E0 219 Linear Algebra and Applications / August-December 2011

(ME, MSc. Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 2239/(Maths Dept. 3212)	E-mails : dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in
Lectures : Monday and Wednesday ; 11:30-13:00	Venue: CSA, Lecture Hall (Room No. 117)

Corrections by : Jasine Babu (jasinekb@gmail.com) / Nitin Singh (nitin@math.iisc.ernet.in)/
Amulya Ratna Swain (amulya@csa.iisc.ernet.in)/ Achintya Kundu (achintya.ece@gmail. com)
1-st Midterm : Saturday, September 17, 2011; 15:00-17:00 2-nd Midterm : Saturday, October 22, 2011; 10:30-12:30
Final Examination : December ??, 2011, 10:00-13:00
Evaluation Weightage : Assignments : 20\% Midterms (Two): 30\% Final Examination : 50\%

2. Vector Spaces

Submit a solution of the $*$-Exercise ONLY
 Due Date : Monday, 22-08-2011 (Before the Class)

2.1 Let K be a field and let I be an index set.
(a) The set of all functions $f: I \rightarrow K$ with finite image i.e. $f(I)$ is a finite subset of K, is a K-subspace of the vector space K^{I}.
(b) The set of all functions $f: I \rightarrow K$ with countable image i.e. $f(I)$ is a countable subset of K, is a K-subspace of the vector space K^{I}.
(c) The set $\mathrm{B}_{\mathbb{K}}(I)$ of all bounded functions $f: I \rightarrow \mathbb{K}$ is a \mathbb{K}-subspace of \mathbb{K}^{I}.
(d) The set $W_{\text {even }}$ (resp. $W_{\text {odd }}$) of all even (resp. odd) functions ${ }^{1} \mathbb{R} \rightarrow \mathbb{K}$ is a \mathbb{K}-subspaces of $\mathbb{K}^{\mathbb{R}}$. Further, show that $W_{\text {even }} \cap W_{\text {odd }}=0$ and $W_{\text {even }}+W_{\text {odd }}=\mathbb{K}^{\mathbb{R}}$.
(e) The set of all functions $f: \mathbb{C} \rightarrow \mathbb{C}$ with $\lim _{z \rightarrow \infty} f(z)=0$ is a \mathbb{C}-subspace of the vector space $\mathbb{C}^{\mathbb{C}}$ of all \mathbb{C}-valued functions on \mathbb{C}.
*2.2 Let V be a vector space over a field K with a field with $|K| \geq n$ and let V_{1}, \ldots, V_{n} be K-subspaces of V. If $V_{i} \neq V$ for every $1 \leq i \leq n$ then show that $V_{1} \cup V_{2} \cup \cdots \cup V_{n} \neq V$. Show by an example that the condition $|K| \geq n$ is necessary. (Hint : By induction on n, assume that $V_{1} \cup V_{2} \cup \cdots \cup V_{n-1} \neq V$. Choose $x \in V_{n}$ with $x \notin V_{1} \cup \cdots \cup V_{n-1}$ and $y \in V$ with $y \notin V_{n}$. Now consider the set $\{a x+y \mid a \in K\}$ which has at least n distinct elements.)
2.3 For subspaces $U, U^{\prime}, W, W^{\prime}$ of a vector space V over a field K, show that :
(a) The subset $V \backslash(U \backslash W)$ is a subspace of V if and only if $U=V$ or $U \subseteq W$.
(b) $U+\left(U^{\prime} \cap W\right) \subseteq\left(U+U^{\prime}\right) \cap(U+W)$.
(c) $U \cap\left(U^{\prime}+W\right) \supseteq\left(U \cap U^{\prime}\right)+(U \cap W)$.
(d) (Modular law) If $U \subseteq U^{\prime}$, then $U+\left(U^{\prime} \cap W\right)=U^{\prime} \cap(U+W)$.
(e) Suppose that $U \cap W=U^{\prime} \cap W^{\prime}$. Then $U=\left(U+\left(W \cap U^{\prime}\right)\right) \cap\left(U+\left(W \cap W^{\prime}\right)\right)$.
2.4 Let K be a field and let $K[X]$ be the set of polynomials with coefficients in K. Let Φ denote the (evaluation) map $\Phi: K[X] \rightarrow K^{K}$ defined by $F(X) \mapsto(a \mapsto F(a))$. Show that
(a) Φ is injective if and only if K is not finite. (Hint : Use T2.6-(d).)
(b) Φ is surjective if and only if K is finite.(Hint : Remember Polynomial interpolation! See T2.8)

