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1. Basic Algebraic Concepts
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1.1 Let G⊆ Z be a subset of integers which contains at least one positive integer and at least one
negative integer. Suppose that G is closed under the usual addition in Z i.e. a+b ∈ G whenever
a,b ∈ G . Prove that (G,+) is a group. (Hint : Use Test-Exercise T1.1 (f) 1).)

1.2 For a,b ∈ R, let fa,b : R→ R be the function defined by fa,b(x) := ax+ b, x ∈ R. Then
G := { fa,b | a,b ∈R, a 6= 0} with the composition as a binary operation is not a commutative group.
(Remark : This group G is called the a f f i n e g r o u p ofR and is usually denoted by Aff(1,R); Its elements
are called the a f f i n e l i n e a r m a p s .)

1.3 (a) Let G be a finite group with the identity element e. Suppose that #G = n and (a1, . . . ,an) ∈
Gn = G×·· ·×G (n-times). Then there exist r,s with 0≤ r< s≤ n such that ar+1 · · ·as = e . (Hint :
The n+1 products a1 · · ·as, s = 0, . . . ,n, cannot be pairwise distinct.)
(b) For any given a1, . . . ,an ∈ Z, n ∈ N+, show that there exist r,s with 0≤ r< s≤ n such that
ar+1 + · · ·+as is divisible by n. (Hint : Consider a1, . . . ,an in the group (Zn,+n) and apply part a).)

1.4 Let M be a (multiplicative)) monoid.
(a) Show that for an element a ∈M, the following statements are equivalent:
(i) a is invertible in M, i. e. a ∈M×.
(ii) The left translation map λa : M→M, x 7→ ax is bijective.
(iii) The right translation map ρa : M→M, x 7→ xa is bijective.

(b) Show that M is a group if and only if every equation of the form ax = b with a,b ∈M has a
solution in M.

∗1.5 Let n ∈N∗. Show that:
(a) A residue class [k]n ∈Zn, k ∈Z, is invertible in the multiplicative monoid (Zn, ·) if and only if
gcd(k,n) = 1, i. e. (Zn, ·n)× = {[k]n | gcd(k,n) = 1}. In particular, the unit group (Zn)

× is a group
of order ϕ(n), where ϕ is the Euler’s totient function. (Hint : Use the Bezout’s Lemma: If a and b
are positive natural numbers, then there exist integers s and t with gcd(a,b) = sa+ tb. —In particular, if
a and b are relatively prime positive natural numbers, then there exist integers s and t with 1 = sa+ tb.)
Compute the inverse of [69]100 in Z100.
(b) (Zn,+n, ·n) is a field if and only if n is a prime number.

On the other side one can see auxiliary results and (simple) test-exercises.
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Auxiliary Results/Test-Exercises
T1.1 (R e l a t i o n s , O r d e r , E q u i v a l e n c e r e l a t i o n s a n d Q u o t i e n t s e t s) Let X
be a set.

(a) (R e l a t i o n s) A r e l a t i o n on X is a subset of the cartesian product X×X . Instead of “(x,y) ∈ R
we usually write xRy.” We need to consider relations with additional properties.

Let X be a set and let R⊆ X×X be a relation on X . Then

1) R is called r e f l e x i v e if for all x ∈ X , xRx.

2) R is called s y m m e t r i c if for all x,y ∈ X , from xRy, it follows that yRx.

3) R is called a n t i - s y m m e t r i c if for all x,y ∈ X , from xRy and yRx, it follows that x = y.

4) R is called t r a n s i t i v e if for all x,y,z ∈ X ,from xRy and yRz, it follows that xRz.

5) R is called c o m p l e t e if for all x,y ∈ X either xRy or yRx.

We usually denote relations on a set X by the symbols =, ∼, ≈, ≡, ', ⊆, �, ≤ and so on.

(b) (O r d e r R e l a t i o n s) A relation on a set is called an o r d e r (r e l a t i o n) if it is reflexive,
anti-symmetric and transitive. A complete order relation is called a t o t a l or l i n e a r o r d e r.

