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8. Group Actions — Symmetric Group, Pólya’s enumeration Theorems

8.1. Let I be a finite set with card(I ) = n ∈ N+ and let n1, . . . , nr be fixed natural numbers
with n1 + · · · + nr = n . Let (I1, . . . , Ir ) be a fixed partition of I in r pairwise disjoint
subsets Ik , k = 1, . . . , r with card(Ik) = nk for each k = 1, . . . , r .

a). Show that H := {f ∈ S(I ) | f (Ik) = Ik for k = 1, . . . , r} is a subgroup of S(I ) of
order n1! · · · nr ! .

b). Let Par(I ; n1, . . . , nr) be the set of all partitions (J1, . . . , Jr) of I into pairwise dis-
joint subsets J1, . . . , Jr such that card(Jk) = nk , k = 1, . . . , r . Show that the map
ϕ : S(I ) → Par(I ; n1, . . . , nr) defined by f �→ (f (I1), . . . , f (Ir)) is surjective and the

fibres of ϕ are left cosets of H in S(I ) . Deduce that card(Par(I ; n1, . . . , nr)) = n!

n1! · · · nr ! .

c). Find card ({σ ∈ Sn | Fix(σ ) = ∅}) . (Hint : Use Sylvester’s-Sieve Formula (see Exercise 1.1).
— Remark : This is a famous problem which was first solved by Nicolas Bernoulli (1687-1759)
and later, independently, by Leonard Euler (1707-1783).)

d). For σ ∈ Sn with ord(σ ) = pm with p prime, show that card(Fix(σ )) ≡ n (mod p) .
In particular, (i) if p

∣∣n , then Fix(σ ) �= ∅ . (ii) if p
∣∣n , then p

∣∣ card(Fix(σ )) .

8.2. ( C o n j u g a c y c l a s s e s i n S(I ) ) Let I be a finite set of cardinality n ∈ N+.

a). The elements σ and ρ in S(I ) are conjugates if and only if they have the same cycle-type
(see T8.1-5)), i.e. ν(σ ) = ν(ρ) .

b). Show that σ is an even permutation if and only if ν2 + ν4 + · · · + ν2[n/2] ≡ 0 (mod 2) ,
where ν(σ ) = (ν1, . . . , νn) .

c). Show that the number of conjugacy classes in the symmetric group Sn is equal to the
number P(n) := card{(ν1, ν2, . . . , νn) ∈ Nn | 1ν1 + 2ν2 + · · · nνn = n} of partitions of n .
(Remark : The number of conjugacy classes in a group G is called the c l a s s n u m b e r of G and is
denoted by cl(G) (see also T8.2-3)). Therefore cl(S(I )) = P(n) . For small values of n , the number
of partitions P(n) of n are give in the table below :

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 .

8.3. Let I be a finite set of cardinality n ∈ N+. Let σ ∈ S(I ) , ν = ν(σ ) = (ν1, ν2, . . . , νn) ∈
Nn be the cycle-type (see T8.1-5)) of σ and let ZS(I )(σ ) := {ρ ∈ S(I ) | σρ = ρσ } denote
the centraliser of σ in S(I ) .

a). Show that ZS(I )(σ ) is a subgroup of S(I ) of index (the number of distinct left-cosets of the
subgroup ZS(I )(σ ) in S(I ) )) [S(I ) : ZS(I )(σ )] = card({ρ | ν(ρ) = (ν1, ν2, . . . , νn)}) =

n!

ν1!ν2! · · · νn! · 1ν1 2ν2 · · · nνn and is of order card(ZS(I )(σ )) = ν1!ν2! · · · νn! · 1ν1 2ν2 · · · nνn .

Deduce that the number cycles of length k in the symmetric group S(I ) is
n!

k · (n− k)!
.

b). If ρ ∈ ZS(I )(σ ) , then ρ(Fix(σ )) ⊆ Fix(σ ) .

c). If σ = 〈1, 2, · · · , k〉 is a cycle of length k , then ρ ∈ ZS(I )(σ ) if and only if ρ =
〈1, 2, · · · , k〉r τ with 0 ≤ r ≤ k and τ ∈ S(I ) with Supp(τ )∩{1, 2, . . . , k} = ∅ . Deduce that
ZS(I )(〈1, 2, · · · , n〉) = H(〈1, 2, · · · , n〉) is the subgroup of S(I ) generated by 〈1, 2, · · · , n〉 .
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d). Let p be a prime number. Then show that card({σ ∈ Sp | σp = id}) = (p − 1)! + 1 . of
the subgroup

8.4. Let n ∈ N+ .

a). Find an injective group homomorphism f : Sn → An+2 . (Hint : For σ ∈ Sn , let

σ̃ :=
{
σ, if σ is even,
σ · (n+ 1 n+ 2), if σ is odd. Then σ̃ ∈ An+2 and the map σ �→ σ̃ is an injective group

homomorphism.)

b). Find an injective group homomorphism g : Sn → A2n and deduce that every finite group
G is isomorphic to a subgroup of the alternating group Am for some m ∈ N+. (Hint : For

σ ∈ Sn , let σ # :=
{
σ(k), if 1 ≤ k ≤ n ,
σ(k − n)+ n, if n+ 1 ≤ k ≤ 2n .

Then σ # ∈ A2n and the map σ �→ σ # is an

injective group homomorphism.)

c). For σ ∈ Sn , let Pσ denote the n × n -matrix obtained from the n × n identity matrix
En by permuting its columns according as the permutation σ ; the matrix Pσ is called the
p e r m u t a t i o n m a t r i x corresponding to the permutation σ . Further, the matrix Pσ is
invertible, i.e., Pσ ∈ GLn(K) , in fact (Pσ )

−1 = Pσ−1 . Then the map ψ : Sn → GLn(K) ,
σ �→ Pσ is an injective homomorphism of groups and that σ ∈ An (resp. σ �∈ An ) if and
only if Det(ψ(σ)) = 1 (resp. Det(ψ(σ)) = −1 ).

8.5. Let G be a group and let X be a G-set. Show that

a). ( B u r n s i d e ’s F o r m u l a ) card(G) · card(X/G) = ∑
g∈G card(Fixg(X)). (Hint : Let

Y := {(g, x) ∈ G × X | gx = x}. Look at the fibres of the mappings Y → G, (g, x) �→ g and
Y → X, (g, x) �→ x. )

b). Suppose that G is finite. For g ∈ G, let n(g) = card(Fixg(X)). Show that

(1) IfG acts transitively on X then card(G) = ∑
g∈G n(g). Deduce that, if card(X) ≥ 2 andG

acts transitively onX then there exists g ∈ G such that Fixg(G) = ∅. (Hint : Use the Burnside ’s
formula. )
(2) If G acts 2-transitively on X then 2 · card(G) = ∑

g∈G n(g)
2. (Hint : Use T8.2-6)-c) and

the part (1) above. )

8.6. Let G be a finite group of order n ∈ N+ which operates on itself by the left-translation
and let λ : G → S(G) be the corresponding Cayley’s homomorphism.

a). For every g ∈ G , show that the permutation λg has exactly n/ ord(g) orbits each of
cardinality ord(g) . In particular, Sign(λg) = (−1)n−(n/ord(g)) = (−1)[G:H(g)]+|G| , where H(g)
is the cyclic subgroup of G generated by g

b). If G = Sn with n ≥ 4 , then show that the image λ(Sn) is contained in the kernel of
the group homomorphism Sign : S(Sn) → {1,−1}) . (Hint : Note that since n ≥ 4 ,
4
∣∣n! = Ord(G) . Use part a) to compute Sign(τ ) for a transpositions τ ∈ Sn .)

c). Show that the image λ(G) is not contained in the kernel of the group homomorphism
Sign : S(G) → {1,−1}) , i.e., λ(G) �⊆ A(G)(= An) if and only if n is even and that G has
an element of order 2α , where α := v2(n) (this second condition is equivalent to : a 2-Sylow
subgroup of G is cyclic and is non-trivial. For Sylow subgroups see T8.2-20).) Moreover, in this
case G has a normal subgroup of index 2 . (Hint : The kernel of the group homomorphism
Sign ◦λ : G−−−−−−−−−−−−−−−−−� λ(G)−−−−−−−−−−−−−−−−−� {1,−1} is a normal subgroup of G of index 2 .)

d). If ord(G) = 2m with m odd then show that G has a normal subgroup of index 2. (Hint :

Since 2
∣∣2m , there exists g ∈ G with ord(g) = 2 by Cauchy’s theorem (see T8.2-2)-e)-(1)). Compute

the Sign(λg) by using part a) and use c). — Remark : From this and the famous theorem of Feit-
Thompson : Every finite non-abelian simple group has even order. (See [Feit, W. and Thompson, J. :
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Solvability of groups of odd order, Pacific Journal of Mathematics, pp-775-1029, (1963).]) one easliy
proves that : If G is non-abelian and simple (i.e., G has no proper normal subgroup), then 4 divides
ord(G) . The proof of the theorem of Feit-Thompson is not easy.)

8.7. Let T be a set of transpositions in the group Sn , n ≥ 1. We associate the graph (see
T8.4) 	T to T as follows: the vertices of 	T are the numbers 1, . . . , n and two vertices i and
j with i �= j are joined by a edge if and only if the transposition 〈i, j〉 = 〈j, i〉 belong to T .
Let 	1, . . . , 	r be the connected components of 	T .
a). The transpositions in T generate the group Sn if and only if 	T is connected, i.e. if any two
vertices of 	T can be joined by the sequence of edges in 	T . The subgroup of Sn generated
by T is the product S(	1)× · · · × S(	r) ⊆ Sn .
b). If T is a generating system for the group Sn , then T has at least n− 1 elements. (Hint :

Let τ1, . . . , τm be the elements of T (may be with repeatations) with τ1 · · · τm = id . Thenm is even and
m ≥ 2

∑r

ρ=1( |	ρ | − 1) . )

c). Every generating system of Sn consisting of transpositions contain a (minimal) generating
system of Sn with n− 1 elements. (Hint : Prove this by descending induction k; induction starts at
k = n− 1: the number of trees in which the number 1 belongs to exactly k edges, is (n− 1)n−k−1

(
n−2
k−1

)
and add. — Remarks : The graphs corresponding to such a minimal generating systems are called
t r e e s . Every connected graph has a generating system which is a tree. –There are exactly nn−2

generating systems consisting n− 1 transpositions.)

d). The transpositions 〈1, 2〉 , 〈2, 3〉 , . . . , 〈n − 1, n〉 (resp. 〈1, 2〉 , 〈1, 3〉 , . . . , 〈1, n〉) form
a minimal generating system of Sn . (Hint : If a, b, c are three distinct elements, then
〈a b〉〈a c〉〈a b〉 = 〈b c〉.)

8.8. a). Let ϑ : Dn → Sn be the action homomorphism of the canonical action of the dihedral
group Dn on the set {1, 2, . . . , } . Show that the cycle-polynomial of Dn with respect to ϑ is

�(Dn) = 1
2n

∑
d|n ϕ(d)Z

n/d

d +
{

1
4 (Z

2
1 + Z2)Z

(n−2)/2
2 , if n ≡ 0 (mod 2) ,

1
2Z1Z

(n−1)/2
2 , if n ≡ 1 (mod 2) ,

where ϕ is the

Euler’s totient function.
b). Let K be a finite field of cardinality q and characteristic p > 0 and let UTp(K) =
{U = (

uij
)

1≤i,j≤p ∈ Mp(K) | uij = 0 for all j < i and uii = 1 for all i = 1, . . . , p} be the
set of all unipotent upper triangular p × p matrices over K . Find the cycle- polynomial of
UTp(K) . (Hint : Note that n := card(UTp(K)) = q(

p

2) and every element U ∈ UTp(K) , U �= Ep
has order p , since Up = Ep (use Cayley-Hamilton theorem and CharK = p ), where Ep denote the
p × p identity matrix over K . Therefore (see T8.3-2)-b)) �(UTp(K)) = 1

n

(
Zn1 + (n− 1)Zn/pp

)
.)

c). Find the cycle polynomial of the group G of symmetries of the rectangle (which is not a
square) (in the Euclidean plane R2 ). (Hint : Label the corners of the rectangle by 1, 2, 3, 4
(clockwise), where 12 is the longer side.

