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7. Quadratic Residues — The Quadratic Reciprocity Law1)

7.1. Let Mp = 2p − 1 be the Mersenne number corresponding to a prime numberp .

a). ( F e r m a t / E u l e r ) Ifq is a prime divisor of Mp , then show thatq ≡ 1 ( mod 2p) and
that q ≡ ±1 ( mod 8) .

b). ( E u l e r ) Assume thatq := 2p + 1 is also prime. Show that ifp ≡ 3 ( mod 4) , then q

divides Mp . In partisular, in this case Mp is not prime, if p ≥ 11 . (For example, 23 divides
M11 ; 47 divides M23 ; 167 divides M83 .) Further show that ifp ≡ 1 ( mod 4) , then q does
not divide Mp .

7.2. Let Ft = 2r + 1, r := 2t , t ≥ 1 be the Fermat number.

a). ( E u l e r ) Let p be a prime divisor of the Fermat number Ft , t ≥ 2 . Show thatp is of
the form 2t+2n + 1 with n ≥ 1 .(Hint : Show that 2 is a quadratic residue modp and compute the
order of the residue class 2( mod p) .) Further, show thatF5 is not prime.

b). ( Pé p i n ) Showthat a Fermat number F := Ft is prime if and only if 3(F−1)/2 ≡
−1 ( mod F) . In particular, if F is prime, then 3 is primitive residue modulo F .(Hint : If
F is prime then consider F≡ 2 ( mod 3) and apply the Quadratic Reciprocity Law. For the converse
consider the residue class of 3 in the prime residue class group mod F . —Remark : With this Pépin
test for Fermat numbers it is easily checked that, for instance, F5, F6, F7, F8, F9, F10 are not prime ;
641 is a factor of F5 . However„ in general, it is difficult to find a non-trivial factor of a large Fermat
number Ft , even when P´epin test shows that Ft is not a prime.)

1) The present section is devoted to a major contribution ofGauss — The Quadratic Reciprocity Law.
For those who consider the theory of numbers “The Queen of mathematics” this is one the jewels in her
crown. The intrinsic beauty of the Quadratic reciprocity Law has long exerted a strange fascination for
mathematicians. This was first stated (in a full generality) in a complicated form byEuler during the
period 1744-1746 :q is a quadratic residue mod p if and only if one of ±p is a residue mod 4q . In
1783 (the year of Euler’s death) a second version appeared in hisOpuscula Analytica : (a)(p−1)/2p is
a quadratic residue mod q if and only if q is a quadratic residue mod p . Legendre introduced his
symbol in an article in 1785 and the same time stated the reciprocity law without using the symbol. He
gave the elegant second formulation in his book in 1798.Euler gave a faulty proof, in a second paper
in 1783, of a special case of the theorem.Legendre gave a proof, but with a gap in it, in 1785. At
the age of eighteen, Gauss (in 1795) rediscovered (apparently unaware of the work of eitherEuler or
Legendre) the Quadratic Reciprocity Law and after a year’s unremitting labor in 1796, obtained the
first complete proof; he wrote, “for the whole year this theorem tormented me and absorbed my best
efforts until at last I obtained a proof.” He published this (a difficult induction) and a second proof five
years later inDisquisitiones Arithmeticae.” — which was publised in 1801, although finished in 1798.
Gauss attributed the Quadratic Reciprocity Law to himself, taking the view that a theorem belongs
to the one who gives the first rigorous demonstration. The indigentLegendre was led to complain :
“This excessive impudence is unbelievable in a man who has sufficient personal merit not to have the
need of appropriating the discoveries of others.”Legendre regardedGauss as an enemy from that
time on. All discussion of priority between the two was futile; since each clung to the correctness of
his position, neither took heed of the other.Gauss went on to publish five different demonstrations of
what he called “the gem of higher arithmetic,” while another was found among his papers. Apparently
neither ofLegendre andGauss were aware of either of the general statements given byEuler