On the other side one can see auxiliary results and (simple) test-exercises.

[^0]
Auxiliary Results/Test-Exercises

T2.1 Let V be a vector space over a field K.
(a) (General Distributive law) For arbitrary finite families $a_{i}, i \in I$, in K and $x_{j}, j \in J$, in V, show that

$$
\left(\sum_{i \in I} a_{i}\right)\left(\sum_{j \in J} x_{j}\right)=\sum_{(i, j) \in I \times J} a_{i} x_{j} .
$$

(b) (Sign Rules) For arbitrary elements $a, b \in K$ and arbitrary vectors $x, y \in V$. Prove that:
(1) $0 \cdot x=a \cdot 0=0$.
(2) $a(-x)=(-a) x=-(a x)$.
(3) $(-a)(-x)=a x$.
(4) $a(x-y)=a x-a y$ and $(a-b) x=a x-b x$.
(c) (Cancelation Rule) Let $a \in K$ and let $x \in V$. If $a x=0$ then $a=0$ or $x=0$.

T2.2 Let V be a vector space over a field and let X be any set with a bijection $f: X \rightarrow V$. Then X has a K-vector space structure with $f^{-1}(0)$ as a zero element and for $a \in K, x, y \in X, x+y:=f^{-1}(f(x)+f(y))$ and $a x:=f^{-1}(a f(x))$.
T2.3 Let X be any set. Then the set-ring $(\mathfrak{P}(X), \Delta, \cap)$ of X (see exercise 1.5) has a natural structure of a vector space over the field \mathbb{Z}_{2}. (Hint : The map $\mathfrak{P}(X) \rightarrow \mathbb{Z}_{2}^{X}$ defined by $A \mapsto e_{A}$ is a bijective, where e_{A} denote the indicator function of A. See Test-Exercise T1.5.)

T2.4 Recall the concepts convergent sequence, null- sequence, Cauchy sequence, bounded sequence and limit point of a sequence 2^{2}
(a) Let $\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {conv }}$ (respectively, $\left.\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {null }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {Cauchy }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {bdd }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {lpt }},\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {const }}\right)$ denote the set of all convergent (respectively, null-sequences, Cauchy sequences, bounded sequences, sequences with exactly one limit point). Which of these are subspaces of the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers?
(b) Verify the inclusions and equalities in the following diagram:

$$
\begin{array}{cc}
\mathbb{R}^{\mathbb{N}} & \supseteq \\
U^{\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {bdd }}} \\
\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {lpt }} & \supseteq\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {lpt }} \cap\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {bdd }}=\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {Cauchy }}=\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {conv }} \supseteq\left(\mathbb{R}^{\mathbb{N}}\right)_{\text {const }} \\
& \bigcup \\
& \left(\mathbb{R}^{\mathbb{N}}\right)_{\text {null }}
\end{array}
$$

