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5. Linear Maps

Submit a solution of the ∗-Exercise ONLY
Due Date : Monday, 12-09-2011 (Before the Class)

∗5.1 (a) ( P o i n t e r r e p r e s e n t a t i o n ) Let ω ∈R×+ and W be the R-vector space of the functions
asin(ω t +ϕ) , a,ϕ ∈R, with basis sinω t, cosω t, (see Exercise 4.1). Then the map

γ :asin(ω t +ϕ) 7−→ aeiϕ , a≥ 0 ,

is a R-vector space isomorphism of W onto C. (Remark : This isomorphism is called the p o i n t e r
r e p r e s e n t a t i o n of the simple harmonic motion with the circular frequency ω . The differentiation in W
correspond to the multiplication by iω to the pointer representation, i.e. γ(ẋ) = iω γ(x) for x ∈W . In the
representation aeiϕ of asin(ω t +ϕ) , a≥ 0, a = |aeiϕ | is called the ( m a x i m a l ) a m p l i t u d e and eiϕ is
called the p h a s e f a c t o r .)

(b) Let I ⊆R be an interval with more than one point and let a ∈ I. For n ∈N∗, let
Ta,n :Cn−1

K (I)→K[t]n
be the map which maps every function f ∈ Cn−1

K (I) to its Taylor-polynomial of degree < n of f at
a, i. e.

f 7→ Ta,n( f ) =
n−1

∑
k=0

f (k)(a)
k!

(t−a)k .

Show that Ta,n is K-linear. Determine the kernel and the image of this map Ta,n. (Remark : See also
Test-Exercise T5.8.)

5.2 Let V be a K-vector space with DimK V ≥ 2 (i. e. V contain at least two linearly independent
vectors). Then every additive map f : V → V with f (Kx) ⊆ Kx for all x ∈ V is a homothecy
ϑa : V →V , x 7→ ax, of V by a scalar a ∈ K.

5.3 Let f1 :V → V1 and f2 :V → V2 be homomorphisms of K-vector spaces. The K-linear map
f :V →V1×V2 defined by f (x) =

(
f1(x) , f2(x)

)
is an isomorphism if and only if f1 surjective and

f2|Ker f1 : Ker f1→V2 is bijective.

On the other side one can see auxiliary results and (simple) test-exercises.
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Auxiliary Results/Test-Exercises
To understand and appreciate the Test-Exercises which are marked with the symbol † one may possibly
require more mathematical maturity than one has! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.

Let K be a field.

T5.1 Determine whether the following maps are R-linear:

(a) f :R2→R2 with f (x1,x2) := (x2
1 , x2) . (b) f :R2→R2 mit f (x1,x2) := (x1 +1 , 0) .

(c) f :R2→R2 with f (x1,x2) := (x1 + x2 , x1) . (d) f :R3→R2 with f (x1,x2,x3) := (|x1− x2| , 2x3) .

(e) f :R3→R2 with f (x1,x2,x3) := (3x1 +2x2 , x1 + x3) .

T5.2 Determine whether the following maps f on the K-vector space C∞
K(I) of infinitely many times

differentiableK-valued functions on the interval I ⊆R into itself areK-linear:

(a) f (x) := anx(n)+ · · ·+a1ẋ+a0x+b (an, . . . ,a0,b ∈ C∞
K(I) fixed). (b) f (x) := x2 + ẋ2.

(c) f (x) := (t 7→ x(t0)+
∫ t

t0
x(τ)a(τ)dτ) (t0 ∈ I and a ∈ C∞

K(I) fixed).

T5.3 (a) The complex conjugation z 7→ z̄ of C into itself is R-linear, but not C-linear.

(b) The maps z 7→ Rez and z 7→ Imz are R-linear forms on C.

T5.4 For the following linear maps f compute the bases for Ker f and Im f .

(a) f :R3→R3 with f (x1,x2,x3) := (x1 +2x2 + x3,x1 +3x2 +2x3,x1 + x2) .

(b) f :R4→R3 with f (x1,x2,x3,x4) := (x1 +3x2−2x3 + x4,x1 +4x2− x3 +3x4,2x1 +3x2−7x3−4x4) .

(c) f :R3→R4 with f (x1,x2,x3) := (x1 +3x2 +3x3,−2x1−3x3,−x1 + x2− x3,3x1− x2 +4x3) .

