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7. Quadratic Residues — The Quadratic Reciprocity Law?)

7.1. Let M, = 27 — 1 be the Mersenne number corresponding to a prime nurpber

a). (Fermat/Euler) Ifg is a prime divisor of M, then show tha; =1 (mod 2p and
thatg = £1 (mod 9.

b). (Euler)Assume thaly := 2p + 1 is also prime. Show thatip =3 (mod 4, theng
divides M, . Inpartisular, in this case Mis not prime, if p > 11. (For example, 23 divides
Mi1; 47 divides My3; 167 divides M3.) Further show that ifp = 1 (mod 4, theng does
not divide M, .

72. LetF=2"4+1,r:=2" t > 1 be the Fermat number.

a). (Euler) Let p be a prime divisor of the Fermat number,F > 2. Show thatp is of
the form 2+2n + 1 with n > 1 .(Hint: Show that 2 is a quadratic residue mpdand compute the
order of the residue class @nod p .) Further, show thatFs is not prime.

b). (Pépin) Showthat a Fermat number F=: F, is prime if and only if 371/2 =

—1 (mod B . Inpatrticular, if F is prime, then 3 is primitive residue modulo F (Hint: If

F is prime then consider & 2 (mod 3 and apply the Quadratic Reciprocity Law. For the converse
consider the residue class of 3 in the prime residue class group mod Remark : With this Pépin

test for Fermat numbers it is easily checked that, for instaneg F&; F7, Fg, Fg, F10 are not prime;
641 is a factor of . However, in general, it is difficult to find a non-trivial factor of a large Fermat
number F, even when Bpin test shows that, Hs not a prime.)

1) The present section is devoted to a major contributiod ef'ss — The Quadratic Reciprocity Law.

For those who consider the theory of numbers “The Queen of mathematics” this is one the jewels in her
crown. The intrinsic beauty of the Quadratic reciprocity Law has long exerted a strange fascination for
mathematicians. This was first stated (in a full generality) in a complicated foubyr during the

period 1744-1746 g isaquadratic residue mod p if and only if one of +p isaresidue mod 4q . In

1783 (the year of Euler's death) a second version appeared ®poisula Analytica: (a)?~Y/?p is

a quadratic residuemod ¢ if and only if ¢ isaquadratic residue mod p. LEGENDRE introduced his
symbol in an article in 1785 and the same time stated the reciprocity law without using the symbol. He
gave the elegant second formulation in his book in 1198LER gave a faulty proof, in a second paper

in 1783, of a special case of the theorehEGENDRE gave a proof, but with a gap in it, in 1785. At

the age of eighteen, Gauss (in 1795) rediscovered (apparently unaware of the work dieithrror
LEGENDRE) the Quadratic Reciprocity Law and after a year's unremitting labor in 1796, obtained the
first complete proof; he wrote, “for the whole year this theorem tormented me and absorbed my best
efforts until at last | obtained a proof.” He published this (a difficult induction) and a second proof five
years later irDisquisitiones Arithmeticae.” — which was publised in 1801, although finished in 1798.
Gauss attributed the Quadratic Reciprocity Law to himself, taking the view that a theorem belongs
to the one who gives the first rigorous demonstration. The indijentENDRE was led to complain :

“This excessive impudence is unbelievable in a man who has sufficient personal merit not to have the
need of appropriating the discoveries of otherGEGENDRE regardedGAuss as an enemy from that

time on. All discussion of priority between the two was futile; since each clung to the correctness of
his position, neither took heed of the othérauss went on to publish five different demonstrations of
what he called “the gem of higher arithmetic,” while another was found among his papers. Apparently
neither of LEGENDRE and Gauss were aware of either of the general statements giveftbyer

— rather astonishing, considering that they both knew of his 1783 faulty proof and that the two 1783
papers were published in the same volume! Long before any general results were KRewmmr

had characterized the primes of which 22 3 and—3 are reisdues; proofs were suppliedbykEr

for £3 in 1760 and byLAGRANGE for £2 in 1775.
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7.3. Let p be an odd prime number.

a). Letg:=2p+1. Then

(1) Assume thatp = 1 (mod 4. Show thatg is prime ifand only if 2 = —1 (mod Q.
Moreover, in this case 2 is a primitive residue mg@dand —2 is a quadratic residue magl.
(2) Assume thatp = 3 (mod 4. Show thatg is primeifandonlyif 2 =1 (mod Q.
Moreover, in this case-2 is a primitive residue mog and 2 is a quadratic residue maqd

b). Let p be an odd prime number and lgt:= 4p + 1. Show thatg is prime if and only if
4?7 = —1 (mod ¢ . Moreover, in this case 2 and2 are primitive residue mog .

