E0 219 Linear Algebra and Applications / August-December 2011 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

	2. Vector Spaces		
Evaluation Weightage : Assignments : 20%	Midterms (Two) : 30%	Final Examination: 50%	
1-st Midterm : Saturday, September 17, 2011; 15:00 -1 Final Examination : December ??, 2011, 10:00 -13:0		aturday, October 22, 2011; 10:30 -12:30	
Corrections by : Jasine Babu (jasinekb@gmail.c Amulya Ratna Swain (amulya@cs	com) / Nitin Singh (nitin@math.iisc.er sa.iisc.ernet.in) / Achintya Kundu (ac	net.in)/ chintya.ece@gmail.com)	
Lectures : Monday and Wednesday ; 11:30–13:00	Ven	Venue: CSA, Lecture Hall (Room No. 117)	
Tel: +91-(0)80-2293 2239/(Maths Dept. 3212)	C-mails: dppatil@csa.iisc.ernet.i	n/patil@math.iisc.ernet.in	

Due Date: Monday, 22-08-2011 (Before the Class)

2.1 Let *K* be a field and let *I* be an index set.

(a) The set of all functions $f: I \to K$ with finite image i.e. f(I) is a finite subset of K, is a K-subspace of the vector space K^I .

(b) The set of all functions $f: I \to K$ with countable image i.e. f(I) is a countable subset of K, is a K-subspace of the vector space K^I .

(c) The set $B_{\mathbb{K}}(I)$ of all bounded functions $f: I \to \mathbb{K}$ is a \mathbb{K} -subspace of \mathbb{K}^{I} .

(d) The set W_{even} (resp. W_{odd}) of all even (resp. odd) functions¹ $\mathbb{R} \to \mathbb{K}$ is a \mathbb{K} -subspaces of $\mathbb{K}^{\mathbb{R}}$. Further, show that $W_{\text{even}} \cap W_{\text{odd}} = 0$ and $W_{\text{even}} + W_{\text{odd}} = \mathbb{K}^{\mathbb{R}}$.

(e) The set of all functions $f: \mathbb{C} \to \mathbb{C}$ with $\lim_{z \to \infty} f(z) = 0$ is a \mathbb{C} -subspace of the vector space $\mathbb{C}^{\mathbb{C}}$ of all \mathbb{C} -valued functions on \mathbb{C} .

*2.2 Let *V* be a vector space over a field *K* with a field with $|K| \ge n$ and let V_1, \ldots, V_n be *K*-subspaces of *V*. If $V_i \ne V$ for every $1 \le i \le n$ then show that $V_1 \cup V_2 \cup \cdots \cup V_n \ne V$. Show by an example that the condition $|K| \ge n$ is necessary. (**Hint** : By induction on *n*, assume that $V_1 \cup V_2 \cup \cdots \cup V_{n-1} \ne V$. Choose $x \in V_n$ with $x \notin V_1 \cup \cdots \cup V_{n-1}$ and $y \in V$ with $y \notin V_n$. Now consider the set $\{ax + y \mid a \in K\}$ which has at least *n* distinct elements.)

2.3 For subspaces U, U', W, W' of a vector space V over a field K, show that :

- (a) The subset $V \setminus (U \setminus W)$ is a subspace of V if and only if U = V or $U \subseteq W$.
- **(b)** $U + (U' \cap W) \subseteq (U + U') \cap (U + W)$.
- (c) $U \cap (U' + W) \supseteq (U \cap U') + (U \cap W)$.

(d) (Modular law) If $U \subseteq U'$, then $U + (U' \cap W) = U' \cap (U + W)$.

(e) Suppose that $U \cap W = U' \cap W'$. Then $U = (U + (W \cap U')) \cap (U + (W \cap W'))$.

2.4 Let *K* be a field and let K[X] be the set of polynomials with coefficients in *K*. Let Φ denote the (evaluation) map $\Phi: K[X] \to K^K$ defined by $F(X) \mapsto (a \mapsto F(a))$. Show that

(a) Φ is injective if and only if K is not finite. (Hint : Use T2.6-(d).)

(b) Φ is surjective if and only if K is finite.(Hint : Remember *Polynomial interpolation*! See T2.8)

On the other side one can see auxiliary results and (simple) test-exercises.

