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8. Matrices

Submit a solution of the ∗-Exercise ONLY
Due Date : Monday, 10-10-2011 (Before the Class)

Complete correct solution of the ∗∗-Exercise (Exercise 8.8) carries 10 Bonus Points!

8.1 Let V be a vector space of dimension n over a field K and let f ∈ EndKV . Then there exists a
basis of V such that the matrix Mv

v( f ) of f with respect to v is of the form

a11 a12 a13 · · · a1,n−1 a1n
a21 a22 a23 · · · a2,n−1 a2n
0 a32 a33 · · · a3,n−1 a3n
...

...
... . . . ...

...
0 0 0 · · · an−1,n−1 an−1,n
0 0 0 · · · an,n−1 ann


,

where the elements a21, a32, . . . , an,n−1 below the main-diagonal are either 1 or 0. (Remark : A
matrix of this form, where the elements a21,a32, . . . ,an,n−1 are arbitrary is called a H e s s e n b e r g 1 – m a t r i x .
The existence of such a matrix representation is much simpler than what the applied mathematicians will
make you think, when they are using Householder type reflections2 for the construction (which works over
C only), see also3. However, it is much simpler to construct a basis w1, . . . ,wn of V (over arbitrary field
K), see the – Proof: To construct a basis w1, . . . ,wn of V (over arbitrary field K), choose any w1 6= 0 in
V . If f (w1) ∈ Kw1, say f (w1) = a1w1, then choose w2 ∈ V , w2 /∈ Kw1, and take a11 := a1,ai,1 := 0 for
i = 2, . . . ,n. If f (w1) 6∈ Kw1, put w2 := f (w1) and a11 := 0,a21 := 1, ai,1 = 0 for i = 3, . . . ,n. Then w1,w2

are linearly independent, and the first column of the matrix will have the required form. Now, assume that we
have chosen linearly independent vectors w1, . . . ,w j, j < n, such that the first j−1 columns of the matrix
have the right form. Then proceed as follows: If f (w j) ∈ Kw1 + · · ·Kw j, say f (w j) = a1w1 + · · ·+a jw j,
choose a vector w j+1 ∈ V , w j+1 /∈ Kw1 + · · ·+Kw j, and put ai j := ai for i = 1, . . . , j and ai j := 0 for
i = j+ 1, . . . ,n. If f (w j) 6∈ Kw1 + · · ·Kw j, put w j+1 := f (w j) and ai j := 0 for i = 1, . . . j, a j+1, j := 1 and

1Hessenberg matrices were first investigated by K a r l H e s s e n b e r g (1904-1959), a German engineer whose
dissertation investigated the computation of eigenvalues and eigenvectors of linear operators, see [Hessenberg, K.
Thesis. Darmstadt, Germany: Technische Hochschule, 1942.]

2Householder transformation was introduced in 1958 by A l s t o n S c o t t H o u s e h o l d e r (1904-1993) an
American mathematician who specialized in mathematical biology and numerical analysis.

3[Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Reduction of a General Matrix to Hessenberg
Form." § 11.5 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 476-480, 1992.]
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ai j = 0 for i = j+2, . . . ,n.. Then w1, . . . ,w j+1 are linearly independent, and the first j columns of the matrix
will have the required form. This method stops after having chosen wn, because there are no requirements on
the last column of that matrix. •)

∗8.2 (a) ( B i n o m i a l i n v e r s i o n f o r m u l a ) Let n ∈N. From the equations

(1+ t) j =
j

∑
i=0

(
j
i

)
t i , t j = (1+ t−1) j =

j

∑
i=0

(−1) j−i
(

j
i

)
(1+ t)i , j = 0, . . . ,n ,

deduce that the matrices
(0

0

) (1
0

)
· · ·

(n
0

)
0

(1
1

)
· · ·

(n
1

)
...

... . . . ...