Order relations are often denoted by the symbol ≤. We also write y ≥ x for x ≤ y; and x < y if x ≤ y and
x 6= y. A set X with a (fixed) order ≤ is called an o r d e r e d s e t and is denoted by the pair (X ,≤).
(c) Let (X ,≤) be an ordered set. For a subset Y ⊆ X , an element y0 ∈Y is called a s m a l l e s t (respectively,
b i g g e s t) element of Y if for all y ∈ Y , we have y0 ≤ y (respectively, y≤ y0).

If at all Y has a smallest (respectively, biggest) element, then it is uniquely determined (since ≤ is anti-
symmetric) and is usually denoted by minY (respectively, maxY ) and also called the m i n i m u m (respec-
tively, m a x i m u m) of Y .

(d) (W e l l O r d e r) A total order on a set X is called a w e l l o r d e r if every non-empty subset of X
has a smallest element.

(e) (E q u i v a l e n c e r e l a t i o n s and Q u o t i e n t S e t s) A relation on a set X is called an e q u i v -
a l e n c e r e l a t i o n if it is reflexive, symmetric and transitive.

Let X be a set and let ∼ be an equivalence relation on X . Two elements x,y ∈ X are called e q u i v a l e n t
u n d e r ∼ if x ∼ y (and hence y ∼ x also). For x ∈ X , the subset {y ∈ X | x ∼ y} of X is called the
e q u i v a l e n c e c l a s s o f x u n d e r ∼ and is usually denoted by [x]∼ or just by [x] or x.
(1) For every x ∈ X , x ∈ [x]. In particular, [x] 6= /0 and X = ∪x∈X [x]. (2) For all x,y ∈ X , the following
statements are equivalent: (i) [x] = [y]. (ii) [x]∩ [y] 6= /0. (iii) x∼ y.

The set of equivalence classes X/∼:= {[x] | x ∈ X} is called the q u o t i e n t s e t of the relation ∼ on X .
The natural map q : X → X/∼ which maps every element x ∈ X maps to its equivalence class [x] is clearly
surjective and is called the c a n o n i c a l p r o j e c t i o n or q u o t i e n t m a p of the equivalence
relation ∼ on X . Its fibres are precisely the equivalence classes. One also says that X/∼ is obtained by
i d e n t i f y i n g the equivalent element with respect to ∼. An element in an equivalence class is called
r e p r e s e n t a t i v e of its equivalence class. If we choose exactly one representative from each equivalence
class, then together they form a c o m p l e t e r e p r e s e n t a t i v e s y s t e m or f u n d a m e n t a l
d o m a i n for the quotient set X/∼. For example:
(1) On every set X “equality” is an equivalence relation, its equivalence classes are singletons {x}, x ∈ X .
This is the only equivalence relation which is also an order on X .

(f) 1) (L a w o f w e l l o r d e r) The standard order ≤, i. e. the subset {(m,n) | n−m ∈N} ⊆N×N is

a well order onN. This is equivalent to the p r i n c i p l e o f m a t h e m a t i c a l i n d u c t i o n1 (which
is a part of the definition onN). However, the standard order ≤ on the set of integers Z is not a well order,