¹A function $f : \mathbb{R} \to \mathbb{K}$ is called even (respectively, odd) if f(-x) = f(x) (respectively, f(-x) = -f(x)) for all $x \in \mathbb{R}$. For example, the sine sin : $\mathbb{R} \to \mathbb{R}$ (respectively, cosine cos; $\mathbb{R} \to \mathbb{R}$) function is an odd (respectively, even) function.

Auxiliary Results/Test-Exercises

T2.1 Let V be a vector space over a field K.

(a) (General Distributive law) For arbitrary finite families $a_i, i \in I$, in K and $x_j, j \in J$, in V, show that $\left(\sum_{i \in I} a_i\right)\left(\sum_{j \in J} x_j\right) = \sum_{(i,j) \in I \times J} a_i x_j.$

(b) (Sign Rules) For arbitrary elements $a, b \in K$ and arbitrary vectors $x, y \in V$. Prove that : (1) $0 \cdot x = a \cdot 0 = 0$. (2) a(-x) = (-a)x = -(ax). (3) (-a)(-x) = ax.

(4) a(x-y) = ax - ay and (a-b)x = ax - bx.

(c) (Cancelation Rule) Let $a \in K$ and let $x \in V$. If ax = 0 then a = 0 or x = 0.

T2.2 Let *V* be a vector space over a field and let *X* be any set with a bijection $f : X \to V$. Then *X* has a *K*-vector space structure with $f^{-1}(0)$ as a zero element and for $a \in K$, $x, y \in X$, $x + y := f^{-1}(f(x) + f(y))$ and $ax := f^{-1}(af(x))$.

T2.3 Let *X* be any set. Then the set-ring $(\mathfrak{P}(X), \Delta, \cap)$ of *X* (see exercise 1.5) has a natural structure of a vector space over the field \mathbb{Z}_2 . (**Hint :** The map $\mathfrak{P}(X) \to \mathbb{Z}_2^X$ defined by $A \mapsto e_A$ is a bijective, where e_A denote the indicator function of *A*. See Test-Exercise T1.5.)

T2.4 Recall the concepts *convergent sequence*, *null- sequence*, *Cauchy sequence*, *bounded sequence* and *limit point of a sequence*.²

(a) Let $(\mathbb{R}^{\mathbb{N}})_{conv}$ (respectively, $(\mathbb{R}^{\mathbb{N}})_{null}$, $(\mathbb{R}^{\mathbb{N}})_{Cauchy}$, $(\mathbb{R}^{\mathbb{N}})_{bdd}$, $(\mathbb{R}^{\mathbb{N}})_{lpt}$, $(\mathbb{R}^{\mathbb{N}})_{const}$) denote the set of all convergent (respectively, null-sequences, Cauchy sequences, bounded sequences, sequences with exactly one limit point). Which of these are subspaces of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers?

(b) Verify the inclusions and equalities in the following diagram :

$$\begin{array}{ccc} \mathbb{R}^{\mathbb{N}} & \supseteq & (\mathbb{R}^{\mathbb{N}})_{bdd} \\ \bigcup & & \bigcup \\ (\mathbb{R}^{\mathbb{N}})_{lpt} \supseteq (\mathbb{R}^{\mathbb{N}})_{lpt} \cap (\mathbb{R}^{\mathbb{N}})_{bdd} = (\mathbb{R}^{\mathbb{N}})_{Cauchy} = (\mathbb{R}^{\mathbb{N}})_{conv} \supseteq (\mathbb{R}^{\mathbb{N}})_{const} \\ & & \bigcup \\ & & (\mathbb{R}^{\mathbb{N}})_{null} \end{array}$$

[†]**T2.5** (Function Spaces) Let \mathbb{K} be either \mathbb{R} or \mathbb{C} and let $D \subseteq \mathbb{K}$ be an arbitrary subset.

(a) The set $C^0_{\mathbb{K}}(D) := \{ f : D \to \mathbb{K} \mid f \text{ is continuous} \}$

of all K-valued continuous functions on D is a K-subspace of all K-valued functions \mathbb{K}^D on D.