(d) f :R5→R4 with f (x1,x2,x3,x4,x5) :=
(2x1− x2− x3 + x4,−x1 + x3 + x4 + x5,x2− x3− x4,x1 + x2−2x3 + x4 +2x5) .

T5.5 Let V :=K[t] be theK-vector space ofK-valued polynomial functions onK. Which of the following
maps f : V →V areK-linear ? Find the bases for Ker f and im f for those f which areK-linear.

(a) f (x) := x(n) = (the n-th derivative of x, n ∈N.) (b) f (x) := x(0)+ ẍ. (c) f (x) := (t 7→
∫ t

0
τ ẋ(τ)dτ ).

(d) f (x) := P(D)x , where P(t) ∈ K[t] is a monic polynomial1 and D is the differential operator x 7→ ẋ.
(Remark : See also test-Exercise 3.10.)

T5.6 Let h :D→ D′ be an arbitrary map. For every field K, the map h∗ :KD′ → KD defined by g 7→ g◦h is
K-linear. Describe the functions in Kerh∗ and in Imh∗. Show that h∗ is injective (resp. surjective) if and
only if h is surjective (resp. injective).

T5.7 A map f :V →W of Q-vector spaces V and W is already Q-linear if it is additive. The corresponding
assertion also holds for vector spaces over the fields Kp =Z/Z p, where p is a prime number.

†T5.8 Let I ⊆R be an interval with more than one point and a ∈ I. Let Ta :C∞
K(I)→K[[t−a]] be the map

which maps every function f ∈ C∞
K(I) to its T a y l o r - s e r i e s of f at a, i.e.

Ta( f ) =
∞

∑
k=0

f (k)(a)
k!

(t−a)k .

Show that Ta is a K-linear map of C∞
K(I) in the space K[[t−a]] of all (formal) power series in (t−a) with

coefficients inK. The kernel of Ta is the space of all p l a t e f u n c t i o n s2 a t a. Further, show that Ta

1A polynomial P(t) = ∑
n
i=0 ait i ∈ K[t] of degree n over a field K is called a m o n i c p o l y n o m i a l if the leading

co-efficient an = 1.
2 Plate Functions Let f :D→C be an analytic3 function on an interval D⊆R or a domain D⊆C. If the derivatives

f (n)(a) of f at a point a ∈ D are zero, then by the Taylor’s formula 4 the function f vanishes in a neighbourhood of a
and hence by the identity theorem5 f is identically 0 on the whole D. The analogous result does not hold for functions
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is surjective. (Remark: This is precisely the following classical theorem of real analysis which is proved in 1895 by
the French mathematician B o r e l , É m i l e F é l i x É d o u a r d - J u s t i n (1871-1956) in his PhD thesis.

Theorem ( B o r e l ) For every sequence an, n ∈N, of real or complex numbers there exists an infinitely many times
differentiable function f on R with values in R resp. C such that for all n ∈N gilt: f (n)(0) = an .

A differentiable function on interval I ⊆R can be given by using its derivative f ; if f is continuous, then the function
(a ∈ I be a fixed point)

∫ x
a f (t)dt , upto an additive constant, is the required function. This can be generalised, for

instance to give a construction of hat-functions which are further useful for many constructions in analysis. A function
h :R→R is called a h a t - f u n c t i o n if it satisfies properties stated in the following theorem :

Theorem Let a,a′,b′,b ∈ R with a<a′<b′<b. Then there exists an infinitely many times differentiable function
h :R→R such that h(t) = 0 for t 6∈ [a ,b] , h(t) = 1 for t∈ [a′,b′] and 0<h(t)<1 otherwise.

Proof The graph of the derivative f :=h′ of the required function is the following:

Further, we must have
∫ a′

a f (t)dt =−
∫ b

b′ f (t)dt = 1. Let g :R→R be the function defined by g(t) = 0 for t≤0 and
g(t) = e−1/t for t>0. Then g is infinitely many times differentiable function. Now, let

f (t) :=
(
g(t−a)g(a′−t)/c

)
−
(
g(t−b′)g(b−t)/d

)
, where c :=

∫ a′
a g(t−a)g(a′−t)dt and d :=

∫ b
b′g(t−b′)g(b−t)dt.