0 0 · · ·
(n

n

)

 and


(0

0

)
−
(1

0

)
· · · (−1)n(n

0

)
0

(1
1

)
· · · (−1)n−1(n

1

)
...

... . . . ...

0 0 · · ·
(n

n

)


in Mn+1(K) are inverses of each other.
(b) ( F o u r i e r - i n v e r s i o n f o r m u l a ) Let n ∈N∗ and ζ be a primitive n-th root of unity, for
example, ζ := exp(2πi/n) . Then the matrices

(ζ µν)0≤µ,ν<n and
1
n
(ζ−µν)0≤µ,ν<n

are inverses of each other in Mn(C) . (Proof: We have to show that
n−1
∑

ν=0
ζ µν 1

n ζ−νλ = δµλ . For λ = µ in-

deed
n−1
∑

ν=0
ζ µν 1

n ζ−νµ =
n−1
∑

ν=0

1
n = 1. For λ 6= µ we have

n−1

∑
ν=0

ζ
µν 1

n ζ
−νλ =

1
n

n−1

∑
ν=0

(
ζ

µ−λ
)ν

=
1
n

1−
(
ζ µ−λ

)n

1−ζ µ−λ
=

1−
(
ζ n
)µ−λ

n(1−ζ µ−λ )
=

1−1µ−λ

n(1−ζ µ−λ )
= 0. – Remark: More generally, the same assertion holds for an arbitrary field

K. – We say that an element ζ ∈ K is a p r i m i t i v e n - t h r o o t o f u n i t y if ζ generates a subgroup
of order n in the multiplicative group K× of the field K, for example, ζ := exp(2πi/n) ∈C is a primitive root
of unity in the field C. Note that n 6= 0 in K. Otherwise K will have a prime characteristic p = CharK which
is a divisor of n, i. e. n = pm with m ∈N and (ζ m−1)p = ζ mp−1 = ζ n−1 = 0 and hence ζ m−1 = 0 a
contradiction to the hypothesis that ζ is a primitive n-th root of unity.)

8.3 ( V a n d e r m o n d e - m a t r i c e s 4) Let λ0, . . . ,λn be pairwise distinct elements of the field K.

For j = 0, . . . ,n , let f j(t) = ∏
i6= j

(t−λi)

(λ j−λi)
= a0 j +a1 jt + · · ·+an jtn . Then the matrices

(λ
j

i ) =

1 λ0 · · · λ n
0

...
... . . . ...

1 λn · · · λ n
n

 and (ai j) =

a00 · · · a0n
... . . . ...

an0 · · · ann


in Mn+1 (K) are inverses of each other. (Hint : Both these matrices are the transition matrices from the
basis t := {1, t, . . . , tn} to the basis f := { f0, . . . , fn} (check this!) of the space V = K{λ0,...,λn} of K-valued
functions on the set {λ0, . . . ,λn} and the other way, respectively, i. e. Mf

t(idV ) = (ai j) and Mt
f(idV ) =

(
λ

j
i

)
– Matrices of this type (λ j

i ) are called V a n d e r m o n d e ’ s m a t r i c e s . )

4In linear algebra, a Vandermonde matrix, named after A l e x a n d r e - T h é o p h i l e V a n d e r m o n d e
(1735-1796), who was a French musician, mathematician and chemist who worked with Bézout and Lavoisier; his
name is now principally associated with determinant theory in mathematics. Vandermonde was a violinist, and became
engaged with mathematics only around 1770.
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8.4 ( C a u c h y - m a t r i c e s 5) Let λ1, . . . ,λn resp. µ1, . . . ,µn be pairwise distinct elements of the
field K such that λi +µ j 6= 0 for all i, j = 1, . . . ,n. Let g(t) := (t +µ1) · · ·(t +µn) and

f j(t) =
g(λ j)∏i 6= j(t−λi)

g(t)∏i 6= j(λ j−λi)
=

n

∑
i=1

ai j

t +µi
(partial fraction decompostion) .

