E0 219 Linear Algebra and Applications / August-December 2011
 (ME, MSc. Ph. D. Programmes)
 Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 2239/(Maths Dept. 3212) E-mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in

> | Lectures : Monday and Wednesday ; 11:30-13:00 | Venue: CSA, Lecture Hall (Room No. 117) |
| :--- | :---: |

Corrections by : Jasine Babu (jasinekb@gmail.com) / Nitin Singh (nitin@math.iisc.ernet.in) /
Amulya Ratna Swain (amulya@csa.iisc.ernet.in)/Meghana Mande (meghanamande@gmail.com)/
Achintya Kundu (achintya.ece@gmail.com)
1-st Midterm : Saturday, September 17, 2011; 10:30-12:30
2-nd Midterm : Saturday, October 22, 2011; 10:30-12:30
Final Examination : December ??, 2011, 10:00-13:00
Evaluation Weightage : Assignments : 20\% \quad Midterms (Two): 30\% \quad Final Examination : 50\%
3. Generating systems, Linear independence, Bases

Submit a solution of the $*$-Exercise ONLY
 Due Date : Monday, 29-08-2011 (Before the Class)

3.1 (a) Let K be a field of characteristic $\neq 2$, i. e. $1+1 \neq 0$ in K and let $a \in K$. Compute the solution set of the following systems of linear equations over K :

$$
\begin{array}{rlr}
a x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+a x_{2}+x_{3} & =1 \\
x_{1}+x_{2}+a x_{3} & =1 ; & \text { and }
\end{array}
$$

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =1 \\
2 x_{1}+3 x_{2}+a x_{3} & =3 \\
x_{1}+a x_{2}+3 x_{3} & =2 ;
\end{aligned}
$$

For which a these systems have exactly one solution?
(b) The set of m-tuples $\left(b_{1}, \ldots, b_{m}\right) \in K^{m}$ for which a linear system of equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$, $i=1, \ldots, m$, over a field K has a solution is a K-subspace of K^{m}.
(c) Let K be a subfield of the field L and let $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m$ be a system of linear equations over K. If this system has a solution $\left(x_{1}, \ldots, x_{n}\right) \in L^{n}$, then it also has a solution in K^{n}.
*3.2 (a) Let $x_{1}, \ldots, x_{n} \in V$ be linearly independent (over K) in a K-vector space V and let $x:=$ $\sum_{i=1}^{n} a_{i} x_{i} \in V$ with $a_{i} \in K$. Show that $x_{1}-x, \ldots, x_{n}-x$ are linearly independent over K if and only if $a_{1}+\cdots+a_{n} \neq 1$.
(b) Let x_{1}, \ldots, x_{n} be a basis of the K-vector space V and let $a_{i j} \in K, 1 \leq i \leq j \leq n$. Show that

$$
y_{1}=a_{11} x_{1}, y_{2}=a_{12} x_{1}+a_{22} x_{2}, \ldots, y_{n}=a_{1 n} x_{1}+a_{2 n} x_{2}+\cdots+a_{n n} x_{n}
$$

is a basis of V if and only if $a_{11} \cdots a_{n n} \neq 0$.
(c) Show that the family $\{\ln p \mid p$ prime number $\}$ of real numbers is linearly independent over \mathbb{Q}.
(Hint : Use the Fundamental Theorem of Arithmetic, see Test-Exercise T3.1.)
3.3 Let K be a field and let $K[X]$ (respectively, $K[X]_{m}, m \in \mathbb{N}$) be the K-vector space of all polynomials (respectively, polynomials of degree $<m$) with coefficients in K. Let $f_{n} \in K[X], n \in \mathbb{N}$, be a sequence of polynomials with $\operatorname{deg} f_{n} \leq n$ for all $n \in \mathbb{N}$. Show that:
(a) For every $m \in \mathbb{N}, f_{0}, \ldots, f_{m-1}$ is a K-basis of the subspace $K[X]_{m}$ if and only if $\operatorname{deg} f_{n}=n$ for all $n=0, \ldots, m-1$.
(b) $f_{n}, n \in \mathbb{N}$, is a basis of the K-vector space $K[X]$ if and only if $\operatorname{deg} f_{n}=n$ for all $n \in \mathbb{N}$. (Hint : Use part (a).)
3.4 (a) Let $f: I \rightarrow K$ be a K-valued function with image $f(I)$ infinite. Then the sequence $f^{n}, n \in \mathbb{N}$ of powers of f is linearly independent (over K) in the K-vector space K^{I}.
(b) The sequences $\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{n}, \ldots\right) \in K^{\mathbb{N}}, \lambda \in K$, are linearly independent over K. (Hint : See Test-Exercise T3.6.)
On the other side one can see auxiliary results and (simple) test-exercises.