Then f is the required function and the function h(x) :=
∫ x

a f (t)dt has the properties stated in the assertion. •
Now using hat-functions, we can give a proof of the Borel’s theorem :

defined on an interval I ⊆R, which are infinitely many times differentiable. An infinitely many times differentiable
function f : I→ C is called p l a t e a t p o i n t a ∈ I, if f (n)(a) = 0 for all n ∈N. There are functions which are
plate at a point, but are not identically zero in any neighbourhood of this point. Such a function cannot be analytic; for
example, the function f :R→R defined by

f (x) :=

{
e−1/x, if x > 0,
0, if x≤ 0.

This function is infinitely many times differentiable and it is plate at 0. It is enough to show that the restricted function
f |R+ is plate at 0. For x > 0, we have (can be seen easily by induction on n) f (n)(x) = hn(1/x) exp(−1/x) with a
monic polynomial function hn of degree 2n. Since limx→0+ h(1/x) exp(−1/x) = 0 for every polynomial function h,
the assertion follows.

3 Analytic functions Let either D be an interval in R with more than one point or an open subset in inC. A function
f :D→K is called a n a l y t i c a t a p o i n t a ∈ D, if there exists a neighbourhood U of a and a convergent power
series ∑ak(x−a)k such that f (x) = ∑

∞
k=0 ak(x−a)k for all x ∈U ∩D. – A function f :D→K is called a n a l y t i c

i n D , if f is analytic at every point of D.
4 Taylor-Formula for analytic functions Let f = ∑

∞
n=0 an(x− a)n be the power series expansion of the analytic

function f :D→ C at a point a ∈ D. Then: for every m ∈N

f (m) =
∞

∑
n=m

n
(n−m)!

an(x−a)n−m

is the power series expansion of the m-th derivative of f at the point a ∈ D. All these power series have the same radius

of convergence. In particular, am = f (m)(a)
m ! for all m ∈N.

5 Identity theorem for analytic functions Let D be either an interval in R or a domain in C. Two analytic functions
on D are equal on the whole D if and only if they are equal on a seubset of D, which has at least one limit point in D.
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Proof of Borel’s theorem : Let h :R→R be an infinitely many times differentiable hat- function with h(t) = 1 for
|t| ≤ 1 and h(t) = 0 for all |t| ≥ 2, further, let hn(t) := tnh(t) , n ∈N. Then |h(ν)n (t)| ≤Mn for all t ∈R and all ν ∈N
with 0≤ ν ≤ n. Put bn := |an|Mn +1 and fn(t) := anhn(bnt)/n!bn

n. Then the function f (t) := ∑
∞
n=0 fn(t) is a required

function. Since | f (ν)n (t)| ≤ 1/n! for all n > ν and all t ∈ R, the series ∑
∞
n=0 f (ν)n (t) of ν-th derivatives is uniformly

convergent 6 for every ν ∈N. Therefore by 7 f (ν)(t) = ∑
∞
n=0 f (ν)n (t) and in particular, f (ν)(0) = ∑

∞
n=0 f (ν)n (0) = aν for

all ν ∈N. • )

T5.9 For every K–vector space V , the map f 7→ f (1) is a K-isomorphism of HomK(K,V ) onto V .

T5.10 Show that the following linear maps fi :R3→R2, i = 1,2,3, in HomR (R3,R2) are linearly indepen-
dent: f1 :(x1,x2,x3) 7→ (x1+x2+x3,x1+x2) , f2 :(x1,x2,x3) 7→ (x1+x3,x1+x2) , f3 :(x1,x2,x3) 7→ (2x2,x1).

T5.11 Let K′ be a subfield of the field K, V be a K′-vector space and W be a K-vector space. Then W is a
K′-vector space in a natural way. With this vector space structure HomK′ (V,W ) is even a K-subspace of WV .

†T5.12 ( C h a r a c t e r s ) Let M and N be two monoids, then a map ϕ : M→ N is called a ( m o n o i d -)
h o m o m o r p h i s m if ϕ(xy) = ϕ(x)ϕ(y) for all x,y ∈M and ϕ(eM) = eN .

Let M be a monoid and let K be a field. By a c h a r a c t e r o f M i n K we mean a homomorphism of
M in the multiplicative group (K, ·) of K. The map x 7→ 1K is a character of M in K, called the t r i v i a l
c h a r a c t e r. If a ∈ K, a 6=, then the conjugation κa = (b 7→ aba−1) is a character of the multiplicative
monoid of K with values in K.

