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3.1 (a) Let K be a field of characteristic 6= 2, i. e. 1+ 1 6= 0 in K and let a ∈ K. Compute the
solution set of the following systems of linear equations over K:

ax1 + x2 + x3 = 1 x1 + x2 − x3 = 1
x1 + ax2 + x3 = 1 and 2x1 + 3x2 + ax3 = 3
x1 + x2 + ax3 = 1 ; x1 + ax2 + 3x3 = 2 ;

For which a these systems have exactly one solution ?
(b) The set of m-tuples (b1, . . . ,bm) ∈ Km for which a linear system of equations ∑

n
j=1 ai jx j = bi ,

i = 1, . . . ,m, over a field K has a solution is a K-subspace of Km.
(c) Let K be a subfield of the field L and let ∑

n
j=1 ai jx j = bi , i = 1, . . . ,m be a system of linear

equations over K. If this system has a solution (x1, . . . ,xn) ∈ Ln, then it also has a solution in Kn.

∗3.2 (a) Let x1, . . . ,xn ∈ V be linearly independent (over K) in a K-vector space V and let x :=
∑

n
i=1 aixi ∈V with ai ∈ K . Show that x1− x, . . . ,xn− x are linearly independent over K if and only

if a1 + · · ·+an 6= 1.
(b) Let x1, . . . ,xn be a basis of the K-vector space V and let ai j ∈ K, 1≤ i≤ j ≤ n. Show that

y1 = a11x1 , y2 = a12x1 +a22x2 , . . . , yn = a1nx1 +a2nx2 + · · ·+annxn

is a basis of V if and only if a11 · · ·ann 6= 0.
(c) Show that the family {ln p | p prime number } of real numbers is linearly independent over Q.
(Hint : Use the Fundamental Theorem of Arithmetic, see Test-Exercise T3.1.)

3.3 Let K be a field and let K[X ] (respectively, K[X ]m , m ∈ N ) be the K-vector space of all
polynomials (respectively, polynomials of degree < m) with coefficients in K. Let fn ∈K[X ], n∈N,
be a sequence of polynomials with deg fn ≤ n for all n ∈N. Show that:
(a) For every m ∈N, f0, . . . , fm−1 is a K-basis of the subspace K[X ]m if and only if deg fn = n for
all n = 0, . . . ,m−1.
(b) fn ,n ∈N, is a basis of the K-vector space K[X ] if and only if deg fn = n for all n ∈N. (Hint :
Use part (a).)

3.4 (a) Let f :I→K be a K-valued function with image f (I) infinite. Then the sequence f n, n∈N
of powers of f is linearly independent (over K) in the K-vector space KI .
(b) The sequences (1,λ ,λ 2, . . . ,λ n, . . .) ∈ KN, λ ∈ K, are linearly independent over K. (Hint : See
Test-Exercise T3.6.)
On the other side one can see auxiliary results and (simple) test-exercises.
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Auxiliary Results/Test-Exercises
To understand and appreciate the Test-Exercises which are marked with the symbol † one may possibly
require more mathematical maturity than one has!

T3.1 ( F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c 1) Proposition 14 of Book IX of Euclid’s “Elements”
embodies the result which later became known as the F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c :
Every Natural number a > 1 is a product of prime numbers and this representation is “essentially” unique,
apart from the order in which the prime factors occur.

(a) ( E x i s t e n c e o f p r i m e d e c o m p o s i t i o n ) Every natural number a > 1 has a prime decomposition
a = p1 · · · pn, where we may choose p1 as the smallest (prime) divisor t of a. (Proof : Either a is prime or
composite.; in the former case there is nothing to prove. If a is composite, then by the minimality principle (applied
to the non-empty subset T = {d ∈ N∗ | d

∣∣a and d > 1}, a ∈ T ) there exists a smallest prime divisor p1 of a, i. e.
a = p1 ·b with 1≤ b < a (since 1 < p1 ≤ a ). Now, by induction hypothesis b has a prime decomposition b = p2 · · · pn

and hence a has a prime decomposition a = p1 · p2 · · · pn.)

