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Lectures: Tuesday/Thursday 15:45-17:15; Lecture Hall-1, Department of Mathematics

8. Group Actions — Symmetric Group, Pélya’s enumeration Theorems

8.1. Let I beafiniteset with card(/) = n € Nt andlet ny, ..., n, befixed natural numbers
with ny +---4+n, = n. Let (I1,...,1.) beafixed partition of I in r parwise digoint
subsets I, k =1,...,r with card(l;) =n; foreach k =1,...,r.

a). Showthat H == {f € &) | f(Iy) = I, fork = 1,...,r} isasubgroup of &(I) of
order nq!---n,!.

b). Let Par(/; ny, ..., n,) bethe set of al partitions (J1, ..., J,) of I into pairwise dis-
joint subsets Ji,...,J, such that card(J;y) = ni, Kk = 1,...,r. Show that the map
¢ 6) - Par(l;ny,...,n,) defined by f — (f(l1),..., f(,)) issurjective and the
|

fibresof ¢ areleft cosetsof H in &(I). Deducethat card(®Bar(/; ny, ..., n,)) = %

nit---n,!
c). Find card ({0 € G,, | Fix(c) = @}) . (Hint: Use Sylvester’s-Sieve Formula (see Exercise1.1).
— Remark : Thisisafamous problem which was first solved by NicoLAs BERNOULLI (1687-1759)
and later, independently, by LEONARD EULER (1707-1783).)

d). For 0 € &, with ord(o) = p™ with p prime, show that card(Fix(c)) = n (mod p).
Inparticular, (i) if p|n,then Fix(o) # @. (i) if p|n,then p|card(Fix(0)).

8.2. (Conjugacy classes in &(I)) Let I beafinite set of cardinality n € N*.

a). Theelements o and p in &(/) areconjugatesif and only if they have the same cycle-type
(seeT8.1-5)),i.e. v(o) =v(p).

b). Show that o isan even permutation if and only if v, + v4+ -+ 4+ vy2 = 0 (mod 2),
where v(o) = (v, ..., V).

c). Show that the number of conjugacy classes in the symmetric group S,, is equa to the
number P(n) := card{(vy, vo,...,v,) € N* | vy + 2v, + - - -nv, = n} of partitionsof n.
(Remark : The number of conjugacy classesin agroup G iscalled the class number of G andis
denoted by cl(G) (seealso T8.2-3)). Therefore cl(&(1)) = P(n) . For smal valuesof n, the number
of partitions P(n) of n aregivein thetable below:

n |0123456 7 8 9 101112 13 14 15
P(n)|11235711152230425677101135176.

8.3. Let I beafinitesetof cardindity n e N*. Let 0 € S(I), v =v(0) = (v1,v2,...,V,) €

N" be the cycle-type (see T8.1-5)) of ¢ and let Zg()(0) :={p € &(I) | op = po} denote

the centraliser of o in &(1).

a). Showthat Zg ;) (o) isasubgroupof S(7) of index (the number of distinct left-cosetsof the

subgroup Zs<|1>(0) in &(1))) [6) : Zeu(o)] = cad({p | v(p) = (v, v2,...,v)}) =
n:

andisof order card(Zg (o)) = vilvg! - - v, - 122 ...y,

vl!vZ! e vn! . 1”12”2 ceepVn
|
Deduce that the number cycles of length &k in the symmetric group &(7) is ﬁ
-(n — .
b). If p € Zgu)(o),then p(Fix(o)) € Fix(o).

c). If o =(1,2,---,k) isacycleof length k, then p € Zgy) (o) if and only if p =
(1,2,---,ky'twithO<r <k and r € &(I) withSupp(t)N{1,2,...,k} = @. Deducethat
Zsn((1,2,---,n)) =H{1,2,---,n)) isthesubgroupof S(/) generatedby (1,2, ---,n).
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d). Let p beaprime number. Then show that card({c € G, | o? =id}) = (p — D! + 1. of
the subgroup

8.4. Let n e NT.

a). Find an injective group homomorphism f : &, — 2, 2. (Hint: For o € G, let
5= {Z it 1n+2) :; Z :2%3” Then & € .2 and themap o — & is an injective group

homomorphism.)

b). Find aninjective group homomorphism g : &, — 2, and deduce that every finite group
G isisomorphic to a subgroup of the alternating group I, for some m € N*. (Hint: For
SIS |eta#.:{o(k), if l<k<n,

" ' otk—n)+n, fn+l<k<2n.
injective group homomorphism.)
c). For o € G, let P, denote the n x n-matrix obtained from the n x n identity matrix
¢, by permuting its columns according as the permutation o ; the matrix B3, is called the
permutation matrix corresponding to the permutation o . Further, the matrix 3, is
invertible, i.e., B, € GL,(K), infact (P,) ! =P,-.. Thenthemap v : &, — GL,(K),
o — B, isan injective homomorphism of groups and that o € 2, (resp. o ¢ 2,) if and
only if Det(y (o)) = 1 (resp. Det(y (o)) = —1).

8.5. Let G beagroup andlet X bea G-set. Show that

a). (Burnside's Formula) card(G) - cad(X/G) = }_ . card(Fix,(X)). (Hint: Let
Y = {(g,x) € G x X | gx = x}. Look at the fibres of the mappingsY — G, (g,x) — g and
Y > X, (g,x) —~ x.)

b). Supposethat G isfinite. For g € G, let n(g) = card(FiX,(X)). Show that

(1) If G actstransitively on X then card(G) = deG n(g). Deducethat, if card(X) > 2and G
actstransitively on X thenthereexistsg € G suchthat Fix,(G) = . (Hint: UsetheBurnside’s
formula. )

(2) If G acts 2-transitively on X then 2- card(G) = ) ,.;n(g)?.  (Hint: UseT8.2-6)-c) and
the part (1) above. )

Then o# € Ay, andthemap o — o* isan

8.6. Let G beafinite group of order n € N* which operates on itself by the left-trandation
andlet 1 : G — &(G) bethe corresponding Cayley’s homomorphism.

a). For every g € G, show that the permutation A, has exactly n/ord(g) orbits each of
cardinality ord(g) . Inparticular, Sign(i,) = (—1)"~@/d®) = (—1)[GHGIHCI \where H(g)
isthe cyclic subgroup of G generated by g

b). If G = &, with n > 4, then show that the image A(S,,) is contained in the kernel of
the group homomorphism Sign : 6(6,) — {1, —-1}). (Hint: Note that since n > 4,
4|n! = Ord(G) . Use part @ to compute Sign(z) for atranspositions r € S, .)

c). Show that the image A(G) is not contained in the kernel of the group homomorphism
Sign: 6(G) — {1, -1}),i.e, A(G) ZA(G)(=4,) ifandonly if n isevenandthat G has
an element of order 2%, where o := vy(n) (this second condition is equivalent to: a 2-Sylow
subgroup of G iscyclic and is non-trivial. For Sylow subgroups see T8.2-20).) Moreover, in this
case G has anormal subgroup of index 2. (Hint: The kernel of the group homomorphism
Signoi : G > AL(G) » {1, —1} isanormal subgroup of G of index 2.)

d). If ord(G) = 2m with m odd then show that G has a normal subgroup of index 2. (Hint:
Since 2|2m , thereexists g € G with ord(g) = 2 by Cauchy’stheorem (see T8.2-2)-e)-(1)). Compute
the Sign(x,) by using part @) and use ¢). — Remark: From this and the famous theorem of Feir-
THoMPSON : Every finite non-abelian simple group has even order. (See [Feit, W. and Thompson, J.:
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Solvability of groups of odd order, Pacific Journal of Mathematics, pp-775-1029, (1963).]) one easliy
provesthat: If G isnon-abelian and simple (i.e., G has no proper normal subgroup), then 4 divides
ord(G) . The proof of the theorem of Feit-Thompson is not easy.)

8.7. Let T be aset of transpositions in the group S,,, n > 1. We associate the graph (see
T8.4) I'r to T asfollows: theverticesof 'y arethenumbers 1, ..., n and two verticesi and
Jj withi # j arejoined by aedge if and only if the transposition (i, j) = (j, i) belongto T.
LetI'y, ..., T, betheconnected componentsof I'; .

a). Thetranspositionsin T generatethegroup &,, if andonly if I'7 isconnected, i.e. if any two
vertices of I' can be joined by the sequence of edgesin I'r. The subgroup of &,, generated
by T istheproduct 5(I'1) x --- x &(,) € G,,.

b). If T isagenerating system for thegroup &,,, then T has at least n — 1 elements.  (Hint:
Lettq,..., 1, betheelementsof T (may bewith repeatations) with 7y - - - t,, = id. Thenm iseven and
m=>2%" (0,1 —=1).)

c). Every generating system of &,, consisting of transpositions contain a (minimal) generating
system of &, withn — 1 elements. (Hint: Prove this by descending induction ; induction starts at
k = n — 1: the number of treesin which the number 1 belongsto exactly  edges, is (n — 1)"*1(172)
and add. — Remarks: The graphs corresponding to such a minimal generating systems are called
trees. Every connected graph has a generating system which is a tree. —There are exactly n"—2
generating systems consisting n — 1 transpositions.)

d). The transpositions (1, 2), (2,3),...,(n — 1,n) (resp. (1,2), (1,3),..., (1, n)) form
aminimal generating system of G, . (Hint: If a, b, ¢ are three distinct elements, then
{ab){ac){ab) = (bc).)

8.8. a). Let ¥ : D, - &, betheaction homomorphism of the canonical action of thedihedral
group D, ontheset {1,2,...,}. Show that the cycle-polynomial of D, withrespectto 9 is

1,~2 (n—2)/2 ; _
" (Z5+ 757 , ifn=0 (mod 2),
¥(D,) = & 0z) 134 2
Euler’s totient function.

b). Let K be afinite field of cardinality ¢ and characteristic p > 0 and let UT,(K) =
(U= (u,‘j)1<l.’j<p € M,(K) | u;j =O0forall j <iandu; =1forali =1,..., p} bethe
set of all unipotent upper triangular p x p matrices over K . Find the cycle- polynomial of
UT,(K). (Hint: Notethat n := card(UT,(K)) = ¢(® and every element 8l € UT,(K), U # €,
hasorder p, since 4” = ¢, (use Cayley-Hamilton theorem and Chark = p), where ¢, denote the
p x p identity matrix over K . Therefore (see T8.3-2)-b)) W(UT,(K)) = 2 (2} + (n — DZ/") )

c). Find the cycle polynomial of the group G of symmetries of the rectangle (which is not a
square) (in the Euclidean plane R?). (Hint: Label the corners of the rectangleby 1,2, 3,4

(clockwise), where 12 isthe longer side.
1 2

where ¢ isthe

4 3
The symmetry group G of the rectangle consists of the following 4 permutations: id, (1, 3)(2,4) (a
rotation through angle =, (1, 2)(3, 4) (areflection in perpendicular axis), (1, 4)(2, 3) (areflectionin
parallel axis). Therefore W(G) = 3(Z3 + 323) )
d). Find the cycle polynomial of the group W of face permutations induced by the rotational
symmetries of the cube.  (Hint: Show that the group W isisomorphic to the symmetric group G4
and use the table in T8.1-5)-¢)-2) to conclude that W(W) = (28 + 322232 + 62224+ 623 + 822) )
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8.9. Let R, bearegular n-gon in the rea plane R?, n > 3 and let Y be afinite set (of
colors).

a). Onthe set YR of all colourings of R, , consider the equivalence relation ~ : Two co-
lourings f, g € YR are said to be equivalent under ~, i.e, f ~ g if there exists a ro-
tation p : R, — R, of the regular n-gon R, such that g(v) = f(o~1(v)) for every
v € V(R,) = (the vertex set of R,). The elements of the quotient set YR/~ are called
patterns of colourings of R, with respect to the rotations.

