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6. Prime Residueclass Groups

6.1. Let m > 1 beanodd natural number. Information on the orders of special e ementsinthe
primeresidueclassgroup A provideinformation ontheprimefactorsof m and sometimesalso
used to provethat m isprime, inparticular, if sufficient information on the prime factorisation
of m — 1 isknown. The following example (and their variants) are classical and were already
known to Lucas, LEaMER and many other number theorist use them.

a). (Fermat’s test for prime numbers) Supposethat: for every primedivisor p of
m — 1, thereexistsan € Z suchthat n"~* =1 (mod m) and

n™=b/P £ 1 (mod m). Show that m is a prime number. Moreover, if a natural number
n € 7, satisfy these conditions simultaneusly, then » isa primitive residue modulo m .

b). Let m — 1 = ab with relatively prime natural numbers @ and b . Suppose that : for every
primedivisor p of a thereexistsa(dependenton p) n € Z such that

n1l=1modm and gcd(anf1 —1m)=1.

Then for every factor ¢ of m showthat ¢ =1 (mod a) . (Hint: If ¢ isprimeand if there exists
anatural number n € Z suchthat n £ 1 (mod m) and n®* = 1 (mod m), then ¢ — 1 isdivisible by
the prime factors of @ which are not prime factorsof ».) Moreover, show that if a > b, then m
must be prime.

6.2. Let p > 3 beaprimenumber, « € N* and n € Z be a primitive residue modulo p.
Then show that: a). n or n(1+ p) isa primitive root modulo p*. b). n?(1+ p) isa
primitive root modulo p“ .

6.3. Let p beaprimenumber > 3. For n € Z with n =1 (mod p) and arbitrary y € N
show that vp(nl’y -1 =y +V,(n—1). (Hint: Inductionony .)

6.4. Let p beaprimenumber > 3 andlet « € N*, g := p*. Further,let y* : AX — A} be

the canonical homomorphism. Then show that themap x — (¥ (x), x?~1) isanisomorphism
of groups from A¥ onto A x AX(p), where A7 (p) the (isomorphicto Z,,,) p—primary

component of A .

6.5. Let p beaprimenumber > 3 and @« € N*. For n € Z with p /fa , let v, (n) denote
the order of theresidueclassof n in Ay, ¢ := p®. Then show that:

ve(n) = vi(n)p?, where B :=max{0,a — Vp(nf”_l —1}.

(Hint: Usethe earlier two exericses.) If a > 2, then n isaprimitive ressdue modulo p* if and
only if n isaprimitive residue modulo p and n?~1 £ 1 (mod p?). (Hint: Look for the prime
numbers p (say < 107) with 21 =1 (mod p?) resp. 31 =1 (mod p?). They are very rarel.)

6.6. Prove the following generalization of the theorem of Wilson: For m € N*, we have

[T = {1 modm. ifA;iscydic.
N 1 (mod m) otherwise .

O<n<m
ged(n,m)=1

6.7. For m € N*, let e(m) denote the exponent of thegroup A .
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a). Let n,m € N* besuchthat gcd(n, m) = 1. Then e(nm) = lcm(e(n), e(m)) .

b). Let m = nny---n, be the prime decomposition of m € N*, where n is a power of
2 and the n; are powers of r distinct odd prime divisors of m . Then show that e(m) =

lem(e(n), p(n1), ..., ¢(n,)).

6.8. Show that A, isnot isomorphic to any other prime residueclassgroup A, m # 24.
6.9. a). Let p beaprimenumber > 3 and let « € N*. Further, let a be an integer which
isnot divisbleby p. For n € N*, let d := gcd(n, r) with r := o(p*) = p*1(p - 1).
Show that the congruence x”" = a mod p® hasasolutionif and only if @’/ =1 (mod p%).
Moreover, in this case the congruence has exactly d incongruent solutions. — For n = 2 and
a = 1, thisisthe Euler’s criterion for quadratic residue.

b). How many solutions are there for the equation x" = x in A,,, n > 2, m € N*?

6.10. Let p beaprimenumber andlet r+ € N*. For p consecutiveintegers ay, ..., a, , Show

, 0 (mod p) ift fp—1, _ . _
that: af + ...+a; = { 1 (mod p). if t‘p Y (Hint: Thegroup A iscyclic.)
6.11. Let m € N* and N be (may be empty) the set of the primitive residue classesin A .
Then [],.y x =1 exceptinthecases m = 3,4,6. (Hint: Usethefollowing assertion: If A is
acommutative ring with 1 # —1 and if A hasfinitely many units, then > °__,. ¢ =0, since A* can
be decomposed into the 2—sets {¢, —¢}.)

6.12. (Gauss) Let p beaprimeandlet N be the set of primitive roots modulo p,i.e,in
A . Then Y en X = u(p — 1), where p isthe Mobius function. (Hint: Decompose
A initsprimary components: AX = G1G2--- G, ,and consider N = N1Nz--- N, , where N; isthe
set of generating elementsof G, .) Further, if p isodd > 3, then the product of primitive roots
modulo p is=1 (mod p).

6.13. Let p be aprime number and let « € N*. Show that there exists infinitely many
prime numbers of the form np® + 1, n € N. (Hint: For a proof consider the function
N — N* defined by f(x) = PN L T2 T L1 Let P05 - -, p, be prime
numbers with p;, = 1 (mod p*). Let g be aprimefactor of f(m), where m ;= ppg--- p.. Then
mr* —1 = m" " — 1) f(m) and hence m?* = 1 (mod ¢). Further, mr £ 1 (mod ¢q), since
otherwise p = f(m) = 0 (mod g) . It followsthat p* isan order of an elementin A, and hence
g =1 (mod p*). Therefore p, 1 := q isanew primenumber = 1 (mod p*). — Remark: This
proof also showsthat: If p > 3, then there are infinitely many prime numbers of the form n2p® + 1,
n € N. For example, there are infinitely many prime numbers of the form 6n + 1.)