7.4. Let t, n be positive integers witlh + 1 < 22 and letm = 2'n + 1. Further, leta

be an integer such that the Jacobi-Sympg) = —1. Show thatm is prime if and only if
a™ V2 =_1 (modm.If r>2 andifm andn are not divisible by 3, then one can use
the above test witlu = 3.

7.5. Let a € Z be an integer which is not a square (). Show that there exists infinitely
odd prime numberg such that(“) = —1. (Hint: We may assume that has an odd prime
factor ¢ . Let ¢ be an integer Wlﬂ‘( ) —1.If pa,..., p. are odd prime numbers W|t(1—) -1,
then we can find one more an odd’ prime number of this kind which is a factor of the natural nbimber
which satisfty the congruencés= 1 mod & - - ,;—‘ and b = ¢ modg . — Remark : One can also
formulate this result asLet a € Z. If the quadratic congruence x?> = a (mod p has a solution for

al most all prime numbers, then ¢ isasquarein Z.)

7.6. Let f(X) € Q[X] be apolynomial which takesinteger values onintegers and letc 7Z .
Let p be an odd prime number. Show that

a). If gcd(a, p) = 1, then Z(M> = Z(f(x)).

xeZ, p vez, P
0 T (2) £ (1),
c). If ged(a, p) = 1, then xe%:p(”; b) =0.

d). If gcd(a, p) = gcd(b, p) =1 and f(x) = x(ax + b) , then

() =X () =-(5)

X€ZLy XELy

7.7. Let p be an odd prime number. Let ¢’ € {1} and let Ne, ¢’) denote the number of
elementsx € {1,2,..., p — 2} such that(%) =1 and (%) = —1. Then show that

, P2 X x+1
a). 4-N(8,8)=Z(1—|—8<;>)-<1—|—8( ; ))
x=1

-1 -1
b). 4-N(e, ') = p—2—8/—88/—8<—). In particular, N1, 1) = M L N(=1, —1) =
P

N(—-1,1) = ﬁ and N1, —1) =1+ N(1,1).(Hint: Use part a).)
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c). For every prime numbep , show that there exists integegs, y) such thatx®+y? =1 =
(mod p . (Hint: Use partb).)

7.8. Let p be an odd prime number. Show that:
a). If p=1 (mod 4, then Zgja(%) 0.

= p(p—1)
b). If p=1 (mod 4, then Z a="—"

( )1
c). If p=3 (mod 4,then Y"1 a?(4) = p Y " ja(4).
d). If p=1 (mod4,thenY’"Ja (%) =3p>I 1102(%)
e). If p=3 (mod 4, then Y "7a*(4) =2p >0 a®(4) — p? Y0y a?(4).

7.9. et p be an odd prime number with =1 (mod 4 and letr .= (p — 1)/2.

1—( 2
a). Prove that (1— 2(%)) S 1a( )=1p- (") Z;=1(%) (Hint: If a runs through
the numberd1, 2, ...,¢},thena and p —a (respectlvely, 4 and p — 2a ) together run through the
numbers{1,2,...,p—1}.)

b). Prove that ((2) — 2) X0t a(%) = p ¥ia(4)

Below one can see Class-Notes and (simple) test-exercises.

Class-Notes/Test-Exercises

T7.1. Let p be anodd prime number and lete Z be aninteger with: £ 0 (modp) ,i.e., gcda, p) =
1 or equivalentlya € Z .

1). (Quadratic residues mog ) Ifthe congruencer® =4 (mod p has a solution, thea
iscalledaquadratic residue mog . Otherwise iscalledanon- quadratic residue
mod p . Note thatifb € Z with a = b (mod p, thena is a quadratic residue mag if and only if
b is a quadratic residue mael. Therefore for determining whether is a quadratic residue maa or
not, we may assume thatfa < p.

2). (Euler’s Criterion) EULER devised a simple criterion for deciding whether an integéds
a quadratic residue modulo a given prime numper Let « € Z and let p be an odd prime number
with gcd(a, p) = 1. Then a isaquadratic residuemod p if and only if «?~/2 = 1 (modp)

3). (Solutions of quadratic congruences) Letbe an odd prime and let # 0 (modp),

i.e., gcda, p) = 1. Consider the quadratic congruenae? + bx + ¢ = 0(modp). Since p is

odd, gcdda, p) = 1 and hence the above congruence is equivaler®ia + b)2 — (b? — dac) =

4a(ax? + bx + ¢) = 0(modp). Now put y = 2ax + b and d = b? — 4ac to get y2 = d (modp).