— rather astonishing, considering that they both knew of his 1783 faulty proof and that the two 1783
papers were published in the same volume! Long before any general results were knownmFermat

had characterized the primes of which 2 ,−2 3 and−3 are reisdues; proofs were supplied byEuker

for ±3 in 1760 and byLagrange for ±2 in 1775.
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7.2 MA-217 Discrete Mathematics / January-April 2007 7. Quadratic Residues

7.3. Let p be an odd prime number.

a). Let q := 2p + 1 . Then

(1) Assume thatp ≡ 1 ( mod 4) . Show thatq is prime if and only if 2p ≡ −1 ( mod q) .
Moreover, in this case 2 is a primitive residue modq and −2 is a quadratic residue modq .

(2) Assume thatp ≡ 3 ( mod 4) . Show thatq is prime if and only if 2p ≡ 1 ( mod q) .
Moreover, in this case−2 is a primitive residue modq and 2 is a quadratic residue modq .

b). Let p be an odd prime number and letq := 4p + 1 . Show thatq is prime if and only if
4p ≡ −1 ( mod q) . Moreover, in this case 2 and−2 are primitive residue modq .

7.4. Let t , n be positive integers withn + 1 < 2t+2 and let m = 2t n + 1 . Further, leta
be an integer such that the Jacobi–Symbol

(
a
m

) = −1 . Show thatm is prime if and only if
a(m−1)/2 ≡ −1 ( mod m) . If t ≥ 2 and if m and n are not divisible by 3 , then one can use
the above test witha = 3 .

7.5. Let a ∈ Z be an integer which is not a square (inZ ). Show that there exists infinitely
odd prime numbersp such that

(
a
p

) = −1 . (Hint : We may assume thata has an odd prime

factor q . Let c be an integer with
(

c

p

) = −1 . If p1, . . . , pr are odd prime numbers with
(

a

pi

) = −1 ,
then we can find one more an odd prime number of this kind which is a factor of the natural numberb ,
which satisfty the congruencesb ≡ 1 mod 8p1 · · · pr

a

q
and b ≡ c modq . — Remark : One can also

formulate this result as :Let a ∈ Z . If the quadratic congruence x2 ≡ a ( mod p) has a solution for
al most all prime numbers, then a is a square in Z .)

7.6. Let f (X) ∈ Q[X] be a polynomial which takes integer values on integers and leta, b ∈ Z .
Let p be an odd prime number. Show that

a). If gcd(a, p) = 1 , then
∑
x∈Zp

(f (ax + b)

p

)
=

∑
x∈Zp

(f (x)

p

)
.

b).
∑
x∈Zp

(f (ax)

p

)
=

( a

p

) ∑
x∈Zp

(f (x)

p

)
.

c). If gcd(a, p) = 1 , then
∑
x∈Zp

(ax + b

p

)
= 0 .

d). If gcd(a, p) = gcd(b, p) = 1 andf (x) = x(ax + b) , then∑
x∈Z

×
p

(f (x)

p

)
=

∑
x∈Z

×
p

(a + bx

p

)
= −

( a

p

)
.

7.7. Let p be an odd prime number. Letε, ε′ ∈ {±1} and let N(ε, ε′) denote the number of
elementsx ∈ {1, 2, . . . , p − 2} such that

(
x
p

) = 1 and
(

x
p

) = −1 . Then show that

a). 4 · N(ε, ε′) =
p−2∑
x=1

(
1 + ε

( x

p

))
·
(

1 + ε′
(x + 1

p

))
.

b). 4·N(ε, ε′) = p−2−ε′−εε′−ε
(−1

p

)
. In particular, N(1, 1) = p−4−

(
−1
p

)
4 , N(−1, −1) =

N(−1, 1) = p−2−
(

−1
p

)
4 and N(1, −1) = 1 + N(1, 1) . (Hint : Use part a).)
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c). For every prime numberp , show that there exists integers(x, y) such thatx2 + y2 = 1 ≡
( mod p) . (Hint : Use part b).)