${ }^{\dagger}$ T2.5 (Function S paces) Let \mathbb{K} be either \mathbb{R} or \mathbb{C} and let $D \subseteq \mathbb{K}$ be an arbitrary subset.
(a) The set

$$
\mathrm{C}_{\mathrm{K}}^{0}(D):=\{f: D \rightarrow \mathbb{K} \mid f \text { is continuous }\}
$$

of all \mathbb{K}-valued continuous functions on D is a \mathbb{K}-subspace of all \mathbb{K}-valued functions \mathbb{K}^{D} on D.
(b) Let $I \subseteq \mathbb{R}$ be an interval in \mathbb{R} with more than one point and let $n \in \mathbb{N}$. The set

$$
\mathrm{C}_{\mathbb{K}}^{n}(I):=\{f: I \rightarrow \mathbb{K} \mid f \text { is } n-\text { timescontinuously differnetiable }\}
$$

[^1]of all \mathbb{K}-valued n-times continuously differentiable functions on I is a \mathbb{K}-subspace the \mathbb{K}-vector space $\mathrm{C}_{\mathbb{K}}^{0}(D)$.
(c) The \mathbb{K}-subspaces $\mathrm{C}_{\mathbb{K}}^{n}(I), n \in \mathbb{N}$ form a descending chain
$$
\mathrm{C}_{\mathbb{K}}^{0}(I) \supsetneq \mathrm{C}_{\mathbb{K}}^{1}(I) \supsetneq \mathrm{C}_{\mathbb{K}}^{2}(I) \supsetneq \cdots \supsetneq \mathrm{C}_{\mathbb{K}}^{n}(I) \supsetneq \mathrm{C}_{\mathbb{K}}^{n+1}(I) \supsetneq \cdots
$$
where all inclusions are proper. The intersection of these K-subspaces is the K-subspace
$$
\mathrm{C}_{\mathbb{K}}^{\infty}(I)=\bigcap_{n \in \mathbb{N}} \mathrm{C}_{\mathbb{K}}^{n}(I)
$$
of all infinitely many times differentiable \mathbb{K}-valued functions on I.
(d) The set
$$
\mathrm{C}_{\mathbb{K}}^{\omega}(I):=\{f: I \rightarrow \mathbb{K} \mid f \text { is analytic }\}
$$
of all \mathbb{K}-valued analytic functions on I is a \mathbb{K}-subspace the \mathbb{K}-vector space $\mathrm{C}_{\mathbb{K}}^{\infty}(I)$. Moreover, the inclusion $\mathrm{C}_{\mathbb{K}}^{\omega}(I) \subsetneq \mathrm{C}_{\mathbb{K}}^{\infty}(I)$ is proper. (This follows from the existence of a "flat functions")
(e) Let $I \subseteq \mathbb{R}$ be an interval with more than one point and let a_{0}, \ldots, a_{n-1} be complex valued continuous functions on I. The set of all functions $y \in \mathrm{C}_{\mathbb{C}}^{n}(I)$ satisfying the (homogeneous linear) differential equation
$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} \dot{y}+a_{0} y=0
$$
is a \mathbb{C}-subspace of $\mathrm{C}_{\mathbb{C}}^{n}(I)$.
T2.6 (Polynomials - Polynomial ring) A polynomial (in one variable or indeterminate X) with coefficients in a commutative ring A is a formal expression of the form: $F=F(X)=a_{0}+a_{1} X+\cdots+$ $a_{n} X^{n}$, where $n \in \mathbb{N}$ and the coefficients $a_{0}, a_{1}, \ldots, a_{n} \in A$. If $G=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$ is another polynomial, then $F=G$ if and only if $a_{i}=b_{i}$ for all $i \in \mathbb{N}$, where we put $a_{i}=0$ for all $i>n$ and $b_{j}=0$ for all $j>m$. The set of all polynomials with coefficients in (given) ring A is denoted by $A[X]$, i. e.
$$
A[X]:=\left\{a_{0}+a_{1} X+\cdots+a_{n} X^{n} \mid n \in \mathbb{N}, \quad a_{0}, \ldots, a_{n} \in A\right\}
$$

