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2. Vector Spaces
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2.1 Let K be a field and let I be an index set.
(a) The set of all functions f :I→K with finite image i.e. f (I) is a finite subset of K, is a K-subspace
of the vector space KI .
(b) The set of all functions f : I→K with countable image i.e. f (I) is a countable subset of K, is a
K-subspace of the vector space KI .
(c) The set BK(I) of all bounded functions f : I→K is a K-subspace of KI .
(d) The set Weven (resp. Wodd) of all even (resp. odd) functions1 R→K is a K-subspaces of KR.
Further, show that Weven∩Wodd = 0 and Weven + Wodd =K

R .
(e) The set of all functions f :C→C with lim

z→∞
f (z) = 0 is a C-subspace of the vector space CC of

all C-valued functions on C .

∗2.2 Let V be a vector space over a field K with a field with |K| ≥ n and let V1, . . . ,Vn be K-subspaces
of V . If Vi 6= V for every 1 ≤ i ≤ n then show that V1∪V2∪ ·· · ∪Vn 6= V . Show by an example
that the condition |K| ≥ n is necessary. (Hint : By induction on n, assume that V1∪V2∪·· ·∪Vn−1 6=V .
Choose x ∈Vn with x 6∈V1∪·· ·∪Vn−1 and y ∈V with y 6∈Vn. Now consider the set {ax+ y | a ∈ K} which
has at least n distinct elements.)

2.3 For subspaces U,U ′,W,W ′ of a vector space V over a field K, show that :
(a) The subset V \ (U \W ) is a subspace of V if and only if U =V or U ⊆W .
(b) U +(U ′∩W )⊆ (U +U ′)∩ (U +W ) .
(c) U ∩ (U ′+W )⊇ (U ∩U ′)+(U ∩W ) .

(d) ( M o d u l a r l a w ) If U ⊆U ′, then U +(U ′∩W ) =U ′∩ (U +W ) .
(e) Suppose that U ∩W =U ′∩W ′ . Then U =

(
U +(W ∩U ′)

)
∩
(
U +(W ∩W ′)

)
.

2.4 Let K be a field and let K[X ] be the set of polynomials with coefficients in K. Let Φ denote the
(evaluation) map Φ : K[X ]→ KK defined by F(X) 7→ (a 7→ F(a)). Show that
(a) Φ is injective if and only if K is not finite. (Hint : Use T2.6-(d).)
(b) Φ is surjective if and only if K is finite.(Hint : Remember Polynomial interpolation! See T2.8)

On the other side one can see auxiliary results and (simple) test-exercises.

1A function f :R→K is called e v e n (respectively, o d d) if f (−x) = f (x) (respectively, f (−x) =− f (x) ) for
all x ∈R . For example, the sine sin :R→R (respectively, cosine cos;R→R) function is an odd (respectively, even)
function.



Page 2 E0 219 Linear Algebra and Applications / August-December 2011 Exercise Set 2

Auxiliary Results/Test-Exercises

T2.1 Let V be a vector space over a field K.

(a) ( G e n e r a l D i s t r i b u t i v e l a w ) For arbitrary finite families ai , i ∈ I, in K and x j , j ∈ J, in V , show
that

(
∑
i∈I

ai

)(
∑
j∈J

x j

)
= ∑

(i, j)∈I×J
aix j .

(b) ( S i g n R u l e s ) For arbitrary elements a,b ∈ K and arbitrary vectors x,y ∈V . Prove that :
(1) 0 · x = a ·0 = 0 . (2) a(−x) = (−a)x =−(ax) . (3) (−a)(−x) = ax .
(4) a(x− y) = ax−ay and (a−b)x = ax−bx .

(c) ( C a n c e l a t i o n R u l e ) Let a ∈ K and let x ∈V . If ax = 0 then a = 0 or x = 0.

T2.2 Let V be a vector space over a field and let X be any set with a bijection f : X → V . Then X has a
K-vector space structure with f−1(0) as a zero element and for a ∈ K, x,y ∈ X , x+ y := f−1

(
f (x)+ f (y)

)
and ax := f−1

(
a f (x)

)
.

