E0 219 Linear Algebra and Applications / August-December 2011 (ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Evaluation Weightage : Assignments : 20%	Midterms (Two) : 30%	Final Examination: 50%	
1-st Midterm : Saturday, September 17, 2011; 10:30 Final Examination : December ??, 2011, 10:00 -13		aturday, October 22, 2011; 10:30 -12:30	
Corrections by : Jasine Babu (jasinekb@gmail Amulya Ratna Swain (amulya@a Achintya Kundu (achintya.ed	csa.iisc.ernet.in)/Meghana Mande (me		
Lectures : Monday and Wednesday ; 11:30–13:00	Ven	Venue: CSA, Lecture Hall (Room No. 117)	
Tel: +91-(0)80-2293 2239/(Maths Dept. 3212)	E-mails: dppatil@csa.iisc.ernet.i	n/patil@math.iisc.ernet.in	

3. Generating systems, Linear independence, Bases

Submit a solution of the *-Exercise ONLY **Due Date :** Monday, 29-08-2011 (Before the Class)

3.1 (a) Let *K* be a field of characteristic $\neq 2$, i. e. $1 + 1 \neq 0$ in *K* and let $a \in K$. Compute the solution set of the following systems of linear equations over *K*:

$ax_1 + x_2 + x_3 = 1$		$x_1 + x_2 - x_3 = 1$
$x_1 + ax_2 + x_3 = 1$	and	$2x_1 + 3x_2 + ax_3 = 3$
$x_1 + x_2 + ax_3 = 1;$		$x_1 + ax_2 + 3x_3 = 2;$

For which *a* these systems have exactly one solution ?

(b) The set of *m*-tuples $(b_1, \ldots, b_m) \in K^m$ for which a linear system of equations $\sum_{j=1}^n a_{ij} x_j = b_i$, $i = 1, \ldots, m$, over a field *K* has a solution is a *K*-subspace of K^m .

(c) Let *K* be a subfield of the field *L* and let $\sum_{j=1}^{n} a_{ij}x_j = b_i$, i = 1, ..., m be a system of linear equations over *K*. If this system has a solution $(x_1, ..., x_n) \in L^n$, then it also has a solution in K^n .

***3.2** (a) Let $x_1, \ldots, x_n \in V$ be linearly independent (over *K*) in a *K*-vector space *V* and let $x := \sum_{i=1}^{n} a_i x_i \in V$ with $a_i \in K$. Show that $x_1 - x, \ldots, x_n - x$ are linearly independent over *K* if and only if $a_1 + \cdots + a_n \neq 1$.

(b) Let x_1, \ldots, x_n be a basis of the *K*-vector space *V* and let $a_{ij} \in K$, $1 \le i \le j \le n$. Show that

 $y_1 = a_{11}x_1, y_2 = a_{12}x_1 + a_{22}x_2, \dots, y_n = a_{1n}x_1 + a_{2n}x_2 + \dots + a_{nn}x_n$

is a basis of *V* if and only if $a_{11} \cdots a_{nn} \neq 0$.

(c) Show that the family $\{\ln p \mid p \text{ prime number }\}$ of real numbers is linearly independent over Q. (**Hint :** Use the Fundamental Theorem of Arithmetic, see Test-Exercise T3.1.)

3.3 Let *K* be a field and let K[X] (respectively, $K[X]_m$, $m \in \mathbb{N}$) be the *K*-vector space of all polynomials (respectively, polynomials of degree < m) with coefficients in *K*. Let $f_n \in K[X]$, $n \in \mathbb{N}$, be a sequence of polynomials with deg $f_n \le n$ for all $n \in \mathbb{N}$. Show that:

(a) For every $m \in \mathbb{N}$, f_0, \ldots, f_{m-1} is a *K*-basis of the subspace $K[X]_m$ if and only if deg $f_n = n$ for all $n = 0, \ldots, m-1$.

(b) $f_n, n \in \mathbb{N}$, is a basis of the *K*-vector space K[X] if and only if deg $f_n = n$ for all $n \in \mathbb{N}$. (Hint : Use part (a).)