(b) Let $I \subseteq \mathbb{R}$ be an interval in \mathbb{R} with more than one point and let $n \in \mathbb{N}$. The set

 $\mathbf{C}^n_{\mathbb{K}}(I) := \{ f : I \to \mathbb{K} \mid f \text{ is } n - \text{timescontinuously differnetiable} \}$

²A sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of K is called c on v ergent (in K) if there exists an element $x \in \mathbb{K}$ which satisfy the following property : For every positive (however small) real number $\varepsilon \in \mathbb{R}$ there exists a natural number $n_0 \in \mathbb{N}$ such that $|x_n - x| \le \varepsilon$ for all natural numbers $n \ge n_0$. This element x is uniquely determined by the sequence (x_n) and is called the limit of the sequence (x_n) ; usually denoted by $\lim_{n \to \infty} x_n$. If x is the limit of (x_n) , then this is also shortly written as $x_n \to x$ or $x_n \xrightarrow[n \to \infty]{n \to \infty} x$ and say that (x_n) c on verges to x. The sequence $(x_n - x)$ converges to 0. A convergent sequence with limit 0 is called a null-sequence that is not convergent is called divergent.

A sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of \mathbb{K} is called bounded sequence if there exists an element S in \mathbb{R} such that $|x_n| \leq S$ for all $n \in \mathbb{N}$.

A sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of K is called a Cauchy sequence if for every $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$, there exists a natural number $n_0 \in \mathbb{N}$ $|x_m - x_n| \le \varepsilon$ for all natural numbers $m, n \ge n_0$.

An element $x \in \mathbb{K}$ is called a limit point of the sequence $(x_n) = (x_n)_{n \in \mathbb{N}}$ of elements of \mathbb{K} if it is a limit point of the set $\{x_n \mid n \in \mathbb{N}\}$, i.e. every (however small) neighbourbood of x contain infinitely many terms of the sequence.

of all K-valued *n*-times continuously differentiable functions on *I* is a K-subspace the K-vector space $C^0_K(D)$. (c) The K-subspaces $C^n_K(I)$, $n \in \mathbb{N}$ form a descending chain

$$\mathbf{C}^{0}_{\mathbb{K}}(I) \supseteq \mathbf{C}^{1}_{\mathbb{K}}(I) \supseteq \mathbf{C}^{2}_{\mathbb{K}}(I) \supseteq \cdots \supseteq \mathbf{C}^{n}_{\mathbb{K}}(I) \supseteq \mathbf{C}^{n+1}_{\mathbb{K}}(I) \supseteq \cdots$$

where all inclusions are proper. The intersection of these K-subspaces is the K-subspace

$$\mathbf{C}^{\infty}_{\mathbb{K}}(I) = \bigcap_{n \in \mathbb{N}} \mathbf{C}^{n}_{\mathbb{K}}(I)$$

of all infinitely many times differentiable \mathbb{K} -valued functions on I.

$$C^{\omega}_{\mathbb{K}}(I) := \{ f : I \to \mathbb{K} \mid f \text{ is analytic} \}$$

of all K-valued analytic functions on *I* is a K-subspace the K-vector space $C_{K}^{\infty}(I)$. Moreover, the inclusion $C_{K}^{\omega}(I) \subsetneq C_{K}^{\infty}(I)$ is proper. (This follows from the existence of a "*flat functions*")

(e) Let $I \subseteq \mathbb{R}$ be an interval with more than one point and let a_0, \ldots, a_{n-1} be complex valued continuous functions on *I*. The set of all functions $y \in C^n_{\mathbb{C}}(I)$ satisfying the (homogeneous linear) differential equation

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = 0$$

is a \mathbb{C} -subspace of $C^n_{\mathbb{C}}(I)$.

T2.6 (P olynomials – P olynomial ring) A polynomial (in one variable or indeterminate X) with coefficients in a commutative ring A is a formal expression of the form: $F = F(X) = a_0 + a_1X + \dots + a_nX^n$, where $n \in \mathbb{N}$ and the c o efficients $a_0, a_1, \dots, a_n \in A$. If $G = b_0 + b_1X + \dots + b_mX^m$ is another polynomial, then F = G if and only if $a_i = b_i$ for all $i \in \mathbb{N}$, where we put $a_i = 0$ for all i > n and $b_j = 0$ for all j > m. The set of all polynomials with coefficients in a (given) ring A is denoted by A[X], i. e.