©. O.

Show that the total number of patterns with at most m coloursis =3, @(d)m"/¢ and the
number of patterns [ f] € YR suchthat exactly «; verticesin R, inthecolouring f havebeen

: .1 (n/d)!
assigned the colour i is ;d|gcd(§: ) )w(d) (ar/d)! - - - (ap/d)! (If ged(eg, ..., a,) =1,

- 1! i
n - ; foraregular 6-gon, thereare §(2°+23+2.2242.:2") = 14 patternswith

thenthisnumberis |
ag! - ap!
at most 2 colours (and 12 patterns with exactly 2 colours). — Hint: For each colour i € Y, consider

the weight y (i) := T;, where T;, i € Y, areindeterminates over Q ; therefore we have the weight
function y : YR — Q[Ty, ..., T,] defined by f — y(f) = Tfl--'T,;;‘m , Where «; isthe number
of vertices in the colouring f has assigned the colour i, i.e, «; ;= card({v € V(R,) | f(v) = i})
foreachi =1,..., m. Notethat if f ~ g for f,g € YR then y(f) = y(g) and hence we have
awell-defined weight function 7 : YR/~ —— Q[Tx, ..., T.], [f]1 = y(f). Now, by T8.3-3)-b)

the coefficient of 7,2 - .- 7% inthe polynomia W (G) (1, ..., 7,) = %Z(p(d)(Tf +- 4+ TH s
d|n

the number of patterns [ /] € YR suchthat exactly «; verticesin R, inthecolouring f has assigned
the colour i , where W (G) (: UZ) =13 go(d)ZZ/d) (see T8.3-1)-c)) is the cycle-polynomial of
the group of rotations G of the regular n-gon R, with respect to its natural action on the vertex set
VR, = {v1,...,v,} and ; := Y/ 7] +---+TJ,for j =1,....n (seedso T8.3). Further
by using the polynomial theorem (since @1 +--- 4+ o, = n and « = gcd(as, . .. «,,) ) show that this
number is 1 DRIC)) (n/d): )

41 9coge ) (ar/d)! - (ot /d)!
b). Find the number of different patterns of necklaces consisting of n pearls of m distinct
coloursof whichexactly «; pearlsareof thecolour i foreveryi =1...,m, a1+ - -+a,, = n,
when (1) only rotational symmetries (of aregular n-gon R, with n vertices) are considered;
and (2) both rotational and reflectional symmetries (of aregular n-gon R, with n vertices)
areconsidered.  (Hint: (1) issimilar to a) and for (2) use Exercise8.8-a). For n = 6 and m = 2,
thereare 7+ (3- 8)/4 = 13 patterns with at most 2 coloursand 11 patternswith exactly 2 colours.
— Remark : For necklaces which are not closed, one can give amuch simpler solution to this problem!)

c). Find the number of inequivalent way of seating 4 men and 2 women at a reactangular
dining table if seats are situated asin the figure below :

1 2

5 4
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d). Show that the number patterns of colourings of the sides of the cube (in R®) using at
most m coloursif the colour i isused exactly «; timesisthe coefficient 7, --- T%" inthe
polynomial W (W)(ry, ..., ), where W(W) = 4 (Z8+3Z2Z3+6Z2Z4+6Z3+8Z3) (see
Exercise8.8-d)) and 7; = Y ", T/, j = 1,2,3,4. Inparticular, the total number of patterns
is ’%(m“ + 3m? + 12m + 8) ; for m = 2 thisnumber is 10 (resp. is 8 if both the colours are
used). (1) In how many ways (with reswpct to the rotational symmetries of the cube) can the
facses of the cube be painted red, blue or gree, if each colour must be used at least once? (Since
m = 3 and hence the total number of waysis ¥ (W)(3, 3,3, 3) = 57 and with at most two colours
¥ (W)(2, 2, 2, 2) = 10 and hence the required the number is 57— 3-10 = 27.) (2) Among 57 total
patternsin (1), how many involve O red, (resp. 1 red, 2 red, ..., 6 red) faces? (Giveweights
T, 1,1 tothe coloursred, blue, green, respectively, then the cofeeicint of 7%, « = 0,1, 2, 3,4,5,6 is
therequired answer.) (Remark: Let the colours are denoted by natural numbers i € N and give weight
T' (T indeterminate over Q) to the colour i € N. Then n; = Z(T")f = ZT"/’ =

ieN ieN

1 1 1

1-7'1-72°1-731-T%
distinct numbering (colouring) with natural numbers such that the total sumis o, @ € N.)

- and
1-TJ

the coefficient of 7% inthe power series W (W) ) is the number of

8.10. Let I' = (V, E) be agraph with the set of n- vertices V = {1, ..., n} and the set of
edges £ C Po({1,...,n}). Twographs I' = (V, E) and I'" = (V, E’) with the same set of
verticesare said to be isomorphic or equivalent if there exists apermutation o € G,
such that themap (inducedby o) E — E’, (i, j) — (0(i), o (j) isbijective; in this case we
write I' = (V,E) =, T = (V, E'). Then the relation “isomorphism of graphs’ (on the set
of all graphs with the same vertex set {1, ..., n}) is an equivalence relation; its equivalence
classesarecalled the isomorphism classes of graphswith the vertex set {1,...,n}.

a). Ontheset P, ({1, ..., n}) thepermutation group S, actsinanatural way (see T8.2-9)-C)

b). Suppose that we are given two colours 0 with weight 1 and 1 with weight 7" ( an
indeterminate over Q). Show that the number of isomorphism classes of the graphs with
vertex set {1,...,n} and « edges, « € N is the coefficient of 7% in the polynomial
W,(14+T,14+T2 ...,1+T", where ¥, isthe cycle-polynomial of the symmetric group
S,, with respect to the natural action of &, on the set P,({1,...,n}). Further, show
that the total number of isomorphism classes of the ?raphs with vertex set {1,...,n} is
W,(2,...,2). For n = 4, card(P2({1,...,n})) = (,) = 6, and (since the natural action
of &4 on P>({1,...,n}) istrangtive) the cycle-polynomial of with respect to this action is
Wy = = (23492275 + 6Z,Z4 + 8Z3) (seetable (2) in T8.2- 5)). Inparticular, there are
Wyu(2, 2, 2,2) = 11 distinct isomorphism classes of graphswith 4 vertices. Give arepresen-
tative in each of thisisomorphism class.

c). Compute the number of isomorphism classes of the graphs with n vertices for n =
5,6,7,8 9 10. (Remarks: For n = 10, there are 12005168 isomorphism classes of
graphs with 10 vertices. — For more examples of this type see the book : [Kerber, A.: Algebraic
Combonatorics Via Finite Group Actions, Manheim, 1991].)

Below one can see Class-Notes and (simple) test-exercises.
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Class-Notes/Test-Exercises

T8.1. (Symmetric group) Fora(finite) set 1,let (1) := {o € I | o ishijective}. Then the
composition o of mapsisabinary operationon &(7) and with respect to thisbinary operation &(17) is
agroup; the neutral (identity) element inthisgroup istheidentity map id; andfor o € &(I) theinverse
map of o (which exists since o is bijective) is the inverse of the element o in the group &(17); for
o, p € 6(I),wewrite op for thecomposition o o p. Thisgroup (&(1), o) iscaledthe symmetric
group or permutation group ontheset I ;itselementsarecaled permutations on I. For
neNt,weput G, :=6({1,2,...,n)).

1). An arbitrary finite group G isasubgroup of a permutation group. More presicely,

a). Cayley's Theorem. Let G beagroup. For g € G,let 1, : G — G, x — gx denote
the left-multiplicationon G by g. Thenthemap 1 : G — &(G), g — A, iSan injective group
homomor phism. This group homomorphism A iscalledthe Cayley’s representation ) of G.
(Proof: First notethat 1, isbijective,i.e. 1, € &(7), infact, theleft-multiplication A -1 istheinverse
map of A, , since Aghy1 = App1 = A, = idg = A1l . Further, for g, ¢’ € G and x € G, we have
)"gg’(x) = (gg/)x = g(g’x) = )"g()"g’(x)) = ()"g)"g’)(x) and hence )"(gg/) = )"gg’ = )\'g)"g’ = )"(g))"(g/)
which proves that A isagroup homomorphism. Finaly, if A(g) = A(g’) for some g, ¢’ € G, then
g=ge=A(g)e) =A(g)(e) = g'e =g andhence isinjective.)

b). If I ={i},then &) ={id,};if I ={i, j} withi # j,then &) = {id;, o0} where o (i) = j ; if
card(l) > 3, then &(I) isnot abelian, in fact, the center Z(&(1)) = {p € 6() | op = po} = {id,}.
(Proof: For o € &(I) with o # id;. We shall show that ¢ ¢ Z(&(I)). Choose i € I with
Jj:i=o0() #i (since o #id;). Further, since card(/) > 3, thereexists k € I \ {i, j}. Let T € &(I)
bedefinedby 7(j) =k, t(k) =j and t(a) =a foradl a e I\ {j,k}. Then o7(i) = o (i) = j and
to(i) =1(j) =k # j andhence ot # to . Thisprovesthat o ¢ Z(&(1)).)

c). Let I and I’ betwo setswith card(/) = card(l’), i.e. thereisabijectivemap f : I — I'. Then
themap &, : &(I) — &(I') definedby o — fof~1 isanisomorphism of groups. Inparticular, if 1
isaset with card(I) = n, thenthe groups &(I) and &, areisomorphic.

d). The order of the symmetric group &S(1) is card(/)!.

