a pair of distinct prime numbers p and q large enough that the
factorization of their product m = pq called the e n c i p h e r i n g m o d u l u s , is beyind all current
computational capabilities. For instance, one might pick p and q with 200 digits each, so that m has
roughly 400 digits. Having selected m , the user then chooses a random positive integer a called the
e n c i p h e r i n g e x p o n e n t , satisfying gcd(a, ϕ(m)) = 1 . the pair (m, a) is placed in a public file,
analogous to a telephone directory, as the user’s personal encryption key. This will allow anyone else
in the communication network to encrypt and send a message to that individual. Notice that while m
is openly revealed, the listed public-key does not mention the factors p and q of m .

The encryption process begins with the conversion of the message to be sent into x by means of a
digital alphabet in which each letter, number or punctuation mark of the plaintext is replaced by two
digit integer. It is assumed that the plaintext number x < m , where m is ciphering modulus; otherwise
it would be impossible to distinguish x from any larger integer congruent to it modulo m . If meaasge is
too long to be handled as a single integer x < m , then x can be broken into blocks of digits x1, . . . , xr
of the appropriate size. Each block would be excrypted separately.

Looking up the intended recipient’s encryption key (m, a) in the public directory, the sender disguises
the plaintext number x as a ciphertext number y by raising x to the a-th power and then reducing the
result modulo m .

At the other end, the authorised recipient deciphers the transmitted information by first determining the
integer b , the secret recovery exponent, for which ab ≡ 1 (mod ϕ(m)) . Since gcd(a, ϕ(m)) = 1 , this
linear congruence has a unique solution modulo ϕ(m) . in fact, b ≡ aϕ(ϕ(m))−1 (mod ϕ(m)) ; indeed,
ab ≡ aϕ(ϕ(m)) ≡ 1 (mod ϕ(m)) by Euler’s theorem. The recovery exponent can only be calculated
by someone who knows both a and ϕ(m) = (p − 1)(q − 1) , and hence knows the prime factors p
and q of m . Therefore b is secure from an illegitimate third party whose knowledge is limited to the
public-key (m, a) .

43 dm07-e06 ; March 22, 2007 ; 12:47 p.m. D. P. Patil / Exercise Set 6



MA-217 Discrete Mathematics / January-April 2007 6. Prime Residueclass Groups 6.9

Matters have been arranged so that the recipients can now retrieve x from y by simply calculating
yb modulo m . Since ab ≡ 1 + ϕ(m)t for some integer t , it follows that yb ≡ (xa)b ≡ x1+ϕ(m)t ≡
x · 1t ≡ x (mod m) , whenever gcd(x,m) = 1 . the assumption that gcd(x,m) = 1 was made in order
to use Euler’s theorem. In the unlikely event that x and m are not relatively prime, a similar argument
establishes that yb ≡ x (mod p) and yb ≡ x (mod q) , which then yields the desired congruence
yb ≡ x (mod m) .

The major advantage of this ingenious procedure is that the encryption of a message does not require
the knowledge of the two primes p and q , but only their product m ; there is no need for any one other
than receiver of the message ever to know the prime factors critical to the decryption process and for
the present it appears to be quite safe.

For the RSA cryptosystem to be secure it must not be computationally fesible to recover the plaintext
x from the information assumed to be known to a third party; namely listed public-key (m, a) . The
direct method to attack would be to attempt to factor m an integer of huge magnitude, for once the
factors are determined, the recovery exponent b can be calculated from ϕ(m) = (p−1)(q−1) and a .
Our confidence in the RSA system rests on what is known as the work factor, — the expected amount
of computer time needed to factor the product of two large primes. Factoring computationally more
difficult than distinguishing between primes and composites. On today’s fastest computer, a 200-digit
number can routinely be tested for primality in less than 10 minutes, whereas the running time required
to factor a composite number of the same size is prohibitive. It has been estimated that the quickest
factoring algorithm known can use approximately (1.2)1023 computer operations to resolve an integer
with 200 digits into its prime factors, assuming that each operation takes one microsecond ( 10−6

seconds), then the factorization time would be about (3.8)109 years. Given unlimited computing time
and some unimaginably efficient factoring algorithm, the RSA cryptosystem could be broken, but for
the present it appears to be quite safe.