6.14. Every finite abelian group isisomorphic to a subgroup and to a residue class group of a
prime residue class grooup. (Hint: Use the Exercise6.13.)

6.15. (Prime-test) Let m > 1 beanoddinteger. If m isprime, then a1 =1 (mod m)
for every relatively prime integer a to m (by Fermat’s little theorem). Conversdly, if the
condition a”~* =1 (mod m) isfullfilled for one (or more) a € Z, then m is expected to be
prime (with very high probablity). The following remarks show that one must be very careful
to apply this prime-test.

a). Anoddinteger m > 1 iscaleda pseudo prime number if 2”1 =1 (mod m). The
smallest pseudo-prime number which is not primeis 341 = 11-31. (Remark: Pseudo-prime
numbers are also called Chinese prime numbers, since 25 centuries ago Chinese mathematicians
made (prime-test with « = 2) aclaimthat: a natural number » isprimeif and only if n|2” — 2. This
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criterionisreliablefor all integers n < 340. Needlessto say that our example 341 lays the conjecture
to rest; thiswas discovered in 1819. It can be shown that there are infinitely many pseudo- primes, the
smallest being 341, 561, 645 and 1105.)

b). If m isapseudo-prime number, then 2" — 1 isalarger pseudo-prime. Inparticular, there
infinitely many pseudo-prime numbers which are not prime numbers.

c). Every Mersenne-number M, = 2” —1, p primeand every Fermat-number F, =22 +1,
n € N, is apseudo-prime number. (Remark : In 1963 it has been shown (in analogy with the
Dirichlet’s theorem on primes in arithmetic progression) that any arithmetic progression an + b with
gcd(a, b) = 1 containsinfinitely many pseudo-primes. These“false primes’ are much rarer than actual
primes, for instance, there are only 245 pseudo-primes smaller than one million, in comparison with
78492 primes. Thefirst example of an even pseudo-prime, namely the number 161038 = 2-73- 1103
was found in 1950.)

d). Anoddinteger m > 1 iscaleda Carmichael— number if the exponent e(m) (see
Exercise6.7) of the primeresidue classgroup modulo m isaproper divisor of m —1. Show that
thisisequivalent to: For every relatively primeinteger a to m ,wehave a” 1 =1 (mod m);
neverthless m isnot prime. Every Carmichael-number isthe product of at least 3 distinct prime
numbers. The smallest Carmichael-number 561 = 3-11-17. The pseudo-prime number 341
isnot aCarmichael-number, since 31 f113* — 11, wehave 113 = 11 (mod 341) .(Remark :
These exceptional numbersarealso called absolute pseudo-primes. R. C. CARMICHAEL Was
thefirst (1909) to notice their existence.)

e). Let n = pip,--- p, be acomposite, square-free natural number, where p; are distinct
prime numbers. If p; — 1|n — 1 foral i = 1,...,r, then n is a Carmichael- number.
— (D. Shanks) If r isapositive integer such that p; (= 6r +1, p, .= 12r + 1 and
p3 = 18t + 1 are prime numbers, then m := p1p, p3 isaCarmichael-number. (Remark : The
natural numbers 1729 = 7-13-19, 6601 = 7-23-41, 10585 = 5-29- 73 are Carmichael-numbers. Itis
widely believed that thereareinfinitely many Carmichael-numbers, but this conjectureremainsunproven
and therearejust 43 of them lessthan onemillion.) The natural number 9091 - 18181 - 27271 isa
Carmichael- number. How many percent of the residue classes modulo this number are prime
residues? (Remark: For arefined version of thistest see: D. E. Knuth, The Art of Computer
Programming, Vol. 2, 4.5.4: Algorithm P)

6.16. Let m € N* be asquare-free natural number and let a € N*. Show that the power-map
A, — A, x = x? ishijectiveif and only if @« and ¢(m) arerelatively prime. Moreover,
inthiscasethemap x — x”,where b e N*and ab = 1 (mod ¢(m)) isthe the inverse map
of themap x — x“. If m isnot square- free, thenthereisno a € N*, a > 2, such that the
map x — x“ isabijectivemap.  (Remark: One can apply the power- map in coding theory. (
RSA-Codes dueto R. RIvEST, A. SHAMIR and L.. ADLEMAN. See also ExerciseT6.2 for more
detals). Let m = pg be two distinct big prime numbers p, g (of more than hundred digits) and let
a € N* be arelatively primeto ¢(m) = (m + 1) — (p + q) . Let the message be given through the
integer x € N with 0 < x < m, which isinterpreted as an element of A,, (for longer messages one
can use the blocks of numbers of theform as x ). The number x will be sent to thenumber y € N with
0<y<mandy=x“modm. Thedecoding x = y> mod m simply depends on the knowledge of
b € N with ab =1 (mod ¢(m)), and therefore on ¢(m) , which require the knowledge of the prime
factorisation m = pg . Notethat m and a are known to athird party. The power map A,, — A,
x > x“ isrequired to beless expensive and this can be achieved if one use one of the following method.
Let a = > _ob:2" with b; € {0,1} be the dual- expanson of a. — Method1: Compute x; = x?2 |
i=0,..., r , sucessively by using the squares x;,; = x? and there by take x* as the product of 1
with those x; for which 5, = 1. — Method2: At the end of the sequence x,,1, ..., xg contructed by

X1 =1, )ci2=x.2 xb fori=r ...,0,wehave xg = x*.)

i+1

D. P. Patil / Exercise Set 6 dm07-e06 ; March 22, 2007 ; 12:47 p.m. 38



6.4 MA-217 Discrete Mathematics/January-April 2007 6. Prime Residueclass Groups

Below one can see Class-Notes and (simple) test-exercises.