2). (Support, fixed points and orbits of a permutation) For a permutation
o € &), thesubset Supp(c) :={i € I | o(i) # i} iscaledthe support of o and the subset
Fix(o) :={i €I |o(i) =i} iscdledthe fixed setof o.

a). o(Supp(c)) C Supp(c) for every o € G, . Further, two permutations o, p € G(I) are caled
disjoint if Supp(o) Supp(p) = @; in this case they commute, i.e., op = po and Supp(op) =
Supp(o) U Supp(p). If o1,...,0, € &(I) are permutations with pairwise digoint supports, i.e.,
Supp(o;) N Supp(c;) = ¥ forevery i # j. Then oq,..., 0, areparwisecommutetive, i.e., o;0; =
ojo; foral 1<i,j<m.

b). (Orbits of a permutation) Forafixedi € I,theset O, (i) ;= {c™ (i) | m € Z} iscdledthe
orbit of i under o. (1) For i, j € I, show that either O, (i) = O,(j) or O, ()N O, (j) =7.
Therefore the orbits of o form a partition of 7. (2) Let s be the smallest positive natural number
such that ig := i, i1 := o (ig), i2 := o (i1) = o2(ig), . .., is_1 = 0(i;_2) = 0%(i;_3) = --- = 0 L(ip)
are digtinct, then o*@ig) = ip = i and O, (i) = {ig,i1,..., is_1} = {p@) | p € H(o)}, where
H(o) := {o” | r € Z} isthe (cyclic) subgroup of G(I) generated by o . (Proof: From o*(i) = o*(i)
with 0 < k < s, itfollowsthat o°*(i) = 0% (0*(i)) = 0 *(c*(i)) =i = ip and hence k = 0 by the
choiceof s,since 0 < s —k < s. Forthelast equality, let 0" e H(o) and r = gs+k withO <k < s,
g €Z.Then o"(i) = ok((6°)(i)) = ¥ (i) =i} .)

c). A permutation o € &(I) iscaled a cycle if has exactly one orbit with cardinaity > 2. In
this case its support Supp(o) = OG) = {i = io,i1,-.., i;_1} for some i € I; the cardindity s =
card(O(i)) = card(Supp(c)) iscaledthe length of o, denoted by ¢(o) . Further, if o # id;, then
s >0 and o isdenoted by (ig, i1, -, is_1) -

1) Thisisnamed after English mathematician ARTHUR CAYLEY (1821-1895).
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i
i1
i

Ix-1
ik

Note that (ig, i1, -, is-1) = (i, ixe1, -5 ds-1,00, -, is—1) fordl & = 1,...,s — 1. Further,
the order of the cycle (ig, i1, ---,i,_1) in the group &(I) isits length s and its inverse o1 =
(is_1,05_2,---,11,i0) isasocycleof length s.

The cycles of length 2 arecaled transpositions. A transposition (i, j) € &(I), i # j, which
interchange elements i and j and fix theremaining elementsof 7. A cycle (i, i1, ..., ix—1) of length
k istheproduct of k — 1 transpositions: (ig, i1, ..., ix_1) = {i0, i1) (i1, i2) - - - {{x—2, ix_1) -

3). (Canonical decomposition of a permutation) Let I be a finite set. Then every
permutation o € &(I) has a representation o = o1---0, withcycles o1, ...,0, € &) of lengths
> 2 and the supports are pairwise digoint. Moreover, this representation is unique upto the order of
the factors. (Remark: For the proof of the uniqueness we need that the supports of the cycles
o1, ...,0, arethe orbits of ¢ contain mor than one element. For example, the permutation o =

1 2 3 456 7 8 910 11 12 13 14 15 16 17 18 19 20

17 3 11 5 4 2 19 12 9 15 7 1 10 18 20 14 8 16 6 13
canonical cycledecomposition (1, 17, 8, 12) (2, 3,11, 7, 19, 6) (4, 5) (10, 15, 20, 13) (14, 18, 16) . The
support Supp(o) = {1, ..., 20} \ {9}.)

a). The order of o is: Ordo = lem(Ordoy,...,Ordo,) = lem(¢(o1), ..., £(c,)). The above
permutation o € Sy hasthe order Ordo = Icm (4,6, 2,4, 3) = 12. (Proof: From the cycle
decomposition o = o1---0,, it followsthat ¢” = of"---0", m € Z, since o;0; = oj0; for al
1<i,j<r,i#j.Thereforeonly tonotethat the order of acycleisequal toitslength.)

€ &y hasthe

b). The canonical cycle decomposition of theinverse o~ of o isot =01 --.o;t =0yt 072,
where o = o1 ---0, isthe canonical decomposition of o and for a cycle (ip, ..., i;_1) of length
k, the inverse (ig, ..., ir-1)"Y = (ix_1, ix_2,...,i0) = (io, ix_1,...,i1) iS again acycle of length
k. The canonical decomposition of the inverse o~ of the above permutation o € Gy, is o1 =
(1,12,8,17) (2,6, 19, 7, 11, 3) (4, 5) (10, 13, 20, 15) (14, 16, 18) .

c). Let I beafinite set. Then every permutation o on I has a representation as a product of trans-
positions. (Proof: Immediate from the fact that every permutation o € G(7) isaproduct of cycles.
— Remark: One can aso provethisdirectly: Let o € (1), o #idandlet o(ig) = jo # io. Then
o’ 1= (ip, jo) o isapermutationwith ig asafixed point. Then by inductionon card(/) the permutation
o' |(I'\ {io}) € & \ {io}) hasarepresentation o’ = (i1, j1)--- (i;, j;) aaproduct of transpositions
and hence o = (ig, jo)o' = (io, jo) (i1, j1)--- {is, Js). The representation of a permutation as a
product of transpositions (in contrast with the canonical cycle-decomposition) is naturally not unique.
For example, each such a representation can be extended by using id; = rt with any transposition
7. However, we shalll see below that the parity of the number of transpositions in any representation
of o into transpositions is uniquely determined. We have noted above by using the canonical cycle
decomposition one can get such a representation into exactly n — s transpositions, where n : card(/)
and s isthe number of orbitsof o (singleton orbits are also counted!).)

d). A bijectivemap f:I — I' induce (see 1)-c)) an isomorphism of groups &, : (1) — &(I') mit
o — fof~Ll. The k-cycle (a1, ..., a) is mapped onto the k-cycle (f(a1), ..., f(a)). Therefore
(if I isfinite), the cycle decomposition of fof~1 is obtained by replacing the cycles in the cycle
decomposition of o by its f- images. Inparticular, for o, p € G(I), the cycle decomposition of the
permutation pop~! is obtained replacing the elements in the cycles in the cycle decomposition of the
permutation o by their p-images.

4). (Sign of a permutation) Let o beapermutationontheset 7 withcardinality n € N* andlet s
bethenumber of orbitsof ¢ . Thenthe signature of o isdefinedby theformula: Signo (= (—1)" .
The permutation o iscalled even if Signo = 1, otherwiseitiscaled odd. If I, ..., I, are orbits
of o, thenn—s =3 1Ll —s=>,_1(I — 1) and hence Signo = [];_;(~1)"=1. Therefore
notethat: Signo = (—1)%, where g isthe number of orbitsof o with even-cardinality.
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a). The identity permutation is even. A transposition is odd; more generally, a cycle of length k has
the signature (—1)*~1. The permutation o € Gy in 3) aboveis even, since it has exactly 4 orbits of
even-cardinality.

b). The following theorem isthe most basic: Let I be a finite set. suppose that the permutation o €

&) isaproduct o = 1---1; of k transpositions 11, ..., 7. Then Signo = (—1)*. Inparticular,
thenumber of factorsint arepresentation of aeven (resp. odd) permutation asa product of transpositions
is always even (resp. odd). (Proof: (by induction on k). It is enough to prove

that o and to have different signatures for an arbitrary transposition . For this it is enough to
show that the number of orbits of o and zo differ by 1. Let ¢ = (i, j). Either both i and j
are contained in the same orbit or different orbit of o, we shall consider these two cases separately.
Case 1: Supposethat both i and j lieinthe sameorbit of o . Then the canonical cycle decomposition

of o isof theform o = (ig,..., iy,..., is_1)--- With ip =i and i, = j and hence 1o =
(igy -+, ip—1){ir, ..., ig—1) - -+, andthe number of orbits of ro is 1 morethanthat of 0. Case2:
Suppose that i and ; lie in the different orbits of o . Then the canonical cycle decomposition of
o isof theform o = (ig,...,i,—1){jo,..., js—1)--- With ipg =i and jo = j and hence 7o =
{(i0y ++ vy ip—1, JO5+-.» Js—1) - -+ . andthe number of orbitsof to is 1 lessthanthat of o .)

c). Let I beafinite set. Thenthe map Sign: &) — {1, —1} isa group homomorphism, i.e.,
for 0,7 € &), we have Signot = (Signo)(Signt). (Proof: Write 0 = o1+ 0,
and t = 11 --- 1, asproduct of transpositions o1, ..., o, resp. 1, ..., 1, and from the representation

ot =o01---0,71--- T, and b) aboveweget Signot = (—1)*" = (-1)*(—1)" = (Signo)(Signt) .)

d). (The alternating group) Let I beafinite set. Then the subgroup of G(7) consisting of
even permutations of 1 iscalled the alternating group on / andisdenoted by 2(7/). — The
alternating group on the set {1, ..., n} issimply denoted by 2, . Notethat (/) isthe kernel of the
group homomorphism Sign and henceisnormal in S(1) . Further, if n := card(I) > 2, then theindex
of A(I) in &(I) is 2. Thetwo cosets of (/) in &(I) isthe set 2A(I) of even permutations and
theset (1) \ A() = tA) = A(I)T of al odd permutations, where r € &(I) isan arbitrary odd
permutation (e.g., atransposition) and hence Ord2((1) = n!/2 (and the number of odd permutationsis
n!/2). For n > 4, show that the alternating group 21, is not abelian.

e). (Inversions of a permutation) Inthecase I = {1, ..., n} thesignature of a permutation
o € 6(I) = 6, can aso be computed by using the well-known inversions. For o € &(I) apair
(i,j) eI x1I iscdledainversionof o if i < j,but o(i) > o(j). The number of inversions
of o isdenoted by z(o). For example, (1) Thetransposition (i, j) € &,, i < j, hastheinversions
Gi+1D,....0);+21j,....,(G —1 ) and hence z((i, j)) = 2(j —i) — 1. (2) Inthe
permutation o := (> %-1) € &, al the pairs (i, j) with 1 < i < j < n inversions and hence
2(0) = (3). (3) The permutation o := (32352) € G5 hastheinversions (1,2), (1,4), (3,4) and
(3,5) and hence z(o) = 4.
f). Let 0 € &, beapermutation. Then Signo = (—1)%?). (Proof: Sinceby example (1) in €) above
atransposition has an odd number of inversions, it isenoughto provethat: For o, 7 € G,,, (—=1)%°? =
l<i<j<n

1_[ Sign (o (z(j)) — o(z(i))) = (=DH*? 1_[ Sign(o(s) — o (r) = (=H*7 (=D*?. The
l<i<j=<n l<r<s<n
second equality follows from the fact that exactly there are z(z) pairs (z(i)., r(j)), l<i<j=<n
such that their components are interchanged and for this we need to consider the set of al pairs (r, s) ,
l<r<s<nl

g). By f) the sign of the permutation ¢ € &, in the Example €)-(2) is Signo = (-1)® . Thisaso
follows from the canonical cycle decomposition o = (1, n)(2,n—1)...([n/2], n+1—[n/2]) isthe

product of [7/2] transpositions. Therefore (—1)[%] =(-1® = {_i :;Z — g éméi

h). Let 7 be a set with more than two elements. Then the center of the permutation group &(7) is
trivial. If 0 € (1), o #id, o(a) # a and t isatransposition (o (a), c) with ¢ ¢ {a, o (a)}, then
ror~! mapsthe element a onto ¢ and hence tot~1 # ¢ and o does not commute with < .