7.8. Let p be an odd prime number. Show that :

a). If p ≡ 1 ( mod 4) , then
∑p−1

a=1 a
(

a
p

) = 0 .

b). If p ≡ 1 ( mod 4) , then
p−1∑

a=1 ;
(

a
p

)
=1

a = p(p − 1)

4
.

c). If p ≡ 3 ( mod 4) , then
∑p−1

a=1 a2
(

a
p

) = p
∑p−1

a=1 a
(

a
p

)
.

d). If p ≡ 1 ( mod 4) , then
∑p−1

a=1 a3
(

a
p

) = 3
2p

∑p−1
a=1 a2

(
a
p

)
.

e). If p ≡ 3 ( mod 4) , then
∑p−1

a=1 a4
(

a
p

) = 2p
∑p−1

a=1 a3
(

a
p

) − p2 ∑p−1
a=1 a2

(
a
p

)
.

7.9. et p be an odd prime number withp ≡ 1 ( mod 4) and let t := (p − 1)/2 .

a). Prove that
(
1 − 2

(
2
p

)) ∑t
a=1 a

(
a
p

) = p · 1−
(

2
p

)
2

∑t
a=1

(
a
p

)
. (Hint : If a runs through

the numbers{1, 2, . . . , t} , then a and p − a (respectively, 2a and p − 2a ) together run through the
numbers{1, 2, . . . , p − 1} .)

b). Prove that
((

2
p

) − 2
) ∑p−1

a=1 a
(

a
p

) = p
∑t

a=1

(
a
p

)
.

Below one can see Class-Notes and (simple) test-exercises.

Class-Notes/Test-Exercises

T7.1. Let p be an odd prime number and leta ∈ Z be an integer witha �≡ 0 (modp) , i.e., gcd(a, p) =
1 or equivalently,a ∈ Z×

p .

1). ( Q u a d r a t i c r e s i d u e s m o dp ) If the congruencex2 ≡ a ( mod p) has a solution, thena
is called aq u a d r a t i c r e s i d u e m o dp . Otherwise,a is called an o n - q u a d r a t i c r e s i d u e
mod p . Note that if b ∈ Z with a ≡ b ( mod p) , then a is a quadratic residue modp if and only if
b is a quadratic residue modp . Therefore for determining whethera is a quadratic residue modp or
not, we may assume that 0< a < p .

2). ( E u l e r ’s C r i t e r i o n ) Euler devised a simple criterion for deciding whether an integera is
a quadratic residue modulo a given prime numberp : Let a ∈ Z and let p be an odd prime number
with gcd(a, p) = 1 . Then a is a quadratic residue mod p if and only if a(p−1)/2 ≡ 1(modp)

3). ( S o l u t i o n s o f q u a d r a t i c c o n g r u e n c e s ) Letp be an odd prime and leta �≡ 0 (modp) ,
i.e., gcd(a, p) = 1 . Consider the quadratic congruenceax2 + bx + c ≡ 0 (modp) . Since p is
odd, gcd(4a, p) = 1 and hence the above congruence is equivalent to(2ax + b)2 − (b2 − 4ac) =
4a(ax2 + bx + c) ≡ 0 (modp) . Now put y = 2ax + b and d = b2 − 4ac to get y2 ≡ d (modp) .
If x ≡ x0 (modp) is a solution of the original congruence, theny ≡ 2ax0 + b (modp) is the solution
of the last qudratic congruence. Conversely, ify ≡ y0 (modp) is a solution of the last quadratic
congruence, then the linear congruence 2ax ≡ y0 − b (modp) can be solved to obtain a solution of the
original quadratic congruence. Therefore the problem of finding a solution to a quadratic congruence
is equivalent to that of finding a solution to a linear congruence and a quadratic congruence of the form
x2 ≡ a (modp) . If p|a , then x ≡ (modp) is the only solution ofx2 ≡ a (modp) . Therefore
to avoid trivialties assume thatp � | a . Note that of x2 ≡ a (modp) admits a solutionx = x0 ,
then there is also a second solutionx = p − x0 and this solution is not congruent to the first one,
since x0 ≡ (modp) , then 2x0 ≡ 0 (modp) , or equivalently (sincep is odd) x0 ≡ 0 (modp)
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which is not possible (sincea �≡ 0 (modp) ). These two solution exhaust the incongruent solutions
of x2 ≡ a (modp) by Lagrange’s theorem 2). In short : The quadratic congrunce x2 ≡ a (modp)