1Principle of mathematical induction: If M is a subset ofN such that 0∈M and for all m∈M, m+1 also belongs
to M, then M =N.
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since for example, Z itself has no smallest element. The standard order ≤ on N is compatible with the
standard addition and multiplication:
(i) (M o n o t o n y o f a d d i t i o n) For all a,b,c ∈N, from a≤ b, it follows that a+ c≤ b+ c.
(ii) (M o n o t o n y o f m u l t i p l i c a t i o n) For all a,b,c ∈N, from a≤ b, it follows that ac≤ bc.
The W e l l O r d e r i n g p r i n c i p l e states that: If X is a non-empty set, then there exists a well-order
on X. The main advantage of the well-ordering principle is that it enables us to extend the principle of
mathematical induction to any well-ordered set. This is known as the p r i n c i p l e o f t r a n s f i n i t e
i n d u c t i o n.
2) On the power set P(X) of a set X , the inclusion relation ⊆ is an order which is in general not a total order;
if X has at least two elements x,y, then neither {x} ⊆ {y} nor {y} ⊆ {x}.
3) The divisibility is a reflexive and transitive relation on Z which is neither symmetric nor anti-symmetric.
For example, 3 divides 6, but 6 is not a divisor of 3. Moreover, 3 and −3 divide each other. However, onN
the divisibility is an order, but not a total order.
4) (C o n g r u e n c e m o d u l o2 n) Let n ∈N, n 6= 0 be a fixed natural number. For arbitrary a,b ∈Z,
we put a≡n bmod n (and read a i s c o n g r u e n t t o b m o d u l o n) if n divides a−b (equivalently,
a and b have the same remainders (between 0 and n−1) on division by n). Then≡n is an equivalence relation
on Z. there are exactly n equivalence classes under ≡n, so-called the r e s i d u e c l a s s e s m o d u l o
n. the set of residue classes (quotient set under ≡n) is denoted by Zn; the numbers 0,1, . . . ,n− 1 form a
complete representative system for ≡n. In the case n = 2, the residue class 0 = [0] is the set of all even
integers and the residue class 1 = [1] is the set of odd integers.
(g) 1) Every complete order is reflexive and hence in the definition of total order one may drop reflexivity.

2) In the definition of well order one may drop completeness.
3) For a relation∼ on a set X , show that: (i) If∼ is symmetric and complete, then∼ be the whole order X×X .
(ii) If ∼ is reflexive, symmetric and anti-symmetric, then ∼ must be the equality order ∆X := {(x,x) | x ∈ X}.
4) The relation ∼ on Z defined by a∼ b if a = b 6= 0 is not reflexive, but is symmetric and transitive. The
relation ≈ on Z defined by a≈ b if |a−b|< 2 is not transitive, but is reflexive and symmetric.
5) The set Z with the usual order ≤ is totally ordered but not well-ordered (since the subset of negative
integers has no smallest element). However, each of the following order (where by definition a < b if a is to
the left of b) is a well-order:
(i) 0,1,−1,2,−2,3,−3, . . . ,n,−n, . . . ; (ii) 0,1,3,5,7, . . . ,2,4,6,8, . . . ,−1,−2,−3,−4, . . . ;
(iii) 0,3,4,5,6, . . . ,−1,−2,−3,−4, . . . ,1,2.

T1.2 (a) ( D i v i s i o n a l g o r i t h m ) Let a and b be integers with b 6= 0. Then there exist unique integers
q and r such that a = qb+ r , with 0 ≤ r < |b| . The integers q and r are called the q u o t i e n t and
r e m a i n d e r of a on division by b, respectively.
(b) (E u c l i d e a n a l g o r i t h m) The existence and a rapid computation of the gcd(a,b) is proved by
the following E u c l i d e a n a l g o r i t h m:
Put r0 := a and r1 := b and use the division algorithm repeatedly to write the equations:

r0 = q1r1 + r2, 0 < r2 < r1;

r1 = q2r2 + r3, 0 < r3 < r2;

· · · · · · · · ·
rk−1 = qkrk + rk+1, 0 < rk+1 < rk;

rk = qk+1rk+1.

This process terminates after finitely many steps, since r1 > r1 > · · ·> rk > rk+1. Then gcd(a,b) = rk+1.
Parallel to the Euclidean algorithm one can represent the remainder ri in the form ri = sia+ tib with si, ti ∈Z.
In particular, rk+1 = sk+1a+ tk+1b with sk+1, tk+1 ∈Z. This can be done by recursively by defining:

s0 = 1, t0 = 0 s1 = 0 t1 = 1

si+1 = si−1−qisi ti+1 = ti−1−qiti , i = 1, . . .k.