3.4 (a) Let $f: I \to K$ be a *K*-valued function with image f(I) infinite. Then the sequence $f^n, n \in \mathbb{N}$ of powers of *f* is linearly independent (over *K*) in the *K*-vector space K^I .

(b) The sequences $(1, \lambda, \lambda^2, ..., \lambda^n, ...) \in K^{\mathbb{N}}$, $\lambda \in K$, are linearly independent over *K*. (Hint : See Test-Exercise T3.6.)

On the other side one can see auxiliary results and (simple) test-exercises.

Auxiliary Results/Test-Exercises

To understand and appreciate the Test-Exercises which are marked with the symbol \dagger one may possibly require more mathematical maturity than one has!

T3.1 (Fundamental Theorem of Arithmetic¹) Proposition 14 of Book IX of Euclid's "Elements" embodies the result which later became known as the **Fundamental Theorem of Arithmetic**: Every Natural number a > 1 is a product of prime numbers and this representation is "essentially" unique, apart from the order in which the prime factors occur.

(a) (Existence of prime decomposition) Every natural number a > 1 has a prime decomposition $a = p_1 \cdots p_n$, where we may choose p_1 as the smallest (prime) divisor t of a. (Proof: Either a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by the minimality principle (applied to the non-empty subset $T = \{d \in \mathbb{N}^* \mid d \mid a \text{ and } d > 1\}, a \in T$) there exists a smallest prime divisor p_1 of a, i. e. $a = p_1 \cdot b$ with $1 \le b < a$ (since $1 < p_1 \le a$). Now, by induction hypothesis b has a prime decomposition $b = p_2 \cdots p_n$ and hence a has a prime decomposition $a = p_1 \cdot p_2 \cdots p_n$.)

(b) (Uniqueness of prime decomposition) A prime decomposition of every natural number a > 1 is essentially unique. More precisely, if $a = p_1 \cdots p_n$ and $a = q_1 \cdots q_m$ are two prime decompositions of a with prime numbers $p_1, \ldots, p_n; q_1, \ldots, q_m$, then m = n and there exists a permutation $\sigma \in \mathfrak{S}_n$ such that $q_i = p_{\sigma(i)}$ for every $i = 1, \ldots, n$. (Remark : For a proof of uniqueness one uses the Euclid's lemma² on the prime property and hence uses implicitly the division algorithm and therefore make use of the additive structure of \mathbb{N} . The existence of prime decomposition only uses the multiplicative structure on \mathbb{N} and not the additive structure on \mathbb{N} . This leads to the question : Can one give a proof of the uniqueness of the prime decomposition which only depends on the multiplicative structure of \mathbb{N} ? The answer to this question is negative!)

T3.2 Let x_1, \ldots, x_n , x be elements of a vector space over a field K. Then

(a) The family $x_1, \ldots, x_n, x_1 + \cdots + x_n$ is linearly dependent over *K*, but every *n* of these vectors are linearly independent over *K*.

(b) Show that x_1, \ldots, x_n, x are linearly independent over *K* if and only if x_1, \ldots, x_n are linearly independent over *K* and $x \notin Kx_1 + \cdots + Kx_n$.

(c) Show that x_1, \ldots, x_n is a generating system of V if and only if x_1, \ldots, x_n, x is a generating system of V and $x \in Kx_1 + \cdots + Kx_n$.

T3.3 Let V be a vector space over a field K.

(a) If V has a finite (respectively, a countable) generating system, then every generating system of V has a finite (respectively, a countable) generating system.

(b) If *V* has a countable infinite basis, then every basis of *V* is countable infinite.

(c) If there is an uncountable linearly independent system in V, then no generating system of V is countable.

(d) If *K* is countable and if *V* has a countable generating system, then *V* is countable. In particular, every Hamel-basis of \mathbb{R} over \mathbb{Q} is uncountable.

(e) If v_i , $i \in I$, is a generating system for V, then every maximal linearly independent subsystem of v_i , $i \in I$, is a basis of V.