has exactly two solutions or no solution. The folloiwng two basic problems dominate the theory of
quadratic residues : (1) Given a prime numberp , determine which integersn ∈ Z are quadratic
residues modp and which are not quadratic residues modp . (2) Given an integern ∈ Z , determine
those prime numbersp for which n is a quadratic residues modp and hose prime numbersp for
which n is not a quadratic residues modp .

a). Show that the quadratic equation 6x2 +5x +1 = 0 has no solution in the integers, but the quadratic
congruence 6x2 + 5x + 1 ≡ 0 (modp) has a solution for every prim numberp . Find the solutions of
the quadratic congruences 3x2 + 9x + 7 ≡ 0 ( mod 13) and 5x2 + 6x + 1 ≡ 0 ( mod 23) .

b). Show that the quadratic residue modp are congruent modulop to the integers 12, 22, . . . ,
(p − 1)

2

2

.

What are the quadratic residues mod 17 ? Is 3 a quadratic residue mod 23 and mod 31 ?

c). Suppose thata is a quadratic residue modp . Show that : (1)a is not a primitive root modp ,
i.e., a is not a generator of the cyclic groupZ×

p . (2) p − a is a quadratic residue modp if and only
if p ≡ 1(mod 4) . (3) If p ≡ 3 ( mod 4) , then x ≡ ±a(p+1)/4 ( mod p) are the solutions of the
quadratic congruencex2 ≡ a ( mod p) .

d). Suppose thatp ≡ 1 ( mod 8) and thata is a primitive root modp . Show that the solutions of the
quadratic congruencex2 ≡ 2 ( mod p) are given byx ≡ ±(a7(p−1)/8 + a(p−1)/8 ( mod p) . (Hint :
First prove that(a3(p−1)/8 ≡ −1 ( mod p) .) Use this to find all solutions of the quadratic congruences
x2 ≡ 2 ( mod 17) and x2 ≡ 2 ( mod 41) .

e). Suppose thata is quadratic residue modp . If b, c ∈ Z are two integers withbc ≡ a ( mod p) ,
then show that either bothb and c are quadratic residues modp or both b and c are non-quadratic
residues modp .

f). Let b ∈ Z be an integer such that either botha and b are quadratic residues modp or both a and
b are non-quadratic residues modp . Show that the quadratic congruenceax2 ≡ b ( mod p) has a
solution. (Hint : Let a′ ∈ Z be such thataa′ ≡ 1 ( mod p) . Multiply the gice congruence bya′ .)

g). Let b ∈ Z be an integer withb �≡ 0 (modp) . Prove that either all the three of the quadratic
congruencesx2 ≡ a ( mod p) , x2 ≡ b ( mod p) , x2 ≡ ab ( mod p) have solutions or exactly one of
them admits a solution.

T7.2. ( L e g e n d r e – S y m b o l a n d i t s p r o p e r t i e s ) Letp be an odd prime number. For an
integera ∈ Z , the L e g e n d r e – S y m b o l

(
a

p

)
is defined by :

( a

p

)
=

{ 0, if p|a ,
1, if p � |a and if a is a quadratic residue modp ,
1, if p � |a and if a is not a quadratic residue modp ,

.

1). Let p be an odd pirme number and leta, b ∈ Z be integers with gcd(a, p) = gcd(b, p) = 1 .
Then : a).

( 1
p

) = 1 . b). If a ≡ b ( mod p) , then
(

a

p

) = (
b

p

)
. c).