1). a). A linear cipher is defined by the congruence C ≡ aP +b (mod 26) , where a and b are integers
with gcd(a, 26) = 1 . Show that the corresponding decrypting congruence is P ≡ a′(C−b) (mod 26) ,
where the integer a′ satisfies aa′ ≡ 1 (mod 26) .

b). Using the cipher C = 5P + 11 (mod 26) , encrypt the message NUMBER THEORY IS EASY .

c). Decrypt the message TZSVIW JQBVMIJ HL MVOOVI which was produced by the linear cipher
C ≡ 3P + 7 .

2). Let p and q be distinct prime nunmbers. If m = pq = 274279 and ϕ(m) = 272376 , find primes

p and q . (Hint : p + q = m − ϕ(m) + 1 and p − q = (
(p + q)2 − 4m

)1/2
. — (Ans : 1747 and

157 ).)

3). When RSA system is based on the public-key (m, a) = (3233, 37) , what is the recovery exponent
for the cryptosystem? (Ans : 253 .)

4). Encrypt the message GOLD MEDAL using the RSA algorithm with public-key (m, a) = (2419, 3) .
(Ans : 2318 1932 1106 2197 1631 0337 1728 .)

5). The ciphertext message produced by the RSA algorithm with public-key (m, a) = (1643, 223) is
1451 0103 1263 0560 0127 0897 determine the original plaintext message. (Hint : The
recovery exponent is b = 7 . — (Ans : REPLY NOW.)

6). The ciphertext message produced by the RSA algorithm with public-key (m, a) = (2419, 211) is
1037 0431 0629 0690 0204 2267 0595 determine the original plaintext message.
(Hint : The recovery exponent is b = 11 . — (Ans : SELL SHORT)

T6.3. ( L a t i n S q u a r e s ) Let N be a finite set with n elements. A map f : N × N → N is
called a L a t i n s q u a r e (of order n over N ) if for every a ∈ N , on the a–th “row” {a} × N and
on the a–th “column” N × {a} the maps f |{a} × N and f |N × {a} by f are bijective. Two Latin
squares f, g over N are called o r t h o g o n a l , if the map (f, g) : N × N → N × N defined by
(x, y) �→ (f (x, y), g(x, y)) is bijective. Let A denote a commutative ring.

a). Let x0, a, b ∈ A . The a f f i n e function f : A× A → A defined by (x, y) �→ x0 + ax + by is a
Latin square (over A ) if and only if a and b are units in A .

b). Two affine functions f, g : A×A → A with f (x, y) = x0 +ax+by resp. g(x, y) = y0 +cx+dy
are orthogonal Latin square if and only if a , b , c , d , ad − bc ∈ A×. ( In the matrix notation
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the affine map (f, g) of A×A is the map
(
x

y

)
�→
(
x0
y0

)
+ A

(
x

y

)
, A :=

(
a b

c d

)
∈ M2(A) and

Det A := ad − bc is the determinant of A .)

c). A Matrix
(
a b

c d

)
∈ M2(A) is called hyper - regu la r , if a, b, c, d and ad−bc are units A . Let

m(A) denote the number of hyper-regular matrices with coeeficients in A . Then m(A) = |A×|3m̃(A) ,
where m̃(A) denote the number of units a in A such that a − 1 also a unit A . If A1, A2 are two
finite commutative rings, then m(A1 × A2) = m(A1)m(A2) . If A is a field with q elements, then

m(A) = (q − 1)3(q − 2) . Further, m(An) = n4
∏

p prime
p|n

(
1 − 1

p

)3 (
1 − 2

p

)
. If |A| ≡ 2 (mod 4) ,

then m(A) = 0 . If |A| is odd, then m(A) �= 0 .