The symmetry group G of the rectangle consists of the following 4 permutations : id , 〈1, 3〉〈2, 4〉 (a
rotation through angle π , 〈1, 2〉〈3, 4〉 (a reflection in perpendicular axis), 〈1, 4〉〈2, 3〉 (a reflection in
parallel axis). Therefore �(G) = 1

4 (Z
4
1 + 3Z2

2) .)

d). Find the cycle polynomial of the group W of face permutations induced by the rotational
symmetries of the cube. (Hint : Show that the group W is isomorphic to the symmetric group S4

and use the table in T8.1-5)-c)-2) to conclude that �(W) = 1
24 (Z

6
1 + 3Z2

1Z
2
2 + 6Z2

1Z4 + 6Z3
2 + 8Z2

3) .)
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8.9. Let Rn be a regular n-gon in the real plane R2 , n ≥ 3 and let Y be a finite set (of
colors).

a). On the set YRn of all colourings of Rn , consider the equivalence relation ∼ : Two co-
lourings f, g ∈ YRn are said to be equivalent under ∼ , i.e., f ∼ g if there exists a ro-
tation ρ : Rn → Rn of the regular n-gon Rn such that g(v) = f (σ−1(v)) for every
v ∈ V(Rn) = (the vertex set of Rn ). The elements of the quotient set YRn/∼ are called
p a t t e r n s o f c o l o u r i n g s of Rn with respect to the rotations.

Show that the total number of patterns with at most m colours is 1
n

∑
d|n ϕ(d)m

n/d and the
number of patterns [f ] ∈ YRn such that exactly αi vertices in Rn in the colouring f have been

assigned the colour i is
1

n

∑
d| gcd(α1,...,αm)

ϕ(d)
(n/d)!

(α1/d)! · · · (αm/d)! . (If gcd(α1, . . . , αm) = 1 ,

then this number is
(n− 1)!
α1! · · ·αm!

; for a regular 6-gon, there are 1
6 (2

6+23+2·22+2·21) = 14 patterns with

at most 2 colours (and 12 patterns with exactly 2 colours). — Hint : For each colour i ∈ Y , consider
the weight γ (i) := Ti , where Ti , i ∈ Y , are indeterminates over Q ; therefore we have the weight
function γ : YRn → Q[T1, . . . , Tm] defined by f �→ γ (f ) := T

α1
1 · · · T αmm , where αi is the number

of vertices in the colouring f has assigned the colour i , i.e., αi := card({v ∈ V (Rn) | f (v) = i})
for each i = 1, . . . , m . Note that if f ∼ g for f, g ∈ YRn , then γ (f ) = γ (g) and hence we have
a well-defined weight function γ : YRn/∼ −−−−−−−−−−−−−−−−−� Q[T1, . . . , Tm] , [f ] �→ γ (f ) . Now, by T8.3-3)-b)

the coefficient of T α1
1 · · · T αmm in the polynomial �(G)(π1, . . . , πn) = 1

n

∑
d|n
ϕ(d)(T d1 +· · ·+T dm)n/d is

the number of patterns [f ] ∈ YRn such that exactly αi vertices in Rn in the colouring f has assigned

the colour i , where �(G)
(
= �(Zn) = 1

n

∑
d|n ϕ(d)Z

n/d

d

)
(see T8.3-1)-c)) is the cycle-polynomial of

the group of rotations G of the regular n-gon Rn with respect to its natural action on the vertex set
V(Rn) = {v1, . . . , vn} and πj := ∑m

i=1 T
j

1 + · · · + T jm , for j = 1, . . . , n (see also T8.3). Further
by using the polynomial theorem (since α1 + · · · + αm = n and α = gcd(α1, . . . αm) ) show that this

number is
1
n

∑
d| gcd(α1,...,αm)

ϕ(d)
(n/d)!

(α1/d)! · · · (αm/d)! .)

b). Find the number of different patterns of necklaces consisting of n pearls of m distinct
colours of which exactly αi pearls are of the colour i for every i = 1 . . . , m , α1+· · ·+αm = n ,
when (1) only rotational symmetries (of a regular n-gon Rn with n vertices) are considered;
and (2) both rotational and reflectional symmetries (of a regular n-gon Rn with n vertices)
are considered. (Hint : (1) is similar to a) and for (2) use Exercise 8.8-a). For n = 6 and m = 2 ,
there are 7 + (3 · 8)/4 = 13 patterns with at most 2 colours and 11 patterns with exactly 2 colours.
— Remark : For necklaces which are not closed, one can give a much simpler solution to this problem!)

c). Find the number of inequivalent way of seating 4 men and 2 women at a reactangular
dining table if seats are situated as in the figure below :
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d). Show that the number patterns of colourings of the sides of the cube (in R3 ) using at
most m colours if the colour i is used exactly αi times is the coefficient T α1

1 · · · T αmm in the
polynomial �(W)(π1, . . . , πn) , where �(W) = 1

24 (Z
6
1 +3Z2

1Z
2
2 +6Z2

1Z4 +6Z3
2 +8Z2

3) (see

Exercise 8.8-d)) and πj = ∑m
i=1 T

j

i , j = 1, 2, 3, 4 . In particular, the total number of patterns
is m2

24 (m
4 + 3m2 + 12m+ 8) ; for m = 2 this number is 10 (resp. is 8 if both the colours are

used). (1) In how many ways (with reswpct to the rotational symmetries of the cube) can the
facses of the cube be painted red, blue or gree, if each colour must be used at least once? (Since
m = 3 and hence the total number of ways is �(W)(3, 3, 3, 3) = 57 and with at most two colours
�(W)(2, 2, 2, 2) = 10 and hence the required the number is 57 − 3 · 10 = 27 .) (2) Among 57 total
patterns in (1), how many involve 0 red, (resp. 1 red, 2 red, . . . , 6 red) faces? (Give weights
T , 1, 1 to the colours red, blue, green, respectively, then the cofeeicint of T α , α = 0, 1, 2, 3, 4, 5, 6 is
the required answer.) (Remark : Let the colours are denoted by natural numbers i ∈ N and give weight

T i ( T indeterminate over Q ) to the colour i ∈ N . Then πj =
∑
i∈N

(T i)j =
∑
i∈N

T ij = 1
1 − T j

and

the coefficient of T α in the power series �(W)

(
1

1 − T
,

1
1 − T 2 ,

1
1 − T 3 ,

1
1 − T 4

)
is the number of

distinct numbering (colouring) with natural numbers such that the total sum is α , α ∈ N . )

8.10. Let 	 = (V ,E) be a graph with the set of n- vertices V = {1, . . . , n} and the set of
edges E ⊆ P2({1, . . . , n}) . Two graphs 	 = (V ,E) and 	′ = (V ,E′) with the same set of
vertices are said to be i s o m o r p h i c or e q u i v a l e n t if there exists a permutation σ ∈ Sn

such that the map (induced by σ ) E → E′ , (i, j) �→ (σ (i), σ (j) is bijective; in this case we
write 	 = (V ,E) ∼=σ 	 = (V ,E′) . Then the relation “isomorphism of graphs” (on the set
of all graphs with the same vertex set {1, . . . , n} ) is an equivalence relation; its equivalence
classes are called the i s o m o r p h i s m c l a s s e s of graphs with the vertex set {1, . . . , n} .

a). On the set P2({1, . . . , n}) the permutation group Sn acts in a natural way (see T8.2-9)-c)
and hence acts naturally on the set {0, 1}P2({1,...,n}) of indicators functions. Show that there is
a bijection from the isomorphism classes of of graphs with the vertex set {1, . . . , n} onto the
quotient set {0, 1}P2({1,...,n})/Sn . (Hint : A subset (edge-set) of P2({1, . . . , n}) is identified with
its indicator function in {0, 1}P2({1,...,n}) .)

b). Suppose that we are given two colours 0 with weight 1 and 1 with weight T ( an
indeterminate over Q ). Show that the number of isomorphism classes of the graphs with
vertex set {1, . . . , n} and α edges, α ∈ N is the coefficient of T α in the polynomial
�n(1 + T , 1 + T 2, . . . , 1 + T n) , where �n is the cycle-polynomial of the symmetric group
Sn with respect to the natural action of Sn on the set P2({1, . . . , n}) . Further, show
that the total number of isomorphism classes of the graphs with vertex set {1, . . . , n} is
�n(2, . . . , 2) . For n = 4 , card(P2({1, . . . , n})) = (4

2

) = 6 , and (since the natural action
of S4 on P2({1, . . . , n}) is transitive) the cycle-polynomial of with respect to this action is
�4 = 1

24

(
Z6

1 + 9Z2
1Z

2
2 + 6Z2Z4 + 8Z2

3

)
(see table (2) in T8.2- 5)). In particular, there are

�4(2, 2, 2, 2) = 11 distinct isomorphism classes of graphs with 4 vertices. Give a represen-
tative in each of this isomorphism class.

c). Compute the number of isomorphism classes of the graphs with n vertices for n =
5, 6, 7, 8, 9, 10 . (Remarks : For n = 10 , there are 12005168 isomorphism classes of
graphs with 10 vertices. — For more examples of this type see the book : [Kerber, A.: Algebraic
Combonatorics Via Finite Group Actions, Manheim, 1991].)

Below one can see Class-Notes and (simple) test-exercises.
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Class-Notes/Test-Exercises

T8.1. ( S y m m e t r i c g r o u p ) For a (finite) set I , let S(I ) := {σ ∈ I I | σ is bijective } . Then the
composition ◦ of maps is a binary operation on S(I ) and with respect to this binary operation S(I ) is
a group; the neutral (identity) element in this group is the identity map idI and for σ ∈ S(I ) the inverse
map of σ (which exists since σ is bijective) is the inverse of the element σ in the group S(I ) ; for
σ, ρ ∈ S(I ) , we write σρ for the composition σ ◦ρ . This group (S(I ), ◦) is called the s y m m e t r i c
g r o u p or p e r m u t a t i o n g r o u p on the set I ; its elements are called p e r m u t a t i o n s o n I . For
n ∈ N+, we put Sn := S({1, 2, . . . , n}) .

1). An arbitrary finite group G is a subgroup of a permutation group. More presicely,

a). C a y l e y ’s T h e o r e m . Let G be a group. For g ∈ G , let λg : G → G , x �→ gx denote
the left-multiplication on G by g . Then the map λ : G → S(G) , g �→ λg is an injective group
homomorphism. This group homomorphism λ is called the C a y l e y ’s r e p r e s e n t a t i o n 1) of G .
(Proof : First note that λg is bijective, i.e. λg ∈ S(I ) , in fact, the left-multiplication λg−1 is the inverse
map of λg , since λgλg−1 = λgg−1 = λe = idG = λg−1λg . Further, for g, g′ ∈ G and x ∈ G , we have
λgg′(x) = (gg′)x = g(g′x) = λg(λg′(x)) = (λgλg′)(x) and hence λ(gg′) = λgg′ = λgλg′ = λ(g)λ(g′)
which proves that λ is a group homomorphism. Finally, if λ(g) = λ(g′) for some g, g′ ∈ G , then
g = ge = λ(g)(e) = λ(g′)(e) = g′e = g′ and hence λ is injective.)

b). If I = {i} , then S(I ) = {idI } ; if I = {i, j} with i �= j , then S(I ) = {idI , σ } where σ(i) = j ; if
card(I ) ≥ 3 , then S(I ) is not abelian, in fact, the center Z(S(I )) = {ρ ∈ S(I ) | σρ = ρσ } = {idI } .
(Proof : For σ ∈ S(I ) with σ �= idI . We shall show that σ �∈ Z(S(I )) . Choose i ∈ I with
j := σ(i) �= i (since σ �= idI ). Further, since card(I ) ≥ 3 , there exists k ∈ I \ {i, j} . Let τ ∈ S(I )
be defined by τ(j) = k , τ(k) = j and τ(a) = a for all a ∈ I \ {j, k} . Then στ(i) = σ(i) = j and
τσ (i) = τ(j) = k �= j and hence στ �= τσ . This proves that σ �∈ Z(S(I )) .)

c). Let I and I ′ be two sets with card(I ) = card(I ′) , i.e. there is a bijective map f : I → I ′ . Then
the map �f : S(I ) → S(I ′) defined by σ �→ f σf −1 is an isomorphism of groups. In particular, if I
is a set with card(I ) = n , then the groups S(I ) and Sn are isomorphic.

d). The order of the symmetric group S(I ) is card(I )! .