Class-Notes/Test-Exercises

T6.1. Let m € N*. In this section we investigate the prime residue class group modulo m , that is, the
unit group AX of the primering A,, of charateristic m . (Recall that the characteristic
of aring A istheorder 1) of 1, in the additive group (A, +) of A and is denoted by Char(A). If
n € ZChar(A), then na = 0 foral a € A. All subrings of a have the same characteristic, namely
Char(A) . For every ring A, , thereisaunique ring homomorphism x4 : Z — A suchthat n +— n-1,4.
The kernal of the ring homomorphism x, isgenerated by Char(A),i.e., Ker(xs) = ZChar(A).

1). (Prime rings) Let A bearing. A prime ring of A isthesmallest subring of A ; itisthe
subring Z - 1, of al integer multiples of the multiplicative identity 1,. If « = Z -1, ,then A isa
primering of itself and inthiscasewesay that A isa prime ring. For example, thering of integers
7Z isaprimering.

a). Aring A isaprimering if and only if its additive group (A, +) isa cyclic group. Inparticular,
prime rings are commutative and have no proper subrings.

b). (Structure of the prime rings) Let A beaprimering of charateristic m . Then:

QD Hm>0,then: [Al]l=mand A={n-1,:=0<n<m}. Twoelements r - 14, s - 1, € A with
r,s € 7 areequal ifand only if »r = s (mod m). Anelement r - 1, € A with r € Z isa nhon-zero
divisor if and only if it isa unit; thisis exactly the case if and only if gcd(r, m) = 1.

2 1fm=0,then: A={n-1,:n € Z}, wheretheelements n - 1, aredistinct for distinct n € Z.
Further, A isanintegeral domain with exactly two unitselements 1, and —1, .

c). The prime rings of rings of equal characteristic are canonically isomorphic. Inparticular, prime
rings of equal characteristic are canonically isomorphic. Therefore for every natural number m e N* |
we can choose the concrete modell A,, = Z/Zm .

d). For aprimering A of characteristic m > 0, the following statements are equivalent :
(i) A isafield. (ii) A isanintegral domain. (iii) m isa prime number.

e). Let A beaprimering of characteristic m > 0. Then the order of the unit group A* is ¢(m),
where ¢ isthe Euler’stotient function.

f). (Euler’s theorem) Let m € N* andlet a € Z with gcd(a, m) = 1. Then: a*™ =1 (mod m).

g). (Fermat's little theorem) Let p € P beaprimenumber andlet a € Z besuchthat p Xa.
Then: a»1=1 (mod p).

2). (Unit group of a prime ring --- Prime redisue classes) For r € Z, let ¥ denote
theresidueclassof r in Z/Zm . Then: r isaunitinthering Z/Zm if and onlyif gcd(r,m) =1,i.e,
if » and m arerelatively prime. Inparticular, we have Ord A = ¢(m) , where ¢ denote the Euler’s
totient function. Therefore the unitsin Z/Zm are called the prime residue classes modulo
m and the unit group (Z/Zm)* iscaledthe prime residue class group modulo m. An
integer r € Z iscaleda prime residue modulo m if 7 isaprimeresidue classmodulo m , i.e,
if 7 € (Z)Zm)* .

3). If 4 isadivisor of m, then there is a unique, surjective ring homomorphism A,, — A, which
induce a canonical group homomorphism AX — A on unit groups which is also surjective. (Proof:

m

1) Notethat we define the notion of an order of an element in agroup sightly different from the standard
text books, which isin many ways more convenient to work with: Let G be an arbitrary group with
neutral element ¢, a € G and let H(a) be the subgroup generated by «, i.e., H(a) isthe smallest
subgroup of G containing a, infact H(a) = {a" | n € Z}. Then the order of a is defined by
. JIH@@)|, if H(a) isfinite,
Ord(a) := {o, if H(a) isnot finite.
if n e Z-0Ord(a). Inparticular, a°9@ = ¢ and if Ord(a) > 0, then Ord(a) isthe smallest natural
number n € N* such that a" = ¢. Moreover, if G isfinite, then every element @ € G has order
Ord(a) > 0 and Ord(a) divides Ord(G), inparticular, a®4% = ¢

For every element a € G, we have a" = ¢ if and only
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If a € Z with gcd(a, d) = 1 thenthereexists r € N such that gcd(a + rd, m) = 1; for example, the
product of those prime factors of m , which are not prime factors of either a or d.)

4). For every decomposition m = my1---m, of m into factors m; € N*, let A,, — A,,, denote the
canonical ring homohomorphism and let v : A,, — A, x --- x A, be the ring homomorphism
defined by a — (Y1(a), ..., ¥, (a)). Then:  isbijectiveif and only if my, ..., m, are pairwise
relatively prime, i.e,, ged(m;,m;) = 1 forevery 1 <i,j <r,i # j. (Proof: Since the rings
under consideration arefinite, v ishijectiveif andonly if v isinjective. Thekerndl of v isgenerated
by n:=lem(m1,...,m,), i.e, kery = Zn/Zm . Therefore ¢ isinjectiveif and only if m = n or
equivaently m1, ..., m, are pairwise relatively prime.)