$$A[X] := \{a_0 + a_1 X + \dots + a_n X^n \mid n \in \mathbb{N}, \quad a_0, \dots, a_n \in A\}.$$

One can use addition, multiplication and distributive laws in the ring A to define addition and multiplication of polynomials:

 $F+G := (a_0+b_0) + (a_1+b_1)X + \cdots$ and $F \cdot G := (a_0b_0) + (a_0b_1+a_1b_0)X + (a_0b_2+a_1b_1+a_2b_0)X^2 + \cdots$ The *i*-th coefficient of the polynomial F + G (respectively, $F \cdot G$) is $a_i + b_i$ (respectively, $a_0b_i + a_1b_{i-1} + \cdots + a_ib_0 = \sum_{j=0}^i a_jb_{i-j}$). With these addition and multiplication A[X] is again a commutative ring with identity $1_{A[X]} = 1_A$; this ring is called the polynomial ring in one indeterminate X over A.

Let $F = \sum_{i=0}^{n} a_i X^i \in A[X]$ be a non-zero polynomial over a commutative ring A. The biggest natural number $n \in \mathbb{N}$ with $a_n \neq 0$ is called the d e g r e e of F and is denoted by deg F. The corresponding coefficient a_n is called the l e a d i n g c o e f f i c i e n t of F. A polynomial with leading coefficient 1 is called a m o n i c polynomial. For $F \in A[X]$, if deg F = 0, then $F = a \in A$, $a \neq 0$ is a non-zero constant polynomial. Below we record some computational rules for the degrees of polynomials:

(a) Let $F, G \in A[X]$ be non-zero polynomials. Then:

(1)
$$\deg(FG)$$
 $\begin{cases} \leq \max\{\deg F, \deg G\}, & \text{if } F+G \neq 0, \\ = \max\{\deg F, \deg G\}, & \text{if } F+G=0. \end{cases}$

(2)
$$\deg(FG) \begin{cases} \leq \deg F + \deg G & \text{if } FG \neq 0 \\ = \deg F + \deg G & \text{if one of the leading coefficient of } F \text{ or } G \text{ is a non-zero divisor in } A. \end{cases}$$

(Recall that an element $a \in A$ in a (commutative) ring A is called a $z \in r \circ d i v i s \circ r$ if there exists $b \in A$, $b \neq 0$ with ab = 0; An element which is not a zero divisor is called a $n \circ n - z \in r \circ d i v i s \circ r$ in A. For example, in the ring \mathbb{Z}_n residue classes of divisors of n are precisely zero divisors. In the ring of integers \mathbb{Z} every non-zero element is a non-zero divisor. In a field every non-zero element is a non-zero divisor. More generally, every invertible element in any ring is a non-zero divisor. A commutative ring which does not have any non-zero zero divisors is called an i n t e g r a l d o m a i n. For example, the ring of integers \mathbb{Z} is an integral domain and every field K is an integral domain.) (3) If A is an integral domain, then the invertible elements in the polynomial ring A[X] are precisely the

invertible elements in A, i. e. $A[X]^{\times} = A^{\times}$. In particular, a non-zero polynomial $F \in K[X]$ over a field K is

invertible in K[X] if and only if it is a non-zero constant polynomial. In particular, X is never an invertible element in K[X] and hence K[X] is never a field.

(b) (Division algorithm for polynomials) Let F and $G \neq 0$ be polynomials over a field K. Then there exist unique polynomials Q and R over K such that

$$F = QG + R$$
 and $\deg R < \deg G$.

In particular, if $a \in K$, then F = F(a) + Q(X - a), where Q is a polynomial over K. (**Remark :** More generally, one can perform division with remainder over arbitrary commutative ring by the polynomial G with an invertible leading coefficient.)

(c) (Zeros of polynomials) Let K be a field. An element $a \in K$ is called a zero of the polynomial $F \in K[X]$ if F(a) = 0. Therefore $a \in K$ is a zero of F if and only if X - a divide F (in K[X]), i. e. X - a is a linear factor of F.