2). ( S u p p o r t , f i x e d p o i n t s a n d o r b i t s o f a p e r m u t a t i o n ) For a permutation
σ ∈ S(I ) , the subset Supp(σ ) := {i ∈ I | σ(i) �= i} is called the s u p p o r t of σ and the subset
Fix(σ ) := {i ∈ I | σ(i) = i} is called the f i x e d set of σ .

a). σ(Supp(σ )) ⊆ Supp(σ ) for every σ ∈ Sn . Further, two permutations σ, ρ ∈ S(I ) are called
d i s j o i n t if Supp(σ )Supp(ρ) = ∅ ; in this case they commute, i.e., σρ = ρσ and Supp(σρ) =
Supp(σ ) ∪ Supp(ρ) . If σ1, . . . , σm ∈ S(I ) are permutations with pairwise disjoint supports, i.e.,
Supp(σi) ∩ Supp(σj ) = ∅ for every i �= j . Then σ1, . . . , σm are pairwise commutative, i.e., σiσj =
σjσi for all 1 ≤ i, j ≤ m .

b). ( O r b i t s o f a p e r m u t a t i o n ) For a fixed i ∈ I , the set Oσ (i) := {σm(i) | m ∈ Z} is called the
o r b i t o f i u n d e r σ . (1) For i, j ∈ I , show that either Oσ (i) = Oσ (j) or Oσ (i) ∩ Oσ (j) = ∅ .
Therefore the orbits of σ form a partition of I . (2) Let s be the smallest positive natural number
such that i0 := i, i1 := σ(i0), i2 := σ(i1) = σ 2(i0), . . . , is−1 := σ(is−2) = σ 2(is−3) = · · · = σ s−1(i0)

are distinct, then σ s(i0) = i0 = i and Oσ (i) = {i0, i1, . . . , is−1} = {ρ(i) | ρ ∈ H(σ )} , where
H(σ ) := {σ r | r ∈ Z} is the (cyclic) subgroup of S(I ) generated by σ . (Proof : From σ s(i) = σ k(i)

with 0 ≤ k < s , it follows that σ s−k(i) = σ−k(σ s(i)) = σ−k(σ k(i)) = i = i0 and hence k = 0 by the
choice of s , since 0 < s−k ≤ s . For the last equality, let σ r ∈ H(σ ) and r = qs+k with 0 ≤ k < s ,
q ∈ Z . Then σ r(i) = σ k((σ s)(i)) = σ k(i) = ik .)

c). A permutation σ ∈ S(I ) is called a c y c l e if has exactly one orbit with cardinality ≥ 2 . In
this case its support Supp(σ ) = O(i) = {i = i0, i1, . . . , is−1} for some i ∈ I ; the cardinality s =
card(O(i)) = card(Supp(σ )) is called the l e n g t h of σ , denoted by �(σ ) . Further, if σ �= idI , then
s > 0 and σ is denoted by 〈i0, i1, · · · , is−1〉 .

1) This is named after English mathematician Arthur Cayley (1821-1895).
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Note that 〈i0, i1, · · · , is−1〉 = 〈ik, ik+1, · · · , is−1, i0, · · · , ik−1〉 for all k = 1, . . . , s − 1 . Further,
the order of the cycle 〈i0, i1, · · · , is−1〉 in the group S(I ) is its length s and its inverse σ−1 =
〈is−1, is−2, · · · , i1, i0〉 is also cycle of length s .

The cycles of length 2 are called t r a n s p o s i t i o n s . A transposition 〈i, j〉 ∈ S(I ) , i �= j , which
interchange elements i and j and fix the remaining elements of I . A cycle 〈i0, i1, . . . , ik−1〉 of length
k is the product of k − 1 transpositions : 〈i0, i1, . . . , ik−1〉 = 〈i0, i1〉 〈i1, i2〉 · · · 〈ik−2, ik−1〉 .

3). ( C a n o n i c a l d e c o m p o s i t i o n o f a p e r m u t a t i o n ) Let I be a finite set. Then every
permutation σ ∈ S(I ) has a representation σ = σ1 · · · σr with cycles σ1, . . . , σr ∈ S(I ) of lengths
≥ 2 and the supports are pairwise disjoint. Moreover, this representation is unique upto the order of
the factors. (Remark : For the proof of the uniqueness we need that the supports of the cycles
σ1, . . . , σr are the orbits of σ contain mor than one element. For example, the permutation σ =(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
17 3 11 5 4 2 19 12 9 15 7 1 10 18 20 14 8 16 6 13

)
∈ S20 has the

canonical cycle decomposition 〈1, 17, 8, 12〉 〈2, 3, 11, 7, 19, 6〉 〈4, 5〉 〈10, 15, 20, 13〉 〈14, 18, 16〉 . The
support Supp(σ ) = {1, . . . , 20} \ {9}.)
a). The order of σ is : Ord σ = lcm (Ord σ1 , . . . ,Ord σr) = lcm

(
�(σ1) , . . . , �(σr)

)
. The above

permutation σ ∈ S20 has the order Ord σ = lcm (4, 6, 2, 4, 3) = 12 . (Proof : From the cycle
decomposition σ = σ1 · · · σr , it follows that σm = σm1 · · · σmr , m ∈ Z , since σiσj = σjσi for all
1 ≤ i, j ≤ r , i �= j . Therefore only to note that the order of a cycle is equal to its length.)

b). The canonical cycle decomposition of the inverse σ−1 of σ is σ−1 = σ−1
r · · · σ−1

1 = σ−1
1 · · · σ−1

r ,
where σ = σ1 · · · σr is the canonical decomposition of σ and for a cycle 〈i0, . . . , ik−1〉 of length
k , the inverse 〈i0, . . . , ik−1〉−1 = 〈ik−1, ik−2, . . . , i0〉 = 〈i0, ik−1, . . . , i1〉 is again a cycle of length
k . The canonical decomposition of the inverse σ−1 of the above permutation σ ∈ S20 , is σ−1 =
〈1, 12, 8, 17〉 〈2, 6, 19, 7, 11, 3〉 〈4, 5〉 〈10, 13, 20, 15〉 〈14, 16, 18〉 .

c). Let I be a finite set. Then every permutation σ on I has a representation as a product of trans-
positions. (Proof : Immediate from the fact that every permutation σ ∈ S(I ) is a product of cycles.
— Remark : One can also prove this directly : Let σ ∈ S(I ) , σ �= id and let σ(i0) = j0 �= i0 . Then
σ ′ := 〈i0, j0〉 σ is a permutation with i0 as a fixed point. Then by induction on card(I ) the permutation
σ ′ |(I \ {i0}) ∈ S(I \ {i0}) has a representation σ ′ = 〈i1, j1〉 · · · 〈is , js〉 as a product of transpositions
and hence σ = 〈i0, j0〉σ ′ = 〈i0, j0〉 〈i1, j1〉 · · · 〈is , js〉 . The representation of a permutation as a
product of transpositions (in contrast with the canonical cycle-decomposition) is naturally not unique.
For example, each such a representation can be extended by using idI = ττ with any transposition
τ . However, we shalll see below that the parity of the number of transpositions in any representation
of σ into transpositions is uniquely determined. We have noted above by using the canonical cycle
decomposition one can get such a representation into exactly n− s transpositions, where n : card(I )
and s is the number of orbits of σ (singleton orbits are also counted!).)

d). A bijective map f : I → I ′ induce (see 1)-c)) an isomorphism of groups �f : S(I ) → S(I ′) mit
σ �→ f σf −1. The k-cycle 〈a1, . . . , ak〉 is mapped onto the k-cycle 〈f (a1) , . . . , f (ak)〉 . Therefore
(if I is finite), the cycle decomposition of f σf −1 is obtained by replacing the cycles in the cycle
decomposition of σ by its f - images. In particular, for σ, ρ ∈ S(I ) , the cycle decomposition of the
permutation ρσρ−1 is obtained replacing the elements in the cycles in the cycle decomposition of the
permutation σ by their ρ-images.

4). (S ign of a pe rmuta t i on ) Let σ be a permutation on the set I with cardinality n ∈ N+ and let s
be the number of orbits of σ . Then the s igna tu r e of σ is defined by the formula : Sign σ := (−1)n−s .
The permutation σ is called e v e n if Sign σ = 1 , otherwise it is called o d d . If I1, . . . , Is are orbits
of σ , then n− s = ∑s

k=1 |Ik| − s = ∑s

k=1

(|Ik| − 1
)

and hence Sign σ = ∏s

k=1(−1)|Ik |−1 . Therefore
note that : Sign σ = (−1)g , where g is the number of orbits of σ with even-cardinality.
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a). The identity permutation is even. A transposition is odd; more generally, a cycle of length k has
the signature (−1)k−1 . The permutation σ ∈ S20 in 3) above is even, since it has exactly 4 orbits of
even-cardinality.

b). The following theorem is the most basic : Let I be a finite set. suppose that the permutation σ ∈
S(I ) is a product σ = τ1 · · · τk of k transpositions τ1, . . . , τk . Then Sign σ = (−1)k . In particular,
the number of factors int a representation of a even (resp. odd) permutation as a product of transpositions
is always even (resp. odd). (Proof : (by induction on k ). It is enough to prove
that σ and τσ have different signatures for an arbitrary transposition τ . For this it is enough to
show that the number of orbits of σ and τσ differ by 1 . Let τ = 〈i, j〉 . Either both i and j

are contained in the same orbit or different orbit of σ , we shall consider these two cases separately.
Case 1 : Suppose that both i and j lie in the same orbit of σ . Then the canonical cycle decomposition
of σ is of the form σ = 〈i0, . . . , ir , . . . , is−1〉 · · · with i0 = i and ir = j and hence τσ =
〈i0, . . . , ir−1〉〈ir , . . . , is−1〉 · · · , and the number of orbits of τσ is 1 more than that of σ . Case 2 :
Suppose that i and j lie in the different orbits of σ . Then the canonical cycle decomposition of
σ is of the form σ = 〈i0, . . . , ir−1〉〈j0, . . . , js−1〉 · · · with i0 = i and j0 = j and hence τσ =
〈i0, . . . , ir−1, j0, . . . , js−1〉 · · · . and the number of orbits of τσ is 1 less than that of σ . )

c). Let I be a finite set. Then the map Sign : S(I ) −→ {1,−1} is a group homomorphism, i.e.,
for σ, τ ∈ S(I ) , we have Sign στ = (Sign σ)(Sign τ) . (Proof : Write σ = σ1 · · · σs
and τ = τ1 · · · τt as product of transpositions σ1, . . . , σs resp. τ1, . . . , τt and from the representation
στ = σ1 · · · σsτ1 · · · τt and b) above we get Sign στ = (−1)s+t = (−1)s(−1)t = (Sign σ)(Sign τ) .)

d). ( T h e a l t e r n a t i n g g r o u p ) Let I be a finite set. Then the subgroup of S(I ) consisting of
even permutations of I is called the a l t e r n a t i n g g r o u p on I and is denoted by A(I ) . — The
alternating group on the set {1, . . . , n} is simply denoted by An . Note that A(I ) is the kernel of the
group homomorphism Sign and hence is normal in S(I ) . Further, if n := card(I ) ≥ 2 , then the index
of A(I ) in S(I ) is 2 . The two cosets of A(I ) in S(I ) is the set A(I ) of even permutations and
the set S(I ) \ A(I ) = τA(I ) = A(I )τ of all odd permutations, where τ ∈ S(I ) is an arbitrary odd
permutation (e.g., a transposition) and hence Ord A(I ) = n!/2 (and the number of odd permutations is
n!/2 ). For n ≥ 4 , show that the alternating group An is not abelian.

e). ( I n v e r s i o n s o f a p e r m u t a t i o n ) In the case I = {1, . . . , n} the signature of a permutation
σ ∈ S(I ) = Sn can also be computed by using the well-known inversions. For σ ∈ S(I ) a pair
(i, j) ∈ I × I is called a i n v e r s i o n of σ if i < j , but σ(i) > σ(j) . The number of inversions
of σ is denoted by z(σ ) . For example, (1) The transposition 〈i, j〉 ∈ Sn , i < j , has the inversions
(i, i + 1) , . . . , (i, j) ; (i + 1, j) , . . . , (j − 1, j) and hence z(〈i, j〉) = 2(j − i) − 1 . (2) In the
permutation σ := (1 2 ... n

n n−1 ...1

) ∈ Sn all the pairs (i, j) with 1 ≤ i < j ≤ n inversions and hence

z(σ ) = (
n

2

)
. (3) The permutation σ := (1 2 3 4 5

3 1 5 2 4

) ∈ S5 has the inversions (1, 2) , (1, 4) , (3, 4) and
(3, 5) and hence z(σ ) = 4 .

f). Let σ ∈ Sn be a permutation. Then Sign σ = (−1)z(σ ) . (Proof : Since by example (1) in e) above
a transposition has an odd number of inversions, it is enough to prove that : For σ, τ ∈ Sn , (−1)z(στ) =
(−1)z(σ ) (−1)z(τ ) . For σ ∈ Sn , clearly (−1)z(σ ) =

∏
1≤i<j≤n

Sign
(
σ(j)−σ(i)) . Therefore (−1)z(στ) =∏

1≤i<j≤n
Sign

(
σ(τ(j)) − σ(τ(i))

) = (−1)z(τ )
∏

1≤r<s≤n
Sign

(
σ(s) − σ(r)

) = (−1)z(τ ) (−1)z(σ ) . The

second equality follows from the fact that exactly there are z(τ ) pairs
(
τ(i) , τ (j)

)
, 1 ≤ i < j ≤ n

such that their components are interchanged and for this we need to consider the set of all pairs (r, s) ,
1 ≤ r < s ≤ n .)

g). By f) the sign of the permutation σ ∈ Sn in the Example e)-(2) is Sign σ = (−1)(
n
2) . This also

follows from the canonical cycle decomposition σ = 〈1, n〉〈2, n− 1〉 . . . 〈 [n/2] , n+ 1 − [n/2] 〉 is the

product of [n/2] transpositions. Therefore (−1)
[
n
2

]
= (−1)(

n
2) =

{ 1, if n ≡ 0, 1 mod 4 ,
−1, if n ≡ 2, 3 mod 4 .

h). Let I be a set with more than two elements. Then the center of the permutation group S(I ) is
trivial. If σ ∈ S(I ) , σ �= id , σ(a) �= a and τ is a transposition 〈σ(a), c〉 with c /∈ {a, σ (a)} , then
τστ−1 maps the element a onto c and hence τστ−1 �= σ and σ does not commute with τ .

i). For the following permutations compute the number of inversions and the sign.
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(i). The permutation i �→ n− i + 1 in Sn. (ii).
(

1 2 . . . n n+ 1 . . . 2n
1 3 . . . 2n− 1 2 . . . 2n

)
∈ S2n .