5). Let m1, ..., m, bepairwiserelatively prime natural numbersin N* and let m :=m1---m,. Then
the canonical group homomorphism Ax — A, x---x Ay isanisomorphismof groups. Inparticular,
o(m) = p(m1) ---p(m,), i.e., the Euler'stotient function ¢ is multiplicative. (Proof: The canonical
ring homomorphism in (4) is bijective and hence induces a group isomorphism from the unit group A
onto the unit group of the product of ringswhichis nothing but the direct product of the unit groups A .

—Remark: Let m = p;*--- p* bethecanonica prime decomposition of m . Then for understanding
the structure of the prime residue class group modulo m , it is enough to understand the structure of the
prime residue class group modulo a power p* of aprime number p.)

6). Let p be a prime number. Then the prime residue class group A modulo p is a cyclic group.
More generadly, if G is a finite subgroup of the multiplicative group K> of a field K, then G is
cyclic.(Remark : Theassumptionthat G isfiniteisvery important. The multiplicative groups C* and
R>* are not cyclic, since they are uncountable. The multiplicative groups Q> is not cyclic, not even
finitely generated (use the Fundamental Theorem of Arithmetic). It is also interesting to note that :  if
the multiplicative grou K> of afieldiscyclic, then K must be a finite field.)

7). Let m e N*andlet a € A . Let v, (a) denotethe order of theelement a inthegroup A . Then:

a). a" =a* (mod m) ifandonly if »r =5 (mod v, (a)). b). a" =1 (mod m) if and only if r =
0 (mod v,,(a)) . Inparticular, vm(a)|g0(m). c). If a, b beintegerswith gcd(a, m) = ged(b, m) = 1
and gcd(v,, (a), v, (b)) = 1,then v,,(ab) = v, (a) - v, (b). d). Theelements 1, a, d?, ..., a"» @1 are
incongruent modulo m . e). Show that m is primeif and only if v,,(¢) = m — 1 for some a € AX.
f). Theelement g iscaleda primitive prime residue class if it generates the group AX,
or equivalently, v, (a) = ¢(m), i.e, A% = {1,a,d%, ...,a*™"1}). Aninteger n € Z iscaled a
primitive residue modulo m if itsresidueclassmodulo m isaprimitive prime residue class.
(Remark : A primitive residue modulo m isalsocalleda primitive root modulo m . Inthis
language, the primitive residue classes modulo m are the solutions of the pure equation x* = 1. If a
primitive residue modulo m exists, then each prime residue system modulo m can be expressed as a
geometric progression. Thisgivesapowerful tool that can be used in problemsinvolving prime residue
systems. Unfortunately, not all prime residue class groups A have primitive roots. See 13) below for
more precise assertion. )

a). Let x beanoddinteger andlet « € N, o > 3. Then x?@/2 =1 (mod 2%) . Inparticular, there
are no primitive roots modulo 2¢. (Hint: First prove the case « = 3 and then prove the assertion by
inductionon « .)

b). Let m € N* and let « € Z be relatively prime integer to m . For any integer k € Z, show that
vy (@) = v, (a)/ ged(k, v, (a)) . Inparticular, v, (@) = v, (a) if andonly if ged(k, v, (a)) = 1.

c). Let p beanodd primenumber and let d beadivisor of p —1. Thenin every primeresidue system
modulo p,i.e,inthegroup A, thereareexactly ¢(d) elements a suchthat v, (a) = d . Inparticular,
there are exactly ¢(p) = p — 1 primitive roots modulo p.

d). Let p be an odd prime number and let g be a primitive root modulo p. Show that v,(—g) =
v,(8), if p=1 (mod 4),
(p—1/2, if p=3 (mod4). "

p = 1 (mod 4). Further, show that the even powers g2, g4, ..., g?~1 are the quadratic residues

modulo p and the odd powers g, g3, ..., g?~2 are the non-quadratic residues modulo p .

e). Let p beaprime number of theform p =2"+1, n > 1. Show that 3 isaprimitive root modulo

p,ie,v,3)=p—-1.
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f). Let p beaprime number of theform p = 49 + 1, where ¢ isan odd prime number. Show that 2
isaprimitiveroot modulo p,i.e, v,(2) =p — 1.

g). Let p be an odd prime number. Show that if g is a primitive root modulo p, then g isaso a
primitive root modulo p® with « € N* if and only if g?~1 = 1 (mod p?). Further, show that there
exists a primitive root ¢ modulo p suchthat g?~1 % 1 (mod p?). Inparticular, there exists at least
one primitive root modulo p* if a > 2.

h). Show that 7 isaprimitive root modulo p = 71. Find al primitive roots modulo 71. Further, find
primitive roots modulo p2 and modulo 2p?.

8). Let p be aprime number and let « € N*. For aninteger n € Z which is relatively prime to
p, Weput v,(n) = ve(n) = the order of the residue class of » in the group A .. Then either
Vosr1(m) = vy (n) or vy 1(n) = v,(m)p. (Proof: The canonical group homomorphism A;a+1 — AL
issurjective and its kernel isof order p.)

9). Let p beaprimenumber. If n isaprimitiveresiduemodulo p ,theneither n or n+ p isaprimitive
residuemodulo p?.(Proof: Wehave vi(n) = vi(n+p) = ¢(p) = p—1. Further, vo(n) iseither p—1
or (p—1)p. Itfollowsthat n isaprimitiveresiduemodulo p? if andonly if n”~1 %1 (mod p?) and
by the cancelattion law in the prime residue class group, thisisfurther equivalentto n” # n (mod p?) .
Anaogously, for n + p. Now, if n isnot aprimitive residue modulo p?,then n” = n (mod p?). By
the Binomial theorem (n + p)? = 37, (‘l.’)np*"pi =n’+pnPlp=n? =n=£n+p (mod p?).
Therefore n + p isaprimitive residue modulo p2.)