(b) ( U n i q u e n e s s o f p r i m e d e c o m p o s i t i o n ) A prime decomposition of every natural number
a > 1 is essentially unique. More precisely, if a = p1 · · · pn and a = q1 · · · qm are two prime decompositions
of a with prime numbers p1, . . . , pn ; q1, . . . ,qm, then m = n and there exists a permutation σ ∈Sn such that
qi = pσ(i) for every i = 1, . . . ,n. (Remark : For a proof of uniqueness one uses the Euclid’s lemma2 on the prime
property and hence uses implicitly the division algorithm and therefore make use of the additive structure of N. The
existence of prime decomposition only uses the multiplicative structure on N and not the additive structure on N. This
leads to the question : Can one give a proof of the uniqueness of the prime decomposition which only depends on the
multiplicative structure of N? The answer to this question is negative!)

T3.2 Let x1, . . . ,xn, x be elements of a vector space over a field K. Then

(a) The family x1, . . . ,xn , x1 + · · ·+ xn is linearly dependent over K, but every n of these vectors are linearly
independent over K.

(b) Show that x1, . . . ,xn,x are linearly independent over K if and only if x1, . . . ,xn are linearly independent
over K and x /∈ Kx1 + · · ·+Kxn.

(c) Show that x1, . . . ,xn is a generating system of V if and only if x1, . . . ,xn ,x is a generating system of V
and x ∈ Kx1 + · · ·+Kxn.

T3.3 Let V be a vector space over a field K.

(a) If V has a finite (respectively, a countable) generating system, then every generating system of V has a
finite (respectively, a countable) generating system.

(b) If V has a countable infinite basis, then every basis of V is countable infinite.

(c) If there is an uncountable linearly independent system in V , then no generating system of V is countable.

(d) If K is countable and if V has a countable generating system, then V is countable. In particular, every
Hamel-basis of R over Q is uncountable.

(e) If vi , i ∈ I, is a generating system for V , then every maximal linearly independent subsystem of vi , i ∈ I,
is a basis of V .

T3.4 Let an, n ∈N∗, be a sequence of elements in K. Show that :

1 The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid’s elements,
although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with
proof seems to have been given by Gauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801). It was, of
course, familiar to earlier mathematicians; but Gauss was the first to develop arithmetic as a systematic science.

2 Euclid’s Lemma If a prime number p divides a product ab of two natural numbers a and b, then p divides one
of the factor a or b. (Proof : The set A := {x ∈N∗ | p

∣∣ax} contains p and b and hence by the minimality principle
it has a smallest element c. We claim that c

∣∣y for every y ∈ A. For, by division algorithm y = qc+ r with q,r ∈N
and 0≤ r < c. Then, since p

∣∣ay and p
∣∣ac, p

∣∣ay−q(ac) = ar. This proves that r = 0; otherwise r ∈ A and r < c a
contradiction to the minimality of c in A. Therefore c

∣∣y for every y ∈ A ; in particular, c
∣∣p and hence c = 1 or c = p.

If c = 1, then p
∣∣ac = a. If c = p, then (since b ∈ A ) by the above claim p

∣∣b.
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(a) For every m ∈N , the polynomials 1 ,X−a1, . . . ,(X−a1) · · ·(X−am−1) form a K-basis of K[X ]m .
(b) The polynomials (X−a1) · · ·(X−an) , n ∈N, form a K-basis of K[X ].

†T3.5 Let D ⊆ R be an infinite subset and let Q ⊆ R[X ] be the set of all monic polynomials of degree 2
witout any real zeros. Then

tn, n ∈N,
1

(t−a)m , m ∈N∗ , a ∈R\D , and tr

q`
, r ∈ {0 ,1} , ` ∈N∗ , q ∈ Q ,

together form a R-basis of the R-vector space of real rational functions defined on D.