(iii).
(

1 2 . . . n n+ 1 . . . 2n
2 4 . . . 2n 1 . . . 2n− 1

)
∈ S2n .

(iv).
(

1 . . . n− r + 1 n− r + 2 . . . n

r . . . n 1 . . . r − 1

)
∈ Sn, 1 ≤ r ≤ n . (Ans : (−1)(r−1)(n+1).)

(v).
(

1 2 3 4 5 6 . . . 2n
1 2n 3 2(n− 1) 5 2(n− 2) . . . 2

)
∈ S2n .

(vi). For a subset J ⊆ {1, . . . , n} with J = {j1, . . . , jm} , j1 < · · · < jm , let σJ be the permutation

σJ =
(

1 . . . m m+ 1 . . . n

j1 . . . jm i1 . . . in−m

)
∈ Sn ,

where the numbers i1 < · · · < in−m are the elements of the complement of J in {1, . . . , n}. (Hint : The

number of variations of σJ is z(σJ ) =
(∑m

k=1 jk

)
− (

m+1
2

)
and hence Sign (σJ ) = (−1)z(σJ ) . )

(vii). Let σ resp. τ be permutations of the finite sets I resp. J . Compute the sign of the permutation
σ × τ : (i, j) �→ (σ i, τ j) of I × J (in terms of Sign σ, Sign τ and m := |I |, n := |J |).
j). (i). A subgroup of the permutation group Sn which contain an odd permutation contains equal number
of even and odd permutations. (ii). A permutation σ ∈ Sn which is of odd order is an even permutation.
(iii). The square σ 2 of a permutation σ ∈ Sn is an even permutation. (iv). Let σ = 〈i0, . . . , ik−1〉 be a
cycle of length k ≥ 2. For whichm ∈ Z, σm is a cycle of length k ? (v). Let σ ∈ Sn andm ∈ Z. Every
orbit of σ of length k decomposes into ggT (k,m) orbits of the length k/ gcd (k,m) of σm. (vi). Let I
be a finite set. The inverse σ−1 of a permutation σ ∈ S(I ) has the same orbits and same sign as those
of σ . (vii). Let m = p

α1
1 · · ·pαrr be the canonical prime factorisation of m ∈ N∗. Then the permutation

group Sn contain an element of order m if and only if n ≥ p
α1
1 + · · · + pαrr . For which n ∈ N there

exists an element of order 3000 (resp. 3001) in the group Sn? (viii). If σ ∈ Sn, n ∈ N+ has s
orbits, then σ can be represented as a product of n − s transpositions and cannot be represented as a
product of less than n− s transpositions.

k). (i). For n ≥ 2 , Sign : Sn → {−1, 1} is the only non-trivial group homomorphism. (Hint : 〈a b〉
and 〈c d〉 be two transpositions Sn . If σ ∈ Sn be an arbitrary permutation with a �→ c, b �→ d ,
then σ 〈a b〉σ−1 = 〈c d〉 and so every homomorphism ϕ : Sn → {1,−1} have the same value on all
transpositions. If this value is 1, then ϕ = id; if it is −1, then ϕ = Sign.) (ii). An is the commutator
Sn. (iii). Using the simplicity of the group An, n ≥ 5, prove that the group An is the only non-trivial
normal subgroup in the group Sn for n ≥ 5. (iv). The groups A4 and V4 are the only non-trivial normal
subgroups in S4. (v). The group V4 is the only non-trivial normal subgroup in A4.

l). (i). The cycles 〈1, 2〉 , 〈2, . . . , n〉 generate the group Sn , n ≥ 2. (Hint : Use Exercise 8.7-d)) (ii).
The cycles 〈1, 2〉 , 〈1, 2, . . . , n〉 generate the group Sn , n ≥ 2. (Hint : Use Exercise 8.7-d)) (iii).
〈1, n〉, 〈1, . . . , n〉 generate the group Sn, n ≥ 2. (Hint : Use Exercise 8.7-d))

5). ( C y c l e - t y p e o f a p e r m u t a t i o n ) Let I be a finite set with card(I ) = n and let σ ∈ S(I ) .
For k = 1, . . . , n , let νk is the number of cycles of length k in the cycle decomposition of σ . Then
the n-tuple ν(σ ) := (ν1, . . . , νn) is called the c y c l e - t y p e of σ .

a). The cycle type of the cycle of length k is (n − k, 0, . . . , 1, 0, . . . , 0) , where 1 is at the k-place.
In particular, the cycle type of the n-cycle in Sn is ν(〈1, 2, · · · , n〉) = (0, 0, . . . , 0, 1) .

b). For a permutation σ ∈ S(I ) , show that ν(σ−1) = ν(σ ) .

c). The cycle structure and cycle types in the groups S3 , S4 , A4 , S5 , A5 .

(1) The group S3 :

Cycle type Cycle Structure Number Order Parity
3e1 = (3, 0, 0) id 1 1 even
e1 + e2 = (1, 1, 0) 〈1, 2〉 3 = 3×2

2 2 odd
e3 = (0, 0, 1) 〈1, 2, 3〉 2 = 3×2×1

3 3 even
6 = card(S3)

D. P. Patil / Exercise Set 8 dm07-e08 ; April 17, 2007 ; 2:51 p.m. 62



8.10 MA-217 Discrete Mathematics / January-April 2007 8. Group Actions

(2) The group S4 :

Cycle type Cycle Structure Number Order Parity
4e1 = (4, 0, 0, 0) id 1 1 even
2e1 + e2 = (2, 1, 0, 0) 〈1, 2〉 6 = 4×3

2 2 odd
e1 + e3 = (1, 0, 1, 0) 〈1, 2, 3〉 8 = 4×3×2

3 3 even
e4 = (0, 0, 0, 1) 〈1, 2, 3, 4〉 6 = 4×3×2×1

4 4 odd
2e2 = (0, 2, 0, 0) 〈1, 2〉〈3, 4〉 3 = 1

2

( 4×3
2 × 2×1

2

)
2 even

24 = card(S4)

(3) The group A4 :

Cycle type Cycle Structure Number Order Parity
4e1 = (4, 0, 0, 0) id 1 1 even
e1 + e3 = (0, 1, 1, 0) 〈1, 2, 3〉 8 = 4×3×2

3 3 even
2e2 = (0, 2, 0, 0) 〈1, 2〉〈3, 4〉 3 = 1

2

( 4×3
2 × 2×1

2

)
2 even

12 = card(A4)

(4) The group S5 :

Cycle type Cycle Structure Number Order Parity
5e1 = (4, 0, 0, 0, 0) id 1 1 even
3e1 + e2 = (3, 1, 0, 0, 0) 〈1, 2〉 10 = 5×4

2 2 odd
2e1 + e3 = (2, 0, 1, 0, 0) 〈1, 2, 3〉 20 = 5×4×3

3 3 even
e1 + e4 = (1, 0, 0, 1, 0) 〈1, 2, 3, 4〉 30 = 5×4×3×2

4 4 odd
e5 = (0, 0, 0, 0, 1) 〈1, 2, 3, 4, 5〉 24 = 5×4×3×2×1

5 5 even

e1 + 2e2 = (1, 2, 0, 0, 0) 〈1, 2〉〈3, 4〉 15 = 1
2

(
5×4

2 × 3×2
2

)
2 even

e2 + e3 = (0, 1, 1, 0, 0) 〈1, 2, 3〉〈4, 5〉 20 = 5×4×3×2
4 64 odd

120 = card(S5)

(5) The group A5 :

Cycle type Cycle Structure Number Order Parity
5e1 = (4, 0, 0, 0, 0) id 1 1 even
2e1 + e3 = (2, 0, 1, 0, 0) 〈1, 2, 3〉 20 = 5×4×3

3 3 even
e5 = (0, 0, 0, 0, 1) 〈1, 2, 3, 4, 5〉 24 = 5×4×3×2×1

5 5 even

e1 + 2e2 = (1, 2, 0, 0, 0) 〈1, 2〉〈3, 4〉 15 = 1
2

(
5×4

2 × 3×2
2

)
2 even

60 = card(A5)

T8.2. ( O p e r a t i o n s ( - - a c t i o n s ) o f G r o u p s o n s e t s - - - a c t i o n h o m o m o r p h i s m s )
LetG be a (multiplicative) group with the identity element e. An o p e r a t i o n or a c t i o n ofG on a set
X is a mapG×X → X (called an o p e r a t i o n m a p or a c t i o n m a p ) and denoted by (g, x) �→ gx

such that for all g, h ∈ G and for all x ∈ X, we have : (1) ex = x (2) (gh)x = g(hx).

For a fixed g ∈ G, the map ϑg : X → X defined by x �→ gx is called the o p e r a t i o n o f g o n
X . Then ϑe = idX and ϑgh = ϑgϑh by the conditions (1) and (2) above, respectively. In particular, for
every g ∈ G, the map ϑg is a permutation of X and (ϑg)−1 = ϑg−1 . Therefore the map ϑ : G → S(X)
defined by ϑ(g) := ϑg is a group homomorphism. This group homomorphism is called the a c t i o n
h o m o m o r p h i s m of the action ofG on X. Conversely, if ϑ : G → S(X) is a group homomorphism
then the map G×X → X defined by (g, x) �→ ϑ(g)(x) gives an operation on X.

A set X with an action of a group G is called a G - s e t ; the action homomorphism ϑ : G → S(X) is
called the a c t i o n h o m o m o r p h i s m of the G- set X.
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1). ( O r b i t s a n d i s o t r o p y s u b g r o u p s - - S t a b i l i z e r s ) Let G be a group acting on a set X.

a). The operation of G on X defines an equivalence relation o X : For x, y ∈ X, x ∼G y if and only if
there exists g ∈ G with gx = y.

b). The equivalence class of x ∈ X under ∼G is denoted byGx := {gx | g ∈ G} and is called the o r b i t
of x. The quotient set of all equivalence classes of the relation ∼G is denoted by X/G. We have the
canonical surjective map X → X/G, x �→ Gx .

c). For x ∈ X, the subset Gx := {g ∈ G | gx = x} is a subgroup of G. This subgroup is called the
i s o t r o p y g r o u p or s t a b i l i z e r of x.

d). For x ∈ X, the fibres of the cannonical surjective map G → Gx , g �→ gx are the left-cosets of Gx

in G. In particular : ( O r b i t - S t a b i l i s e r t h e o r e m ) card(Gx) = [G : Gx] , i.e., the cardinality of
the orbitGx of x is the index [G : Gx] of the isotropy subgroup of x inG and in particular, ifG is finite
then card(Gx) divides the order of the group G.

e). For g ∈ G and x ∈ X, Ggx = gGxg
−1. i.e., Isotropy subgroups of the elements in the same orbit

are conjugate subgroups in G.

f). An element x ∈ X is called a f i x e d or i n v a r i a n t e l e m e n t with respect to the element g ∈ G
if gx = x. The set of fixed elements with respect to g ∈ G is denoted by Fixg(X). If E ⊆ G then we put
FixE(X) := ∩g∈E Fixg(X). The elements of FixG(X) are called f i x e d e l e m e n t s of the operation of
G on X. An element x ∈ X belongs to FixG(X) if and only if Gx = G.

g). Let V be a n-dimensional vector space over a fieldK , n ∈ N+ and letG := AutK(V ) = GLK(V ) be
the automorphism group of V . In each of the following examples show thatG acts on the setX with the
action homomorphism ϑ : G → S(X) . For x ∈ X , describe the orbit Gx of x underG geometrically
(whenever possible) and find the isotropy subgroup Gx at x.

(i). LetX = V \ {0} and let ϑ : G → S(V ) be defined by ϑ(f )(v) := f (v) for f ∈ G and v ∈ V \ {0}.
(ii). Let X = B := {(v1, . . . , vn) ∈ V n | v1, . . . , vn is a basis of V } and let ϑ : G → S(B) be defined
by ϑ(f )((v1, . . . , vn)) := (f (v1), . . . , f (vn)) for f ∈ G and (v1, . . . , vn) ∈ B.