Then the matrices

(
1

λi +µ j

)
=


1

λ1+µ1
· · · 1

λ1+µn
... . . . ...
1

λn+µ1
· · · 1

λn+µn

 and (ai j) =

a11 · · · a1n
... . . . ...

an1 · · · ann


in Mn (K) are inverses of each other. Compute the elements ai j explicitly. (Hint : For the
calculation of the coefficients ai j, we shall use the method of calculation of the coefficient of 1/(t +µi) in
the partial fraction decomposition of f j(t) and rewrite the result by using the substitutions of the polynomial
h(t) := (t +λ1) · · ·(t +λn) :

ai j =
g(λ j) ∏ 6̀= j(−µi−λ`)

g′(−µi)∏ 6̀= j(λ j−λ`)
=

1
(µi+λ j)

g(λ j)

g′(−µi)

(−1)n−1 h(µi)

(−1)n−1 h′(−λ j)
=

1
(µi+λ j)

g(λ j)

g′(−µi)

h(µi)

h′(−λ j)
.

Now, by the choice of the ai j, the (k, j)-th coefficient of the matrix-product
(
1/(λk+µi)

)
(ai j) is

n

∑
i=1

1
λk+µi

·ai j = f j(λk) =
g(λ j) ∏i6= j(λk−λi)

g(λk)∏i6= j(λ j−λi)
= δk j ,

since numerator and denominator of the fractions are equal for k= j and if k 6= j the product in the numerator

is zero. – Matrices of the type
(

1
λi +µ j

)
1≤i≤m,
1≤ j≤n

, with with distinct elements λ1, . . . ,λm ∈ K and distinct

elements µ1, . . . ,µn ∈ K, are called C a u c h y - m a t r i c e s . The H i l b e r t - m a t r i x is a special case of
the Cauchy matrix, where λi +µ j = i+ j−1. Every submatrix of a Cauchy matrix is itself a Cauchy matrix.)

∗8.5 Compute the inverse of the matrix (called the H e i s e n b e r g - m a t r i x 6) of the form

B=



1 a1 a2 · · · an c
0 1 0 · · · 0 b1
0 0 1 · · · 0 b2
...

...
... . . . ...

...
0 0 0 · · · 1 bn
0 0 0 · · · 0 1


∈Mn+2 (K) .

(Hint: Let w0, . . . ,wn+1 be a basis of the n+2-dimensional vector space V over K. Then v0 := w0, v j :=
w j +aiw0 , j = 1, . . . ,n and vn+1 := wn+1 +bnwn + · · ·+b1w1 + cw0 is also a basis (see Exercise 3.2) of V
over K. Further, the Heisenberg-matrix B=Mw

v is the transition matrix of the basis v0, . . . ,vn+1 onto the

5Named after B a r o n A u g u s t i n - L o u i s C a u c h y (1789-1857) a French mathematician who was an
early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a
rigorous manner, rejecting the heuristic principle of the generality of algebra exploited by earlier authors. He defined
continuity in terms of infinitesimals and gave several important theorems in complex analysis and initiated the study
of permutation groups in abstract algebra. A profound mathematician, Cauchy exercised a great influence over his
contemporaries and successors. His writings cover the entire range of mathematics and mathematical physics.

6These matrices were first investigated by W e r n e r H e i s e n b e r g (1901-1976) a a German theoretical
physicist who made foundational contributions to quantum mechanics and is best known for asserting the uncertainty
principle of quantum theory. Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg,
Max Born, and Pascual Jordan in 1925. Matrix mechanics was the first complete and correct definition of quantum
mechanics. It extended the Bohr Model by interpreting the physical properties of particles as matrices that evolve in
time. It is equivalent to the Schrödinger wave formulation of quantum mechanics, and is the basis of Dirac’s bra-ket
notation for the wave function.
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basis w0, . . . ,wn+1. Therefore the inverse B−1 is the transition matrix of the basis w0, . . . ,wn+1 onto the
basis v0, . . . ,vn+1. Then the inverse B−1 =Mv