(1) Let $F \in K[X]$ be a non-zero polynomial over a field K. Then there exist distinct elements $a_1, \ldots, a_r \in K$, $r \ge 0$, non-zero natural numbers $n_1, \ldots, n_r \in \mathbb{N}^+$ and a polynomial $G \in K[X]$ which does not have a zero in K, i. e. $G(a) \ne 0$ for every $a \in K$, such that

$$F(X) = (X - a_1)^{n_1} \cdots (X - a_r)^{n_r} \cdot G.$$

Moreover, the factors $(X - a_i)^{n_i}$, i = 1, ..., r and G are uniquely (up to a permutation) determined by F. The elements $a_1, ..., a_r$ are (distinct) all zeros of F in K and the exponents $n_1, ..., n_r$ are called their multiplicities (or orders). The sum $n_1 + \cdots + n_r$ is the number of zeros of F in K counted with multiplicities. Naturally, $n_1 + \cdots + n_r + \deg G = \deg F$. In particular:

(2) Every polynomial *F* of degree $n \ge 0$ over a field *K* has at most *n* zeros in *K* (even if we count them with multiplicities). How many zeros the polynomial $X^2 + X$ has in the ring \mathbb{Z}_4 ? The polynomial $X^3 + X^2 + X + 1$ in $\mathbb{Z}_4[X]$ is a multiple of X + 1 and X + 3, but not of (X + 1)(X + 3). Give an example of a polynomial $F \in A[X]$ over a commutative ring *A* such that *F* has infinitely many zeros in *A*.

(3) In the case $K = \mathbb{R}$ in general the polynomial *G* in (1) above can have positive degree. For example, the polynomial $X^2 + 1$ and its power have no zero in \mathbb{R} . However, a polynomial $F \in \mathbb{R}[X]$ of odd degree has at least one zero in \mathbb{R} , since f(x) < 0 (respectively, f(x) > 0) for large negative (respectively, positive) *x*.

(d) (I d e n t i t y T h e o r e m) Let $F, G \in K[X]$ be two polynomials with coefficients in K of degrees $\leq n$. Suppose that there exist distinct $t_1, \ldots, t_{n+1} \in K$ such that $F(t_i) = G(t_i)$ for all $i = 1, \ldots, n+1$. Then F = G. (**Hint :** Since $t_1, \ldots, t_{n+1} \in K$ are zeros of the polynomial F - G of degree deg $(F - G) \leq n$, it follows that F - G = 0 by (c) (2).)

T2.7 (Horner's scheme) Let K be a field and let $F = a_0 + a_1X + \cdots + a_nX^n \in K[X]$. To compute the value of F at a point a one can apply the well-known Horner's scheme. For this define a sequence of polynomials recursively as follows :

$$F_{0} := a_{n}$$

$$F_{1} := a_{n-1} + XF_{0} = a_{n-1} + a_{n}X$$
...
$$F_{k+1} := a_{n-k-1} + F_{k}X = a_{n-k-1} + \dots + a_{n-1}X^{k} + a_{n}X^{k+1}$$
...
$$F_{n} := a_{0} + F_{n-1}X = F.$$

These polynomials are called the Ruffini's polynomials corresponding to F. The value $F(a) = F_n(a)$ is then obtained by the recursion-scheme:

$$F_0(a) = a_n$$
, $F_{k+1}(a) = a_{n-k-1} + F_k(a)a$, $k = 0, \dots, n-1$

The values $F_0(a), \ldots, F_n(a)$ can be easily computed one after the another and the division algorithm by X - a is given by

 $F = Q \cdot (X - a) + F(a)$ where $Q = F_0(a)X^{n-1} + F_1(a)X^{n-2} + \dots + F_{n-1}(a)$, $F(a) = F_n(a)$.

With this process also one can easily compute all coefficients b_v in the Taylor's expansion :

$$F = b_0 + b_1(X - a) + \dots + b_n(X - a)^n$$
, $b_k = F^{(k)}(a)/k!$,

for this one has to repeat the above process for the polynomial Q instead of F and hence $b_1 = Q(a)$, and so on. For example, the polynomial $F = 2X^3 + 2X^2 - X + 1$ and a = -2 we have the following scheme :

Therefore $F = 2(X+2)^3 - 10(X+2)^2 + 15(X+2) - 5$.