(a) Let ϕ1, . . . ,ϕr be characters of a monoid M with values in K, i. e. ϕ1, . . . ,ϕr ∈ KM. Suppose that
ϕ1, . . . ,ϕr are linearly independent over K. If a linear combination ϕ = a1ϕ1 + · · ·+arϕr with coefficients
a1, . . . ,ar ∈ K is a character of M with values in K, then ϕ = κaiϕi for every i with ai 6= 0. (Hint: Note that:
for all x,y ∈M, one one side we have ϕ(xy) = a1ϕ1(xy)+ · · ·+ arϕr(xy) = a1ϕ1(x)ϕ1(y)+ · · ·+ arϕr(x)ϕr(y) and
the other-side ϕ(xy) = ϕ(x)ϕ(y) = a1ϕ(x)ϕ1(y)+ · · ·+arϕ(x)ϕr(y) .)

(b) (L e m m a o f D e d e k i n d - A r t i n9) Let M be a monoid and let K be a field. Then the set of
characters of M in K is linearly independent (in the K-vector space KM of all K-valued functions on M) over
K. (Hint : Use part (a) above.)

6 Uniform convergence Let D be an arbitrary set and let ( fn) be a sequence of functions fn :D→K on D with
values in K .
(1) The sequence ( fn) is called ( p o i n t w i s e ) c o n v e r g e n t (on D) , if there exists a function f : D→K with
lim fn(x) = f (x) for all x ∈ D, i. e. if for every x ∈ D and for every ε > 0 there exists (dependent on x and ε) n0 ∈N
such that | fn(x)− f (x)| ≤ ε for all n≥ n0 .
(2) The sequence ( fn) is called u n i f o r m l y c o n v e r g e n t (on D) , if there exists a function f :D→K such that
for every ε > 0 there exists (depending only on ε and not on x) n0 ∈N such that | fn(x)− f (x)| ≤ ε for all n≥ n0.
Uniform convergence of the function sequence ( fn) implies its point-wise convergence. The function f with f (x) =
lim fn(x) is called the l i m i t f u n c t i o n or the l i m i t of the sequence ( fn) and is denoted by f = limn→∞ fn = lim fn .
For a sequence ( fn) of functions fn :D→K, the sequence of partial sums ∑

k
n=0 fn, k ∈N, is called the s e r i e s of the

fn, n ∈N. Its limit function (if it exists) it is denoted by ∑
∞
n=0 fn . If the convergence of partial sums is uniform on D,

then we say that the s e r i e s c o n v e r g e s u n i f o r m l y o n D.
7 Theorem Let D be a domain in C or an interval in R and let fn:D→ C, n ∈N, be a sequence of differentiable

functions. Further, let x0 ∈ D be a fixed point. Suppose that:

(1) The sequence fn(x0) , n ∈N, is convergent.

(2) The sequence f ′n , n ∈N, of derivatives is locally uniformly convergent 8 on D.

Then the sequence fn , n ∈N, is locally uniformly convergent on D to a differentiable limit function f :D→ C, and
f ′ = limn→∞ f ′n .
8 Local Uniform Convergence A sequence fn :D→K, n ∈N, of functions on D⊆C is called l o c a l l y u n i f o r m
c o n v e r g e n t , if for every point a ∈D there exists a neighbourhood U of a such that the sequence fn|U ∩D, n ∈N, is
uniformly convergent on U ∩D.

9This assertion is used frequently (especially in Galois Theory).
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(c) Now, let M = G be a group and let K be a field. A character G→ K is then a group homomorphism
G→ K× and the group Hom(G,K×) of characters is a subgroups of (K×)G. If G is finite and χ :G→ K×

is not a trivial character, then ∑x∈G χ(x) = 0. (Hint : If y ∈ G is an element with χ(y) 6= 1K , then ∑x∈G χ(x) =

∑x∈G χ(xy) =
(

∑x∈G χ(x)
)

χ(y) , and hence ∑x∈G χ(x) = 0, since χ(y) 6= 1.)

The group Hom(G,C×) of characters with values in the field C is called the c h a r a c t e r g r o u p of G and
is denoted by Ĝ. This group plays an important roll is the study of abelian groups.