Auxiliary Results/Test-Exercises

To understand and appreciate the Test-Exercises which are marked with the symbol \dagger one may possibly require more mathematical maturity than one has!

T3.1 (Fundamental Theorem of Arithmetic ${ }^{1}$) Proposition 14 of Book IX of Euclid's "Elements" embodies the result which later became known as the Fundamental Theorem of Arithmetic: Every Natural number $a>1$ is a product of prime numbers and this representation is "essentially" unique, apart from the order in which the prime factors occur.
(a) (Existence of prime decomposition) Every natural number $a>1$ has a prime decomposition $a=p_{1} \cdots p_{n}$, where we may choose p_{1} as the smallest (prime) divisor t of a. (Proof : Either a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by the minimality principle (applied to the non-empty subset $T=\left\{d \in \mathbb{N}^{*}|d| a\right.$ and $\left.\left.d>1\right\}, a \in T\right)$ there exists a smallest prime divisor p_{1} of a, i. e. $a=p_{1} \cdot b$ with $1 \leq b<a$ (since $1<p_{1} \leq a$). Now, by induction hypothesis b has a prime decomposition $b=p_{2} \cdots p_{n}$ and hence a has a prime decomposition $a=p_{1} \cdot p_{2} \cdots p_{n}$.)
(b) (Uniqueness of prime decomposition) A prime decomposition of every natural number $a>1$ is essentially unique. More precisely, if $a=p_{1} \cdots p_{n}$ and $a=q_{1} \cdots q_{m}$ are two prime decompositions of a with prime numbers $p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{m}$, then $m=n$ and there exists a permutation $\sigma \in \mathfrak{S}_{n}$ such that $q_{i}=p_{\sigma(i)}$ for every $i=1, \ldots, n$. (Remark : For a proof of uniqueness one uses the Euclid's lemmd ${ }^{2}$ on the prime property and hence uses implicitly the division algorithm and therefore make use of the additive structure of \mathbb{N}. The existence of prime decomposition only uses the multiplicative structure on \mathbb{N} and not the additive structure on \mathbb{N}. This leads to the question : Can one give a proof of the uniqueness of the prime decomposition which only depends on the multiplicative structure of \mathbb{N} ? The answer to this question is negative!)

T3.2 Let x_{1}, \ldots, x_{n}, x be elements of a vector space over a field K. Then
(a) The family $x_{1}, \ldots, x_{n}, x_{1}+\cdots+x_{n}$ is linearly dependent over K, but every n of these vectors are linearly independent over K.
(b) Show that x_{1}, \ldots, x_{n}, x are linearly independent over K if and only if x_{1}, \ldots, x_{n} are linearly independent over K and $x \notin K x_{1}+\cdots+K x_{n}$.
(c) Show that x_{1}, \ldots, x_{n} is a generating system of V if and only if x_{1}, \ldots, x_{n}, x is a generating system of V and $x \in K x_{1}+\cdots+K x_{n}$.

T3.3 Let V be a vector space over a field K.
(a) If V has a finite (respectively, a countable) generating system, then every generating system of V has a finite (respectively, a countable) generating system.
(b) If V has a countable infinite basis, then every basis of V is countable infinite.
(c) If there is an uncountable linearly independent system in V, then no generating system of V is countable.
(d) If K is countable and if V has a countable generating system, then V is countable. In particular, every Hamel-basis of \mathbb{R} over \mathbb{Q} is uncountable.
(e) If $v_{i}, i \in I$, is a generating system for V, then every maximal linearly independent subsystem of $v_{i}, i \in I$, is a basis of V.