d). If n ∈ N∗ and n �≡ 2 (mod 4) , then there exists a commutative ring A with n elements and
m(A) �= 0 . (This is trivial if one use the exitense of Galois fields, i.e., fields with q elements, where
q > 1 is an arbitrary power of a prime number is used. In particular, for every natural number n ∈ N∗

such that n �≡ 2 (mod 4) , there exists a orthogonal Latin squares of order n . (Remark : E u l e r
conjectured that for n ≡ 2 (mod 4) there are no orthogonal Latin squares of order n . For n = 2 this is
clear. For n = 6 — Euler himself handled this case in the E u l e r ’s o f f i c e r s p r o b l e m , 36 officers
of 6 ranks and from 6 regiments in a square formation of size 6 by 6 . Each row and each column of
this formation are to contain one and only one officer of each rank and one and only one officer from
each regiment. We may lable the ranks and the regiments from 1 through 6 and assign to each officer
a 2 sample of the integers 1, through 6 . The first componentof the 2-sample designates the officier’s
rank and the scond his regiment. Euler’s problem then reduces to the construction of a pair of orthogonal
Latin suqares of order 6 . Euler conjectured in 1782 that there exists no pair of orthogonal Latin squares
of order n ≡ 2 (mod 4) .Tarry around 1900 verified by a systematic enumeration the validity of
Euler’s conjecture for n = 6 . But only recently the combined efforts of Bose, Shrikhande and
Parker culminated in the following theoerem : For all n with n ≡ 2 (mod 4) and n �= 2, 6 , there
exists a pair of orthogonal Latin squares of order n . This theorem shows that the opposite of the
expected state of affairs holds and illustrates the danger of leaping to general conclusions from limited
empirical evidence. We cannot go into the intricacies of the proof of this theorem.

e). Let M(A) be the supremm of the numbers k such that there exist the affine functions f1, . . . , fk :
A×A → A such that for all i, j with i �= j the functions fi, fj are orthogonal Latin squares. M(A)
is the supremum of the numbers k such that there exist units a1, . . . , ak in A× such that the differences
ai − aj for i �= j are also units in A . Then M(A1 × A2) = Min{M(A1),M(A2)} for two finite
commutative rings A1, A2 . If A �= 0 , then M(A) ≤ |A| − 1 . Further, M(A) = |A| − 1 if and only if
A is a field. If A is a commutative ring with n elements, then M(A) ≤ Inf{pvp(n)−1 | p prime , p|n} .
This inequality is an equality if n = p

α1
1 · · ·pαrr , for example, for the product ring K1 × · · · × Kr ,

where Ki is a field with pαii elements. Further, M(An) = Inf{p − 1 | p prime, p|n} .

f). Let n ∈ N∗ and N := {0, . . . , n− 1} . If f, g : N ×N → N are orthogonal Latin squares, then(
f (0, 0)n+ g(0, 0) , . . ., f (0, n− 1)n+ g(0, n− 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n− 1, 0)n+ g(n− 1, 0) , . . . , f (n− 1, n− 1)n+ g(n− 1, n− 1)

)
is a m a g i c s q u a r e of the numbers 0, . . . , n2 −1 , i.e., the sum of the numbers in each row and in each
column is (n/2)(n2 − 1) . One can construct a magic square for n = 12 . One can construct a magic
square for n = 12 . Already Adam Ries constructed a magic square corresponding to an odd natural
number n essentailly by using a pair of affine functions f, g : An × An → An , i.e., corresponding to

the hyper-regular matrix
(

1 1
−1 1

)
. (Remark : We would like to mention the following often used

method for the construction of orthogonal Latin square and hence that of magic squares : Let G be a
finite group with neutral element. e . For every permutation ϕ : G → G , the map G×G → G defined
by (x, y) �→ xϕ(y) is a Latin square. The Latin squares (x, y) �→ xϕ(y) resp. (x, y) �→ xψ(y)

corresponding to the permutations ϕ,ψ ∈ S(G) are orthogonal if and only if y �→ (ϕ(y))−1ψ(y) is
a permutation of G . If ϕ and ψ are automorphisms of G , then the Latin squares corresponding to
ϕ and ψ are orthogonal if and only if ϕ(y) = ψ(y) only for y = e . In particular, the Latin squares
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corresponding to the automorphisms ϕ := idG and ψ are orthogonal if and only if ψ has no fixed
point other than the neutral element e,.)

D. P. Patil / Exercise Set 6 dm07-e06 ; March 22, 2007 ; 12:47 p.m. 46