T5.13 Some simple applications of the Lemma of Dedekind-Artin (see Test-Exercise T5.12-(b)):

(a) Let K be a field. The maps t 7→ tn, n ∈N, are the only polynomial maps of K into itself which are also
characters of the multiplicative monoid of K with values in K. More generally: The functions t 7→ tn, n ∈Z,
are the only group homomorphisms of K×→ K×, which are also rational functions on K×. (Hint : The case
that K is finite should be treated separately; in this case use the fact that the multiplicative group K× is cyclic.)

(b) The functions t 7→ expat, a ∈ C, of R in C are linearly independent over C.

(c) Let K be a field. The sequences (aν)ν∈N, a ∈ K, are linearly independent over K. In particular, the
R-vector space RN is uncountable dimensional. (Remark : See also Exercise 3.4-(b).)

†T5.14 (C o n t i n u o u s c h a r a c t e r s o f R a n d C) (a) Every continuous character χ :R×→R×

is either of the form x 7→ |x|β or of the form x 7→ |x|β Signx with a (uniquely determined) β ∈R.

(b) Every continuous character χ :C×→ C× is of the form z 7→ |z|αzn with (uniquely determined) elements
α ∈ C and n ∈Z.

(c) The functions z 7→ zn, n ∈ Z, are the only continuous endomorphisms of the circle-group U = {z ∈
C | |z| = 1} . In particular, identity (z 7→ z) and the inverse-mapping (z 7→ z−1) are the only continuous
automorphisms of U . (Hint : Use parts (a) and (b) above.)

†T5.15 Let U be the circle-group {z ∈ C | |z|= 1} .

(a) Every continuous character U → C× and moreover, every complex-analytic character C×→ C× is of
the form z 7→ zn with a n ∈Z.

(b) Every continuous group homomorphismC×→U is of the form z 7→ |z|−n+iγzn with (uniquely determined)
γ ∈R and n ∈N.

(c) Every continuous character (C,+)→C× is of the form z 7→ eαzeβ z̄ with (uniquely determined) α,β ∈C.
Further, its image is contained in U respectively, inR×, if and only if β =−ᾱ respectively, β = ᾱ . Moreover,
it is complex-analytic if and only if β = 0.

(d) Every continuous group homomorphism C×→ (C,+) is of the form z 7→ β ln |z| with a β ∈ C. Every
continuous group homomorphism U → (C,+) and every complex-analytic group homomorphism C×→
(C,+) is trivial.

T5.16 (A l g e b r a s a n d A l g e b r a h o m o m o r p h i s m s) Let K be a field.

(a) (A l g e b r a o v e r K) let A be a K-vector space with a multiplication A×A→ A, is called a K-
a l g e b r a if the following compatibility conditions hold:

(1) A is a ring with the vector space addition and the given multiplication.
(2) For all a,b ∈ K and all x,y ∈ A, we have: (ax)(by) = (ab)(xy) .

(b) (A l g e b r a - H o m o m o r p h i s m s) If A and B are two K-algebras, then a map ϕ :A→ B is called a
K- a l g e b r a - H o m o m o r p h i s m if we have:

(1) ϕ is a K-vector space homomorphism.
(2) ϕ is compatible with the multiplications on A and B, i. e. ϕ(xy) = ϕ(x)ϕ(y) for all x,y∈ A and moreover,
ϕ(1A) = 1B .

(c) Every K-algebra homomorphism is, in particular, a ring homomorphism. It follows that:
Let K be a field and let V be a K-vector space. Then EndKV is a K-Algebra. The unit group (EndKV )× of
EndKV is the automorphism-group AutKV von V .
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(d) ( F u n c t i o n - A l g e b r a s ) An important class of (commutative) algebras is the class of function-algebras.
For an arbitrary field K and an arbitrary set D, the set KD of all K-valued functions on D is a commutative
K-algebra in a natural way and the s u b s t i t u t i o n m a p s KD→ K, x 7→ x(t0), for a fixed t0 ∈ D, are
K-algebra-homomorphisms. All examples of subspaces given in Test-Exercises T2.5 and Exercise 2.1-(a),
(b), other than the subspace K[t]n in Exercise 3.3, are even subalgebras of the algebra of the type KD. There
by a subset A′ of a K-algebra A is called a (K-) s u b a l g e b r a o f A , if A′ is a K-subspace as well as a subring
of A.

T5.17 Let A be a K-Algebra. The map λ :x 7→ λx (where λx is the left-multiplication by x) is an injective K-
algebra-homomorphism of A in EndK(A) . Therefore, every K-algebra A is (up to isomorphism) a subalgebra
of the endomorphism-algebra of a K-vector space V . Moreover, if A has finite dimension n, then one can also
choose V of dimension n.