T3.4 Let $a_{n}, n \in \mathbb{N}^{*}$, be a sequence of elements in K. Show that :

[^0](a) For every $m \in \mathbb{N}$, the polynomials $1, X-a_{1}, \ldots,\left(X-a_{1}\right) \cdots\left(X-a_{m-1}\right)$ form a K-basis of $K[X]_{m}$.
(b) The polynomials $\left(X-a_{1}\right) \cdots\left(X-a_{n}\right), n \in \mathbb{N}$, form a K-basis of $K[X]$.
${ }^{\dagger}$ T3.5 Let $D \subseteq \mathbb{R}$ be an infinite subset and let $Q \subseteq \mathbb{R}[X]$ be the set of all monic polynomials of degree 2 witout any real zeros. Then
$$
t^{n}, n \in \mathbb{N}, \quad \frac{1}{(t-a)^{m}}, m \in \mathbb{N}^{*}, a \in \mathbb{R} \backslash D, \quad \text { and } \quad \frac{t^{r}}{q^{\ell}}, r \in\{0,1\}, \ell \in \mathbb{N}^{*}, q \in Q
$$
together form a \mathbb{R}-basis of the \mathbb{R}-vector space of real rational functions defined on D.
T3.6 Let $\lambda_{1}, \ldots, \lambda_{n}$ be pairwise distinct elements in a field K. Then the elements
$$
x_{1}:=\left(1, \lambda_{1}, \lambda_{1}^{2}, \ldots, \lambda_{1}^{n-1}\right), \ldots, x_{n}:=\left(1, \lambda_{n}, \lambda_{n}^{2}, \ldots, \lambda_{n}^{n-1}\right) \in K^{n}
$$
are linearly independent over K. (Hint : Induction on n. Assume the result for $n-1$ and $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$. Then we have the equations: $a_{1} \lambda_{n} x_{1}^{\prime}+\cdots+a_{n} \lambda_{n} x_{n}^{\prime}=0$ and $a_{1} \lambda_{1} x_{1}^{\prime}+\cdots+a_{n} \lambda_{n} x_{n}^{\prime}=0$, and so $a_{1}\left(\lambda_{n}-\lambda_{1}\right) x_{1}^{\prime}+\cdots+$ $a_{n-1}\left(\lambda_{n}-\lambda_{n-1}\right) x_{n-1}^{\prime}=0$, where $x_{i}^{\prime}:=\left(1, \lambda_{i}, \ldots, \lambda_{i}^{n-2}\right), i=1, \ldots, n$.)
${ }^{\dagger}$ T3.7 (a) The vector space of all sequences $K^{\mathbb{N}}$ has no countable generating system over K. (Hint : Consider the cases K countable and uncountable separately to show that $K^{\mathbb{N}}$ is never countable and use Test-Exercises T3.3-(c), (d) and Exercise 3.4-(b).)
(b) Let I be an infinite set. Then the K-vector space K^{I} of K-valued functions on I has no countable generating system over K.
(c) The K-subspace of $K^{\mathbb{N}}$ generated by the characteristic functions $e_{A}, A \subseteq \mathbb{N}$ has no countable generating system. (Hint : If \mathfrak{K} is a totally ordered subset of $\mathfrak{P}(\mathbb{N}) \backslash\{\emptyset\}$, then the family $\boldsymbol{e}_{A}, A \in \mathfrak{K}$ is linearly independent. Now, use the fact that there are uncountable totally ordered subsets in the ordered $\operatorname{set}(\mathfrak{P}(\mathbb{N}), \subseteq)$).
${ }^{\dagger}$ T3.8 (a) Let $I \subseteq \mathbb{R}$ be an interval which contain more than one point. Then none of the \mathbb{K}-vector space $\mathrm{C}_{\mathrm{K}}^{\alpha}(I), \alpha \in \mathbb{N} \cup\{\infty, \omega\}$, has a countable generating system.
(b) The \mathbb{K}-vector space of all convergent power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with coefficients a_{n} from \mathbb{K} has no countable generating system over \mathbb{K}.
T3.9 Which of the following systems of functions are linearly independent over \mathbb{R} in the \mathbb{R}-vector space $\mathbb{R}^{\mathbb{R}}$ of all functions.
(a) $1, \sin t, \cos t$.
(b) $\sin t, \cos t, \sin (\alpha+t) \quad(\alpha \in \mathbb{R}$ fixed $)$.
(c) $t,|t|, \operatorname{Sign} t$.
(d) $e^{t}, \sin t, \cos t$.