2First time this relation is systematically studied by C. F. Gauss in his Disquisitiones arithmeticae (1801).
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Then: a = r0 = s0a+ t0b, b = r1 = s1a+ t1b

ri+1 = ri−1−qiri = si−1a+ ti−1b =−qisia−qitib = si+1a+ ti+1b , i = 1, . . .k.

This proves Bezout’s lemma which is stated in Exercise 1.5. We illustrate this algorithm by the following
example: a := 36667 and b = 12247. Then:

36667 = 2×12247+12173;

12247 = 1×12173+74;

12173 = 164×74+37

74 = 2×37.

Therefore gcd(36667,12247) = 37. Further,

i 0 1 2 3 4
qi 2 1 164 2
si 1 0 1 −1 165
ti 0 1 −2 3 −494

Therefore 37 = gcd(36667,12247) = 165×36667−494×12247.

T1.3 (T h e u n i t g r o u p o f a m o n o i d) Let M be a (multiplicative) monoid. An element x ∈M
is called i n v e r t i b l e if there exists x′ ∈M such that x′x = e = xx′. In this case the i n v e r s e x′ is uniquely
determined by x and is denoted by x−1 (in the additive notation by−x). Let M× denote the set of all invertible
elements of M.
1) e ∈M×.
2) If x,y ∈M×, then xy ∈M× and (xy)−1 = y−1x−1.
3) M× is a group under the induced binary operation of M.
4) M is a group if and only if M = M×.

– The group M× is called the g r o u p o f i n v e r t i b l e e l e m e n t s of M or the u n i t g r o u p of M. For example, in
a field K with respect to multiplication the unit group is K× = K \{0}. For the monoid (XX ,◦) of the set of all maps of
a set X into itself, the unit group is (XX )× =S(X) the set of all permutations of X (proof!).

T1.4 (A d d i t i o n m o d u l o n and m u l t i p l i c a t i o n m o d u l o n) Let n ∈N+ be a non-zero
natural number. On the quotient set Zn := {[0]n, [1]n, . . . , [n−1]n} of the congruence modulo n, the binary
operations +n a d d i t i o n m o d u l o n and ·n m u l t i p l i c a t i o n m o d u l o n are defined by
[a]n +n [b]n := [a+b]n and [a]n ·n [b]n := [a ·b]n, respectively. With these binary operations (Zn,+n, ·n) is a
commutative ring (with identity).

T1.5 (P o w e r s e t o f a s e t) Let X be any set and let P(X) denote the power set of X , i. e. P(X) :=
{A | A is a subset of X}.
1) The u n i o n ∪ and i n t e r s e c t i o n ∩ are associate and commutative binary operations on P(X).
What are the neutral elements for these binary operations? In the case X 6= /0, neither (P(X),∪) nor (P(X),∩)
is a group.
2) On P(X) the s y m m e t r i c d i f f e r e n c e 4 is a binary operation, in fact (P(X),4) is a group.
What is the inverse of Y ∈P(X) in the group (P(X),4)?
3) ( I n d i c a t o r f u n c t i o n s ) For A ∈ P(X), let eA : X → {0,1}, eA(x) = 1 if x ∈ A and eA(x) = 0 if
x 6∈ A, denote the i n d i c a t o r f u n c t i o n o f A. For A,B∈P(X), prove that : eA∩B = eAeB , eA∪B =
eA + eB− eAeB , eA\B = eA(1− eB) . In particular, eX\A = 1− eA and eA4B = eA + eB−2eAeB .

4) The map e : P(X)→{0,1}X defined by A 7→ eA is bijective. (Remark : One can use this bijective map and
part (3) to prove (2). )

T1.6 There are natural examples of non-associative binary operations. For example, on the set N of natural
numbers the exponentiation N×N→ N, (m,n) 7→ mn is a non-associative binary operation on N. The
differenceZ×Z→Z, (m,n)→m−n and the divisionQ××Q×→Q×, (x,y) 7→ x/y are also non-associative
binary operations. More generally, if G is a group, then G×G→G, (a,b) 7→ ab−1 is a non-associative binary
operation if there is at least one element b ∈ G with b 6= b−1.
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