i). For the following permutations compute the number of inversions and the sign.
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. L . . . 1 2 ... n n+1 ... 2n
(). Thepermutationi —n —i +1inS,. (ii). (1 3 o1 > Zn)EGZ"'
12 ... n n4+1 ... 2n
(D). (2 4 2 1 .. 2n—l)€62"'
. 1 ... —r+1 —r+2 ... —Dn
(iv). (r n ”; n ; rf]_)EGn,lfrgn. (Ans: (—1)¢-De+D)
1 2 4 5 6 ... 2n
V). (1 21 3 20-1) 5 2m-2) ... 2)662"'
(vi). Forasubset J C {1,...,n}WithJ ={j1,..., ju},j1 < - < jm, et o; bethe permutation
GJ:(Z.I. ceom m.+l e >66n,
J1 oeo Jm i1 voe dp—m

where the numbersii < --- < i,_, arethe elements of the complement of J in{1, ..., n}. (Hint: The
number of variations of o; is z(o;) = (kazl jk) — (’";1) and hence Sign (o) = (—1)%°7) )

(vii). Leto resp. t bepermutations of the finite sets 7 resp. J. Compute the sign of the permutation
oxt:(, j)r (oi, tj)of I x J(intermsof Sigho, Signt andm = |I|, n = |J|).

i). (i). A subgroup of the permutation group &, which contain an odd permutation containsequal number
of evenand odd permutations. (ii). A permutationo € &,, whichisof odd order isan even permutation.
(iii). Thesquare o2 of apermutation o € &, isan even permutation. (iv). Leto = (io, ..., ix_1) bea
cycleof lengthk > 2. Forwhichm € Z, o™ isacycleof lengthk? (v). Leto € &, andm € Z. Every
orbit of o of length k decomposes into ggT (k, m) orbits of the length k/ gcd (k, m) of o™. (vi). Let
be afinite set. Theinverse o1 of apermutation o € &(I) has the same orbits and same sign as those
of o. (vii). Letm = pi*--- p* bethe canonical primefactorisation of m € N*. Then the permutation
group S,, contain an element of order m if and only if n > pil + -+ p%. For whichn € N there
exists an element of order 3000 (resp. 3001) in the group &,? (viii). If 0 € &,, n € NT has s
orbits, then o can be represented as a product of » — s transpositions and cannot be represented as a
product of lessthan n — s transpositions.

k). (i). For n > 2, Sign: 6, — {—1, 1} isthe only non-trivial group homomorphism. (Hint: (ab)
and (cd) betwo transpositions S, . If o € 6, be an arbitrary permutation with @ — ¢, b — d,
then o (a b)o =1 = (cd) and so every homomorphism ¢ : &, — {1, —1} have the same value on all
transpositions. If thisvalueis 1, then ¢ = id; if it is —1, then ¢ = Sign.) (ii). 2, isthe commutator
S,. (iii). Using the simplicity of the group 2,,, n > 5, prove that the group 2, isthe only non-trivial
normal subgroup inthegroup &, forn > 5. (iv). Thegroups2(4 and U, aretheonly non-trivial normal
subgroupsin &4. (v). Thegroup U4 isthe only non-trivial normal subgroup in 24.

). (i). Thecycles(1,2), (2,...,n) generatethegroup S, , n > 2. (Hint: Use Exercise 8.7-d)) (ii).
Thecycles (1,2), (1,2,...,n) generate thegroup &,,, n > 2. (Hint: Use Exercise 8.7-d)) (iii).
(1,n), (1,...,n) generatethegroup S,,, n > 2. (Hint: Use Exercise 8.7-d))

5). (Cycle-type of a permutation) Let I beafiniteset with card(/) =n andlet o € G(1).
For k =1,...,n,let v, isthe number of cycles of length & in the cycle decomposition of o . Then
the n-tuple v(o) := (v1,...,v,) iscdledthe cycle-type of o.

a). The cycle type of the cycle of length k is (n — k,0,...,1,0,...,0), where 1 isat the k-place.
Inparticular, the cycletype of the n-cyclein &, isv((1,2,---,n)) = (0,0,...,0,1).

b). For apermutation o € &(I), show that v(c~1) = v (o).
c). The cycle structure and cycle typesin the groups G3, &4, As, G5, As.
(1) Thegroup &3 :

Cycle type Cycle Structure Number Order Parity

3e1 =(3,0,0) id 1 1 even

e1t+e2=(1,10) (1,2 3= 32 2 odd

e3=(0,0,1) 1,2,3) 2= 324 3 even
6 = card(S3)
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(2) Thegroup G4 :

Cycle type Cycle Structure Number Order Parity
de; = (4,0,0,0) id 1 1 even
2e1+e,=(2,1,0,0) (1,2) 6="%° 2 odd
e1+e3=(1,0,1,0) 1,2,3) 8= 13Xz 3 even
ea =(0,0,0,1) (1,2, 3,4 6= xexl 4 odd
2¢ = (0,2,0,0) (1,2)(3,4) 3= (% x5 | 2 even
24 = card(S4)
(3) Thegroup 24 :
Cycle type Cycle Structure Number Order Parity
4eq = (4,0,0,0) id 1 1 even
e1+e3=(0,1,1,0) 1,2,3) 8= 4*;“ 3 even
2¢;=(0,2,0,0) (1,2)(3,4) 3=3(%3x&l) | 2 even
12 = card(2l4)
(4) Thegroup G5 :
Cycle type Cycle Structure Number Order Parity
5¢1 =(4,0,0,0,0) id 1 1 even
3e1+e2=1(3,1,0,0,0] (1,2 10 = >* 2 odd
2¢1+e3=(2,0,1,0,0) (1,2 3 20 = 223 3 even
e1+es=(1,0,0,1,0) | (1,23 4) 30 = =x4x3x2 4 odd
es = (0,0,0,0, 1) (1,2,3,4,5) 24 = 2 xd 5 even
e1+ 2= (12.0,0,0] (1234 15=3 (%« 32) | 2 ven
e2+e3=1(0,1,10,0) | (1,2 3)(4,5) 20 = =x4x3x2 64 odd
120 = card(S5)
(5) Thegroup s :
Cycle type Cycle Structure Number Order Parity
5e1 = (4,0,0,0,0) id 1 1 even
2e1+e3=(2,0,1,0,00| (1,2 3) 20 = 223 3 even
es =(0,0,0,0,1) (1,2,3,4,5) 24 = D32 5 even
e1+2e2=(1,2,0,0,00| (1,2)(3 4 15=1 (574 x 372) 2 even
60 = card(ng,)
T8.2. (Operations (--actions) of Groups on sets --- action homomorphisms)

Let G bea(multiplicative) group with the identity element e. An operation or action of G onaset
Xisamap G x X — X (caledan operation map or action map) and denoted by (g, x) — gx
suchthat forall g, » € G andforadl x € X,wehave: (1) ex =x (2) (gh)x = g(hx).

For afixed ¢ € G, themap v, : X — X defined by x — gx iscalled the operation of g on
X . Then 9, = idy and 9,, = 9,19, by the conditions (1) and (2) above, respectively. Inparticular, for
every g € G, themap ¢, isapermutation of X and (¢,) ! = = ¥,-1. Thereforethemap & : G — &(X)
defined by v (g) := 9, isagroup homomorphism. This group homomorphism is called the action
homomorphism of the action of G on X. Conversdly, if ¥ : G — &(X) isagroup homomorphism
thenthemap G x X — X defined by (g, x) — ¥ (g)(x) givesan operation on X.

A set X with an action of agroup G iscalleda G -set; the action homomorphism ¢ : G — &(X) is
caled the action homomorphism of the G- set X.
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1). (Orbits and isotropy subgroups --Stabilizers) Let G beagroup actingonaset X.

a). The operation of G on X defines an equivalencerelationo X : For x,y € X, x ~¢ y if and only if
thereexistsg € G with gx = y.

b). Theeguivalenceclassof x € X under ~ isdenotedby Gx := {gx | g € G} andiscalledthe orbit
of x. The quotient set of all equivalence classes of the relation ~; is denoted by X/G. We have the
canonical surjectivemap X — X/G,x — Gx.

c). Forx € X, thesubset G, := {g € G | gx = x} isasubgroup of G. This subgroup is called the
isotropy group or stabilizer of x.

d). For x € X, thefibres of the cannonical surjectivemap G — Gx, g — gx aretheleft-cosetsof G,
inG. Inparticular: (Orbit-Stabiliser theorem) card(Gx) =[G : G,], i.e, the cardinality of
theorbit Gx of x istheindex [G : G,] of theisotropy subgroup of x in G and inparticular, if G isfinite
then card(G x) divides the order of the group G.

e). Forg e G and x € X, G,, = gG,g~ 1. i.e,, Isotropy subgroups of the elements in the same orbit
are conjugate subgroupsin G.

f). Anelement x € X iscalledafixed or invariant element with respect totheelement g € G
if gx = x. The set of fixed elementswith respect to ¢ € G isdenoted by Fix, (X). If E € G thenwe put
Fixg(X) 1= Nyeg FiX,(X). The elements of Fixs (X) arecalled fixed elements of the operation of
G on X. Aneement x € X belongsto Fixg(X) if andonly if G, = G.

g). Let V bean-dimensional vector space over afield K, n € N andlet G := Autg (V) = GLk (V) be
the automorphism group of V. In each of the following examples show that G actson the set X with the
action homomorphism ¢ : G — &(X). For x € X, describetheorbit Gx of x under G geometrically
(whenever possible) and find the isotropy subgroup G, at x.

(). LetX =V\{O}andlet® : G — &(V) bedefinedby 9 (f)(v) ;= f(v)for f € Gandv € V \ {0}.
@i). Let X =B :={(v1,...,v,) € V" | v1,...,v,isabasisof V} andlet ¥ : G — S(B) be defined
by & (f)((v1,...,v,) = (f(v1),..., f(vy)) for f € Gand (vy,...,v,) € B.

(iii). Letr e N,r <nandlet G, (V) bethe set of r-dimensional subspacesof V. Let X = G, (V) and
let 9 : G — S(G,(V)) bedefined by 9 (g)(W) := g(W) forg e Gand W € G,(V).

(iv). Let F bethe set of al flags{(0 = Vo c V1 C --- C V, = V)}, where V; is a subspace of
V,for0O<i <n. Let X =Fandletd : G - &) bedefinedby (VpcVicC---CV,) —
(gVo)cgVp)cCc---cgVhforgeGand(VoCcViC---CV,)ed.

(v). LetX = V*:=Hom(V,K)andlet® : G — &(V*) bedefined by 9 (g) := (g7 1)* = (g*)~1 for
g €G.

2). Let G beagroup acting on aset X with action homomorphism ¢ : G — &(G) . We say that

(1) G operates transitively on X if X/G isasingleton set, i.e. thereis exactly one orbit.