10). Let p beaprimenumber andlet o € N*; if p = 2, then assumethat « > 2. Further,let n € Z
be relatively primeto p. Then: if v, 1(n) = v, (n)p, then vy 2(n) = vy 1(n)p. (Proof: Let
r = v,(n). Then v, 1(n) = rp. Weconsider m := n" — 1. Then clearly, m = 0 (mod p*), but
m # 0 (mod p**1). Then,for i e N, i > 3, m' isdivisibleby p**?, since i« > o + 2. Therefore,
modulo p“+2,wehave: n'? = (1+m)? = Zfzo (‘i’)mi = 1+pm+(’2’)m2. Inthecase p =2, > 2,
m? is dso divisible by p*2. If p > 3, then (5)m? is divisible by pp? and hence by p**2.
Therefore n'? = 1+ pm (mod p*+2). Since pm isdivisbleby p**1, but not by p**2, it follows
that n’? # 1 (mod p®*2) and hence v, 2(n) # rp = ver1(n) . Therefore vy, o(n) = ver1(n)p.)

11). Let p beaprimenumber > 3 andlet « € N*. Then:
(1) A« isacyclicgroup. (2) If n € Z isaprimitive residue p?, then n is primitive residue modulo
p®. (Proof: By 6) and 9) there exists a primitive residue modulo p and modulo p2. Thereforeit is

enough to prove (2). Therefore, let n € Z be a primitive residue modulo p2. Then va(n) = vi(n)p .
Now, the assertion follows by induction on « and 10). )

12). Let « € N*. Then:

(D) If « < 2,then AJ, isacyclic group.

(2) If « = 3, then A, isnot cyclic. Moreover, it isa direct product of two cyclic groups one of order
2 and the other of order 2*~2 which are generated by the residue classes of —1 and 5 modulo 2*,
respectively. (Proof: For o < 3 the assertions can be verified directly. Since v3(5) = 2v2(5), it
follows by induction on « and 10) that v, (5) = 22 foral « > 2. If « > 3, then the residue class of

—1 does not belong to the subgroup generated by the residue class of 5, since thisis not true modulo
8. Thisprovesthe assertion. )

13). (Gauss) Let m € N*. The prime residue classgroup A modulo m iscyclic if and only if m
isof theform 1, 2, 4, p*, 2p*, where p isan arbitrary odd prime number and « € N* isarbitrary.
(Proof: Let p > 3 beaprime number and let o € N*. Then ¢(p*) = (p — 1) p*1 isan even number
and hence it followsthat thereis an element in the group A . of order 2. Let m € N* besuchthat A
iscyclic. Then there are at most one element of order 2 in the cyclic group AX. Threrfore, in adirect
decomposition of AX given in 5) corresponding to the canonical prime decomposition of m , thereis
only one factor of even order. Now, from 12) it follows that m must of the form given in the theorem.
Conversely, if m isof the form given in the theorem, then it follows that the prime residue class group
AX modulo m iscyclic by 11) and theremark: If m = 2n with n odd, then AX = A* by 5). )

14). Let m € N*. Suppose that g is a primitive root modulo m . Then there are exactly ¢(¢(m))
incongruent primitiverootsmodulo m . Moreover, theset S = {g" | gcd(n, ¢(m)) = 1,1 <n < p(m)}
isthe set of all primitive roots modulo m .
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15). Let m € N* be anatural number which is not of theform 1, 2, 4, p* or pz"‘ , Where p isanodd
prime number. Then for any relatively prime integer a , we have a?™/2 = 1 (mod m) .

16). (Index calculus) Let m € N*. Suppose that g is a primitive root modulo m . Then
AX=1{1g, 6% ...,8"™"1}. For each a € Z whichisrelatively primeto m , there exists an unique
integer k with 0 <k < ¢(m) — 1 suchthat @ = g* (mod m). Thisinteger k iscalled the index of
a tothebase ¢ (mod m) and wewrite k = ind, (a) . Thefollowing properties of indices are analogous
to those of logarithms,

a). If gcd(a, m) = ged(b, m) =1, then ind,(ab) = ind,(a) + ind, (b) .

b). If n € N*, then ind,(a") =n - ind,(a) (mod ¢(m)) .

c). ind,(1) =0 and ind,(g) = 1.

d). If m > 2,then ind,(—1) = ¢(m)/2.

e). If g’ isanother primitive root modulo m , then ind, (a) = ind, (a) - ind,(g") (mod ¢(m)).