(
ab

p

) = (
a

p

)(
b

p

)
. d). ( E u l e r ’s

C r i t e r i o n )
(

a

p

) ≡ a(p−1)/2 ( mod p) . In particular,
(−1

p

) = (−1)(p−1)/2 . e).
(

a2

p

) = 1 and(
a2b

p

) = (
b

p

)
.

2). Find the values of
(

a

p

)
in each of the following cases :a = −1, 2, −2, 3 and p = 11, 13, 17 . 3).

List all the solutions of each of the congruences :x2 ≡ a ( mod 11) and x2 ≡ a ( mod 112) , where
a = 1, 3, 4, 5, 9 .(Hint : 1, 3, 4, 5, 9 are precisely the quadratic residues mod 11 .)

4). Which of the following congruences have solutions? How many?

(1) x2 ≡ 2 ( mod 59) ; x2 ≡ −2 ( mod 59) ; x2 ≡ −1 ( mod 59) .

2) A theorem ofLagrange which deals with the number of solutions of a polynomial congruence :
Let p be a prim number and let f (x) = anx

n + an−1x
n−1 + · · · + a1x + a0 with an �≡ 0 (modp)

be a polynomial of degree n ≥ 1 with integer coefficients, then the polynomial congruence f (x) ≡
0 (modp) has at most n incongruent solutions modulo p .
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(2) (1) x2 ≡ 2 ( mod 61) ; x2 ≡ −2 ( mod 61) ; x2 ≡ −1 ( mod 61) .

5). Let p ≥ 3 be a prime number. Show that the equationx4 + 1 ≡ 0 ( mod p) has a solution if and
only if p ≡ 1 ( mod 8) ist.

6). Compute the incongruent solutions for the following congruence equations :x2 ≡ 2 ( mod 134) .
x2 ≡ 2 ( mod 94) . x2 ≡ −2 ( mod 268) .

7). Does the equationx2 + 4x + 1 = 0 have a solution in K47? For which prime numbersp the
equationx2 − x + 1 = 0 has a solution in Kp ?

8). Let p be an odd prime number. Thenx2 ≡ 2 ( mod p) has solutions if and only ifp ≡ 1 or
7 ( mod 8) .

9). Let a, b, c be integers,D := b2 − 4ac and p ≥ 3 be a prime number which does not dividea .
Show that the quadratic equationax2 + bx + c = 0 has no solution resp. one resp. two solutions in
Kp if and only if

(
D

p

)
is equal to−1 resp. 0 resp. 1 .

10). Let a and b be relatively prime integers. For every odd prime divisorp of a resp. b , assume
that b resp. a is a quadratic residue modp . Further, assume that one of the integersa, b, ab is
congruent to 1( mod 8) . Show that the equation(x2 − a)(x2 − b)(x2 − ab) ≡ 0 ( mod m) has a
solution for everym ∈ N∗ .(See also T7.1-???).)

11). Let p be an odd prime number. Prove that the quadratic residues modulop are congruent to
12, 22, . . . , ((p − 1)/2)2 . Deduce that ifp > 3 then the sum of the quadratic residues is divisible by
p . Further, show that ifp ≡ 1 ( mod 4) , then

∑
x∈Z

×
p ;

(
x
p

)
=1

x = p(p − 1)/4 .

12).

T7.3. ( Q u a d r a t i c R e c i p r o c i t y L a w )

T7.4. ( J a c o b i3) – S y m b o l 4) a n d i t s p r o p e r t i e s ) Weshall extend the definition of
Legendre–Symbol. Leta and b be integers.

(1) If a andb are not relatively prime, then we put
(

a

b

)
:= 0 . If a �= 0 , then we put

(
a

1

) = (
a

−1

)
:= 1 .

In general we put
(

a

b

) = (
a

−b

)
.

(2) If now b > 0 andb = p1 · · · pr is the prime decomposition ofb , wherepi are odd prime numbers
≥ 3 , then we define

(
a

b

)
:= ∏r

i=1

(
a

pi

)
, where(a/pi) is the ordinary Legendre–Symbol.