T3.6 Let λ1, . . . ,λn be pairwise distinct elements in a field K. Then the elements

x1 := (1,λ1 ,λ
2
1 , . . . ,λ

n−1
1 ) , . . . ,xn := (1,λn ,λ

2
n , . . . ,λ

n−1
n ) ∈ Kn

are linearly independent over K. (Hint : Induction on n. Assume the result for n− 1 and a1x1 + · · ·+ anxn = 0.
Then we have the equations: a1λnx′1 + · · ·+anλnx′n = 0 and a1λ1x′1 + · · ·+anλnx′n = 0 , and so a1(λn−λ1)x′1 + · · ·+
an−1(λn−λn−1)x′n−1 = 0 , where x′i := (1,λi , . . . ,λ

n−2
i ) , i = 1, . . . ,n .)

†T3.7 (a) The vector space of all sequences KN has no countable generating system over K. (Hint : Consider

the cases K countable and uncountable separately to show that KN is never countable and use Test-Exercises T3.3-(c),
(d) and Exercise 3.4-(b).)
(b) Let I be an infinite set. Then the K-vector space KI of K-valued functions on I has no countable
generating system over K.
(c) The K-subspace of KN generated by the characteristic functions eA , A⊆N has no countable generating
system. (Hint : If K is a totally ordered subset of P(N)\{ /0} , then the family eA , A ∈ K is linearly independent. Now,
use the fact that there are uncountable totally ordered subsets in the ordered set (P(N),⊆ ).)

†T3.8 (a) Let I ⊆R be an interval which contain more than one point. Then none of the K-vector space
Cα
K(I) , α ∈N∪{∞ ,ω} , has a countable generating system.

(b) TheK-vector space of all convergent power series ∑
∞
n=0 anxn with coefficients an fromK has no countable

generating system overK.

T3.9 Which of the following systems of functions are linearly independent over R in the R-vector space
RR of all functions.
(a) 1, sin t, cos t . (b) sin t, cos t, sin(α + t) (α ∈R fixed).

(c) t, |t| , Sign t . (d) et , sin t , cos t .

†T3.10 (a) (Q u a s i - p o l y n o m i a l s) The functions tneα t , n ∈N, α ∈ C, are linearly independent in
the C-vector space CD of C-valued functions on a subset D⊆ C which has a limit point in C. (Remark : The
C-subspace generated by these functions is called the s p a c e o f q u a s i - p o l y n o m i a l s. One usually proves in
the first course on differential equation that: The quasi-polynomials are the solutions of the linear differential equations
with constant coefficients P(D)y = 0, P ∈ C[X ] \ {0}. More precisely: Let P = (X − λ1)

α1 · · ·(X − λr)
αr ∈ K[X ]

be a polynomial with pairwise distinct zeros λ1, . . . ,λr ∈ K. Then eλ1 t , . . . , tα1−1eλ1 t , . . . ,eλr t , . . . , tαr−1eλr t is a
K-basis of the solution space {y ∈ Cn

K(I) | P(D)y = 0} of the corresponding homogeneous differential equation
P(D)(y) = (D−λ1)

α1 · · ·(D−λr)
αr(y) = 0 consisting n := α1 + · · ·+αr = degP elements.)

(b) The functions tmebt cosβ t , m ∈N, b ∈ R, β ∈ R+ ; tkect sinγ t , k ∈N, c ∈ R, γ ∈ R×+ , together
form a basis of the R-vector space of the real valued quasi-polynomials R→R. (See part (a).)

(c) Let Λ be the set of numbers λ ∈ C with Reλ > 0 or with Reλ = 0 and Imλ > 0. Then the functions

tn , n ∈N ; tm cosβ t , m ∈N , β ∈ Λ ; tk sinγ t , k ∈N , γ ∈ Λ ,

together form a basis of the C-vector space of the quasi-polynomials R→ C. (See part (a).)

T3.11 Let K be a field. Let fi , i ∈ I, and g j , j ∈ J, be linearly independent K-valued functions on the sets
X resp. Y . Then the functions fi⊗g j : (x,y) 7−→ fi(x)g j(y) , (i, j) ∈ I× J, are linearly independent in KX×Y .

T3.12 Let K ⊆ L be a field extension and let bi , i ∈ I, be a K-basis of L. If V is a L-vector space with
L-basis y j , j ∈ J, then biy j , (i, j) ∈ I× J, is a K-basis of V .
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