(2) G operates freely on X if for every x € X theisotropy group G, at x istrivia group,i.e. G, = {e}.
(3) G operates faithfully on X if forevery g, h € G, gx = hx foral x € X impliesthat g = h. Note
that G operateson X faithfully if and only if the action homomorphism ¢ : G — &(X) isinjective.
(4) G operates simply transitively on X if G operatestransitively and freely on X.

a). Forx € X, theorbit Gx of x isinvariant under g for every g € G and so G operateson Gx transitively.
b). (Restriction of an action) Let H beasubgroup of G. Then H operateson X by restriction;
the corresponding action homomorphism is the composite homomorphism H —» G225 &(X) .

c). (Left-translation action -- Cayley’s representation) The binary operation of a
group G defineasimpletransitive operation on G. The corresponding action homomorphismisinjective
group homomorphism A : G — &(G). Thisis the permutation representation of G and is called the
Cayley’s representation of G. For any subgroup H of G, the orbits of the restriction of the
left-transaltion action to H on G are the right-cosets of H in G and the isotropy groups are trivial.

d). (Induced action) Thenormal subgroup N = ker ¢ iscaledthe kernel of the action of
G on X. Therefore® induces agroup homomorphism ¥ : G/N — &(X) and hence the quotient group
G/N actson the set X with the action homomorphism . This action of G/N iscaledthe induced
action of G on X. Itisclear that G/N actsfaithfully on X.
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e). The kernel of an operation of agroup G on a set X is the intersection of all isotropy groups G, ,
x € X. —If G isabelian, then G operates simple trasitively if and only if G operates transitively and
faithfully.

f). If card(G) isaprime number > card X then the action homomorphismistrivial, i.e., #(g)(x) = x
forevery g e Gand x € X.

g). If X isfinite then the kernel of the action homomorphism  is a subgroup of finiteindex in G.

h). Suppose that G acts transitively on X and x € X. Thenthemap G — X definedby g — g - x
issurjective and card(X) = [G : G,]. Inparticular, if G isfinitethen X isfinite and card(X) divides
card(G).

i). Theactionhomorphism® :G — &(X) inducesmany other operations, inanatural way. For example:
@). If v:G" — G isahomomorphism of groups, then the group G’ operateson X by g’'x := ¥ (g")x,
g’ € G, x € X. The corresponding group homomorphismof G’ in &(X) isvy. (ii). Ifo:G — G"is
asurjective group homomorphism such that the kernel Ker ¢ C Ker ¢, then the group G” operateson X
by g”x := gx, where g € ¢~1(g") iaarbitrary. The corresponding group homomorphism G” — &(X)
isinduced by ¢ : G — &(X). (iii). If X’ C X isaG-invariant subset of X, i.e, for every x € X’, the
orbit G x of x iscontained in X', then G operateson X' by restriction. Inparticular, G operates on each
orbit and in fact transitively.

3). (Class Equation) Let G beagroup operatingonaset X. Then
card(X) = card(Fixg(X) + Y card(Gx).

GxeX/G
card(Gx)>1

a). (Class equation for the left-translation action --Lagrange’s theorem) Let
G beagroup and let H be asubgroup. The group H acts on G by the restriction of the left-transaltion
action of G on G to H; the orbits of this action are the right-cosets of H in G and the isotropy groups
aretrivial. Therefore the class equation for thisaction of H on G is card(G) = card(H) - card(G/H) .
Inparticular: (Lagrange’s theorem) Let G beafinitegroup and let H be a subgroup of G. Then
the order of H dividesthe order of G. More precisely, ord(G) = ord(H) - [G : H] .

b). (Conjugation action and the class equation for a group) Let G beagroup. Then
G actson G by the conjugate action, i.e. the action homomorphism is the group homomorphism
k:G — AU(G), g~ k, - G — G, x — gxg~1. Thefixed point set of this operation is the center
Z(G) of G. Thecenter of G isalsothekernel of thisoperation. Inparticular, the class equation for this
operationiscaled the class equation for G :

card(G) = card(Z(G)) + Y _ card(C)),
jelJ
where C;, j € J aredistinct conjugacy classes of G with more than one element, i.e. C; # C; for
i,jeJ i #jadcadC;) > Lforevery j € J. If x; € C;, thenC; = {gx,g* | g € G} and
card(C;) =[G : Zg(x;)], wherefor x € G, Zs(x) :={g € G | gx = xg} isthe subgroup of elemenst
of G which commutewith x. Thissubgroupiscalledthe centraliser of x inG. If G isafinite group
and C;,i = 1,...,r aredl distinct conjugacy classesin G with card(C;) > 1fordli =1,...,r,
then the numbers card(Z(G)) and card(C;), i = 1, ..., r divide the order OrdG of G and the number
of al conjugacy classesin G iscard(Z(G)) + r andiscalledthe class number of G.

c). Let G beafinite group of odd order and let x € G, x # e. Show that Z; (x) # Zg(x~1), i.e. x and
x~1 belongs to different conjugacy classes. (Hint: If Z(x) = Zg(x~1), then show that card(Z; (x)) is
even. But by b) card(Z; (x)) dividesthe order ord(G) of G acontradiction. )

d). Let p beaprime number and let G be afinite group of order p" withn € N*. Supposethat G acts
on afinite set X. Then card(X) = card(FiXxs (X)) (mod p). Inparticular, the center Z(G) of G is
non-trivial. (Hint: For thelast part use the class equation for G.)

e). Let G be afinite group of order n and let p be a prime number. On the set G? of p-tuples of G
the cyclic group H := Z/Zp operatesby (a, (x1,...,x,)) = (X1ta.-...%p+a), Wherea and the

indices 1, ..., p aretheresidueclassesin Z/Zp. Thefixed points are the constant p-tuples (x, ..., x).
The group Z/Z p aso operates on the subset X = {(x1,...,x,) € G’ | x1---x, = e} of G” (since
xX1x2- X, = (1 x) (41 x,) = eand SO (x,41---x,)(x1---x,) =eforr =1,...,p—1)

Therefore by part d) card(X) = n?~1 = |Fixy X| mod p.
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(1) If p divides n, then p also divides |Fixy X|, i.e. the cardinality of the set of x € G withx? = e is
divisible by p. Inparticular: (Cauchy’s theorem) Let G be afinite group of order n and let p
be a prime divisor of n. Then G has an element of order p. (2) If p isnot adivisor of n, then Fixy X
contain only the constant tuple (e, ..., e). Inparticular: (Fermat’s little theorem) Let pisa
prime number and let n € N*. If p does not divide n, then p dividesn?~1 — 1,i.e. n?~1 = 1 mod p.

f). Let p be aprime number. Then

(i). Every group of order p? is abelian and in fact either a cyclic or isomorphic to a product of two
cyclic groups of order p. (Hint: Use 3)-c)). )

(ii). Every group of order 2p is either cyclic or isomorphic to the Dihedral group D,,. (Remark: For
Dihedral groups see Exercise T8.7??. The case p = 2 isaspecia case. )

(iii). Let G be anon-abelian group of order p3. Show that the derived subgroup (the subgroup of G
generated by the set of all commutators {[a, b] | aba*b~1 | a, b € G}) =[G, G] = Z(G) and theclass
number of G is p2 + p — 1. (Hint: G actstransitively on G \ {e} by the conjugation action. Then use
2)-h). — Remark There exists infinite groups of class number 2. For class numbers see 3)-b).)

(iv). Compute the class number of the group &, for n < 6.

4). Let G and H betwo groupsacting onthe sets X and Y with action homomorphisms#y : G — &(X)
and vy : H — &(Y) respectively.

a). (Product action) The product group G x H acts on the product set X x Y with the action
homomorphism ¢,y : G x H — &(X x Y) defined by (g, h) — 9x(g) x dy(h) for g € G and
h € H. Thisactioniscalled the product action of G x Hon X x Y. Theorbit (G x H)(x, y)
of (x,y) € X x Y, istheproduct G - x x H -y of orbtis of x and y. What is the isotropy subgroup
(G X H)(x,y) a (X, y) ?

b). (Diagonal action) Supposethat H = G above. Thenthegroup G actson X x Y with theaction

XxY

homomorphism G 2% GxG Y S(X xY),whereAg : G — G x G isthediagona homomorphism
defined by ¢ — (g, g) for g € G and 9,y isdefined as above with H = G. Thisaction is called the
diagonal action of GonX x Y. Theisotropy subgroup G, ,, of (x, y) € X x Y istheintersection
G, N G, of theisotropy subgroups of x and y. What is the orbit G (x, y) of (x, y)?

c). Givean exampleto show that the diagonal action of G on X x Y need not betransitiveevenif G acts
transitively on both X and Y. (Hint: Taketheleft trandation action (see2)-c))of GonX =Y =G.)

5). (Automorphism actions) Let G and H betwo groups. Suppose that the group G actson H
with the action homomorphism ¢ : G — &(H). Ifim(®) € Aut(H) = (the set of all automorphismsof
thegroup H) thenwesaythat G acts on H by automorphismsor ¢ is an automorphism
action andinthiscasewewrite : G — Aut(H) instead of ¥ : G — &(H).

a). The automorphism group Aut(G) of G actson G in a natural way, infact by automorphisms; the
automorphism action ¥ = idau) @ Aut(G) — Aut(G). The subset G \ {e} is invariant under this
action.

b). The conjugate action of the group G on G is the automorphism actionx : G — Aut(G), g — «,,
wherefor g € G, «, : G — G istheinner automorphism of G defined by x - gxg~! for x € G. What
isthe kernal of this action?

c). Let N be an (additive) abelian group. The cyclic group Z* = {1, —1} of order 2 operateson N by
automorphisms, where —1 operates as the inverse map x — —x of thegroup N.

6). (k -transitive actions) Let G beagroup andlet X be a G-set with the action homomorphism
¥ :G — &(X). Letk e N*. Then X iscalled k - transitive orwesaythat G acts k -transitively
on X if for any two k-tuples (x1, ..., x;) € X* withx; #x; forl <i # j <kand (y1,..., y) € X*
with y; # y; for 1 < i # j < k, there exists an element ¢ € G such that ¥ (g)(x;) = y; for every
1 <i < k. l-transitive is same as transitive (see 2)-(1)).

a). Let k € N*. If card(X) < k then X isk-transitive vacuously. If card(X) > k and X is k-transitive
then X isr-transitivefor every 1 < r < k.
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b). For n € N*, any subgroup of &, actsnaturally ontheset {1, ..., n}, infact, the action homomor-
phismisthanatural inclusion « : G — &, . Thisnatural action of the permutation group &,, (respec-
tively, the alternating group 2, ) ontheset {1, ..., n} isn-transtive (respectively, (n — 2)-transitive but
not (n — 1)-transitive).

c). Thesubset X™ := {(x1,...,x,) | x; € X, x; #x;,1 <i # j <n},(n € N") of X" isaG-subset
of the diagonal action (see 4)-b)) of G on X". Then G acts n-transitively on X if and only if G-acts
transitively on X®,

d). Theisotropy subgroup G,, x € X actson X \ {x} inanatural way. If G actstranstively on X, then
G acts 2-transitively on X if and only if G, transitively on X \ {x} for every x € X.

e). If G isafinitegroup, G acts 2-transitively on X and [G : G,] = n for x € X, then (n — 1)n divides
ord(G). (Hint: Use?2)-g).)