17). Thefollowing examplesillustrate the use of indicesin solving congruences. Let m € N* be such
that thereisaprimitiveroot ¢ modulo m andlet a, b € Z beintegers each of which isrelatively prime
to m. Then

a). (Linear Congruences) Thelinear congruence ax = b (mod m) isequivalent to the linear
congruence ind,(a) + ind, (x) = ind, (b) (mod ¢(m)).

b). (Binomial Congruences) The binomial congruence x” = b (mod m) isequivaent to the
linear congruence n - ind,(x) = ind,(a) (mod ¢(m)). Therefore, if d = ged(ind,(a), ¢(m)), then
the above linear congruence has a solution if and only if d|indg (a) ; moreover, in this case there are
exactly 4 solutions. For example, the binomial congruence x® = a (mod 17), the corresponding
index congruence is 8inds(x) = ind3(a) (mod 16). Since d = gcd(8,16) = 8 and 1, 16 are the
only residues mod 17 whose index is divisible by 8. In fact ind3(1) = 0 and ind3(16) = 8.
Therefore the above congruence has no solutions if a # 1 (mod 17) or a # 16 (mod 17). For
a = 1, the index congruence is 8inds(x) = 0 (mod 16) and for a = 16, the index congruence
is 8inds(x) = 8 (mod 16). Each of these has exactly eight solutions modulo 16, namely those
x whose ind3 iseven: x = 1,2,4,8,9,13,15,16 (mod 17) and those x whose indsz is odd;
x =,10,11,12,14 (mod 17), respectively.

c). (Exponential Congruences) Theexponential congruence a* = b (mod m) isequivalent
to the linear congruence x - ind,(a) = ind,(b) (mod ¢(m)) . Therefore, if d = ged(ind,(a), ¢(m)),
then the above linear congruence has a solution if and only if d|indg (b) ; moreover, in this case there
are exactly d solutions. For example, the exponential congruence 25° = 17 (mod 47), we have
ind5(25) = 2, inds(17) = 16 and d = gcd(2, 46) = 2 and hence this congruence becomes 2x =
16 (mod 46) which has two solutions x = 8 and 31 (mod 46).. These are also solutions of the
original exponential congruence (mod 47) .

T6.2. (Cryptography) Classicaly, the making and breaking the secrete codes has been confined
to diplomatic and military practices. With the growing quantity of digital datastored and communicated
by eletronic-data processing systems, organizations in both the public and commercial sectors have felt
the need to protect information from unwanted intrusion. Indeed, the widespread use of el ectronic funds
transfers has made privacy a pressing concern in most financial transactions. Therefore, there has been
arecent surge of interest by mathematicians and computer scientists in cryptography (from the Greek
kryptos meaning hidden and graphein meaaning to write) — the science of making communications
unitelligible to all except authorized parties. Cryptography is the only known practical means for pro-
tecting information transmitted through public communications networks, such asthose using telephone
lines, microwaves or satellites.

In the language of cryptography, where codes are called ciphers, the information to be concealed
iscalled plaintext. After the transformation to a secret form, a message is called ciphertext.
The process of converting from plaintest to ciphertext is called encrypting or enciphering,
while the reverse process of changing from ciphertext back to palintext is called decrypting or
deciphering.

One of the earliest cryptographic systems was used by the great Roman emperor JuLius CAESAR
around 50 B C. Carsar using a rudimentary subsitution cipher in which each letter of the alphabest is
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replaced by the letter which occurs three pal ces down the al phabet with the last three letters cycled back
to thefirst three letters. For example, the plaintext message CAESAR WAS GREAT istransformed into
the ciphertext FDHVDU ZDV JUHDV .

The Caesar cipher can be described easily by using congruences. Any plaintest is first expressed
numerically by tranglating the characters of the text into digits by means of the bijection:

{A,B,C,....,X,Y,Z} - {01,02,03,...,24,25,26}, A~ O0l,...,Z+— 26.

If P isdigita equivalent to a plaintext letter and if C is the digital equivalent to the corresponding
ciphertextletter, then C = P+3 (mod 26) ,. Therefore, for instance, thelettersof theabovemessageare
convertedtotheir equivalents: 03 01 05 19 01 18 23 01 19 07 18 05 01 20 and usingthecongruence
C = P + 3 (mod 26), this becomes the ciphertext 06 04 08 22 04 21 26 04 22 10 21 08 04 23 .
Now to recover the palintext, the procedure is simply reversed by means of the congruence: P =
C—-3=C+23 (mod 26).

The Caesar cipher is very simple and hence extremely insecure. Caesar himself soon abandoned this
scheme, not only because of its insecurity, but also because of he didnot trust CIECERO, with whom he
necessarily shared the secret of the cipher.

In conventional cryptographic systems, such as Caesar’s cipher, the sender and receiver jointly have
a secret key. The sender uses the key to encrypt the plaintext to be sent, while the receiver uses
the same key in order to decrypt the ciphertext obtained. Public-Key crptography differs from the
conventional cryptography in that it uses two keys, an encryption key and a decryption key. Although
the two keys effect inverse operations and therefore related, there is no easily computed method of
deriving the decryption key from the encryption key. Therefore the encryption key can be made public
without compromising the decryption key; each user can encrypt messages, but only the intended
recipient (whose decryption key id kept secret) can decipher them. A major advantage of the public-key
cryptosytem isthat it is unnecessary for each sender and receiver to exchange akey in advance of their
decision to communicate with each other.

In 1977, R. RivesT, A. SHAMIR and L. ADLEMAN proposed a publci cryptosystem which uses only
elementary ideas from number theory. Their enciphering system is called RSA after the initials of
the algorithm’s inventors. Its security depends on the assumption that in the current state of computer
technology, the factorization of the composite numbers with large prime factors is prohibitively time-
consuming.

Each user fo the RSA system chooses apair of distinct prime numbers p and ¢ large enough that the
factorization of their product m = pg caled the enciphering modulus, isbeyind al current
computational capabilities. For instance, onemight pick p and ¢ with 200 digitseach, sothat m has
roughly 400 digits. Having selected m , the user then chooses a random positive integer a called the
enciphering exponent, satisfying gcd(a, ¢(m)) = 1. thepair (m, a) isplacedin apublic file,
analogous to a telephone directory, as the user’s personal encryption key. Thiswill allow anyone else
in the communication network to encrypt and send a message to that individual. Notice that while m
is openly revealed, the listed public-key does not mention the factors p and ¢ of m.