(iii). Let r ∈ N, r ≤ n and let Gr (V ) be the set of r-dimensional subspaces of V . Let X = Gr (V ) and
let ϑ : G → S(Gr (V )) be defined by ϑ(g)(W) := g(W) for g ∈ G and W ∈ Gr (V ).

(iv). Let F be the set of all flags {(0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V )}, where Vi is a subspace of
V, for 0 ≤ i ≤ n. Let X = F and let ϑ : G → S(F) be defined by (V0 ⊂ V1 ⊂ · · · ⊂ Vn) �→
(g(V0) ⊂ g(V1) ⊂ · · · ⊂ g(Vn)) for g ∈ G and (V0 ⊂ V1 ⊂ · · · ⊂ Vn) ∈ F.

(v). Let X = V ∗ := Hom(V ,K) and let ϑ : G → S(V ∗) be defined by ϑ(g) := (g−1)∗ = (g∗)−1 for
g ∈ G.

2). Let G be a group acting on a set X with action homomorphism ϑ : G → S(G) . We say that

(1) G operates t r a n s i t i v e l y on X if X/G is a singleton set, i.e. there is exactly one orbit.
(2)G operates f r e e l y onX if for every x ∈ X the isotropy groupGx at x is trivial group, i.e. Gx = {e}.
(3)G operates f a i t h f u l l y onX if for every g, h ∈ G, gx = hx for all x ∈ X implies that g = h. Note
that G operates on X faithfully if and only if the action homomorphism ϑ : G → S(X) is injective.
(4) G operates s i m p l y t r a n s i t i v e l y on X if G operates transitively and freely on X.

a). For x ∈ X, the orbitGx of x is invariant under g for every g ∈ G and soG operates onGx transitively.

b). ( R e s t r i c t i o n o f a n a c t i o n ) LetH be a subgroup ofG. ThenH operates onX by restriction;

the corresponding action homomorphism is the composite homomorphism H
ι−→ G

ϑX−→ S(X) .

c). ( L e f t - t r a n s l a t i o n a c t i o n - - C a y l e y ’s r e p r e s e n t a t i o n ) The binary operation of a
groupG define a simple transitive operation onG. The corresponding action homomorphism is injective
group homomorphism λ : G → S(G). This is the permutation representation of G and is called the
C a y l e y ’s r e p r e s e n t a t i o n of G. For any subgroup H of G, the orbits of the restriction of the
left-transaltion action to H on G are the right-cosets of H in G and the isotropy groups are trivial.

d). ( I n d u c e d a c t i o n ) The normal subgroup N = ker ϑ is called the k e r n e l o f t h e a c t i o n of
G onX. Therefore ϑ induces a group homomorphism ϑ : G/N → S(X) and hence the quotient group
G/N acts on the set X with the action homomorphism ϑ . This action of G/N is called the i n d u c e d
a c t i o n of G on X. It is clear that G/N acts faithfully on X.
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e). The kernel of an operation of a group G on a set X is the intersection of all isotropy groups Gx ,
x ∈ X. – If G is abelian, then G operates simple trasitively if and only if G operates transitively and
faithfully.

f). If card(G) is a prime number > cardX then the action homomorphism is trivial, i.e., ϑ(g)(x) = x

for every g ∈ G and x ∈ X.

g). If X is finite then the kernel of the action homomorphism ϑ is a subgroup of finite index in G.

h). Suppose that G acts transitively on X and x ∈ X. Then the map G → X defined by g �→ g · x
is surjective and card(X) = [G : Gx]. In particular, if G is finite then X is finite and card(X) divides
card(G).

i). The action homorphismϑ :G → S(X) induces many other operations, in a natural way. For example:
(i). If ψ :G′ → G is a homomorphism of groups, then the group G′ operates on X by g′x := ψ(g′)x ,
g′ ∈ G′, x ∈ X. The corresponding group homomorphism ofG′ in S(X) is ϑψ . (ii). If ϕ :G → G′′ is
a surjective group homomorphism such that the kernel Ker ϕ ⊆ Ker ϑ , then the groupG′′ operates onX
by g′′x := gx, where g ∈ ϕ−1(g′′) ia arbitrary. The corresponding group homomorphism G′′ → S(X)
is induced by ϑ :G → S(X). (iii). If X′ ⊆ X is a G-invariant subset of X, i.e., for every x ∈ X′, the
orbitGx of x is contained in X′, thenG operates on X′ by restriction. In particular,G operates on each
orbit and in fact transitively.

3). ( C l a s s E q u a t i o n ) Let G be a group operating on a set X. Then

card(X) = card(FixG(X)+
∑

Gx∈X/G
card(Gx)>1

card(Gx).

a). ( C l a s s e q u a t i o n f o r t h e l e f t - t r a n s l a t i o n a c t i o n - - L a g r a n g e ’s t h e o r e m ) Let
G be a group and let H be a subgroup. The group H acts on G by the restriction of the left-transaltion
action of G on G to H ; the orbits of this action are the right-cosets of H in G and the isotropy groups
are trivial. Therefore the class equation for this action of H on G is card(G) = card(H) · card(G/H) .
In particular : ( L a g r a n g e ’s t h e o r e m ) LetG be a finite group and letH be a subgroup ofG. Then
the order of H divides the order of G. More precisely, ord(G) = ord(H) · [G : H ] .

b). ( C o n j u g a t i o n a c t i o n a n d t h e c l a s s e q u a t i o n f o r a g r o u p ) LetG be a group. Then
G acts onG by the c o n j u g a t e a c t i o n , i.e. the action homomorphism is the group homomorphism
κ : G → Aut(G), g �→ κg : G → G, x �→ gxg−1. The fixed point set of this operation is the center
Z(G) ofG. The center ofG is also the kernel of this operation. In particular, the class equation for this
operation is called the c l a s s e q u a t i o n f o r G :

card(G) = card(Z(G))+
∑
j∈J

card(Cj ),

where Cj , j ∈ J are distinct conjugacy classes of G with more than one element, i. e. Ci �= Cj for
i, j ∈ J, i �= j and card(Cj ) > 1 for every j ∈ J . If xi ∈ Ci , then Ci = {gxig−1 | g ∈ G} and
card(Ci ) = [G : ZG(xi)], where for x ∈ G, ZG(x) := {g ∈ G | gx = xg} is the subgroup of elemenst
ofGwhich commute with x. This subgroup is called the c e n t r a l i s e r of x inG. IfG is a finite group
and Ci , i = 1, . . . , r are all distinct conjugacy classes in G with card(Ci ) > 1 for all i = 1, . . . , r ,
then the numbers card(Z(G)) and card(Ci ), i = 1, . . . , r divide the order OrdG of G and the number
of all conjugacy classes in G is card(Z(G))+ r and is called the c l a s s n u m b e r of G.

c). Let G be a finite group of odd order and let x ∈ G, x �= e. Show that ZG(x) �= ZG(x−1), i.e. x and
x−1 belongs to different conjugacy classes. (Hint : If ZG(x) = ZG(x−1), then show that card(ZG(x)) is
even. But by b) card(ZG(x)) divides the order ord(G) of G a contradiction. )

d). Let p be a prime number and let G be a finite group of order pn with n ∈ N+. Suppose that G acts
on a finite set X. Then card(X) ≡ card(FixG(X)) (mod p) . In particular, the center Z(G) of G is
non-trivial. (Hint : For the last part use the class equation for G.)

e). Let G be a finite group of order n and let p be a prime number. On the set Gp of p-tuples of G
the cyclic group H := Z/Zp operates by

(
a, (x1, . . . , xp)

) �→ (x1+a , . . . , xp+a) , where a and the
indices 1, . . . , p are the residue classes in Z/Zp. The fixed points are the constant p-tuples (x, . . . , x) .
The group Z/Zp also operates on the subset X := {(x1, . . . , xp) ∈ Gp | x1 · · · xp = e} of Gp (since
x1x2 · · · xp = (x1 · · · xr)(xr+1 · · · xp) = e and so (xr+1 · · · xp)(x1 · · · xr) = e for r = 1, . . . , p − 1.)
Therefore by part d) card(X) = np−1 ≡ |FixH X| mod p .
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(1) If p divides n, then p also divides |FixHX|, i.e. the cardinality of the set of x ∈ G with xp = e is
divisible by p. In particular : ( C a u c h y ’s t h e o r e m ) Let G be a finite group of order n and let p
be a prime divisor of n. Then G has an element of order p. (2) If p is not a divisor of n, then FixHX
contain only the constant tuple (e, . . . , e). In particular : ( F e r m a t ’s l i t t l e t h e o r e m ) Let p is a
prime number and let n ∈ N+. If p does not divide n, then p divides np−1 − 1, i.e. np−1 ≡ 1 mod p.

f). Let p be a prime number. Then

(i). Every group of order p2 is abelian and in fact either a cyclic or isomorphic to a product of two
cyclic groups of order p. (Hint : Use 3)-c)). )

(ii). Every group of order 2p is either cyclic or isomorphic to the Dihedral group Dp . (Remark : For
Dihedral groups see Exercise T8.???. The case p = 2 is a special case. )

(iii). Let G be a non-abelian group of order p3. Show that the derived subgroup (the subgroup of G
generated by the set of all commutators {[a, b] | aba−1b−1 | a, b ∈ G}) = [G,G] = Z(G) and the class
number of G is p2 + p − 1. (Hint : G acts transitively on G \ {e} by the conjugation action. Then use
2)-h). — Remark There exists infinite groups of class number 2. For class numbers see 3)-b).)

(iv). Compute the class number of the group Sn for n ≤ 6 .

4). LetG andH be two groups acting on the setsX and Y with action homomorphisms ϑX : G → S(X)
and ϑY : H → S(Y ) respectively.

a). ( P r o d u c t a c t i o n ) The product group G × H acts on the product set X × Y with the action
homomorphism ϑX×Y : G × H → S(X × Y ) defined by (g, h) �→ ϑX(g) × ϑY (h) for g ∈ G and
h ∈ H. This action is called the p r o d u c t a c t i o n of G × H on X × Y . The orbit (G × H)(x, y)

of (x, y) ∈ X × Y , is the product G · x × H · y of orbtis of x and y. What is the isotropy subgroup
(G×H)(x,y) at (x, y) ?

b). ( D i a g o n a l a c t i o n ) Suppose thatH = G above. Then the groupG acts onX×Y with the action

homomorphism G
�G−→G×G ϑX×Y−→ S(X×Y ), where�G : G → G×G is the diagonal homomorphism

defined by g �→ (g, g) for g ∈ G and ϑX×Y is defined as above with H = G. This action is called the
d i a g o n a l a c t i o n ofG onX×Y . The isotropy subgroupG(x,y) of (x, y) ∈ X×Y is the intersection
Gx ∩Gy of the isotropy subgroups of x and y. What is the orbit G(x, y) of (x, y)?

c). Give an example to show that the diagonal action ofG onX×Y need not be transitive even ifG acts
transitively on both X and Y. (Hint : Take the left translation action (see 2)-c)) of G on X = Y = G. )

5). (A u t o m o r p h i s m a c t i o n s ) Let G and H be two groups. Suppose that the group G acts on H
with the action homomorphism ϑ : G → S(H). If im(ϑ) ⊆ Aut(H) = (the set of all automorphisms of
the groupH ) then we say that G a c t s o n H b y a u t o m o r p h i s m s or ϑ i s a n a u t o m o r p h i s m
a c t i o n and in this case we write ϑ : G → Aut(H) instead of ϑ : G → S(H).

a). The automorphism group Aut(G) of G acts on G in a natural way, infact by automorphisms; the
automorphism action ϑ = idAut(G) : Aut(G) → Aut(G). The subset G \ {e} is invariant under this
action.

b). The conjugate action of the group G on G is the automorphism action κ : G → Aut(G), g �→ κg ,
where for g ∈ G, κg : G → G is the inner automorphism ofG defined by x �→ gxg−1 for x ∈ G. What
is the kernal of this action ?

c). Let N be an (additive) abelian group. The cyclic group Z× = {1,−1} of order 2 operates on N by
automorphisms, where −1 operates as the inverse map x �→ −x of the group N .