7). (Left coset G -sets) Let G beany group and let H beasubgroupof G. Let X := G/H =
{xH | x € G} bethe set of al left cosetsof H in G and let ¥ : G — G&(G/H) be defined by
¥(g)=¢:G/H— G/H,xH + gxH forxH € G/H. Then X = G/H isaG-set with the action
homomorphism ©. This G-setiscaled the |eft coset G -set of HinG.

a). G acts transitively on G/H and the isotropy group at H is Gy = H. Inparticular, the isotropy
subgroups are gHg ™1, g € G and so N = N,.cgHg ! is the kernel of the action of G on G/H.
Therefore G/ N actsfaithfully on G/ H with the induced action homomorphism ¥ : G/N — &(G/H).
Further, N isthebiggest normal subgroup of G containedin H and the quotient group G /N isisomorphic
to a subgroup of the permutation group of G/H. (Hint: Let F beanormal subgroup of G with F C H.
Then F = gFg™1 C gHg 1 forevery g € G. Therefore F C N,cggHg 1 = N)

b). If [G : H] isfinitethensois[G : N] and [G : N] divides[G : H]!. (Hint: Followsfrom part a)
that v : G/N — &(G/H) isinjective. )

8). (G -homomorphisms) Let G beagroup and let X, Y be two G-sets with the operation

mapsey : GxX - Xandgy : G xY — Y respectivdly. Amap f : X — Yiscdleda G -
homomorphism if f(gx) = gf(x) forevery g € G and x € X, i.e. the diagram

GxX X

idxfl lf

Yy
GxY —— 7Y

iscommutative. A G-homomorphism f : X — Y iscalleda G -isomorphism if thereexistsa G-
homomorphism f' : Y — X suchthat /' o f =idx and f o f' = idy.
Let f : X — Y beaG-homomorphism. Then

a). The orbit Gx is mapped onto the orbit Gf(x) for every x € X; inparticular, induces amap f :
X\G — Y\G on the quotient spaces such that the diagramm

X —— X/G

TRt
Y —— Y/G
is commutative, where X — X/G and Y — Y/G arethe cannonical projection maps.

b). f(FiXxg(X)) C Fixg(Y). Inparticular, f induces amapping FiXxs(X) — Fixg(Y).
c). For x € X, theisotropy subgroup G, isasubgroup of G .
d). fisaG-isomorphismif andonly if f isbijective. Moreover, in this case, the diagram

Ux

G G(X)

H |
5%

G &)

of groups and group homomorphisms is commutative, where 9y, ¥y are action homomorphisms of X,
Y respectively and @, : S(X) — &(Y) isthe group homomorphism defined by ®,(0) := foo o f1
foro € 6(X).

67 dmO07-e08 ; April 17, 2007 ; 2:51 p.m. D. P. Patil / Exercise Set 8



MA-217 Discrete Mathematics / January-April 2007 8. Group Actions 8.15

e). More generally, let ¢ : G — H be ahomomorphism of groups. Suppose that G and H operates on
the sets X and Y respectively. Amap f:X — Yiscdledg-invariant map if foral g € G and for
al x € X,wehave: f(gx) = ¢(g)f(x),Ii.e.if the canonical diagramm

GxX — X

ol

HxY —— Y
is commutative. A map f: X — Y g-invariant if and only if f is a G-invariant map, where the
H-operationon Y viag definesa G-operationonY,i.e gy :=¢(g)y,g€ G,y €Y.

9). Let G beagroup acting on aset X with the corresponding group homorphism# :G — &(X). This
homomorphism induces many other operations, in a natural way. For example:

a). Amap f:X — Yissadtobecompatible with the operationof GonX ifforalx, x’ € X,the
equality f(x) = f(x') impliestheequality f(gx) = f(gx") foral g € G. Moreover, if f issurjective,
then the operation of G on X induces an operation of G on Y by gy := f(gx), wherex € f~1(y) is
arbitrary. Thismean that themap f isa G-map. Further, inthiscase f(Fixs (X)) C Fixg(Y). Givean
exampleto show that thisinclusion can be strict. (Hint: Let G bethe multiplicative cyclic group {—1, 1}
of order 2, X :=ZandY :=Z, = {0, 1}. Then G actson X (resp. on Y) by the action homomorphism
9 G — AUtZ (resp. 9 : G — AutZy), #(1) = idz and ¥ (—1) : Z — Z,n > —n (resp. ¥(1) = idz,
and 9 (—1) : Zp — Zz, n — —n). Further, let f : Z — 7, be the canonical surjective map. Then
Fixg(X) =0and Fixg(Y) =7Y.)

b). LetY beananother set. Then G operateson theset of all maps X" by (¢ /)(») := g(F()), ¢ € G,
f € XY andy e Y. Theactionhomomorphismof theG-set XY isAk ot : G — &(X) - S(XY), where

AY is defined in the footnote 2) below and the fixed set Fixg(XY) = {f € X" | im(f) C Fixg(X))}.
Themapc: X — XY definedby x — ¢, : ¥ — X =theconstant map y — x, isaG-homomorphism.

c). Let Y be an another set. Then G operates on the set of all maps Y* by (gf)(x) = f(g~t- x),
g €G, feY¥andx € X. The action homomorphism of the G-set Y ¥ ispf 0¥ : G — &(X) —
S(Y¥), where pY is defined in the footnote 2 below and the fixed set Fixg(Y*) = {f € X" |
f isconstant onthe G-orbitsof X}.

d). Let H beananother groupandlet Y bea H-set. Thenthe product group H x G operatesontheset Y*
by ((h,g)f) (x) :=h-f(gt-x), (h,g) e HxG, f € Y¥ and x € X . Theaction homomorphism of
the HxG-set YX istdy xOxouyx : HxG — S(Y)xS(X) — &(Y¥),where uyy isdefinedinthe
footnote 2 below. Inparticular, if H = G and if Y isaG-set thenthe set Y¥ isaG x G-set and so
G actson Y* viathe diagonal homomorphism G — G x G, g — (g,g), g € G. thefixed set
Fixe(YX) = Homg (X, Y) = {f € YX | fisaG-homomorphism}.

10). Let G beagroup and let H be a subgroup of G.

a). If H isof finiteindex in G, then H contains anormal subgroup N of finite index such that [G : N]
divides[G : H]!.

b). If Gissmpleand H # G, then G isomorphic to a subgroup of &(G/H). Inparticular, if G is
simple and H is asubgroup of G of finteindex n > 1, then G isfinite, moreover, order of G divides
n!'. (Hint: Look at the kernel of the action of the left-coset G-set G/H (see 7)). )

c). Hisnormal in G if and only if the orbits of the restriction action of H on the left-coset G- set G/H
are singleton.

2) Set Theoretic Results Let X and Y be two sets. For o0 € &(X), let 4, : X' — X" (resp.
0 - YX — Y¥X)bedefinedby f +— oo ffor f € XY (rep. f— fooforf e YX). For
(t,0) € 6(Y) x &(X), let uwo) : Y* — Y* bedefinedby f +— 7o f oo for f € Y*. Show that the
maps

(i) AL:6(X) - &(XY) defined by o > 2,

(i) pl:&(X) = &Y Y) defined by o > p,

(i) puyx 1 6(Y) x 6(X) — &Y ¥) defined by (7, 0) = L(.0)

are group homomorphismes.
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d). (Yang) If G isfiniteand H isasubgroup of primeindex p, where p isthe smallest prime divisor
of Ord G, then H isnormal in G. Inparticular, if every subgroup of agroup G of order p", n € N* of
index p isnormal in G.

e). Supposethat G isfiniteand ord(G) = mn, ord(H) = n.
(). Let N bethekernel of theaction of theleft coset G-set G/H. Then[H : N]dividesgcd(n, (m—1)!).
(@i1). (Frobenius) If n hasno prime factor lessthan m then H isnormal in G . (Hint: Use (i) above.

) (iii). If ord(G) = 2" - 3with r € N*, then G has anormal subgroup of order 2" or 2"~1. Inparticular,
if r > 2then G isnot simple. (Hint: Apply (1) above to the 2-Sylow subgroup H of G.)

f). If H isnormal in G then the orbits of the restriction of any transitive G-action to H have the same
cardinality.  (Hint: Let X beatransitive G-set. For g € G and x € X, themaps Hx — g 1Hgx,
hx — g thgx and g Hgx — Hgx, g thgx — hgx arebijective. )

g). The product group H x H actson G with the action homomorphism ¢ : H x H — G defined by
O (W, h)(x) = h'xh~L, for (hW',h) € H x Handx € G. Then H isnorma in G if and only if every
orbit of the action defined by ¢ hasthe cardinality = card(H).

11). Let G beagroup. Then G operates on the power-set 3(G) of G by conjugation. For a subset A
of G theisotropy group G, with respect to thisoperation is called the normaliser of AinG andis
denoted by N (A).

a). The subgroup Ng(A) isthe biggest subgroup of G, which operateson A by conjugation.

b). The kernel of this operation of Ng(A) on A isthe centraliser Zg(A) = (), ,Zc(a) Of A.
Inparticular, Zs(A) isnormal in Ng(A) .

c). If H isasubgroup of G, then Ng (H) isthe biggest subgroup of G inwhich A isnormal.

d). Theindex [G : Ng(H)] is the number of conjugate subgroups of H in G and if [G : H] isfinite,
then [G : Ng(H)] divides[G : H].

acA

12). Let G and H befinite groups. Then

a). Theorder of G isapower of aprime number p if and only if order of every element of G isapower
of p. (Hint: Use Cauchy’stheorem 3)-d)(1)). — Remark: A group in which order of every element
G isapower of aprime number p,iscalledap-group.)

b). Every subgroup of the product group G x H isof theform G’ x H', where G’ is a subgroup of G
and H' isasubgroup of H if and only if the orders of G and H are relatively prime. (Hint: Use
Cauchy’s theorem 3)-d)(1)). )

13). Let X beaG-set. A subset Y of X iscaleda G -subsetif gy e Y foreveryge Gandy e Y.
If Y € X isaG-subset of X then the natural inclusonmap Y — X isa G-homomorphism. Each orbit
of X under G isatransitive G-subset of X.

a). Every subset Y of aG-set X isaG-subset if and only if itisaunion of orbitsof X under G. Moreover,
if Y istransitive G-subset of X then Y must be an orbit of x € X under G.

b). Let {X; | i € I} beacollection of G-sets.

(1) If X; aredigoint, that is, X; N X; = @ for every i, j € I withi # j then show that U, X; isaG-set
in anatural way.