If x = xo (Modp) is a solution of the original congruence, thenr= 2axg + b (modp) is the solution

of the last qudratic congruence. Converselyyif= yo (modp) is a solution of the last quadratic
congruence, then the linear congruenes Z yo — b (modp) can be solved to obtain a solution of the
original quadratic congruence. Therefore the problem of finding a solution to a quadratic congruence
is equivalent to that of finding a solution to a linear congruence and a quadratic congruence of the form
x2 = a(modp). If pla, thenx = (modp) is the only solution ofx2 = a (modp). Therefore

to avoid trivialties assume that fa. Note that of x2 = a (modp) admits a solutionx = xg,

then there is also a second solutiean= p — xg and this solution is not congruent to the first one,
since xo = (modp), then 29 = 0(modp), or equivalently (sincep is odd) xo = 0(modp)
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which is not possible (since # 0(modp)). These two solution exhaust the incongruent solutions
of x> = a (modp) by Lagrange's theorem 2). In short : The quadratic congrunce x? = a (modp)

has exactly two solutions or no solution. The folloiwng two basic problems dominate the theory of
guadratic residues: (1) Given a prime numbeyr determine which integers € Z are quadratic
residues mogh and which are not quadratic residues npad (2) Given an integern. € 7, determine
those prime numberg for which » is a quadratic residues mgdand hose prime numbers for
which n is not a quadratic residues mpd

a). Show that the quadratic equation?6+ 5x + 1 = 0 has no solution in the integers, but the quadratic
congruence £ + 5x +1 = 0(modp) has a solution for every prim number. Find the solutions of
the quadratic congruences®3+9x +7=0 (mod 13 and %?+6x +1=0 (mod 23.

o . —1?
b). Show thatthe quadratic residue mpére congruentmodulp totheintegers3, 22, .. ., (p=D"

What are the quadratic residues mod 17 ? Is 3 a quadratic residue mod 23 and mod 31?

c). Suppose that: is a quadratic residue mgd Show that: (1)a is not a primitive root mog ,
i.e., a is not a generator of the cyclic grouy . (2) p — a is a quadratic residue mqdif and only

if p=1mod4. (3)If p =3 (mod 4, thenx = +a»*D/4 (mod p are the solutions of the
quadratic congruence® =a (mod p .

d). Suppose thap =1 (mod 8 and thata is a primitive root mog . Show that the solutions of the
quadratic congruence? = 2 (mod p are given byx = +(a’?D/8 4 ¢»-D/8 (mod p. (Hint:
First prove that(a3?~1/8 = —1 (mod p .) Use this to find all solutions of the quadratic congruences
x2=2 (mod 17 andx2 =2 (mod 4J).

e). Suppose that: is quadratic residue mogd. If b, c € Z are two integers witthc = a (mod p,
then show that either both and ¢ are quadratic residues maqd or both b and ¢ are non-quadratic
residues modp .

f). Let b € Z be an integer such that either bathand » are quadratic residues mqd or botha and
b are non-quadratic residues mgd Show that the quadratic congruenge® = b (mod p has a
solution. Hint: Let a’ € Z be such thatia’ = 1 (mod p . Multiply the gice congruence by’ .)

g). Let b € Z be an integer with» # 0(modp). Prove that either all the three of the quadratic
congruences?=a (mod p, x2=5 (mod p, x2=ab (mod p have solutions or exactly one of
them admits a solution.

T7.2. (Legendre—Symbol and its properties) Letbe an odd prime number. For an
integera € Z, the Legendre—Symbo() is defined by:

»
0, If pla,
()=

1, if p Ja andif a is a quadratic residue mog,

1, if p Ja andif a is not a quadratic residue maul,
1). Let p be an odd pirme number and let» € Z be integers with gc@, p) = gcd®, p) = 1.
Then: a). () =1. b). If a=b (mod p,then(4) = (£). o). (£) = (%)(%). d).2 (Euler’s
Criterion) (%) = a2 (modp. Inparticular, (=) = (-1)” P2, ¢). (%) = 1 and
a2b b
() =)
2). Find the values oK%) in each of the following casesa = —1,2,-2,3 andp = 11,13, 17. 3).

List all the solutions of each of the congruences:= a (mod 11 and x2 = a (mod 1%), where
a=1,3459Hint: 1,3,4,5,9 are precisely the quadratic residues mod 11.)

4). Which of the following congruences have solutions? How many?
(1) x2=2 (mod 59; x2=-2 (mod 59; x2= -1 (mod 59.