One can use addition, multiplication and distributive laws in the ring A to define addition and multiplication of polynomials:
$F+G:=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) X+\cdots \quad$ and $\quad F \cdot G:=\left(a_{0} b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) X^{2}+\cdots$ The i-th coefficient of the polynomial $F+G$ (respectively, $F \cdot G$) is $a_{i}+b_{i}$ (respectively, $a_{0} b_{i}+a_{1} b_{i-1}+\cdots+$ $a_{i} b_{0}=\sum_{j=0}^{i} a_{j} b_{i-j}$). With these addition and multiplication $A[X]$ is again a commutative ring with identity $1_{A[X]}=1_{A}$; this ring is called the polynomial ring in one indeterminate X over A.
Let $F=\sum_{i=0}^{n} a_{i} X^{i} \in A[X]$ be a non-zero polynomial over a commutative ring A. The biggest natural number $n \in \mathbb{N}$ with $a_{n} \neq 0$ is called the deg re e of F and is denoted by $\operatorname{deg} F$. The corresponding coefficient a_{n} is called the leading coefficient of F. A polynomial with leading coefficient 1 is called a monic polynomial. For $F \in A[X]$, if $\operatorname{deg} F=0$, then $F=a \in A, a \neq 0$ is a non-zero constant polynomial. Below we record some computational rules for the degrees of polynomials:
(a) Let $F, G \in A[X]$ be non-zero polynomials. Then:
(1) $\operatorname{deg}(F G) \begin{cases}\leq \max \{\operatorname{deg} F, \operatorname{deg} G\}, & \text { if } \quad F+G \neq 0, \\ =\max \{\operatorname{deg} F, \operatorname{deg} G\}, & \text { if } \quad F+G=0 .\end{cases}$
(2) $\operatorname{deg}(F G) \begin{cases}\leq \operatorname{deg} F+\operatorname{deg} G & \text { if } F G \neq 0 \\ =\operatorname{deg} F+\operatorname{deg} G & \text { if one of the le }\end{cases}$
(Recall that an element $a \in A$ in a (commutative) ring A is called a zero divis or if there exists $b \in A, b \neq 0$ with $a b=0$; An element which is not a zero divisor is called a non-zerodivisor in A. For example, in the ring \mathbb{Z}_{n} residue classes of divisors of n are precisely zero divisors. In the ring of integers \mathbb{Z} every non-zero element is a non-zero divisor. In a field every non-zero element is a non-zero divisor. More generally, every invertible element in any ring is a non-zero divisor. A commutative ring which does not have any non-zero zero divisors is called an integral domain. For example, the ring of integers \mathbb{Z} is an integral domain and every field K is an integral domain.)
(3) If A is an integral domain, then the invertible elements in the polynomial ring $A[X]$ are precisely the invertible elements in A, i. e. $A[X]^{\times}=A^{\times}$. In particular, a non-zero polynomial $F \in K[X]$ over a field K is
invertible in $K[X]$ if and only if it is a non-zero constant polynomial. In particular, X is never an invertible element in $K[X]$ and hence $K[X]$ is never a field.
(b) (Division algorithm for polynomials) Let F and $G \neq 0$ be polynomials over a field K. Then there exist unique polynomials Q and R over K such that

$$
F=Q G+R \quad \text { and } \quad \operatorname{deg} R<\operatorname{deg} G
$$

In particular, if $a \in K$, then $F=F(a)+Q(X-a)$, where Q is a polynomial over K. (Remark : More generally, one can perform division with remainder over arbitrary commutative ring by the polynomial G with an invertible leading coefficient.)
(c) (Zeros of polynomials) Let K be a field. An element $a \in K$ is called a zero of the polynomial $F \in K[X]$ if $F(a)=0$. Therefore $a \in K$ is a zero of F if and only if $X-a$ divide F (in $K[X]$), i. e. $X-a$ is a linear factor of F.
(1) Let $F \in K[X]$ be a non-zero polynomial over a field K. Then there exist distinct elements $a_{1}, \ldots, a_{r} \in K$, $r \geq 0$, non-zero natural numbers $n_{1}, \ldots, n_{r} \in \mathbb{N}^{+}$and a polynomial $G \in K[X]$ which does not have a zero in K, i. e. $G(a) \neq 0$ for every $a \in K$, such that

$$
F(X)=\left(X-a_{1}\right)^{n_{1}} \cdots\left(X-a_{r}\right)^{n_{r}} \cdot G
$$