T3.4 Let a_n , $n \in \mathbb{N}^*$, be a sequence of elements in *K*. Show that :

¹ The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid's elements, although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof seems to have been given by Gauss in *Disquisitiones arithmeticae* §16 (Leipzig, Fleischer, 1801). It was, of course, familiar to earlier mathematicians; but Gauss was the first to develop arithmetic as a systematic science.

² Euclid's Lemma If a prime number p divides a product ab of two natural numbers a and b, then p divides one of the factor a or b. (Proof : The set $A := \{x \in \mathbb{N}^* \mid p \mid ax\}$ contains p and b and hence by the minimality principle it has a smallest element c. We claim that $c \mid p$ for every $y \in A$. For, by division algorithm y = qc + r with $q, r \in \mathbb{N}$ and $0 \le r < c$. Then, since $p \mid ay$ and $p \mid ac$, $p \mid ay - q(ac) = ar$. This proves that r = 0; otherwise $r \in A$ and r < c a contradiction to the minimality of c in A. Therefore $c \mid y$ for every $y \in A$; in particular, $c \mid p$ and hence c = 1 or c = p. If c = 1, then $p \mid ac = a$. If c = p, then (since $b \in A$) by the above claim $p \mid b$.

- (a) For every $m \in \mathbb{N}$, the polynomials $1, X a_1, \dots, (X a_1) \cdots (X a_{m-1})$ form a K-basis of $K[X]_m$.
- (**b**) The polynomials $(X a_1) \cdots (X a_n)$, $n \in \mathbb{N}$, form a *K*-basis of K[X].

[†]**T3.5** Let $D \subseteq \mathbb{R}$ be an infinite subset and let $Q \subseteq \mathbb{R}[X]$ be the set of all monic polynomials of degree 2 witout any real zeros. Then

$$t^n, \ n \in \mathbb{N}, \quad \frac{1}{(t-a)^m}, \ m \in \mathbb{N}^*, \ a \in \mathbb{R} \setminus D, \quad \text{and} \quad \frac{t^r}{q^\ell}, \ r \in \{0,1\}, \ \ell \in \mathbb{N}^*, \ q \in Q,$$

together form a \mathbb{R} -basis of the \mathbb{R} -vector space of real rational functions defined on D.

T3.6 Let $\lambda_1, \ldots, \lambda_n$ be pairwise distinct elements in a field *K*. Then the elements

$$x_1 := (1, \lambda_1, \lambda_1^2, \dots, \lambda_1^{n-1}), \dots, x_n := (1, \lambda_n, \lambda_n^2, \dots, \lambda_n^{n-1}) \in K^n$$

are linearly independent over *K*. (**Hint**: Induction on *n*. Assume the result for n - 1 and $a_1x_1 + \cdots + a_nx_n = 0$. Then we have the equations: $a_1\lambda_nx'_1 + \cdots + a_n\lambda_nx'_n = 0$ and $a_1\lambda_1x'_1 + \cdots + a_n\lambda_nx'_n = 0$, and so $a_1(\lambda_n - \lambda_1)x'_1 + \cdots + a_{n-1}(\lambda_n - \lambda_{n-1})x'_{n-1} = 0$, where $x'_i := (1, \lambda_i, \dots, \lambda_i^{n-2})$, $i = 1, \dots, n$.)

[†]**T3.7** (a) The vector space of all sequences $K^{\mathbb{N}}$ has no countable generating system over *K*. (Hint : Consider the cases *K* countable and uncountable separately to show that $K^{\mathbb{N}}$ is never countable and use Test-Exercises T3.3-(c), (d) and Exercise 3.4-(b).)

(b) Let *I* be an infinite set. Then the *K*-vector space K^I of *K*-valued functions on *I* has no countable generating system over *K*.

(c) The *K*-subspace of $K^{\mathbb{N}}$ generated by the characteristic functions e_A , $A \subseteq \mathbb{N}$ has no countable generating system. (**Hint** : If \mathfrak{K} is a totally ordered subset of $\mathfrak{P}(\mathbb{N}) \setminus \{\emptyset\}$, then the family e_A , $A \in \mathfrak{K}$ is linearly independent. Now, use the fact that there are uncountable totally ordered subsets in the ordered set ($\mathfrak{P}(\mathbb{N}), \subseteq$).)