(2) If X; are not necessarily disoint then X! := {(x,i) | x € X;, i € I} aredigoint and each X! isa
G-setinanatural way. Further the maps X; — X | defined by x — (x, i) are G-isomorphisms.

c). Supposethat X isatransitive G-set and Let xg € X and let Y be the left coset G-set of the isotropy
subgroup G.,, i.e. Y = G/G,, with the natural (see 7)) G-action on Y. Show that there exists a
G-isomorphism f : X — Y. (Hint: Forx € X, let g € G with gxo = xo and put f(x) = gG,,. )

d). Every G-set X isisomorphic to the digoint union of left coset G-sets.  (Hint: X isthe digoint
union of its orbits which are transitive G-subsets of X. Now use the parts ¢) and b)-1) above. )

14). Let G be a subgroup of S,, n > 2. Suppose that the natural operation of G on {1,...,n} is
transitive.

a). If G contain atransposition and acycle of order n — 1, then G = &,,. (Hint: UseT8.1-4)-1)-a). )
b). If G contain atransposition and a cycle of prime order p with 5 < p < n,then G = &,.
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15). Let p be aprime number.

a). If the subgroup G of &, contain atransposition and if p dividesthe order of G, thenG = &,,. (Hint:
G contain an element of order p. Thismust be acycle. Now use T8.1-4)-1)-c). — Remark: Show that
the condition“ p | |G|” isequivalent with “the natural opeartion of G on {1, ..., p} istransitive”.)

b). Let G be the subgroup of &, 1. Supposethat G has the following properties:
(1) The natural opeartion of G on {1, ..., p + 1} istransitive.

(2) p dividesthe order of G.

(3) G contains a transposition.

Then G = G,41. (Hint: Use14)-a).)

16). Let G be afinitely generated group and let n € N+,

a). The set of all subgroups of index n in G isfinite. (Hint: Using left coset G-sets reduce the problem
to that of normal subgroups and these are nothing but kernels of the group homomorphisms G — &,
which are finitely many. Why ?)

b). Let ¢ : G — G be a surjective endomorphism of G. Show that the mapping H — ¢ 1(H) isa
bijection on the set of all subgroups of index n in G. (Hint: Usethe part a) above. )

17). A group G iscaled homogeneous if the natural action (see 5)) of the automorphism group
Aut(G) of G on G istrangitive on the Aut(G)-subset G \ {e}. Show that if G isafinite group then G is
homogeneous if and only if G isafinite product of Z, = {0, ..., p — 1} = the cyclic group of prime
order p.

18). Let H be asubgroup of finiteindex inagroup G. If G = U gHg ! then show that G = H .(Hint:
geG
Let N bethe kernel of the action of the |eft coset G-set G/ H. By passing to the group G/N reduce to
the case of finite groups. —or use 11).). Give an example to show that the assumption finite index is
necessary. (Hint: H = { (Z 8) €Glac#0}#G=06GL12C) = UggHgl. )
ge

19). (Semi-direct Product —Holomorph of a group) Let N and H begroups. Supposethat
H operateson N by automorphisms(seeb)), i.e. theaction homomorphismis®: H — Aut N € &(N).
We shall construct agroup G such that H is asubgroup of G and N isanormal subgoup of G and the
given operation of H on N istheconjugationof H on N. Let G := N x H and define the multiplication
inG by (n,h)( @', 1) == (nd,(n'), hi'). (Hint: The group axioms for G can be easily verified;
the element (ey , ey) is the identity element and the inverse of (n, k) is (%,-1(n~1), h~1). The group
N can be identified with the normal subgroup N x {ey} of G and the group H can be identified with
the subgroup {ex} x H of G. With thisidentification the pair (n, #) isthe product nh = (n, ex)(ey, h) .
)This group G is caled the semi-direct product of the groups N and H with respect to the
operation ¢ of H on N. The semi-direct product of N and H withresptto ¢ : H — Aut N isdenoted
by N xH=N xy, H.

a). The operation ¢ of H on N istrivia if andonly if G = N x H isthe product group. This can also
be characterised by the condition that H isnormal in G.

b). Supposethat H = Aut N and ¢ isthe natural action (see N11.6-a)) on N. Then the corresponding
semi-direct product is called the full holomorph of N and is denoted by Hol N. In the case
H C Aut N isasubgroup, the semi-direct product iscalleda holomorph of N.

c). The full holomorph (and hence every holomorph) of N can be canonically embedded in the per-
mutation group S(N) of N, where the normal subgroup N of Hol () is identified with the group of
left-trandlations of N using the Cayley’s representation and Aut N is embedded canonically in S(N),
i.e. themap (n,0) — r,0,n € N,o € AUt N isan injective group homomorphism of Hol (N) into
the permutation group &(N) , where A, for n € N denote the left-translation by .

d). The subgroup Hol (N) of G(N) is generated by the left-trandations and the automorphisms of
N. Further, since p, = A, ok,-1 = k,-1 0 A, forn € N, the subgroup Hol (N) aso contain right-
trand ationen.

20). (Dihedral groups) Let N be an (additive) abelian group. The cyclic group Z* = {1, —1}
of order 2 operates on N by automorphisms (see 5)), where —1 operates as the inverse map x — —x
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of the group N. The corresponding semi-direct product is called the dihedral group of N andis
denoted by D(N). Thebinary operationin D(N) isgivenby (n,&) (n',¢') = (n+en’, e¢’), n,n’ € N,
e, & e L*.

a). The dihedral group D(N) isthe direct product of N and Z*, i.e. is an abelain group if and only if
the inverse map of N istrivid, i.e. every element of N isitsinversein N. 3)

b). If N =27, =7/Zn isthe cyclic group of order n > O, thenfor D(~N) we simply write D,,; itsorder
isOrdD, = 2n. Theinfinite dihedral group Do := D(Z) isthe full holomorph of the additive group Z.
Therefore we have asequence D,,, n € N, of the dihedral groups. (Remark: We shall show
that the dihedral group D(R) isisomorphic to the group of motions of an affine Euclidean line and
the dihedral group D (R/Z) isisomorphic to the group of isometries of an (oriented) two-dimensional
Euclidean vector space. The group D(R/Z) (and occasionally the group D(Q/Z)) is aso denoted by
Dy -

21). Let N be agroup. Then every semi-direct product (see 19)) of the form N x H, where H is a
group, is equal to the direct product N x H if and only if N has at most two elements.  (Hint: Itis
enough to show that every group N with more than two elements has an automor phism different from
the identity map. — In the non-abelian case the conjugation, and in the abelain case the inverse map and
for the elementary abelian 2-groups, see footnote 1, the linear map of K »-vector spaces. — This result
can also be formulated as. Every weak-split exact sequenceof groups 1 — N — G — H — 1
is strong-split if and only if N has atmost two elements. )

22). Suppose that afinite group G of order n operates on the (additively written) abelian group H asa
group of automorphisms.

a). Fixe H isasubgroup of H.

b). For every x € H, thesum Nx := 3 _; gx is afixed point of the operation of G. (Hint:
h (Nx) = deG(hg)x = dec gx=Nxforevery h € G,sinceG = {hg | g € G}.)

c). (M ean) Supposethat the multiplication A, by n on H isbijektive. Then , and theinverse (1,) !
of 1, are G-invariant. Theelement 7;x == 2 Nx = 1Y _; ¢x iscaledthe mean or average of
x and isfixed point.

d). The group homomorphism =, : H — H is a projection of H onto the subgroups Fix; H, i.e.
Ty = n,% andimmy = FixgH. (Hint: Let 7 := . Theinclusion n(H) C FixgH ismentioned in
the part b). Conversely, let x € FixgH, thenx = 1Y . gx = Inx = x. This proves theinclusion
FixgH C w(H) and hencer = 7. — Remark: Thisisthe most effective way of computing the fixed
points. For example, it can be applied to the additive group H of a vector space over afield K with
n - 1x # 0 (or moregenerally to the additive groups of amodule over aring A withn - 1, € A*).)

e). Let G be afinite group of order n and let H', H resp. H” be abelain groups on which G opera-

tes by automorphisms. Further, let H’ s v L H” bean exact sequence of G-invariant group
homomorphisms. If the multiplication by n on H and H’ are bijective?) , then the induced sequence
FixcH — FixgH — FixcH" isaso exact. (Hint: For x € FixgH with f(x) = 0 we need to
find x" € FixcH' with f'(x") = x. LetX € H' besuchthat f'(x) = x. Thenx’ := n,,(X) € FixcH'
and f'(x") = f'n,(xX) = 7y f'(X) = myx = x. — Remark: In the above situation, the sequence of
the fixed-point groupsis not exact in general, for example, the group G := Z* = {1, —1} operates (see
5)-c)) in anatural way, i.e. the operation of —1 isthe inverse map. Then the canonical projection of Z
onto Z/7.2 is surjective, but the induced homomorphism 0 — Z/Z2 on the fixed-point groups is not
surjective. )

23). Let G beafinitegroup of order n. Then G actsonthepower setB3(G) of G by theleft-multiplication,
i.e. theaction homomorphismis® : G — S(P(G)) givenby g — ¥ (g), whered(g) : ‘B(G) — P(G)
isdefinedby A > gA :={ga | a € A}.

3) Such agroup N iscalled an elementary (abelian) 2-group. They are precisely the additive groups of
the vector spaces over the field K, with 2 elements.
4) It is enough to assume that on H’ it is surjective and onim f' = Ker f it isinjective.
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a). For every fixed positive integer r < n, the subset B, (G) .= {A € B(G) | card(A) = r} of aG-set
PB(G) isinvariant under the above G-action.

b). Each orbit of 3(G) under the above G-action contains either exactly one subgroup of G or contains
no subgroup of G. (Proof Let H and H’ be subgroups of G belonging to the same orbit of B(G).
Then there exists A € P(G) suchthat H ~; A and H' ~s A. Therefore, since ~ is an equivalence
relation on PB(G), it followsthat H ~; H' and so thereexistsg € G suchthat H' = gH. If ¢ ¢ H
thengt ¢ H 1, sothate = g¢g=1 & gH = H'. This contradicts the fact that H’ is a subgroup of G.
Thereforeg e Handso H' = gH = H.)

c). Let p beaprimewithn = p*q and ged(p, g) = 1, where e := v,(ord(G)). Let g be a positive
integer with0 < 8 < «. Let X € B, (G) be aorbit of an element A € P4 (G) the above G-action.
Then the following statments are equivalent :

(i) vy(card(X))<a—p=:y. (i) card(X)=p*?. (iii) X containsexactly one subgroup H (of order
p?.  (Proof Let A € B,5(G) besuch that the orbit of A =: X. By the orbit-stabiliser theorem 2)-d))

(c.1) card(G ») card(X) = card(G) = p“q and so
(c.2) a = v,(card(G)) = v,(card(G»)) + v, (card(X)).