T2.3 Let X be any set. Then the set-ring (P(X),∆,∩) of X (see exercise 1.5) has a natural structure of a
vector space over the field Z2. (Hint : The map P(X)→ ZX

2 defined by A 7→ eA is a bijective, where eA

denote the indicator function of A. See Test-Exercise T1.5.)

T2.4 Recall the concepts convergent sequence, null- sequence, Cauchy sequence, bounded sequence and
limit point of a sequence.2

(a) Let (RN)conv (respectively, (RN)null , (RN)Cauchy , (RN)bdd , (RN)lpt , (RN)const ) denote the set of all
convergent (respectively, null-sequences, Cauchy sequences, bounded sequences, sequences with exactly one
limit point). Which of these are subspaces of the R-vector space RN of all sequences of real numbers?

(b) Verify the inclusions and equalities in the following diagram :

RN ⊇ (RN)bdd⋃
|

⋃
|

(RN)lpt ⊇ (RN)lpt ∩ (RN)bdd = (RN)Cauchy = (RN)conv ⊇ (RN)const⋃
|

(RN)null

†T2.5 (F u n c t i o n S p a c e s) LetK be either R or C and let D⊆K be an arbitrary subset.

(a) The set
C0
K(D) := { f : D→K | f is continuous}

of allK-valued continuous functions on D is aK-subspace of allK-valued functionsKD on D.

(b) Let I ⊆R be an interval in R with more than one point and let n ∈N. The set

Cn
K(I) := { f : I→K | f is n− timescontinuously differnetiable}

2A sequence (xn) = (xn)n∈N of elements of K is called c o n v e r g e n t (in K) if there exists an element x ∈K
which satisfy the following property : For every positive (however small) real number ε ∈ R there exists a natural
number n0 ∈N such that |xn− x| ≤ ε for all natural numbers n ≥ n0. This element x is uniquely determined by the
sequence (xn) and is called the l i m i t of the sequence (xn) ; usually denoted by limxn = lim

n→∞
xn . If x is the limit of

(xn), then this is also shortly written as xn→ x or xn −−−−−−−−−
n→ ∞

−−−−−−−−−−- x and say that (xn) c o n v e r g e s t o x . The sequence
(xn) converges to x if and only if the sequence (xn− x) converges to 0. A convergent sequence with limit 0 is called a
n u l l - s e q u e n c e . A sequence that is not convergent is called d i v e r g e n t .

A sequence (xn) = (xn)n∈N of elements of K is called b o u n d e d s e q u e n c e if there exists an element S in R
such that |xn| ≤ S for all n ∈N.

A sequence (xn) = (xn)n∈N of elements of K is called a C a u c h y s e q u e n c e if for every ε ∈R, ε > 0, there
exists a natural number n0 ∈N |xm− xn| ≤ ε for all natural numbers m,n≥ n0.

An element x ∈K is called a l i m i t p o i n t of the sequence (xn) = (xn)n∈N of elements ofK if it is a limit point of
the set {xn | n ∈N}, i.e. every (however small) neighbourbood of x contain infinitely many terms of the sequence.
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of allK-valued n-times continuously differentiable functions on I is aK-subspace theK-vector space C0
K(D).

(c) The K-subspaces Cn
K(I), n ∈N form a descending chain

C0
K(I)) C1

K(I)) C2
K(I)) · · ·) Cn

K(I)) Cn+1
K (I)) · · ·

where all inclusions are proper. The intersection of these K-subspaces is the K-subspace
C∞
K(I) =

⋂
n∈N

Cn
K(I)

of all infinitely many times differentiableK-valued functions on I.
(d) The set

Cω
K(I) := { f : I→K | f is analytic}

of all K-valued analytic functions on I is a K-subspace the K-vector space C∞
K(I). Moreover, the inclusion

Cω
K(I)( C∞

K(I) is proper. (This follows from the existence of a “flat functions”)
(e) Let I ⊆R be an interval with more than one point and let a0, . . . ,an−1 be complex valued continuous
functions on I. The set of all functions y ∈ Cn

C(I) satisfying the (homogeneous linear) differential equation

y(n)+an−1y(n−1)+ · · ·+a1ẏ+a0y = 0

is a C-subspace of Cn
C(I).