Moreover, the factors $\left(X-a_{i}\right)^{n_{i}}, i=1, \ldots, r$ and G are uniquely (up to a permutation) determined by F. The elements a_{1}, \ldots, a_{r} are (distinct) all zeros of F in K and the exponents n_{1}, \ldots, n_{r} are called their multi plicities (or orders). The sum $n_{1}+\cdots+n_{r}$ is the number of zeros of F in K counted with multiplicities. Naturally, $n_{1}+\cdots+n_{r}+\operatorname{deg} G=\operatorname{deg} F$. In particular:
(2) Every polynomial F of degree $n \geq 0$ over a field K has at most n zeros in K (even if we count them with multiplicities). How many zeros the polynomial $X^{2}+X$ has in the ring \mathbb{Z}_{4} ? The polynomial $X^{3}+X^{2}+X+1$ in $\mathbb{Z}_{4}[X]$ is a multiple of $X+1$ and $X+3$, but not of $(X+1)(X+3)$. Give an example of a polynomial $F \in A[X]$ over a commutative ring A such that F has infinitely many zeros in A.
(3) In the case $K=\mathbb{R}$ in general the polynomial G in (1) above can have positive degree. For example, the polynomial $X^{2}+1$ and its power have no zero in \mathbb{R}. However, a polynomial $F \in \mathbb{R}[X]$ of odd degree has at least one zero in \mathbb{R}, since $f(x)<0$ (respectively, $f(x)>0$) for large negative (respectively, positive) x.
(d) (Identity Theorem) Let $F, G \in K[X]$ be two polynomials with coefficients in K of degrees $\leq n$. Suppose that there exist distinct $t_{1}, \ldots, t_{n+1} \in K$ such that $F\left(t_{i}\right)=G\left(t_{i}\right)$ for all $i=1, \ldots, n+1$. Then $F=G$.
(Hint : Since $t_{1}, \ldots, t_{n+1} \in K$ are zeros of the polynomial $F-G$ of degree $\operatorname{deg}(F-G) \leq n$, it follows that $F-G=0$ by (c) (2).)
T2.7 (Horner's scheme) Let K be a field and let $F=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in K[X]$. To compute the value of F at a point a one can apply the well-known Horner's scheme. For this define a sequence of polynomials recursively as follows :

$$
\begin{aligned}
& F_{0}:=a_{n} \\
& F_{1}:=a_{n-1}+X F_{0}=a_{n-1}+a_{n} X \\
& F_{k+1}:=a_{n-k-1}+F_{k} X=a_{n-k-1}+\cdots+a_{n-1} X^{k}+a_{n} X^{k+1} \\
& F_{n}:=a_{0}+F_{n-1} X=F .
\end{aligned}
$$

These polynomials are called the Ruffini's polynomials corresponding to F. The value $F(a)=F_{n}(a)$ is then obtained by the recursion-scheme:

$$
F_{0}(a)=a_{n}, \quad F_{k+1}(a)=a_{n-k-1}+F_{k}(a) a, \quad k=0, \ldots, n-1
$$

The values $F_{0}(a), \ldots, F_{n}(a)$ can be easily computed one after the another and the division algorithm by $X-a$ is given by

$$
F=Q \cdot(X-a)+F(a) \quad \text { where } \quad Q=F_{0}(a) X^{n-1}+F_{1}(a) X^{n-2}+\cdots+F_{n-1}(a), \quad F(a)=F_{n}(a)
$$