The encryption process begins with the conversion of the message to be sent into x by means of a
digital alphabet in which each letter, number or punctuation mark of the plaintext is replaced by two
digit integer. Itisassumed that the plaintext number x < m , where m isciphering modulus; otherwise
it would beimpossibleto distinguish x from any larger integer congruent to it modulo m . If meaasgeis
toolongto be handled asasingleinteger x < m , then x can be brokeninto blocks of digits x1, ..., x,
of the appropriate size. Each block would be excrypted separately.

Looking up the intended recipient’s encryption key (m, a) in the public directory, the sender disguises
the plaintext number x asaciphertext number y by raising x to the a-th power and then reducing the
result modulo m .

At the other end, the authorised recipient deciphers the transmitted information by first determining the
integer b, the secret recovery exponent, for which ab =1 (mod ¢(m)) . Since gcd(a, ¢(m)) = 1, this
linear congruence has a unique solution modulo ¢(m) . infact, b = a*“") -1 (mod ¢(m)) ; indeed,
ab = a*¥™) =1 (mod ¢(m)) by Euler's theorem. The recovery exponent can only be calculated
by someone who knows both a and ¢(m) = (p — 1)(¢ — 1), and hence knows the prime factors p
and g of m. Therefore b is secure from an illegitimate third party whose knowledge is limited to the
public-key (m, a) .
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Matters have been arranged so that the recipients can now retrieve x from y by simply calculating
y? modulo m . Since ab = 1+ ¢(m)t for some integer ¢, it follows that y? = (x*)? = x1tetmr =
x-1' =x (mod m), whenever gcd(x, m) = 1. theassumption that gcd(x, m) = 1 was madein order
to use Euler’stheorem. Inthe unlikely event that x and m are not relatively prime, asimilar argument
establishes that y* = x (mod p) and y* = x (mod ¢), which then yields the desired congruence
y? =x (mod m).

The mgjor advantage of this ingenious procedure is that the encryption of a message does not require
the knowledge of thetwo primes p and ¢ , but only their product m ; thereisno need for any one other
than receiver of the message ever to know the prime factors critical to the decryption process and for
the present it appears to be quite safe.

For the RSA cryptosystem to be secure it must not be computationally fesible to recover the plaintext
x from the information assumed to be known to a third party; namely listed public-key (m, a). The
direct method to attack would be to attempt to factor m an integer of huge magnitude, for once the
factors are determined, the recovery exponent b can be calculated from ¢(m) = (p—1(g—1) and a.
Our confidence in the RSA system rests on what is known as the work factor, — the expected amount
of computer time needed to factor the product of two large primes. Factoring computationally more
difficult than distinguishing between primes and composites. On today’s fastest computer, a 200-digit
number can routinely betested for primality inlessthan 10 minutes, whereas the running time required
to factor a composite number of the same size is prohibitive. It has been estimated that the quickest
factoring algorithm known can use approximately (1.2)1023 computer operations to resolve an integer
with 200 digits into its prime factors, assuming that each operation takes one microsecond (10
seconds), then the factorization time would be about (3.8)10° years. Given unlimited computing time
and some unimaginably efficient factoring algorithm, the RSA cryptosystem could be broken, but for
the present it appears to be quite safe.

1). a). A linear cipher isdefined by the congruence C = aP+b (mod 26) ,where a and b areintegers
with gcd(a, 26) = 1. Show that the corresponding decrypting congruenceis P = a'(C —b) (mod 26) ,
wheretheinteger ¢’ satisfies aa’ =1 (mod 26) .

b). Using the cipher C = 5P + 11 (mod 26) , encrypt the message NUMBER THEORY ISEASY .

c). Decrypt the message TZSVIW JOBVMIJHL MVOOVI which was produced by the linear cipher
C=3P+7.

2). Let p and ¢ bedistinct prime nunmbers. If m = pg = 274279 and ¢(m) = 272376, find primes
padg. (Hint: p+g=m—em)+1land p—q = ((p+q)2—4m)l/2. — (Ans: 1747 and
157).)

3). When RSA system is based on the public-key (m, a) = (3233, 37), what is the recovery exponent
for the cryptosystem? (Ans: 253.)

4). Encryptthemessage GOLD MEDAL usingthe RSA algorithmwith public-key (m, a) = (2419, 3) .
(Ans: 2318 1932 1106 2197 1631 0337 1728.)

5). The ciphertext message produced by the RSA algorithm with public-key (m, a) = (1643, 223) is
1451 0103 1263 0560 0127 0897 determinethe origina plaintext message. (Hint: The
recovery exponentis b = 7. — (Ans: REPLY NOW.)

6). The ciphertext message produced by the RSA agorithm with public-key (m, a) = (2419, 211) is
1037 0431 0629 0690 0204 2267 0595 determine the origina plaintext message.
(Hint: Therecovery exponentis » = 11. — (Ans: SELL SHORT)

T6.3. (Latin Squares) Let N beafinite set with n elements. Amap f : N x N — N is
cadleda Latin square (of order n over N)if for every a € N, onthe a-th “row” {a} x N and
on the a-th “column” N x {a} themaps f|{a} x N and f|N x {a} by f arebijective. Two Latin
squares f, g over N arecdled orthogonal, ifthemap (f,g) : N x N - N x N defined by
(x,y) = (f(x,y), g(x,y)) ishijective. Let A denote acommutative ring.

a). Let xg,a,b e A. The affine function f: A x A — A defined by (x, y) = xo+ax + by isa
Latin square (over A) if andonly if a and » areunitsin A.

b). Twoaffinefunctions f,g: Ax A — A with f(x, y) = xo+ax+by resp. g(x,y) = yo+cx+dy
are orthogonal Latin squareif andonly if a, b, ¢, d, ad — bc € A*. ('In the matrix notation
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theaffinemap (f, g) of A x A isthemap (i) > (;Cg)JrQl()yC) , A= (CC’ Z) € My(A) and
Det® ;= ad — bc isthe determinant of 2(.)