T2.6 (P o l y n o m i a l s – P o l y n o m i a l r i n g) A polynomial (in one variable or indeterminate X)
with coefficients in a commutative ring A is a formal expression of the form: F = F(X) = a0 +a1X + · · ·+
anXn, where n ∈N and the c o e f f i c i e n t s a0,a1, . . . ,an ∈ A. If G = b0 +b1X + · · ·+bmXm is another
polynomial, then F = G if and only if ai = bi for all i ∈N, where we put ai = 0 for all i > n and b j = 0 for
all j > m. The set of all polynomials with coefficients in a (given) ring A is denoted by A[X ], i. e.

A[X ] := {a0 +a1X + · · ·+anXn | n ∈N, a0, . . . ,an ∈ A} .
One can use addition, multiplication and distributive laws in the ring A to define addition and multiplication
of polynomials:

F+G :=(a0+b0)+(a1+b1)X+· · · and F ·G :=(a0b0)+(a0b1+a1b0)X+(a0b2+a1b1+a2b0)X2+· · ·
The i-th coefficient of the polynomial F +G (respectively, F ·G) is ai +bi (respectively, a0bi +a1bi−1 + · · ·+
aib0 = ∑

i
j=0 a jbi− j). With these addition and multiplication A[X ] is again a commutative ring with identity

1A[X ] = 1A; this ring is called the p o l y n o m i a l r i n g i n o n e i n d e t e r m i n a t e X o v e r A.

Let F = ∑
n
i=0 aiX i ∈ A[X ] be a non-zero polynomial over a commutative ring A. The biggest natural number

n ∈N with an 6= 0 is called the d e g r e e of F and is denoted by degF . The corresponding coefficient an is
called the l e a d i n g c o e f f i c i e n t of F . A polynomial with leading coefficient 1 is called a m o n i c
polynomial. For F ∈ A[X ], if degF = 0, then F = a ∈ A, a 6= 0 is a non-zero constant polynomial. Below we
record some computational rules for the degrees of polynomials:
(a) Let F,G ∈ A[X ] be non-zero polynomials. Then:

(1) deg(FG)

{
≤max{degF,degG}, if F +G 6= 0,
= max{degF,degG}, if F +G = 0.

(2) deg(FG)

{
≤ degF +degG if FG 6= 0
= degF +degG if one of the leading coefficient of F or G is a non-zero divisor in A.

(Recall that an element a ∈ A in a (commutative) ring A is called a z e r o d i v i s o r if there exists b ∈ A, b 6= 0 with
ab = 0; An element which is not a zero divisor is called a n o n - z e r o d i v i s o r in A. For example, in the ring
Zn residue classes of divisors of n are precisely zero divisors. In the ring of integers Z every non-zero element is a
non-zero divisor. In a field every non-zero element is a non-zero divisor. More generally, every invertible element in any
ring is a non-zero divisor. A commutative ring which does not have any non-zero zero divisors is called an i n t e g r a l
d o m a i n. For example, the ring of integers Z is an integral domain and every field K is an integral domain.)
(3) If A is an integral domain, then the invertible elements in the polynomial ring A[X ] are precisely the
invertible elements in A, i. e. A[X ]× = A×. In particular, a non-zero polynomial F ∈ K[X ] over a field K is
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invertible in K[X ] if and only if it is a non-zero constant polynomial. In particular, X is never an invertible
element in K[X ] and hence K[X ] is never a field.
(b) ( D i v i s i o n a l g o r i t h m f o r p o l y n o m i a l s ) Let F and G 6= 0 be polynomials over a field K .
Then there exist unique polynomials Q and R over K such that

F = QG+R and degR < degG .