2) A theorem ofLAGRANGE Which deals with the number of solutions of a polynomial congruence::
Let p bea primnumber and let f(x) = a,x" + a,_1x" L + - + a1x + ap with a, # 0(modp)

be a polynomial of degree n > 1 with integer coefficients, then the polynomial congruence f(x) =
0(modp) hasat most n incongruent solutions modulo p .
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(2) (1) x2=2 (mod 6); x2= -2 (mod 6); x2=—1 (mod 6J).

5). Let p > 3 be a prime number. Show that the equatidn+ 1 =0 (mod p has a solution if and
onlyif p=1 (mod 8 ist.

6). Compute the incongruent solutions for the following congruence equati®fsz 2 (mod 134 .
x2=2 (mod 94. x%2= -2 (mod 268.

7). Does the equation® + 4x + 1 = 0 have a solution in K? For which prime numberg the
equationx? — x + 1 = 0 has a solution in K?

8). Let p be an odd prime number. Ther? = 2 (mod p has solutions if and only ifp = 1 or
7 (mod §.
9). Let a, b, ¢ beintegers,D = b? — dac and p > 3 be a prime number which does not divide

Show that the quadratic equatian? + bx + ¢ = 0 has no solution resp. one resp. two solutions in
K, if and only if (%) is equal to—1 resp. O resp. 1.

10). Let a and b be relatively prime integers. For every odd prime divigoiof a resp. b, assume
that b resp. a is a quadratic residue mog. Further, assume that one of the integetr®, ab is

congruent to 1(mod 8. Show that the equatiox? — a)(x2 — b)(x2 — ab) = 0 (mod m has a
solution for everym € N* (See also T7.1-??7).)

11). Let p be an odd prime number. Prove that the quadratic residues mqgdue congruent to
12,22 ... ((p — 1)/2)2. Deduce that ifp > 3 then the sum of the quadratic residues is divisible by
p. Further, showthatifp =1 (mod 4, then Y x=p(p—1)/4.

vz (5)=1

12).
T7.3. (Quadratic Reciprocity Law)

T7.4. (JacobP)-Symbol? and its properties) Wshall extend the definition of
Legendre—Symbol. Let and b be integers.

(1) If a andb are notrelatively prime, thenwe pg) := 0. If a # 0, thenwe put($) = (%) :=1.

In general we pui($) = (<) .

(2) Ifnow b > 0 andb = p1 - - - p, isthe prime decomposition df, where p; are odd prime numbers
> 3, then we define(4) :=[T;_; (pi) , Where (a/p;) is the ordinary Legendre—Symbol.

l

1). The following rules are immediate : For integersa’ and odd integer$, b’ , we have:

3) CARL GusTav JAacoB JacoBsl (1804-1851). Mathematics in Germany was at low ebb when
Jacobi was a student at Potsdam and Berlin and he was mostly self-educated, through reading the works
of EULER andLAGRANGE. He became a splendid teacher and did much to revive German mathematics

in Konigsberg and Berlin. His first love was thieory of eliptic functions, but he also wrote in other
branches ofinalysis and ingeometry andmechanics. Interested in the history of mathematics, Jacobi

was a prime mover in the publication &fuLER’s collected work. He andiricHLET were close

friends; they independently sired two quite different kinds of analytic number theory. Although his
friends predicted he would work himself to death, he died instead of smallpox.

4) Calculation with the Legendre—Symb@%) is hampered by the fact that must be a prime number

to use the Quadratic reciprocity Law. Therefore it was pointed out at the end of the proof of the Quadratic
Reciprocity Law that it is necessary to have available rather extensive factorisation tables if one is to
evaluate Legendre—Symbol with large entries. Partly to obviate such a list and partly for theoretical
purposes, it has been found convenient to extend the definition of the Legendre—%gr)wlmi as to

give meaning to wher is not a prime number. Owing to this remarkcosi extended the definition

of Legendre—Symbol, this general Symbol is calleddlrecobi— Symbol. Wshall see that others

of its properties are also similar to those of the Legendre—Symbol, but there is one crucial point at which
the similarity breaks down: it may happen thgt) = 1 even whenu is not a quadratic residue mod

b. See ??7.
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(W)If a=a (mod b, then (¢) = (£). (%) =(2)(%). @ (%) =(¢)(F). @ifaisa
guadratic residue mod, then (%) = 1. (Hint: Note thatb is odd by hypothesis. -Remark: The

converse is not true, for examplé3) = (3)(3) = (-1(-1) = 1, but 2 is not a quadratic residue
mod 9.)