With this process also one can easily compute all coefficients b_{v} in the Taylor's expansion :

$$
F=b_{0}+b_{1}(X-a)+\cdots+b_{n}(X-a)^{n}, \quad b_{k}=F^{(k)}(a) / k!
$$

for this one has to repeat the above process for the polynomial Q instead of F and hence $b_{1}=Q(a)$, and so on. For example, the polynomial $F=2 X^{3}+2 X^{2}-X+1$ and $a=-2$ we have the following scheme :

$$
.
$$

Therefore $F=2(X+2)^{3}-10(X+2)^{2}+15(X+2)-5$.
T2.8 (Polynomial interpolation) Let K be a field and let $m \in \mathbb{N}$. The existence of a polynomial $f \in$ $K[X]$ of degree $\leq m$ which has given $m+1$ values (in K) at distinct $m+1$ places is called an interpolation problem.
(a) (Lagrange's interpolation formula) Let $a_{0}, \ldots, a_{m} \in K$ be distinct and let $b_{0}, \ldots, b_{m} \in K$ be given. Then

$$
f:=\sum_{i=0}^{m} \frac{b_{i}}{c_{i}} \prod_{j \in\{0, \ldots, m\} \backslash\{i\}}\left(X-a_{j}\right), c_{i}:=\prod_{j \in\{0, \ldots, m\} \backslash\{i\}}\left(a_{i}-a_{j}\right)
$$

is the unique polynomial (by T2.6-(d)) of degree $\leq m$ such that $f\left(a_{i}\right)=b_{i}$ for all $i=0, \ldots, m$.
(b) (Newton's interpolation) Let $f_{0}:=1, f_{1}:=X-a_{0}, f_{2}:=\left(X-a_{0}\right)\left(X-a_{1}\right), \ldots, f_{m}:=$ $\left(X-a_{0}\right) \cdots\left(X-a_{m-1}\right)$. Then, since $f_{j}\left(a_{j}\right) \neq 0$, we can recursively find the coefficients $\alpha_{0}, \ldots, \alpha_{m} \in K$ such that

$$
\left(\sum_{j=0}^{r} \alpha_{j} f_{j}\right)\left(a_{r}\right)=b_{r}, 0 \leq r \leq m
$$

The polynomials $\sum_{j=0}^{r} \alpha_{j} f_{j}$ have degree $\leq r$ and values b_{i} at the points a_{i} for all $i=0, \ldots, m$.
T2.9 (Polynomial functions) Let K be a field and let $D \subseteq K$ be a subset of K. A function $f: D \rightarrow K$ is called a polynomial function if it of the form $t \mapsto a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ with fixed coefficients $a_{0}, a_{1}, \ldots, a_{n} \in K$.
(a) The set of all polynomial functions $\operatorname{Pol}_{K}(D)$ form a K-subspace of the K-vector space K^{D}. Moreover, if $K=\mathbb{K}$ and if $D=I \subseteq \mathbb{R}$ is an interval with more than one point, then $\operatorname{Pol}_{\mathbb{K}}(I) \subseteq \mathrm{C}_{\mathbb{K}}^{\omega}(I)$.
(b) If D is a finite subset of K, then every K-valued function on D is a polynomials function, i. e. $K^{D}=$ $\operatorname{Pol}_{K}(D)$.
(c) If D is an infinite set, then the coefficients $a_{0}, a_{1}, \ldots, a_{n} \in K$ of the polynomial function $f: D \rightarrow K$, $t \mapsto a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ are uniquely determined by the function f.
(d) The functions $\mathbb{R} \rightarrow \mathbb{R}, x \mapsto|x| ; x \mapsto \sin x ; x \mapsto \cos x$ are not polynomial functions. Is the exponential function $x \mapsto e^{x}$ a polynomial function?
T2.10 (Rational functions) Let K be a field. The quotient of two polynomials over K are called the rational functions (in one variable X over K). Therefore a rational function is of the form F / G with $F, G \in K[X]$. The set of all rational functions is denoted by $K(X)$.
(a) Sum and product of rational functions are again rational functions and so $K(X)$ is a vector space over K and $K[X]$ is a K-subspace of $K(X)$. Further, $K(X)$ is a field and is called the rational function field (in one variable X over K).
(b) Every rational function F / G in one indeterminate X over K can also be represented as $F / G=Q+R / G$, where Q and R are polynomials over K with $\operatorname{deg} R<\operatorname{deg} G$.
(c) (Partial fraction decomposition) Let F and G be polynomials over K with $\operatorname{deg} F<\operatorname{deg} G$ and $G=\left(X-\alpha_{1}\right)^{n_{1}} \cdots\left(X-\alpha_{r}\right)^{n_{r}}, \alpha_{i} \neq \alpha_{j}$ for $i \neq j, n_{i} \in \mathbb{N}^{*}$. Then there exists a unique representation