1). The following rules are immediate : For integersa, a′ and odd integersb, b′ , we have:

3) Carl Gustav Jacob Jacobi (1804-1851). Mathematics in Germany was at low ebb when
Jacobi was a student at Potsdam and Berlin and he was mostly self-educated, through reading the works
of Euler andLagrange. He became a splendid teacher and did much to revive German mathematics
in Königsberg and Berlin. His first love was thetheory of elliptic functions, but he also wrote in other
branches ofanalysis and ingeometry andmechanics. Interested in the history of mathematics, Jacobi
was a prime mover in the publication ofEuler’s collected work. He andDirichlet were close
friends; they independently sired two quite different kinds of analytic number theory. Although his
friends predicted he would work himself to death, he died instead of smallpox.
4) Calculation with the Legendre–Symbol

(
a

p

)
is hampered by the fact thata must be a prime number

to use the Quadratic reciprocity Law. Therefore it was pointed out at the end of the proof of the Quadratic
Reciprocity Law that it is necessary to have available rather extensive factorisation tables if one is to
evaluate Legendre–Symbol with large entries. Partly to obviate such a list and partly for theoretical
purposes, it has been found convenient to extend the definition of the Legendre–Symbol

(
a

b

)
so as to

give meaning to whenb is not a prime number. Owing to this remarkJacobi extended the definition
of Legendre–Symbol, this general Symbol is called theJ a c o b i – S y m b o l . Weshall see that others
of its properties are also similar to those of the Legendre–Symbol, but there is one crucial point at which
the similarity breaks down: it may happen that

(
a

b

) = 1 even whena is not a quadratic residue mod
b . See ???.
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(1) If a ≡ a′ ( mod b) , then
(

a

b

) = (
a′
b

)
. (2)

(
aa′
b

) = (
a

b

)(
a′
b

)
. (3)

(
a

bb′
) = (

a

b

)(
a

b′
)

. (4) If a is a

quadratic residue modb , then
(

a

b

) = 1 . (Hint : Note thatb is odd by hypothesis. —Remark : The
converse is not true, for example,

( 2
9

) = ( 2
3

)( 2
3

) = (−1)(−1) = 1 , but 2 is not a quadratic residue
mod 9 .)

2). For every natural numberb , we have
(−1

b

) = (−1)
b−1
2 and

( 2
b

) = (−1)
b2−1

8 . (Proof : For
the proof of the first formula, letb = p1 · · · pr be the prime factorisation ofb and ti := (pi − 1)/2 .
Then

(−1
b

) = ∏r

i=1

(−1
pi

) = ∏r

i=1 (−1)ti = (−1)t , where t := ∑r

i=1 ti . It is enough to show thatt
and (b − 1)/2 have the same parity. This is clear from the equality(b − 1)/2 = (

∏
i (2ti + 1) − 1)/2 .

The second formula can be proved similarly. •)

3). For relatively prime odd integersa, b with b ≥ 3 , we have
(

a

b

)(
b

a

) = (−1)
a−1
2

b−1
2 .

(Proof : First we consider the casea > 0 . If a = q1 · · · qs is the prime factorisation ofa and uj :=
(qj − 1)/2, u := ∑s

j=1 uj , then
(

a

b

) = ∏
i

(
a

pi

) = ∏
i,j

( qj

pi

) = ∏
i,j

((
pi

qj

) · (−1)tiuj

)
= (

b

a

) · (−1)w

with w := ∑
i,j tiuj = ∑

j (
∑

i ti )uj = tu . Now, it is enough to show thattu has the same parity as
the product of(a − 1)/2 and (b − 1)/2 . But this is clear, since we have already seen above thatt

has the same parity as(b − 1)/2 and similarlyu has the same parity as(a − 1)/2 . If a < 0 , then
(a/b) = (−1/b)(−a/b) and use the already proved formulas. •)

4). Let p �= 3 be a prime number and letq := 2tp + 1 with t ∈ N, 2 ≤ t ≤ 7 . Show thatq is prime
if and only if 3s ≡ −1 ( mod q) , where s := 2t−1p . Moreover, in this case (except the casep = 5
and t = 3 ) 3 primitive residue modq .