[†]**T3.8** (a) Let $I \subseteq \mathbb{R}$ be an interval which contain more than one point. Then none of the K-vector space $C^{\alpha}_{\mathbb{K}}(I)$, $\alpha \in \mathbb{N} \cup \{\infty, \omega\}$, has a countable generating system.

(b) The K-vector space of all convergent power series $\sum_{n=0}^{\infty} a_n x^n$ with coefficients a_n from K has no countable generating system over K.

T3.9 Which of the following systems of functions are linearly independent over \mathbb{R} in the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$ of all functions.

- (a) $1, \sin t, \cos t$. (b) $\sin t, \cos t, \sin(\alpha + t)$ ($\alpha \in \mathbb{R}$ fixed).
- (c) t, |t|, Sign t. (d) $e^t, \sin t, \cos t.$

[†]**T3.10** (a) (Q u a s i - p o l y n o m i a l s) The functions $t^n e^{\alpha t}$, $n \in \mathbb{N}$, $\alpha \in \mathbb{C}$, are linearly independent in the \mathbb{C} -vector space \mathbb{C}^D of \mathbb{C} -valued functions on a subset $D \subseteq \mathbb{C}$ which has a limit point in \mathbb{C} . (**Remark :** The \mathbb{C} -subspace generated by these functions is called the s p a c e o f q u a s i - p o l y n o m i a l s. One usually proves in the first course on differential equation that: *The quasi-polynomials are the solutions of the linear differential equations with constant coefficients* P(D)y = 0, $P \in \mathbb{C}[X] \setminus \{0\}$. More precisely: Let $P = (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_r)^{\alpha_r} \in \mathbb{K}[X]$ be a polynomial with pairwise distinct zeros $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$. Then $e^{\lambda_1 t}, \ldots, t^{\alpha_1 - 1} e^{\lambda_1 t}, \ldots, t^{\alpha_r - 1} e^{\lambda_r t}$ is a \mathbb{K} -basis of the solution space $\{y \in \mathbb{C}^n_{\mathbb{K}}(I) \mid P(D)y = 0\}$ of the corresponding homogeneous differential equation $P(D)(y) = (D - \lambda_1)^{\alpha_1} \cdots (D - \lambda_r)^{\alpha_r}(y) = 0$ consisting $n := \alpha_1 + \cdots + \alpha_r = \deg P$ elements.)

(b) The functions $t^m e^{bt} \cos \beta t$, $m \in \mathbb{N}$, $b \in \mathbb{R}$, $\beta \in \mathbb{R}_+$; $t^k e^{ct} \sin \gamma t$, $k \in \mathbb{N}$, $c \in \mathbb{R}$, $\gamma \in \mathbb{R}_+^{\times}$, together form a basis of the \mathbb{R} -vector space of the real valued quasi-polynomials $\mathbb{R} \to \mathbb{R}$. (See part (a).)

(c) Let Λ be the set of numbers $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > 0$ or with $\operatorname{Re} \lambda = 0$ and $\operatorname{Im} \lambda > 0$. Then the functions

$$t^n$$
, $n \in \mathbb{N}$; $t^m \cos \beta t$, $m \in \mathbb{N}$, $\beta \in \Lambda$; $t^k \sin \gamma t$, $k \in \mathbb{N}$, $\gamma \in \Lambda$,

together form a basis of the C-vector space of the quasi-polynomials $\mathbb{R} \to \mathbb{C}$. (See part (a).)

T3.11 Let *K* be a field. Let f_i , $i \in I$, and g_j , $j \in J$, be linearly independent *K*-valued functions on the sets *X* resp. *Y*. Then the functions $f_i \otimes g_j$: $(x, y) \mapsto f_i(x)g_j(y)$, $(i, j) \in I \times J$, are linearly independent in $K^{X \times Y}$.

T3.12 Let $K \subseteq L$ be a field extension and let b_i , $i \in I$, be a K-basis of L. If V is a L-vector space with L-basis y_j , $j \in J$, then $b_i y_j$, $(i, j) \in I \times J$, is a K-basis of V.