2
2). For every natural numbeb, we have () = (-1’27 and (2) = —15s . (Proof: For
the proof of the first formula, leb = p1--- p, be the prime factorisation af and¢; := (p;, — 1)/2.
Then (5%) = [Tia(5h) = [To1 (D% = (=1, wherer := 3/_; ;. Itis enough to show that
and (b — 1)/2 have the same parity. This is clear from the equality- 1)/2 = ([ ], (21, + 1) — 1)/2.
The second formula can be proved similarly. )
3). For relatively prime odd integers, b with b > 3, we have (4)(2) = (—1)“?1 5

(Proof: First we consider the case> 0. If a = g1 --- ¢, is the prime factorisation of and u; :=

(@ = D/2.ui= ¥y then (3) = TL(2) = T, (%) =TT, (%) -2%) = (%) - D"

with w =3, tiu; = 3,3, t)u; = tu. Now, it is enough to show that: has the same parity as
to

the produc i‘l(a —1)/2 and (b — 1)/2. But this is clear, since we have already seen aboverthat
has the same parity a® — 1)/2 and similarlyu has the same parity ag — 1)/2. If a < 0, then

(a/b) = (=1/b)(—a/b) and use the already proved formulas. o)
4). Let p # 3 be aprime numberand lgt:=2p+1 withz e N, 2 <r <7. Show thatg is prime
if and only if 3 = —1 (mod ¢, wheres := 2~1p. Moreover, in this case (except the case= 5

and: = 3) 3 primitive residue modg; .

5). To each of the natural numbers= 1 resp. 3 resp. 5 resp. 7 there exists infinitely many prime
numbersp such thatp = r (mod 8§ . (Hint: Consider the sequences of natural numbers of the form
m*+1 resp. 22+ 1 resp. 4%+ 1resp. %2 —1.)

6). To each of the natural numbers= 1 resp. 5 resp. 7 resp. 11 there exists infinitely many
prime numbersp such thatp = r (mod 13. (Hint: Consider the sequences of natural numbers
of the form m* — m?2 + 1 resp. #2+ 1 resp. 4%+ 3 resp. 1&2 — 1. In the first case, if

m =1 (mod 13, then m® is an element of order 4 in the prime residue class group modulo every
prime dividor of m* — m2 +1.)

7). Compute(38115121103 and (31131133131 313.

8). (In this exercise we need some elementary concepts about permutatiorispleesn odd integer,
a be an arbitrary integer which is relatively prime koand let A, denote the multiplication by: on
the additive groupH := Z/bZ. Then i, : H — H is an automorphism off and hencep, is a
permutation of the seH . Moreover, the signature of this permutation is: Sign= (%) . (Hint:
(Zolotarev/Frobeniud872. — One can be content to start with the case p a prime. ltis
enough to consider a primitive roat (mod p; show that the multiplication., : Zx — Zx is a cycle

of length (p — 1) . — For a generalisation of this see®artier, Sur une gexalisation des symboles
de Legendre—Jacobi, Lenseignement ma®).31-48 (1970).)

T7.5. Let p # ¢ be odd prime numbers and lgt := (—1)“~/24 . Then show tha(2) = (%)

T7.6. Let p be an odd prime number.

a). (3/p)=1ifandonlyif p=41 (mod 13.

b). (=3/p)=1ifandonlyif p=1 (mod 6.

c). Describe the value of+6/p) by using the residue class gf modulo 24 .

T7.7. For solving quadratic equations modulo a odd prime numebwe fact the following basic
problem: Fora € Z with (%) = 1, construct ax € Z with x> =a (mod p .

a). If pis of the form 4 — 1, then we may take = a¢". If p is of the form & +5 and if; ia an
integer withi? = —1 (mod p , then we may take = a1, if a®*1 =1 (mod p, and we may take
x =ia"t,if a®1=—-1 (mod p.

b). Compute a solution of the equatiarf +x + 1= 0 (mod 637.

c). For an effective solution of the quadratic congruence equation one can obtain (dwevi.L1
1891): Letp = 14 2*v with v odd ande > 1. Let H be the subgroup of order* 2of the prime
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residue class group modyta The power mapy — y* maps the prime residue class groy
onto the subgroupH . We are looking for an integeb with () = —1. Then the residue class of
¢ := b' is a generator forH . For every element: € H one can efficiently compute such that
h=c (modp. (If 2°, s > 1, is the order ofr, then the order ofic=2" is < 2-1.) Let d be
uniquely determined bylc = 1 (mod p. — Now, if a* = ¢" (mod p, thenx = d"/2a“*Y/2 is an
integer withx2 =a (mod p .

d). Compute a solution of the equatiorf = 2 (mod 641 .
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