5). To each of the natural numbersr = 1 resp. 3 resp. 5 resp. 7 there exists infinitely many prime
numbersp such thatp ≡ r ( mod 8) . (Hint : Consider the sequences of natural numbers of the form
m4 + 1 resp. 2m2 + 1 resp. 4m2 + 1 resp. 8m2 − 1 .)

6). To each of the natural numbersr = 1 resp. 5 resp. 7 resp. 11 there exists infinitely many
prime numbersp such thatp ≡ r ( mod 12) . (Hint : Consider the sequences of natural numbers
of the form m4 − m2 + 1 resp. 4m2 + 1 resp. 4m2 + 3 resp. 12m2 − 1 . In the first case, if
m ≡ 1 ( mod 12) , then m3 is an element of order 4 in the prime residue class group modulo every
prime dividor of m4 − m2 + 1 .)

7). Compute(38 115/121 103) and (3 113 113/3 131 313) .

8). (In this exercise we need some elementary concepts about permutations) Letb be an odd integer,
a be an arbitrary integer which is relatively prime tob and let λa denote the multiplication bya on
the additive groupH := Z/bZ . Then λa : H → H is an automorphism ofH and henceλa is a
permutation of the setH . Moreover, the signature of this permutation is : Signλa = (

a

b

)
. (Hint :

( Z o l o t a r e v / F r o b e n i u s1872. — One can be content to start with the caseb = p a prime. It is
enough to consider a primitive rootz ( mod p); show that the multiplicationλz : Z×

p → Z×
p is a cycle

of length (p −1) . — For a generalisation of this see P.C a r t i e r , Sur une ge´neŕalisation des symboles
de Legendre–Jacobi, L’enseignement math.16, 31–48 (1970).)

T7.5. Let p �= q be odd prime numbers and letq∗ := (−1)(q−1)/2q . Then show that
(

p

q

) = (
q∗
p

) .

T7.6. Let p be an odd prime number.

a). (3/p) = 1 if and only if p ≡ ±1 ( mod 12) .

b). (−3/p) = 1 if and only if p ≡ 1 ( mod 6) .

c). Describe the value of(±6/p) by using the residue class ofp modulo 24 .

T7.7. For solving quadratic equations modulo a odd prime numebrp , we fact the following basic
problem : Fora ∈ Z with

(
a

p

) = 1 , construct ax ∈ Z with x2 ≡ a ( mod p) .

a). If p is of the form 4n − 1 , then we may takex = an . If p is of the form 8n + 5 and if i ia an
integer with i2 ≡ −1 ( mod p) , then we may takex = an+1 , if a2n+1 ≡ 1 ( mod p) , and we may take
x = ian+1 , if a2n+1 ≡ −1 ( mod p) .

b). Compute a solution of the equationx2 + x + 1 ≡ 0 ( mod 637) .

c). For an effective solution of the quadratic congruence equation one can obtain (due toTonelli

1891) : Let p = 1 + 2αv with v odd andα ≥ 1 . Let H be the subgroup of order 2α of the prime
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residue class group modulop . The power mapy 	→ yv maps the prime residue class groupZ×
p

onto the subgroupH . We are looking for an integerb with
(

b

p

) = −1 . Then the residue class of
c := bv is a generator forH . For every elementh ∈ H one can efficiently computen such that
h ≡ cn ( mod p) . (If 2s , s ≥ 1 , is the order ofh , then the order ofhc−2α−s

is ≤ 2s−1 .) Let d be
uniquely determined bydc ≡ 1 ( mod p) . — Now, if av ≡ cn ( mod p) , thenx := dn/2a(v+1)/2 is an
integer withx2 ≡ a ( mod p) .

d). Compute a solution of the equationx2 ≡ 2 ( mod 641) .
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