¢). A Matrix <‘; Z) € M2(A) iscdled hyper-regular,if a, b, ¢, d and ad—bc areunits A . Let

m(A) denotethe number of hyper-regular matriceswith coesficientsin A . Then m(A) = |A*|3M(A) ,
where M(A) denote the number of units a in A suchthat a — 1 alsoaunit A. If A1, Ao aretwo
finite commutative rings, then m(A; x A2) = m(A1)m(Az). If A isafidd with ¢ eements, then

3
m(A) = (¢ — 3(g — 2). Further, m(A,) = n* ] (1— l) (1— 3). If |JAl =2 (mod 4),
p p

p prime
pin

then m(A) = 0. If |A] isodd, then m(A4) # 0.

d). If n € N* and n # 2 (mod 4), then there exists a commutative ring A with » elements and
m(A) # 0. (Thisistrivia if one use the exitense of Galois fields, i.e., fields with ¢ elements, where
g > 1 isan arbitrary power of a prime number isused. Inparticular, for every natural number n € N*
such that n # 2 (mod 4), there exists a orthogonal Latin squares of order n. (Remark: Euler
conjectured that for n = 2 (mod 4) thereareno orthogonal Latin squaresof ordern . For n = 2 thisis
clear. For n = 6 — Euler himself handled thiscaseinthe Euler’s officers problem, 36 officers
of 6 ranksand from 6 regimentsin a square formation of size 6 by 6. Each row and each column of
this formation are to contain one and only one officer of each rank and one and only one officer from
each regiment. We may |able the ranks and the regiments from 1 through 6 and assign to each officer
a 2 sample of theintegers 1, through 6. The first componentof the 2-sample designates the officier's
rank and the scond hisregiment. Euler’sproblem then reducesto the construction of apair of orthogonal
Latin sugares of order 6. Euler conjectured in 1782 that there exists no pair of orthogonal Latin squares
of order n = 2 (mod 4) .TArRY around 1900 verified by a systematic enumeration the validity of
Euler's conjecture for n = 6. But only recently the combined efforts of BoSE, SHRIKHANDE and
PArRKER culminated in the following theoerem: For all n with n = 2 (mod 4) and n # 2, 6, there
exists a pair of orthogonal Latin squares of order n. This theorem shows that the opposite of the
expected state of affairs holds and illustrates the danger of leaping to general conclusions from limited
empirical evidence. We cannot go into the intricacies of the proof of this theorem.

e). Let M(A) bethe supremm of the numbers & such that there exist the affine functions f1, ..., fi :
AxA — A suchthatforall i, j with i # j thefunctions f;, f; areorthogonal Latinsquares. M(A)
isthe supremum of the numbers k suchthat thereexist units as, ..., a; in A* suchthat the differences
a; —a; for i # j areasounitsin A. Then M(A1 x A2) = Min{M(A1), M(A»)} for two finite
commutativerings Aj, A>. If A #0,then M(A) < |A] — 1. Further, M(A) = |A| — 1 if and only if
A isafield. If A isacommutativeringwith n elements, then M(A) < Inf{pV»™ —1 | pprime, p|n}.
This inegquality is an equality if n = pil ... p* , for example, for the product ring K1 x --- x K, ,
where K; isafield with p elements. Further, M(A,) = Inf{p — 1| p prime, p|n}.

f). LeaneN*and N:={0,....,n—1}.If f,g: N x N— N areorthogonal Latin squares, then

( f(0,0n + g(0,0), e fO,n—n+g0,n—-1) )
Fn—10n+gmn—10, .... fir—Ln—Dn+gn—Ln—1)
isamagic square of thenumbers O, ...,n?—1,i.e,thesum of the numbersin each row andin each

columnis (n/2)(n? — 1) . One can construct a magic square for n = 12. One can construct a magic
squarefor n = 12. Already Apam Riks constructed a magic square corresponding to an odd natural
number n essentailly by using apair of affine functions f, g : A, x A, — A, , i.e., corresponding to
11
-1 1)
method for the construction of orthogonal Latin square and hence that of magic squares: Let G bea
finite group with neutral element. e . For every permutation ¢ : G — G ,themap G x G — G defined
by (x,y) = x¢(y) isalatin square. The Latin squares (x, y) — x@(y) resp. (x,y) — xy¥(y)
corresponding to the permutations ¢, ¥ € &(G) are orthogonal if and only if y — (¢(y)) Yy (y) is
apermutation of G . If ¢ and ¢ are automorphisms of G, then the Latin squares corresponding to
¢ and ¢ areorthogonal if and only if ¢(y) = ¥ (y) only for y = e. Inparticular, the Latin squares

the hyper-regular matrix (Remark : We would like to mention the following often used

45 dm07-e06 ; March 22, 2007 ; 12:47 p.m. D. P. Patil / Exercise Set 6



MA-217 Discrete Mathematics / January-April 2007 6. Prime Residueclass Groups 6.11

corresponding to the automorphisms ¢ = id; and  are orthogonal if and only if + has no fixed
point other than the neutral element e,.)
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