6). ( k - t r a n s i t i v e a c t i o n s ) LetG be a group and letX be aG-set with the action homomorphism
ϑ : G → S(X). Let k ∈ N+. ThenX is called k - t r a n s i t i v e or we say thatG acts k - t r a n s i t i v e l y
on X if for any two k-tuples (x1, . . . , xk) ∈ Xk with xi �= xj for 1 ≤ i �= j ≤ k and (y1, . . . , yk) ∈ Xk

with yi �= yj for 1 ≤ i �= j ≤ k, there exists an element g ∈ G such that ϑ(g)(xi) = yi for every
1 ≤ i ≤ k. 1-transitive is same as transitive (see 2)-(1)).

a). Let k ∈ N+. If card(X) < k then X is k-transitive vacuously. If card(X) ≥ k and X is k-transitive
then X is r-transitive for every 1 ≤ r ≤ k.
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b). For n ∈ N+, any subgroup of Sn acts naturally on the set {1, . . . , n}, in fact, the action homomor-
phism is tha natural inclusion ι : G → Sn . This natural action of the permutation group Sn (respec-
tively, the alternating group An ) on the set {1, . . . , n} is n-transtive (respectively, (n− 2)-transitive but
not (n− 1)-transitive).

c). The subset X(n) := {(x1, . . . , xn) | xi ∈ X, xi �= xj , 1 ≤ i �= j ≤ n}, (n ∈ N+) of Xn is a G-subset
of the diagonal action (see 4)-b)) of G on Xn. Then G acts n-transitively on X if and only if G-acts
transitively on X(n).

d). The isotropy subgroup Gx , x ∈ X acts on X \ {x} in a natural way. If G acts transtively on X, then
G acts 2-transitively on X if and only if Gx transitively on X \ {x} for every x ∈ X.

e). If G is a finite group, G acts 2-transitively on X and [G : Gx] = n for x ∈ X, then (n− 1)n divides
ord(G). (Hint : Use 2)-g). )

7). ( L e f t c o s e t G - s e t s ) Let G be any group and let H be a subgroup of G. Let X := G/H =
{xH | x ∈ G} be the set of all left cosets of H in G and let ϑ : G → S(G/H) be defined by
ϑ(g) := g̃ : G/H → G/H , xH �→ gxH for xH ∈ G/H . Then X = G/H is a G-set with the action
homomorphism ϑ . This G-set is called the l e f t c o s e t G - s e t of H in G.

a). G acts transitively on G/H and the isotropy group at H is GH = H . In particular, the isotropy
subgroups are gHg−1, g ∈ G and so N = ∩g∈GgHg−1 is the kernel of the action of G on G/H .
ThereforeG/N acts faithfully onG/H with the induced action homomorphism ϑ : G/N → S(G/H).
Further,N is the biggest normal subgroup ofG contained inH and the quotient groupG/N is isomorphic
to a subgroup of the permutation group ofG/H . (Hint : Let F be a normal subgroup ofG with F ⊆ H .
Then F = gFg−1 ⊆ gHg−1 for every g ∈ G. Therefore F ⊆ ∩g∈GgHg−1 = N )

b). If [G : H ] is finite then so is [G : N] and [G : N] divides [G : H ]!. (Hint : Follows from part a)
that ϑ : G/N → S(G/H) is injective. )

8). ( G - h o m o m o r p h i s m s ) Let G be a group and let X, Y be two G-sets with the operation
maps ϕX : G × X → X and ϕY : G × Y → Y respectively. A map f : X → Y is called a G -
h o m o m o r p h i s m if f (gx) = gf (x) for every g ∈ G and x ∈ X, i.e. the diagram

G×X −−−−−−−−−−−−−ϕX−−−−−−−−−−−−−−� X

id×f
�

f

�
G× Y −−−−−−−−−−−−−ϕY−−−−−−−−−−−−−−� Y

is commutative. A G-homomorphism f : X → Y is called a G - i s o m o r p h i s m if there exists a G-
homomorphism f ′ : Y → X such that f ′ ◦ f = idX and f ◦ f ′ = idY .

Let f : X → Y be a G-homomorphism. Then

a). The orbit Gx is mapped onto the orbit Gf (x) for every x ∈ X; in particular, induces a map f :
X\G → Y\G on the quotient spaces such that the diagramm

X −−−−−−−−−−−−−−−−−−−−−−−−−−−� X/G

f

� f�
Y −−−−−−−−−−−−−−−−−−−−−−−−−−−� Y/G

is commutative, where X → X/G and Y → Y/G are the cannonical projection maps.

b). f (FixG(X)) ⊆ FixG(Y ). In particular, f induces a mapping FixG(X) → FixG(Y ).

c). For x ∈ X, the isotropy subgroup Gx is a subgroup of Gf(x).

d). f is a G-isomorphism if and only if f is bijective. Moreover, in this case, the diagram

G −−−−−−−−−−−−−ϑX−−−−−−−−−−−−−−� S(X)∣∣∣∣∣∣ �f
�

G −−−−−−−−−−−−−ϑY−−−−−−−−−−−−−−� S(Y )
of groups and group homomorphisms is commutative, where ϑX, ϑY are action homomorphisms of X,
Y respectively and �f : S(X) → S(Y ) is the group homomorphism defined by �f (σ) := f ◦ σ ◦ f −1

for σ ∈ S(X).
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e). More generally, let ϕ :G → H be a homomorphism of groups. Suppose that G and H operates on
the sets X and Y respectively. A map f :X → Y is called ϕ- i n v a r i a n t m a p if for all g ∈ G and for
all x ∈ X, we have : f (gx) = ϕ(g)f (x) , i.e. if the canonical diagramm

G×X −−−−−−−−−−−−−−−−−−−−−−−−−−−� X

ϕ×f
�

f

�
H × Y −−−−−−−−−−−−−−−−−−−−−−−−−−−� Y

is commutative. A map f : X → Y ϕ-invariant if and only if f is a G-invariant map, where the
H -operation on Y via ϕ defines a G-operation on Y , i.e. gy := ϕ(g)y , g ∈ G, y ∈ Y .

9). LetG be a group acting on a set X with the corresponding group homorphism ϑ :G → S(X). This
homomorphism induces many other operations, in a natural way. For example:

a). A mapf :X → Y is said to be compat ib le wi th the opera t ion ofGonX if for allx, x ′ ∈ X, the
equality f (x) = f (x ′) implies the equality f (gx) = f (gx ′) for all g ∈ G. Moreover, if f is surjective,
then the operation of G on X induces an operation of G on Y by gy := f (gx), where x ∈ f −1(y) is
arbitrary. This mean that the map f is a G-map. Further, in this case f (FixG(X)) ⊆ FixG(Y ). Give an
example to show that this inclusion can be strict. (Hint : LetG be the multiplicative cyclic group {−1, 1}
of order 2, X := Z and Y := Z2 = {0, 1}. ThenG acts on X (resp. on Y ) by the action homomorphism
ϑ : G → Aut Z (resp. ϑ : G → Aut Z2), ϑ(1) = idZ and ϑ(−1) : Z → Z, n �→ −n (resp. ϑ(1) = idZ2
and ϑ(−1) : Z2 → Z2, n �→ −n). Further, let f : Z → Z2 be the canonical surjective map. Then
FixG(X) = 0 and FixG(Y ) = Y . )

b). Let Y be an another set. ThenG operates on the set of all mapsXY by (gf̃ )(y) := g
(
f̃ (y)

)
, g ∈ G,

f̃ ∈ XY and y ∈ Y . The action homomorphism of theG-setXY isλYX◦ϑ : G → S(X) → S(X Y ), where
λYX is defined in the footnote 2) below and the fixed set FixG(XY ) = {f ∈ XY | im(f ) ⊆ FixG(X)}.
The map c : X → XY defined by x �→ cx : Y → X = the constant map y �→ x, is aG-homomorphism.

c). Let Y be an another set. Then G operates on the set of all maps YX by (gf )(x) := f (g−1 · x),
g ∈ G, f ∈ YX and x ∈ X. The action homomorphism of the G-set Y X is ρYX ◦ ϑ : G → S(X) →
S(YX), where ρYX is defined in the footnote 2) below and the fixed set FixG(Y X) = {f ∈ XY |
f is constant on theG-orbits of X}.
d). LetH be an another group and letY be aH -set. Then the product groupH×G operates on the set YX

by ((h, g)f ) (x) := h ·f (g−1 ·x) , (h, g) ∈ H×G , f ∈ YX and x ∈ X . The action homomorphism of
the H×G -set Y X is ϑY ×ϑX ◦µYX : H×G → S(Y )×S(X) → S(YX) , where µYX is defined in the
footnote 2) below. In particular, if H = G and if Y is a G-set then the set YX is a G × G-set and so
G acts on YX via the diagonal homomorphism G → G × G , g �→ (g, g) , g ∈ G . the fixed set
FixG(YX) = HomG(X, Y ) = {f ∈ YX | f is aG-homomorphism }.
10). Let G be a group and let H be a subgroup of G.

a). If H is of finite index in G, then H contains a normal subgroup N of finite index such that [G : N]
divides [G : H ]!.

b). If G is simple and H �= G, then G isomorphic to a subgroup of S(G/H). In particular, if G is
simple and H is a subgroup of G of finte index n > 1, then G is finite, moreover, order of G divides
n! . (Hint : Look at the kernel of the action of the left-coset G-set G/H (see 7)). )

c). H is normal inG if and only if the orbits of the restriction action of H on the left-cosetG- setG/H
are singleton.

2) Set Theoretic Results Let X and Y be two sets. For σ ∈ S(X), let λσ : XY → XY (resp.
ρσ : Y X → Y X) be defined by f �→ σ ◦ f for f ∈ XY (resp. f �→ f ◦ σ for f ∈ Y X). For
(τ, σ ) ∈ S(Y )× S(X), let µ(τ,σ ) : Y X → Y X be defined by f �→ τ ◦ f ◦ σ for f ∈ Y X. Show that the
maps

(i) λYX : S(X) → S(X Y ) defined by σ �→ λσ

(ii) ρYX : S(X) → S(Y X) defined by σ �→ ρσ

(iii) µYX : S(Y )× S(X) → S(Y X) defined by (τ, σ ) �→ µ(τ,σ )

are group homomorphisms.
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d). (Y a n g ) If G is finite and H is a subgroup of prime index p, where p is the smallest prime divisor
of OrdG, then H is normal in G. In particular, if every subgroup of a group G of order pn, n ∈ N+ of
index p is normal in G.

e). Suppose that G is finite and ord(G) = mn, ord(H) = n.

(i). LetN be the kernel of the action of the left cosetG-setG/H . Then [H : N] divides gcd(n, (m−1)!).
(ii). ( F r o b e n i u s ) If n has no prime factor less thanm then H is normal inG . (Hint : Use (i) above.
) (iii). If ord(G) = 2r · 3 with r ∈ N+, then G has a normal subgroup of order 2r or 2r−1. In particular,
if r ≥ 2 then G is not simple. (Hint : Apply (1) above to the 2-Sylow subgroup H of G.)

f). If H is normal in G then the orbits of the restriction of any transitive G-action to H have the same
cardinality. (Hint : Let X be a transitive G-set. For g ∈ G and x ∈ X, the maps Hx → g−1Hgx ,
hx �→ g−1hgx and g−1Hgx → Hgx , g−1hgx �→ hgx are bijective. )

g). The product group H × H acts on G with the action homomorphism ϑ : H × H → G defined by
ϑ(h′, h)(x) = h′xh−1, for (h′, h) ∈ H × H and x ∈ G. Then H is normal in G if and only if every
orbit of the action defined by ϑ has the cardinality = card(H).

11). Let G be a group. Then G operates on the power-set P(G) of G by conjugation. For a subset A
of G the isotropy group GA with respect to this operation is called the n o r m a l i s e r of A in G and is
denoted by NG(A).

a). The subgroup NG(A) is the biggest subgroup of G, which operates on A by conjugation.

b). The kernel of this operation of NG(A) on A is the c e n t r a l i s e r ZG(A) = ⋂
a∈AZG(a) of A.

In particular, ZG(A) is normal in NG(A) .

c). If H is a subgroup of G, then NG(H) is the biggest subgroup of G in which H is normal.

d). The index [G : NG(H)] is the number of conjugate subgroups of H in G and if [G : H ] is finite,
then [G : NG(H)] divides [G : H ].

12). Let G and H be finite groups. Then

a). The order ofG is a power of a prime number p if and only if order of every element ofG is a power
of p . (Hint : Use Cauchy’s theorem 3)-d)(1)). — Remark : A group in which order of every element
G is a power of a prime number p, is called a p- g r o u p . )

b). Every subgroup of the product group G×H is of the form G′ ×H ′, where G′ is a subgroup of G
and H ′ is a subgroup of H if and only if the orders of G and H are relatively prime. (Hint : Use
Cauchy’s theorem 3)-d)(1)). )

13). Let X be a G-set. A subset Y of X is called a G - s u b s e t if gy ∈ Y for every g ∈ G and y ∈ Y .
If Y ⊆ X is a G-subset of X then the natural inclusion map Y ↪→ X is a G-homomorphism. Each orbit
of X under G is a transitive G-subset of X.

a). Every subset Y of aG-setX is aG-subset if and only if it is a union of orbits ofX underG.Moreover,
if Y is transitive G-subset of X then Y must be an orbit of x ∈ X under G.

b). Let {Xi | i ∈ I } be a collection of G-sets.