T5.18 Every 1-dimensional K-algebra is isomorphic to K.

T5.19 Every two-dimensional K-algebra A has a basis of the form 1,x and hence it is commutative. The
square x2 is a linear combination x2 = α +βx of 1 and x, and using this equation the multiplication in A is
uniquely determined. (Typical Example: C with the basis R-basis 1, i and the equation i2 =−1.) The trivial
subalgebras K = K ·1A and A are the only subalgebras of A.

T5.20 Let A be a K-algebra and x ∈ A be an element. The smallest K-subalgebra of A, containing x, is the
subalgebra K[x] := ∑i∈NKxi of all linear combinations of the powers xi, i ∈N, of x. Show that K[x] is a finite
dimensional K-algebra if and only if the powers xi, i ∈N, linearly dependent over K.
Moreover, if K[x] is finite dimensional and DimKK[x] = n, then 1,x, . . . ,xn−1 a K-vector space basis of K[x] .
In this case x is called a l g e b r a i c over K ( o f d e g r e e n); if K[x] is infinite dimensional, then x is
called t r a n s c e n d e n t a l o v e r K. If A is finite dimensional with DimKA = m , then every element of A is
algebraic over K of degree ≤ m .

T5.21 Let I be a set. Show that:
(a) KI = K[x] for some x ∈ KI if and only if I finite and the map x : I→ K injective.
(b) A map x ∈ KI is algebraic over K (see Test-Exercise T5.15) if and only if x attains only finitely many
values. Moreover, in this case the degree of x over K is equal to the number of elements |x(I)| of these values.

T5.22 Let I be a finite set and A be a K-subalgebra of the function-algebra KI . Show that A = KI if and
only if A separates the points of I, i. e. if for every i, j ∈ I with i 6= j, there exists a x ∈ A such that x(i) 6= x( j).
Using this result once more solve the Test-Exercise T5.16-(a). (Hint : Suppose that A separates the points. Then,
for every fixed i ∈ I, for each j 6= i choose x j ∈ A such that a j := x j( j) 6= x j(i). Then ∏ j 6=i(x j−a j) ∈ A is a function,
which vanishes on I−{i} and takes the value 6= 0 at i.)

T5.23 Let I be a finite set. For every K-subalgebra A of KI , let RA be the equivalence relation on I, defined
by (i, j) ∈ RA if and only if f (i) = f ( j) for every f ∈ A. Conversely, let AR denote the K-subalgebra of
those functions I→ K which are constant on the equivalence classes of R. (The indicator functions eJ of the
equivalence classes J form a K-basis of AR.) Show that the maps A 7→ RA and R 7→ AR are inverse-maps from
the set of all K-subalgebras of KI onto the set of all equivalence relations on I. In particular, the number of
K-subalgebras of KI is equal to the Bell’s number β|I| . (Hint : Apply Test-Exercise T5.17.)

†T5.24 (T r i g o n o m e t r i c P o l y n o m i a l s) Let ω ∈R×+ be fixed. Then the C-subspace ∑n∈ZCeiω nt

is a C-subalgebra of Cω
C(R) . It is the smallest C-subalgebra C[sinω t , cosω t ] of Cω

C(R) , containing the
functions sinω t and cosω t and the functions 1; sinnω t , cosnω t , n ∈N∗, form a C-basis. These functions
also form a R-basis of the R-subalgebra R[sinω t ,cosω t ] of the R-valued functions in C[sinω t ,cosω t ] .
(The algebras C[sinω t ,cosω t ] and R[sinω t ,cosω t ] are called the algebras of the t r i g o n o m e t r i c
p o l y n o m i a l s corresponding to the basic-frequency ω .)

†T5.25 Let A be a K-algebra and a ∈ A× be a unit in A. Then the map κa :x 7→ axa−1 from A into itself is an
K-algebra-automorphism of A. This is called the c o n j u g a t i o n by a or the i n n e r a u t o m o r p h i s m by
a. The map a 7→ κa from A× into the group of the K-algebra-automorphisms of A is a group homomorphism
with the kernel A×∩Z(A) = Z(A)×, where Z(A) denote the c e n t e r of A, which is the K-subalgebra of
those elements a ∈ A, which commute with all elements of A.
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