T2.8 (Polynomial interpolation) Let K be a field and let $m \in \mathbb{N}$. The existence of a polynomial $f \in K[X]$ of degree $\leq m$ which has given m+1 values (in K) at distinct m+1 places is called an interpolation problem.

(a) (Lagrange's interpolation formula) Let $a_0, \ldots, a_m \in K$ be distinct and let $b_0, \ldots, b_m \in K$ be given. Then

$$f := \sum_{i=0}^{m} \frac{b_i}{c_i} \prod_{j \in \{0,...,m\} \setminus \{i\}} (X - a_j), c_i := \prod_{j \in \{0,...,m\} \setminus \{i\}} (a_i - a_j)$$

is the unique polynomial (by T2.6-(d)) of degree $\leq m$ such that $f(a_i) = b_i$ for all i = 0, ..., m.

(b) (Newton's interpolation) Let $f_0 := 1, f_1 := X - a_0, f_2 := (X - a_0)(X - a_1), \dots, f_m := (X - a_0) \cdots (X - a_{m-1})$. Then, since $f_j(a_j) \neq 0$, we can recursively find the coefficients $\alpha_0, \dots, \alpha_m \in K$ such that

$$\left(\sum_{j=0}^{r} \alpha_j f_j\right)(a_r) = b_r, \ 0 \le r \le m$$

The polynomials $\sum_{j=0}^{r} \alpha_j f_j$ have degree $\leq r$ and values b_i at the points a_i for all i = 0, ..., m.

T2.9 (Polynomial functions) Let K be a field and let $D \subseteq K$ be a subset of K. A function $f: D \to K$ is called a polynomial function if it is of the form $t \mapsto a_0 + a_1t + \dots + a_nt^n$ with fixed coefficients $a_0, a_1, \dots, a_n \in K$.

(a) The set of all polynomial functions $\operatorname{Pol}_K(D)$ form a *K*-subspace of the *K*-vector space K^D . Moreover, if $K = \mathbb{K}$ and if $D = I \subseteq \mathbb{R}$ is an interval with more than one point, then $\operatorname{Pol}_{\mathbb{K}}(I) \subseteq C^{\omega}_{\mathbb{K}}(I)$.

(b) If *D* is a finite subset of *K*, then every *K*-valued function on *D* is a polynomials function, i. e. $K^D = \text{Pol}_K(D)$.

(c) If *D* is an infinite set, then the coefficients $a_0, a_1, \ldots, a_n \in K$ of the polynomial function $f: D \to K$, $t \mapsto a_0 + a_1 t + \cdots + a_n t^n$ are uniquely determined by the function *f*.

(d) The functions $\mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$; $x \mapsto \sin x$; $x \mapsto \cos x$ are not polynomial functions. Is the exponential function $x \mapsto e^x$ a polynomial function?

T2.10 (Rational functions) Let K be a field. The quotient of two polynomials over K are called the rational functions (in one variable X over K). Therefore a rational function is of the form F/G with $F, G \in K[X]$. The set of all rational functions is denoted by K(X).

(a) Sum and product of rational functions are again rational functions and so K(X) is a vector space over K and K[X] is a K-subspace of K(X). Further, K(X) is a field and is called the rational function field (in one variable X over K).

(b) Every rational function F/G in one indeterminate X over K can also be represented as F/G = Q + R/G, where Q and R are polynomials over K with deg $R < \deg G$.

(c) (Partial fraction decomposition) Let F and G be polynomials over K with deg $F < \deg G$ and $G = (X - \alpha_1)^{n_1} \cdots (X - \alpha_r)^{n_r}$, $\alpha_i \neq \alpha_j$ for $i \neq j$, $n_i \in \mathbb{N}^*$. Then there exists a unique representation

$$\frac{F}{G} = \frac{\alpha_{11}}{(X - \alpha_1)} + \frac{\alpha_{12}}{(X - \alpha_1)^2} + \dots + \frac{\alpha_{1n_1}}{(X - \alpha_1)^{n_1}} + \dots + \frac{\alpha_{r1}}{(X - \alpha_r)} + \frac{\alpha_{r2}}{(X - \alpha_r)^2} + \dots + \frac{\alpha_{rn_r}}{(X - \alpha_r)^{n_r}}.$$

with $\alpha_{ik} \in K$, i = 1, ..., r; $k = 1, ..., n_i$.