(1) If Xi are disjoint, that is, Xi ∩Xj = ∅ for every i, j ∈ I with i �= j then show that ∪i∈IXi is aG-set
in a natural way.
(2) If Xi are not necessarily disjoint then X′

i := {(x, i) | x ∈ Xi, i ∈ I } are disjoint and each X′
i is a

G-set in a natural way. Further the maps Xi → X ′
i defined by x �→ (x, i) are G-isomorphisms.

c). Suppose that X is a transitive G-set and Let x0 ∈ X and let Y be the left coset G-set of the isotropy
subgroup Gx0 , i.e. Y = G/Gx0 with the natural (see 7)) G-action on Y . Show that there exists a
G-isomorphism f : X → Y. (Hint : For x ∈ X, let g ∈ G with gx0 = x0 and put f (x) := gGx0 . )

d). Every G-set X is isomorphic to the disjoint union of left coset G-sets. (Hint : X is the disjoint
union of its orbits which are transitive G-subsets of X. Now use the parts c) and b)-1) above. )

14). Let G be a subgroup of Sn, n ≥ 2. Suppose that the natural operation of G on {1, . . . , n} is
transitive.

a). If G contain a transposition and a cycle of order n− 1, then G = Sn. (Hint : Use T8.1-4)-l)-a). )

b). If G contain a transposition and a cycle of prime order p with n

2 < p < n, then G = Sn.
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15). Let p be a prime number.

a). If the subgroupG of Sp contain a transposition and if p divides the order ofG, thenG = Sp. (Hint :
G contain an element of order p. This must be a cycle. Now use T8.1-4)-l)-c). — Remark : Show that
the condition “p | |G|” is equivalent with “the natural opeartion of G on {1, . . . , p} is transitive”.)

b). Let G be the subgroup of Sp+1. Suppose that G has the following properties:
(1) The natural opeartion of G on {1, . . . , p + 1} is transitive.
(2) p divides the order of G.
(3) G contains a transposition.
Then G = Sp+1. (Hint : Use 14)-a).)

16). Let G be a finitely generated group and let n ∈ N+.
a). The set of all subgroups of index n inG is finite. (Hint : Using left cosetG-sets reduce the problem
to that of normal subgroups and these are nothing but kernels of the group homomorphisms G → Sn

which are finitely many. Why ? )

b). Let ϕ : G → G be a surjective endomorphism of G. Show that the mapping H �→ ϕ−1(H) is a
bijection on the set of all subgroups of index n in G. (Hint : Use the part a) above. )

17). A group G is called h o m o g e n e o u s if the natural action (see 5)) of the automorphism group
Aut(G) of G on G is transitive on the Aut(G)-subset G \ {e}. Show that if G is a finite group then G is
homogeneous if and only if G is a finite product of Zp = {0, . . . , p − 1} = the cyclic group of prime
order p.

18). Let H be a subgroup of finite index in a group G. If G =
⋃
g∈G

gHg−1 then show that G = H .(Hint :

Let N be the kernel of the action of the left coset G-set G/H . By passing to the group G/N reduce to
the case of finite groups. – or use 11).). Give an example to show that the assumption finite index is

necessary. (Hint : H = { (
a 0
b c

)
∈ G | ac �= 0

} �= G = GL(2,C) =
⋃
g∈G

gHg−1. )

19). ( S e m i - d i r e c t P r o d u c t – H o l o m o r p h o f a g r o u p ) LetN andH be groups. Suppose that
H operates onN by automorphisms (see 5)), i.e. the action homomorphism is ϑ :H → AutN ⊆ S(N).
We shall construct a group G such that H is a subgroup of G and N is a normal subgoup of G and the
given operation ofH onN is the conjugation ofH onN . LetG := N×H and define the multiplication
in G by (n, h) (n′, h′) := (n ϑh(n

′) , hh′) . (Hint : The group axioms for G can be easily verified;
the element (eN , eH ) is the identity element and the inverse of (n, h) is (ϑh−1(n−1) , h−1) . The group
N can be identified with the normal subgroup N × {eH } of G and the group H can be identified with
the subgroup {eN } ×H ofG. With this identification the pair (n, h) is the product nh = (n, eH )(eN , h) .
)This group G is called the s e m i - d i r e c t p r o d u c t of the groups N and H with respect to the
operation ϑ of H on N . The semi-direct product of N and H with respt to ϑ :H → AutN is denoted
by N �H = N �ϑ H .

a). The operation ϑ of H on N is trivial if and only if G = N �H is the product group. This can also
be characterised by the condition that H is normal in G.

b). Suppose that H = AutN and ϑ is the natural action (see N11.6-a)) on N . Then the corresponding
semi-direct product is called the f u l l h o l o m o r p h of N and is denoted by HolN . In the case
H ⊆ AutN is a subgroup, the semi-direct product is called a h o l o m o r p h of N .

c). The full holomorph (and hence every holomorph) of N can be canonically embedded in the per-
mutation group S(N) of N , where the normal subgroup N of Hol (N) is identified with the group of
left-translations of N using the Cayley’s representation and AutN is embedded canonically in S(N),
i.e. the map (n, σ ) �→ λnσ , n ∈ N , σ ∈ AutN is an injective group homomorphism of Hol (N) into
the permutation group S(N) , where λn for n ∈ N denote the left-translation by n.

d). The subgroup Hol (N) of S(N) is generated by the left-translations and the automorphisms of
N . Further, since ρn = λn ◦ κn−1 = κn−1 ◦ λn for n ∈ N , the subgroup Hol (N) also contain right-
translationen.

20). ( D i h e d r a l g r o u p s ) Let N be an (additive) abelian group. The cyclic group Z× = {1,−1}
of order 2 operates on N by automorphisms (see 5)), where −1 operates as the inverse map x �→ −x
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of the group N . The corresponding semi-direct product is called the d i h e d r a l g r o u p of N and is
denoted by D(N). The binary operation in D(N) is given by (n, ε) (n′, ε′) = (n+ εn′, εε′) , n, n′ ∈ N ,
ε, ε′ ∈ Z×.

a). The dihedral group D(N) is the direct product of N and Z×, i.e. is an abelain group if and only if
the inverse map of N is trivial, i.e. every element of N is its inverse in N . 3)

b). If N = Zn = Z/Zn is the cyclic group of order n > 0, then for D(N) we simply write Dn; its order
is Ord Dn = 2n. The infinite dihedral group D0 := D(Z) is the full holomorph of the additive group Z.
Therefore we have a sequence Dn, n ∈ N, of the d i h e d r a l g r o u p s . (Remark : We shall show
that the dihedral group D(R) is isomorphic to the group of motions of an affine Euclidean line and
the dihedral group D (R/Z) is isomorphic to the group of isometries of an (oriented) two-dimensional
Euclidean vector space. The group D(R/Z) (and occasionally the group D(Q/Z) ) is also denoted by
D∞ .

21). Let N be a group. Then every semi-direct product (see 19)) of the form N � H , where H is a
group, is equal to the direct product N × H if and only if N has at most two elements. (Hint : It is
enough to show that every group N with more than two elements has an automorphism different from
the identity map. – In the non-abelian case the conjugation, and in the abelain case the inverse map and
for the elementary abelian 2-groups, see footnote 1, the linear map of K2-vector spaces. — This result
can also be formulated as: Every weak-split exact sequence of groups 1 −→ N −→ G −→ H −→ 1
is strong-split if and only if N has atmost two elements. )

22). Suppose that a finite group G of order n operates on the (additively written) abelian group H as a
group of automorphisms.

a). FixG H is a subgroup of H .

b). For every x ∈ H , the sum Nx := ∑
g∈G gx is a fixed point of the operation of G. (Hint :

h (Nx) = ∑
g∈G(hg)x = ∑

g∈G gx = Nx for every h ∈ G, since G = {hg | g ∈ G}.)
c). ( M e a n ) Suppose that the multiplication λn by n on H is bijektive. Then λn and the inverse (λn)−1

of λn are G-invariant. The element πHx := 1
n

Nx = 1
n

∑
g∈G gx is called the m e a n or a v e r a g e o f

x and is fixed point.

d). The group homomorphism πH : H → H is a projection of H onto the subgroups FixGH , i.e.
πH = π2

H and im πH = FixGH . (Hint : Let π := πH . The inclusion π(H) ⊆ FixGH is mentioned in
the part b). Conversely, let x ∈ FixGH , then πx = 1

n

∑
g∈G gx = 1

n
nx = x. This proves the inclusion

FixGH ⊆ π(H) and hence π = π2. — Remark : This is the most effective way of computing the fixed
points. For example, it can be applied to the additive group H of a vector space over a field K with
n · 1K �= 0 (or moregenerally to the additive groups of a module over a ring A with n · 1A ∈ A×) . )

e). Let G be a finite group of order n and let H ′, H resp. H ′′ be abelain groups on which G opera-

tes by automorphisms. Further, let H ′ f ′
−→ H

f−→ H ′′ be an exact sequence of G-invariant group
homomorphisms. If the multiplication by n on H and H ′ are bijective 4) , then the induced sequence
FixGH ′ → FixGH → FixGH ′′ is also exact. (Hint : For x ∈ FixGH with f (x) = 0 we need to
find x ′ ∈ FixGH ′ with f ′(x ′) = x. Let x̃ ∈ H ′ be such that f ′(̃x) = x. Then x ′ := π ′

H (̃x) ∈ FixGH ′

and f ′(x ′) = f ′π ′
H (̃x) = πHf

′(̃x) = πHx = x . — Remark : In the above situation, the sequence of
the fixed-point groups is not exact in general, for example, the group G := Z× = {1,−1} operates (see
5)-c)) in a natural way, i.e. the operation of −1 is the inverse map. Then the canonical projection of Z

onto Z/Z2 is surjective, but the induced homomorphism 0 → Z/Z2 on the fixed-point groups is not
surjective. )

23). LetG be a finite group of order n. ThenG acts on the power set P(G) ofG by the left-multiplication,
i.e. the action homomorphism is ϑ : G → S(P(G)) given by g �→ ϑ(g), where ϑ(g) : P(G) → P(G)
is defined by A �→ gA := {ga | a ∈ A}.

3) Such a group N is called an elementary (abelian) 2-group. They are precisely the additive groups of
the vector spaces over the field K2 with 2 elements.
4) It is enough to assume that on H ′ it is surjective and on im f ′ = Ker f it is injective.
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a). For every fixed positive integer r ≤ n, the subset Pr (G) := {A ∈ P(G) | card(A) = r} of a G-set
P(G) is invariant under the above G-action.

b). Each orbit of P(G) under the aboveG-action contains either exactly one subgroup ofG or contains
no subgroup of G. (Proof Let H and H ′ be subgroups of G belonging to the same orbit of P(G).
Then there exists A ∈ P(G) such that H ∼G A and H ′ ∼G A. Therefore, since ∼G is an equivalence
relation on P(G), it follows that H ∼G H

′ and so there exists g ∈ G such that H ′ = gH. If g �∈ H

then g−1 �∈ H−1, so that e = gg−1 �∈ gH = H ′. This contradicts the fact that H ′ is a subgroup of G.
Therefore g ∈ H and so H ′ = gH = H .)

c). Let p be a prime with n = pαq and gcd(p, q) = 1 , where α := vp(ord(G)). Let β be a positive
integer with 0 ≤ β ≤ α. Let X ⊆ Ppβ (G) be a orbit of an element A ∈ Ppβ (G) the above G-action.
Then the following statments are equivalent :

(i) vp(card(X))≤α−β=: γ . (ii) card(X)=pα−β . (iii) X contains exactly one subgroup H (of order
pβ). (Proof Let A ∈ Ppβ (G) be such that the orbit of A =: X. By the orbit-stabiliser theorem 2)-d))

(c.1) card(GA) card(X) = card(G) = pαq and so

(c.2) α = vp(card(G)) = vp(card(GA))+ vp(card(X)).