${ }^{\dagger}$ T3.10 (a) (Quasi-polynomials) The functions $t^{n} e^{\alpha t}, n \in \mathbb{N}, \alpha \in \mathbb{C}$, are linearly independent in the \mathbb{C}-vector space \mathbb{C}^{D} of \mathbb{C}-valued functions on a subset $D \subseteq \mathbb{C}$ which has a limit point in \mathbb{C}. (Remark : The \mathbb{C}-subspace generated by these functions is called the space of quasi-polynomials. One usually proves in the first course on differential equation that: The quasi-polynomials are the solutions of the linear differential equations with constant coefficients $P(D) y=0, P \in \mathbb{C}[X] \backslash\{0\}$. More precisely: Let $P=\left(X-\lambda_{1}\right)^{\alpha_{1}} \cdots\left(X-\lambda_{r}\right)^{\alpha_{r}} \in \mathbb{K}[X]$ be a polynomial with pairwise distinct zeros $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{K}$. Then $e^{\lambda_{1} t}, \ldots, t^{\alpha_{1}-1} e^{\lambda_{1} t}, \ldots, e^{\lambda_{r} t}, \ldots, t^{\alpha_{r}-1} e^{\lambda_{r} t}$ is a \mathbb{K}-basis of the solution space $\left\{y \in \mathrm{C}_{\mathrm{K}}^{n}(I) \mid P(D) y=0\right\}$ of the corresponding homogeneous differential equation $P(D)(y)=\left(D-\lambda_{1}\right)^{\alpha_{1}} \cdots\left(D-\lambda_{r}\right)^{\alpha_{r}}(y)=0$ consisting $n:=\alpha_{1}+\cdots+\alpha_{r}=\operatorname{deg} P$ elements. $)$
(b) The functions $t^{m} e^{b t} \cos \beta t, m \in \mathbb{N}, b \in \mathbb{R}, \beta \in \mathbb{R}_{+} ; t^{k} e^{c t} \sin \gamma t, k \in \mathbb{N}, c \in \mathbb{R}, \gamma \in \mathbb{R}_{+}^{\times}$, together form a basis of the \mathbb{R}-vector space of the real valued quasi-polynomials $\mathbb{R} \rightarrow \mathbb{R}$. (See part (a).)
(c) Let Λ be the set of numbers $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0$ or with $\operatorname{Re} \lambda=0$ and $\operatorname{Im} \lambda>0$. Then the functions
$$
t^{n}, \quad n \in \mathbb{N} ; \quad t^{m} \cos \beta t, \quad m \in \mathbb{N}, \beta \in \Lambda ; \quad t^{k} \sin \gamma t, \quad k \in \mathbb{N}, \gamma \in \Lambda,
$$
together form a basis of the \mathbb{C}-vector space of the quasi-polynomials $\mathbb{R} \rightarrow \mathbb{C}$. (See part (a).)
T3.11 Let K be a field. Let $f_{i}, i \in I$, and $g_{j}, j \in J$, be linearly independent K-valued functions on the sets X resp. Y. Then the functions $f_{i} \otimes g_{j}:(x, y) \longmapsto f_{i}(x) g_{j}(y),(i, j) \in I \times J$, are linearly independent in $K^{X \times Y}$.
T3.12 Let $K \subseteq L$ be a field extension and let $b_{i}, i \in I$, be a K-basis of L. If V is a L-vector space with L-basis $y_{j}, j \in J$, then $b_{i} y_{j},(i, j) \in I \times J$, is a K-basis of V.

[^0]: ${ }^{1}$ The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid's elements, although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof seems to have been given by Gauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801). It was, of course, familiar to earlier mathematicians; but Gauss was the first to develop arithmetic as a systematic science.
 ${ }^{2}$ Euclid's Lemma If a prime number p divides a product ab of two natural numbers a and b, then p divides one of the factor a or b. (Proof : The set $A:=\left\{x \in \mathbb{N}^{*}|p| a x\right\}$ contains p and b and hence by the minimality principle it has a smallest element c. We claim that $c \mid y$ for every $y \in A$. For, by division algorithm $y=q c+r$ with $q, r \in \mathbb{N}$ and $0 \leq r<c$. Then, since $p \mid a y$ and $p|a c, p| a y-q(a c)=a r$. This proves that $r=0$; otherwise $r \in A$ and $r<c$ a contradiction to the minimality of c in A. Therefore $c \mid y$ for every $y \in A$; in particular, $c \mid p$ and hence $c=1$ or $c=p$. If $c=1$, then $p \mid a c=a$. If $c=p$, then (since $b \in A$) by the above claim $p \mid b$.