In particular, if a ∈ K, then F = F(a)+Q(X − a), where Q is a polynomial over K. (Remark : More
generally, one can perform division with remainder over arbitrary commutative ring by the polynomial G
with an invertible leading coefficient.)
(c) (Z e r o s o f p o l y n o m i a l s) Let K be a field. An element a ∈ K is called a z e r o of the
polynomial F ∈ K[X ] if F(a) = 0. Therefore a ∈ K is a zero of F if and only if X−a divide F (in K[X ]), i. e.
X−a is a l i n e a r f a c t o r of F .

(1) Let F ∈ K[X ] be a non-zero polynomial over a field K. Then there exist distinct elements a1, . . . ,ar ∈ K,
r ≥ 0, non-zero natural numbers n1, . . . ,nr ∈N+ and a polynomial G ∈ K[X ] which does not have a zero in
K, i. e. G(a) 6= 0 for every a ∈ K, such that

F(X) = (X−a1)
n1 · · ·(X−ar)

nr ·G .

Moreover, the factors (X−ai)
ni , i = 1, . . . ,r and G are uniquely (up to a permutation) determined by F . The

elements a1, . . . ,ar are (distinct) all zeros of F in K and the exponents n1, . . . ,nr are called their m u l t i -
p l i c i t i e s (or o r d e r s). The sum n1 + · · ·+nr is the number of zeros of F in K c o u n t e d w i t h
m u l t i p l i c i t i e s. Naturally, n1 + · · ·+nr +degG = degF . In particular:

(2) Every polynomial F of degree n≥ 0 over a field K has at most n zeros in K (even if we count them with
multiplicities). How many zeros the polynomial X2+X has in the ring Z4? The polynomial X3+X2+X +1
in Z4[X ] is a multiple of X + 1 and X + 3, but not of (X + 1)(X + 3). Give an example of a polynomial
F ∈ A[X ] over a commutative ring A such that F has infinitely many zeros in A.

(3) In the case K =R in general the polynomial G in (1) above can have positive degree. For example, the
polynomial X2 +1 and its power have no zero in R. However, a polynomial F ∈R[X ] of odd degree has at
least one zero in R, since f (x)< 0 (respectively, f (x)> 0) for large negative (respectively, positive) x.
(d) (I d e n t i t y T h e o r e m) Let F,G ∈ K[X ] be two polynomials with coefficients in K of degrees ≤ n.
Suppose that there exist distinct t1, . . . , tn+1 ∈ K such that F(ti) = G(ti) for all i = 1, . . . ,n+1. Then F = G.
(Hint : Since t1, . . . , tn+1 ∈ K are zeros of the polynomial F−G of degree deg(F−G)≤ n, it follows that
F−G = 0 by (c) (2).)

T2.7 ( H o r n e r ’ s s c h e m e ) Let K be a field and let F = a0 +a1X + · · ·+anXn ∈ K[X ] . To compute the
value of F at a point a one can apply the well-known H o r n e r ’ s s c h e m e . For this define a sequence of
polynomials recursively as follows :

F0 := an

F1 := an−1 +XF0 = an−1 +anX

· · · · · · · · · · · · · · · · · ·
Fk+1 := an−k−1 +FkX = an−k−1 + · · ·+an−1Xk +anXk+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Fn := a0 +Fn−1X = F .

These polynomials are called the R u f f i n i ’ s p o l y n o m i a l s corresponding to F . The value F(a) = Fn(a)
is then obtained by the recursion-scheme:

F0(a) = an , Fk+1(a) = an−k−1 +Fk(a)a , k = 0, . . . ,n−1

The values F0(a), . . . ,Fn(a) can be easily computed one after the another and the division algorithm by X−a
is given by

F = Q · (X−a)+F(a) where Q = F0(a)Xn−1 +F1(a)Xn−2 + · · ·+Fn−1(a) , F(a) = Fn(a) .
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With this process also one can easily compute all coefficients bν in the Taylor’s expansion :
F = b0 +b1(X−a)+ · · ·+bn(X−a)n , bk = F(k)(a)/k! ,

for this one has to repeat the above process for the polynomial Q instead of F and hence b1 = Q(a), and so
on. For example, the polynomial F = 2X3 +2X2−X +1 and a =−2 we have the following scheme :

2 2 −1 1
−2 2 −2 3 −5(= b0)
−2 2 −6 15(= b1)
−2 2 −10(= b2)
−2 2(= b3) .