SinceG, ={g e G| gA=A},wehavega € Aforevery g € G4, anda € A. Therefore, for any
a € A, thereisanatural inclusion G4 -a — A. Inparticular, card(G ) = card(G4 -a) < card(A) = p#
and so v, (card(G»)) < B. ()= (ii) : If v,(card(X)) < y thenv,(card(G »)) = B by (c.2) above and so
card(G,) = pP. Thereforecard(X) = p”q by (c.1) above. (ii)= (iii): Sincecard(X) = p”¢q, we have
v,(card(X)) = y and so v, (card(G 4)) = B by (c.2) above. Therefore card(G,4 - a)) = card(G ») = p”
andsoG,-a = Aforeverya e A. Now,by 2)-€) G,.1, =a1-G,-a=a1A e theorbitof A = X.
Therefore X contains a subgroup namely, G,-1, and by the part b) this subgroup is unique. (iii)= (i):
Let H be asubgroup of G suchthat H € X. Then X istheorbitof H = G/H = {gH | g € G}.
Therefore card(X) = [G : H] = p*q/p? = p’q and s0 v, (card(X)) = y.)

d). With the notation asin the part c) above, there exists a natural number ¢ such that

p%q
( p* ) =ds(p. Hp"q +1p" ™,

wheredg (p, B) isthenumber of subgroupsof order pf andy = o—B. (Proof Theactionof G on s (G)
gives a decomposition B,s(G) = (J{ orbitswithcardinaity = p”q} U [ J{ orbitswith cardinality #
pYq}. Since the orbits with cardinality = p¥q¢ are precisely the orbits which contains exactly one
subgroup of G of order p? (by the equivalence (i) <= (ii) of (c)) and the orbits with cardinality
+ p?q are precisely the orbits whose cardinality is divisible by p?+1 (by the equivaence (i) < (iii)
of (c)), there exists a natural number ¢ such that (‘f;’) = card(P,+(G)) = dp”q +tp’*L)

e). In particular, if G is cyclic in the part d) above then there exists a natural number s such that
(Ijﬂq) = p’q +sp’™L, wherey == o — 8. (Proof Since card(*B,s (G)) does not depend the group,
the assertion follows from d) by taking G to be the cyclic group.)

24). (Sylow theorems?®)) Let G beafinite group of order n and let p be aprime divisor of n with
n = p“q and gcd(p, ¢g) = 1, wherea = v,(Ord G). Let g be anon-negative integer with0 < g < «
and let d; (p, B) be the number f subgroups of G of order p#. Then

a). dg(p, B) = 1(mod p) . Inparticular, G has a subgroup of order p“. (Proof It follows from 23)-d)
and e) that there exist natural numbers s and ¢ such that p”q + sp?*1 = (IZ;’) =dg(p, B)p’q +tprtl,
wherey =« — B. Thereforeds(p, B)g = g+ (s —t)p = g(mod p) and so ds(p, B) = (maod p),

sincegcd(p,q) =1.)

b). If H isasubgroup of order p* and H' isasubgroup of order p#, then there exist an element g € G
suchthat H' € gHg™ L. Inparticular, any two subgroups of order p® are conjugatesin G. (Proof

%) Thesetheoremswerefirst proved by the Norwegian mathematician Lubwic SyLow (1832-1918)
in 1872 [Sylow, L., Theoremes sur groups de substitutions, Math. Ann. V(1872), p.584.]. We have
given the proofs using elegant arguments due to WieLANDT, H., which is a great improvement over
the older method of double cosets, see [Wielandt, H., Ein Beweis firr die Exitenz der Sylowgruppes,
Archiv der Mathematik, vol. 10(1959), p. 402-403.].
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Restrict the operation (see 9)) of G ontheset of left-cosets G/ H of H in G tothesubgroup H'. Theclass
equation for thisactionis(see3)-c)) ¢ = |G/H| = |Fixyz (G/H)| mod p) and hence Fixy (G/H) # 0O,
i.e. there exists aleft-coset gH, g € G of H in G which isinvariant under all left-translations of the
elementsfrom H',i.e. H C gHg_l. restriction of the left-coset

c). dg(p, ) divides g and so it divides n. (Proof By a) thereisasubgroup H of G of order
p® and by b) al subgroups of order p® are conjuagtes in G. But by 11)-d) the number of conjugate
subgroups of H in G istheindex [G : Ng(H)] of the normaliser Ng(H) of H in G and [G : Ng(H)]
divides[G : H] = gq.

T8.3. (Cycle polynomial and Polya’'s counting formula) Let I beafinite set with
cardinality n € N*. Foro € &,, weput 2" := Z;*... Z where v(o) = (v1,...,v,) isthecycle
type (see T8.1-5)) of . The Cycle-polynomial of asubgroup H of the symmetric group &, is

the polynomial W (H) := Z 7" inindeterminates Zy, ..., Z, (with coefficientsin Q).

card(H) =
For example:
1). a). The cycle-polynomial of the symmetric group S,, is
1 Z1\" Z\" ,
(6, = Z — = (£} - (Z22) . (Hint: Usethe Exercise 8.3-a).)
vty U1 n

vy +2vp+-+nv,

b). The cycle-polynomial of the alternating group 2, is

1 Z1\"* Z,\"
WA, =2 2. W(T) <7)

1v1+2v2+--~+nvn
vo+vg+tvgp, 2]=0 (mod 2)

(Hint: Usethe Exercise 8.3-a) and if H isasubgroup of afinite group G of index 2 thenfor every x € H
either al conjugates of x arein H or exactly half of them arein H.)

c). Thecycle-polynomail of thecyclic subgroup Z, := H((1, 2, - - -, n)) of &, genarted by the n-cycle
1
(1,2,---,n) is W(Z,) == E o(d)Z*, where ¢ isthe Euler's totient function.
n
d|n

2). Let G be afinite group acting on afinite set X of cardinality n with the action homomorphism
v :G — 6(X). Forg € G, put v(g) = v(d,) andiscaledthe cycle-type of g € G. The

polynomia ¥ (G; ) = ¥(G) = =) ggG:Z”(g) in indeterminates Z1, ..., Z, over Q iscaled

the cycle-polynomial of G with respect to the action homomorphism ¢ . Show that
a). ¥(G) = W(H), where H = 9(G) C 5(X).
b). Let G beafinite group of order n. Show that the cycle polynomial of G with respect to the Cayley’s

. . 1
representation » : G — S(G) of G is ¥(G) = —Za(d)ZZ/d, where «(d) = the number of
n d|n
elements of order d in G. (Hint: Usethe Exercise 8.5-a).)

c). Let G and H befinitegroupsacting onfinitedisjoint sets X and Y , respectively. Then the product
group G x H actsinanatural way onthedigointunion XUY as (g, h)-x :=g-x and (g, h)-y :==h-y
forgeG,heH,xe X, yeY. Showthat W (G x H) =V¥(G) - V(H).

3). Let G be afinite group acting on a finite set X with the action homomorphism ¢ : G - &(X).
Let Y be any set (of colours) and let C := Y* betheset of colourings of X by thecoloursin Y.
Then G actsontheset C by: Forg e Gand f € C, (g- f)(x) := f(g 1x) forx € X. The basic
problem is to find the cardinality of the quotient set C := C/G of patterns of colourings of X
with respect to thegroup G . A functiony : Y — A of Y with valuesin any commutative ring A with
ord(G) € A* = (theunit group of A)iscalleda weight function onY withvaluesin A. For a
weight functiony : ¥ — Aand f € C,weput y(f) :=[[,.x ¥(f(x)). Then y induces aweight

function 7 : C — A onthe quotient set C.
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a). (Polya’s counting formula®) Let ; := Zy(y)", i =1,...,n, bethe power-sums of

yey

theweights y(y), y € Y. Then Z Y fD) =¥ G)(r1,...,m,). Inparticular, if card(Y) = m and

[r]eC

if 01,...,0, € isarepresentative system for the (distinct) conjugacy-classes of G, then card(C) =
1 S vl

VG m, . om) = = Y el = 3 (Proof: Let f e Candlet o € G.
G| = = 1Zc(oil

Then of = f if and only if f is constant on the orbits X1,..., X, of o, say y1,...,y, € Y.

Therefore we have Z V(f) — Z y(yl)card(Xl) . y(ys)card(Xs) = Tecard(xy) * * " Teard(Xy) =

feFixs (C) (¥15--»Ys)EYS
ot =11 where v(o) = (v1, ..., v,) isthecycle-typeof o . Nowlet G, denotetheisotropy
group at the point f € C. Then ord(G)- > ¥([f) = D> ord(Gy) -y(f) = D y(f) =
[f]eC reC 8./, 8€Gs
> (=27 =0dG) - WG, ... 7))
8./), f€FiXs (©) oeG

b). Let Y ={y; |i eI}, A=Q[T; | i € I] bethepolynomial ring in indeterminates 7;, i € I over
Q andlet y : Y — A bethe (monomial) weight function y; — v (y;) ;= T;. Then: the coefficient
of themonomial [T, T, (&:);c; € N, in the polynomial Z vy [fD =¥ (G)(m,...,m,) isthe
[r]eC
number of patterns [ f] € C suchthat «; = |{x € X | f(x) = y;}| for each i € I. (Proof: First note
that for two colourings f g € C, if thereexistsa o € G suchthat of =g, i.e, [¢g] = [f] intheset
of patterns C (with respect to G ), then | f~1(y))| = |g~2(y)| forall i € I. Further, if f € C with
1Y)l = o; forall i e I,thentheweight of thepattern [ ] is ¥ ([f]) = ¥ (f) = [Lex ¥ (f (X)) =

[,y =TT, T . Therefore > v ([f]) = ) [ ] 7 and hencethe proof.)
[s]eC, [r]eC, iel
1F=Lop)I=e; iel 1~ Lop)l=e; il

4). a). Deduce Fermat's little theorem from Polya’s counting formula.

b). On a stick of length »n feet the individual feet are marked consecutively 1,2,...,n. The only
symmetries are roratations about the center through the angles 0 and » . Find the cycle-polynomial of
this group of symmetries. Further, if each 1-foot segment can be painted one of m colours. (1) How
many patterns are possible? (2)if n =8 and m = 3 (Y = {y1, y2, y3}), in how many patternsare 2
segments y1, 4 segments y, and 2 segments G ?

T8.4. (Simplicial Complexes and Graphs) A simplicial complex X isasetV(X)
calledthe vertex set (of X) andafamily of subsetsof V(X), caled simplexes (in X) suchthat
(i) for each v € V(X), thesingleton set {v} isasimplexin K.

(i) if sisasmplexin X then soisevery subset of s.

A smplexsin X iscaleda ¢ -simplex if card(s) = ¢ + 1 and say that shas dimension ¢. For
asimplicial complex X, wewritedim(X) := sup{q | thereexistsag — simplexinX} and iscalled the
dimension of X. A smplicial complex of dimension < liscaleda graph.

An edgein X isanordered pair (vg, vy) of verticessuch that {vg, v1} isasimplexin X . If e = (vo, v1)
isanedgein X thevertex vg (respectively v1) iscalledthe origin (respectively end) of eand usually
denoted by orig(e) (respectively end(e)).

A path « in X of lengthn isasequencee;e; - - - e, of edgesin K withend(e;) = orig(e, 1) for every
l<i<n-—1Forapaha =ee---e weputorige) = orig(e;) and end(«) := end(e,) and say
that « is a path from orig(«) to end(w).

A simplicial complex X iscaled connected if for every pair (vg, vy) of verticesin X there exists
apath o in X such that orig(a) = vg and end(a) = vs.

6) See[G. Polya: Kombinatorische Anzahlbestimmungen fir Gruppen, Garphen und chemische Ver-
bindungen, Acta Mathematica, 68, 145-254, (1937).]
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