$$
\frac{F}{G}=\frac{\alpha_{11}}{\left(X-\alpha_{1}\right)}+\frac{\alpha_{12}}{\left(X-\alpha_{1}\right)^{2}}+\cdots+\frac{\alpha_{1 n_{1}}}{\left(X-\alpha_{1}\right)^{n_{1}}}+\cdots \cdots+\frac{\alpha_{r 1}}{\left(X-\alpha_{r}\right)}+\frac{\alpha_{r 2}}{\left(X-\alpha_{r}\right)^{2}}+\cdots+\frac{\alpha_{r n_{r}}}{\left(X-\alpha_{r}\right)^{n_{r}}}
$$

with $\alpha_{i k} \in K, i=1, \ldots, r ; k=1, \ldots, n_{i}$.

[^0]: ${ }^{1}$ A function $f: \mathbb{R} \rightarrow \mathbb{K}$ is called even (respectively, odd) if $f(-x)=f(x)$ (respectively, $f(-x)=-f(x)$) for all $x \in \mathbb{R}$. For example, the $\operatorname{sine} \sin : \mathbb{R} \rightarrow \mathbb{R}$ (respectively, cosine $\cos ; \mathbb{R} \rightarrow \mathbb{R}$) function is an odd (respectively, even) function.

[^1]: ${ }^{2}$ A sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called convergent (in \mathbb{K}) if there exists an element $x \in \mathbb{K}$ which satisfy the following property : For every positive (however small) real number $\varepsilon \in \mathbb{R}$ there exists a natural number $n_{0} \in \mathbb{N}$ such that $\left|x_{n}-x\right| \leq \varepsilon$ for all natural numbers $n \geq n_{0}$. This element x is uniquely determined by the sequence $\left(x_{n}\right)$ and is called the limit of the sequence $\left(x_{n}\right)$; usually denoted by $\lim x_{n}=\lim _{n \rightarrow \infty} x_{n}$. If x is the limit of $\left(x_{n}\right)$, then this is also shortly written as $x_{n} \rightarrow x$ or $x_{n} \xrightarrow{n \rightarrow \infty} x$ and say that $\left(x_{n}\right)$ converges to x. The sequence $\left(x_{n}\right)$ converges to x if and only if the sequence $\left(x_{n}-x\right)$ converges to 0 . A convergent sequence with limit 0 is called a null-sequence. A sequence that is not convergent is called divergent.

 A sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called bounded sequence if there exists an element S in \mathbb{R} such that $\left|x_{n}\right| \leq S$ for all $n \in \mathbb{N}$.

 A sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called a Cauchy sequence if for every $\varepsilon \in \mathbb{R}, \varepsilon>0$, there exists a natural number $n_{0} \in \mathbb{N}\left|x_{m}-x_{n}\right| \leq \varepsilon$ for all natural numbers $m, n \geq n_{0}$.

 An element $x \in \mathbb{K}$ is called a limit point of the sequence $\left(x_{n}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of \mathbb{K} if it is a limit point of the set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$, i.e. every (however small) neighbourbood of x contain infinitely many terms of the sequence.