Therefore F = 2(X +2)3−10(X +2)2 +15(X +2)−5.

T2.8 ( P o l y n o m i a l i n t e r p o l a t i o n ) Let K be a field and let m∈N. The existence of a polynomial f ∈
K[X ] of degree≤m which has given m+1 values (in K) at distinct m+1 places is called an i n t e r p o l a t i o n
p r o b l e m .
(a) ( L a g r a n g e ’ s i n t e r p o l a t i o n f o r m u l a ) Let a0, . . . ,am ∈ K be distinct and let b0, . . . ,bm ∈ K be
given. Then

f :=
m

∑
i=0

bi

ci
∏

j∈{0,...,m}\{i}
(X−a j) , ci := ∏

j∈{0,...,m}\{i}
(ai−a j)

is the unique polynomial (by T2.6-(d)) of degree ≤ m such that f (ai) = bi for all i = 0, . . . ,m.
(b) ( N e w t o n ’ s i n t e r p o l a t i o n ) Let f0 := 1 , f1 := X − a0 , f2 := (X − a0)(X − a1) , . . . , fm :=
(X−a0) · · ·(X−am−1). Then, since f j(a j) 6= 0, we can recursively find the coefficients α0, . . . ,αm ∈ K such
that (

r

∑
j=0

α j f j

)
(ar) = br , 0≤ r ≤ m .

The polynomials ∑
r
j=0 α j f j have degree ≤ r and values bi at the points ai for all i = 0, . . . ,m.

T2.9 (P o l y n o m i a l f u n c t i o n s) Let K be a field and let D ⊆ K be a subset of K. A function
f : D→ K is called a p o l y n o m i a l f u n c t i o n if it is of the form t 7→ a0 +a1t + · · ·+antn with fixed
c o e f f i c i e n t s a0,a1, . . . ,an ∈ K.
(a) The set of all polynomial functions PolK(D) form a K-subspace of the K-vector space KD. Moreover, if
K =K and if D = I ⊆R is an interval with more than one point, then PolK(I)⊆ Cω

K(I).
(b) If D is a finite subset of K, then every K-valued function on D is a polynomials function, i. e. KD =
PolK(D).
(c) If D is an infinite set, then the coefficients a0,a1, . . . ,an ∈ K of the polynomial function f : D→ K,
t 7→ a0 +a1t + · · ·+antn are uniquely determined by the function f .
(d) The functions R→ R, x 7→ |x|; x 7→ sinx; x 7→ cosx are not polynomial functions. Is the exponential
function x 7→ ex a polynomial function?

T2.10 ( R a t i o n a l f u n c t i o n s ) Let K be a field. The quotient of two polynomials over K are called the
r a t i o n a l f u n c t i o n s ( i n o n e v a r i a b l e X o v e r K ) . Therefore a rational function is of the form
F/G with F,G ∈ K[X ]. The set of all rational functions is denoted by K(X) .
(a) Sum and product of rational functions are again rational functions and so K(X) is a vector space over K
and K[X ] is a K-subspace of K(X). Further, K(X) is a field and is called the r a t i o n a l f u n c t i o n f i e l d
( i n o n e v a r i a b l e X o v e r K ) .
(b) Every rational function F/G in one indeterminate X over K can also be represented as F/G = Q+R/G ,
where Q and R are polynomials over K with degR < degG .
(c) ( P a r t i a l f r a c t i o n d e c o m p o s i t i o n ) Let F and G be polynomials over K with degF < degG and
G = (X−α1)

n1 · · ·(X−αr)
nr , αi 6= α j for i 6= j, ni ∈N∗. Then there exists a unique representation

F
G

=
α11

(X−α1)
+

α12

(X−α1)2 + · · ·+
α1n1

(X−α1)n1
+ · · · · · · + αr1

(X−αr)
+

αr2

(X−αr)2 + · · ·+
αrnr

(X−αr)nr
.

with αik ∈ K, i = 1, . . . ,r ; k = 1, . . . ,ni.
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