Since GA = {g ∈ G | gA = A}, we have ga ∈ A for every g ∈ GA and a ∈ A. Therefore, for any
a ∈ A, there is a natural inclusionGA ·a ↪→ A. In particular, card(GA) = card(GA ·a) ≤ card(A) = pβ

and so vp(card(GA)) ≤ β. (i)⇒ (ii) : If vp(card(X)) ≤ γ then vp(card(GA)) = β by (c.2) above and so
card(GA) = pβ . Therefore card(X) = pγ q by (c.1) above. (ii)⇒ (iii) : Since card(X) = pγ q, we have
vp(card(X)) = γ and so vp(card(GA)) = β by (c.2) above. Therefore card(GA · a)) = card(GA) = pβ

and soGA · a = A for every a ∈ A. Now, by 2)-e)Ga−1A = a−1 ·GA · a = a−1A ∈ the orbit of A = X.
Therefore X contains a subgroup namely, Ga−1A and by the part b) this subgroup is unique. (iii)⇒ (i) :
Let H be a subgroup of G such that H ∈ X. Then X is the orbit of H = G/H = {gH | g ∈ G}.
Therefore card(X) = [G : H ] = pαq/pβ = pγ q and so vp(card(X)) = γ .)

d). With the notation as in the part c) above, there exists a natural number t such that(
pαq

pβ

)
= dG(p, β)pγ q + tpγ+1 ,

where dG(p, β) is the number of subgroups of orderpβ and γ = α−β. (Proof The action ofG on Ppβ (G)

gives a decomposition Ppβ (G) = ⋃{ orbits with cardinality = pγ q} ∪ ⋃{ orbits with cardinality �=
pγ q} . Since the orbits with cardinality = pγ q are precisely the orbits which contains exactly one
subgroup of G of order pβ (by the equivalence (i) ⇐⇒ (ii) of (c)) and the orbits with cardinality
�= pγ q are precisely the orbits whose cardinality is divisible by pγ+1 (by the equivalence (i) ⇐⇒ (iii)
of (c)), there exists a natural number t such that

(
pαq

pβ

) = card(Ppβ (G)) = dpγ q + tpγ+1.)

e). In particular, if G is cyclic in the part d) above then there exists a natural number s such that(
pαq

pβ

) = pγ q + spγ+1, where γ := α − β. (Proof Since card(Ppβ (G)) does not depend the group,
the assertion follows from d) by taking G to be the cyclic group.)

24). ( S y l o w t h e o r e m s 5)) Let G be a finite group of order n and let p be a prime divisor of n with
n = pαq and gcd(p, q) = 1, where α = vp(OrdG). Let β be a non-negative integer with 0 ≤ β ≤ α

and let dG(p, β) be the number f subgroups of G of order pβ . Then

a). dG(p, β) ≡ 1(mod p) . In particular, G has a subgroup of order pα . (Proof It follows from 23)-d)
and e) that there exist natural numbers s and t such that pγ q + spγ+1 = (

pαq

pβ

) = dG(p, β)pγ q + tpγ+1,
where γ := α − β. Therefore dG(p, β)q = q + (s − t)p ≡ q(mod p) and so dG(p, β) ≡ (mod p),
since gcd(p, q) = 1. )

b). If H is a subgroup of order pα and H ′ is a subgroup of order pβ , then there exist an element g ∈ G
such that H ′ ⊆ gHg−1. In particular, any two subgroups of order pα are conjugates in G. (Proof

5) These theorems were first proved by the Norwegian mathematician Ludwig Sylow (1832-1918)
in 1872 [Sylow, L., Theoremes sur groups de substitutions, Math. Ann. V(1872), p. 584.]. We have
given the proofs using elegant arguments due to Wielandt, H., which is a great improvement over
the older method of double cosets, see [Wielandt, H., Ein Beweis für die Exitenz der Sylowgruppes,
Archiv der Mathematik, vol. 10(1959), p. 402-403.].

D. P. Patil / Exercise Set 8 dm07-e08 ; April 17, 2007 ; 2:51 p.m. 72



8.20 MA-217 Discrete Mathematics / January-April 2007 8. Group Actions

Restrict the operation (see 9)) ofG on the set of left-cosetsG/H ofH inG to the subgroupH ′. The class
equation for this action is (see 3)-c)) q = |G/H | ≡ |FixH ′(G/H)| mod p) and hence FixH ′(G/H) �= 0,
i.e. there exists a left-coset gH , g ∈ G of H in G which is invariant under all left-translations of the
elements from H ′, i.e. H ′ ⊆ gHg−1. restriction of the left-coset

c). dG(p, α) divides q and so it divides n. (Proof By a) there is a subgroup H of G of order
pα and by b) all subgroups of order pα are conjuagtes in G. But by 11)-d) the number of conjugate
subgroups of H in G is the index [G : NG(H)] of the normaliser NG(H) of H in G and [G : NG(H)]
divides [G : H ] = q.

T8.3. ( C y c l e p o l y n o m i a l a n d P o l y a ’s c o u n t i n g f o r m u l a ) Let I be a finite set with
cardinality n ∈ N+. For σ ∈ Sn, we put Zν(σ) := Z

ν1
1 · · ·Zνnn , where ν(σ ) = (ν1, . . . , νn) is the cycle

type (see T8.1-5)) of σ . The C y c l e - p o l y n o m i a l of a subgroup H of the symmetric group Sn is

the polynomial �(H) := 1
card(H)

∑
σ∈H

Zν(σ) in indeterminates Z1, . . . , Zn (with coefficients in Q ).

For example :

1). a). The cycle-polynomial of the symmetric group Sn is

�(Sn) =
∑

1ν1+2ν2+···+nνn

1
ν1! · · · νn!

(
Z1

1

)ν1

· · ·
(
Zn

n

)νn

. (Hint : Use the Exercise 8.3-a).)

b). The cycle-polynomial of the alternating group An is

�(An) = 2 ·
∑

1ν1+2ν2+···+nνn
ν2+ν4+···+ν2[n/2]≡0 (mod 2)

1
ν1! · · · νn!

(
Z1

1

)ν1

· · ·
(
Zn

n

)νn

(Hint : Use the Exercise 8.3-a) and ifH is a subgroup of a finite groupG of index 2 then for every x ∈ H
either all conjugates of x are in H or exactly half of them are in H .)

c). The cycle-polynomail of the cyclic subgroup Zn := H(〈1, 2, · · · , n〉) of Sn genarted by the n-cycle

〈1, 2, · · · , n〉 is �(Zn) = 1
n

∑
d|n
ϕ(d)Z

n/d

d , where ϕ is the Euler’s totient function.

2). Let G be a finite group acting on a finite set X of cardinality n with the action homomorphism
ϑ : G → S(X) . For g ∈ G, put ν(g) := ν(ϑg) and is called the c y c l e - t y p e of g ∈ G . The

polynomial �(G;ϑ) = �(G) := 1
card(G)

∑
g∈G

Zν(g) in indeterminates Z1, . . . , Zn over Q is called

the c y c l e - p o l y n o m i a l of G with respect to the action homomorphism ϑ . Show that

a). �(G) = �(H), where H = ϑ(G) ⊆ S(X).

b). LetG be a finite group of order n. Show that the cycle polynomial ofG with respect to the Cayley’s

representation λ : G → S(G) of G is �(G) = 1
n

∑
d|n
α(d)Z

n/d

d , where α(d) := the number of

elements of order d in G. ( Hint : Use the Exercise 8.5-a).)
c). Let G and H be finite groups acting on finite disjoint sets X and Y , respectively. Then the product
group G×H acts in a natural way on the disjoint union X∪Y as (g, h)·x := g ·x and (g, h)·y := h·y
for g ∈ G,h ∈ H, x ∈ X, y ∈ Y . Show that �(G×H) = �(G) ·�(H) .

3). Let G be a finite group acting on a finite set X with the action homomorphism ϑ : G → S(X) .
Let Y be any set (of colours) and let C := YX be the set of c o l o u r i n g s of X by the colours in Y .
Then G acts on the set C by : For g ∈ G and f ∈ C , (g · f )(x) := f (g−1x) for x ∈ X . The basic
problem is to find the cardinality of the quotient set C := C/G of p a t t e r n s of colourings of X
with respect to the group G . A function γ : Y → A of Y with values in any commutative ring A with
ord(G) ∈ A× = (the unit group of A ) is called a w e i g h t f u n c t i o n on Y with values in A . For a
weight function γ : Y → A and f ∈ C , we put γ (f ) := ∏

x∈X γ (f (x)) . Then γ induces a weight
function γ : C → A on the quotient set C .

73 dm07-e08 ; April 17, 2007 ; 2:51 p.m. D. P. Patil / Exercise Set 8



MA-217 Discrete Mathematics / January-April 2007 8. Group Actions 8.21

a). ( P ó l y a ’s c o u n t i n g f o r m u l a 6) Let πi :=
∑
y∈Y

γ (y)i , i = 1, . . . , n , be the power-sums of

the weights γ (y) , y ∈ Y . Then
∑

[f ]∈C

γ ([f ]) = �(G)(π1, . . . , πn) . In particular, if card(Y ) = m and

if σ1, . . . , σs ∈ is a representative system for the (distinct) conjugacy-classes of G , then card(C) =
�(G)(m, . . . , m) = 1

|G|
∑
σ∈G

m|ν(σ )| =
s∑
i=1

m|ν(σi )|

|ZG(σi | . (Proof : Let f ∈ C and let σ ∈ G .

Then σf = f if and only if f is constant on the orbits X1, . . . , Xs of σ , say y1, . . . , ys ∈ Y .
Therefore we have

∑
f∈Fixσ (C)

γ (f ) =
∑

(y1,...,ys )∈Y s
γ (y1)

card(X1) · · · γ (ys)card(Xs ) = πcard(X1) · · ·πcard(Xs ) =

π
ν1
1 · · ·πνnn =: πν(σ) , where ν(σ ) = (ν1, . . . , νn) is the cycle-type of σ . Now let Gf denote the isotropy

group at the point f ∈ C . Then ord(G) ·
∑

[f ]∈C

γ ([f ]) =
∑
f∈C

ord(Gf ) · γ (f ) =
∑

(g,f ), g∈Gf
γ (f ) =∑

(g,f ), f∈Fixσ (C)

γ (f ) =
∑
σ∈G

πν(σ) = ord(G) ·�(G)(π1, . . . , πn).)

b). Let Y = {yi | i ∈ I } , A = Q[Ti | i ∈ I ] be the polynomial ring in indeterminates Ti , i ∈ I over
Q and let γ : Y → A be the (monomial) weight function yi �→ γ (yi) := Ti . Then : the coefficient
of the monomial

∏
i∈I T

αi
i , (αi)i∈I ∈ N(I ) , in the polynomial

∑
[f ]∈C

γ ([f ]) = �(G)(π1, . . . , πn) is the

number of patterns [f ] ∈ C such that αi := |{x ∈ X | f (x) = yi}| for each i ∈ I . (Proof : First note
that for two colourings f g ∈ C , if there exists a σ ∈ G such that σf = g , i.e., [g] = [f ] in the set
of patterns C (with respect to G ), then |f −1(yi)| = |g−1(yi)| for all i ∈ I . Further, if f ∈ C with
|f −1(yi)| = αi for all i ∈ I , then the weight of the pattern [f ] is γ ([f ]) = γ (f ) = ∏

x∈X γ (f (x)) =∏
i∈I γ (yi)

αi = ∏
i∈I T

αi
i . Therefore

∑
[f ]∈C ,

|f−1(yi )|=αi ,i∈I

γ ([f ]) =
∑

[f ]∈C ,

|f−1(yi )|=αi ,i∈I

∏
i∈I
T
αi
i and hence the proof.)

4). a). Deduce Fermat’s little theorem from Pólya’s counting formula.

b). On a stick of length n feet the individual feet are marked consecutively 1, 2, . . . , n . The only
symmetries are roratations about the center through the angles 0 and π . Find the cycle-polynomial of
this group of symmetries. Further, if each 1-foot segment can be painted one of m colours. (1) How
many patterns are possible? (2) if n = 8 and m = 3 (Y := {y1, y2, y3} ), in how many patterns are 2
segments y1 , 4 segments y2 and 2 segments G ?

T8.4. ( S i m p l i c i a l C o m p l e x e s a n d G r a p h s ) A s i m p l i c i a l c o m p l e x K is a set V(K)
called the v e r t e x s e t (of K) and a family of subsets of V(K) , called s i m p l e x e s (in K ) such that
(i) for each v ∈ V(K), the singleton set {v} is a simplex in K.
(ii) if s is a simplex in K then so is every subset of s.

A simplex s in K is called a q - s i m p l e x if card(s) = q + 1 and say that s has d i m e n s i o n q. For
a simplicial complex K , we write dim(K) := sup {q | there exists a q − simplex in K} and is called the
d i m e n s i o n of K . A simplicial complex of dimension ≤ 1 is called a g r a p h .

An e d g e in K is an ordered pair (v0, v1) of vertices such that {v0, v1} is a simplex in K . If e = (v0, v1)

is an edge in K the vertex v0 (respectively v1) is called the o r i g i n (respectively e n d ) of e and usually
denoted by orig(e) (respectively end(e)).
A p a t h α in K of length n is a sequence e1e2 · · · en of edges in K with end(ei ) = orig(ei+1) for every
1 ≤ i ≤ n − 1. For a path α = e1e2 · · · en we put orig(α) = orig(e1) and end(α) := end(en) and say
that α is a path from orig(α) to end(α).

A simplicial complex K is called c o n n e c t e d if for every pair (v0, v1) of vertices in K there exists
a path α in K such that orig(α) = v0 and end(α) = v1.

6) See [G. Pólya : Kombinatorische Anzahlbestimmungen für Gruppen, Garphen und chemische Ver-
bindungen, Acta Mathematica, 68, 145-254, (1937).]
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