w is the transition matrix of the basis v0, . . . ,vn+1 onto the
basis w0, . . . ,wn+1. Since w0 = v0, w j = v j− aiv0 , j = 1, . . . ,n and wn+1 = vn+1− (bnvn− anv0)−·· ·−
b1(v1−a1v0)− cv0 = vn+1−bnvn−·· ·−b1v1 +(bnan + · · ·+b1a1− c)v0 , it follows that

B−1 =Mv
w =



1 −a1 −a2 · · · −an bnan + · · ·+b1a1− c
0 1 0 · · · 0 −b1
0 0 1 · · · 0 −b2
...

...
...

. . .
...

...
0 0 0 · · · 1 −bn

0 0 0 · · · 0 1


∈Mn+2 (K) .)

8.6 Let I, J be finite sets. Two matrices A,A′ ∈MI,J(K) have the same rank if and only if there
exist invertible matrices B ∈ GLI(K) and C ∈ GLJ(K) such that A′ =BAC .
(Hint: Let f ,g : KJ→KI be linear maps defined by f (x) := Ax and f ′(x) := A′ x, x is column-vector in KJ ,
and let A respectively A′ be the matrices with respect to the standard bases. Let RankA= RankA′ = r, and
so Rank f = Rank f ′ = r. By the proof of the Rank-Theoremthere exist a basis v1, . . . ,vn of KJ and a basis
v′1, . . . ,v

′
n of KJ such that w1 := f (v1) , . . . ,wr := f (vr) is a basis of Im f and w′1 := f (v′1) , . . . ,w

′
r := f (v′r) is

a basis of Im f ′ and that vr+1 , . . . ,vn and v′r+1 , . . . ,v
′
n are bases of Ker f respectively Ker f ′. We also extend

w1, . . . ,wr and w′1, . . . ,w
′
r to bases w1, . . . ,wm respectively w′1, . . . ,w

′
m of KI . Now, we define isomorphisms

h : KJ→KJ and g : KI→KI by h(vi) := v′i, i = 1, . . . ,n, and g(wi) := w′i, i = 1, . . . ,m. By construction, we
have g( f (vi)) = g(wi) = w′i = f ′(v′i) = f ′(h(vi)) for i = 1, . . . ,r and g( f (vi)) = g(0) = 0 = f ′(v′i) = f ′(h(vi))
for i = r+1, . . . ,n. Therefore, altogether g◦ f = f ′◦h, where the matrices C′ :=Me

e(h) and B :=Me
e(g) are

invertible. It follows that BA=Me
e(g)M

e
e( f ) =Me

e(g◦ f ) =Me
e( f ′◦h) =Me

e( f ′)Me
e(h) = A′C′ and hence

A′ =BAC mit C := (C′)−1.
For the converse the isomorphisms g and h defined above by B respectively C−1, naturally RankA =

DimIm f = DimImg◦ f = DimIm f ′ ◦h = DimIm f ′ = RankA′. – Remark: In this case we say that A and
A′ are (rank)- e q u i v a l e n t . The corresponding equivalence classes are precisely the set of all matrices of
same rank. Therefore the rank is the only invariant of such equivalence classes. See also Test-Exercise T8.6.)

8.7 Let m, n ∈N∗, s := Min{m,n} . For every r with 0≤ r ≤ s , let Ur := ∑
r
i=1 Eii ∈Mm,n(K) . If

A ∈Mm,n(K) , then A (rank)-equivalent to Ur, where r := RankA . The matrices U0, . . . ,Us form
a full representative system in Mm,n(K) with respect to the relation of equivalence of matrices given
in the Exercise 8.6 above. (Remark : Multiplying by elementary matrices Bi j(a), i < j from right and
Bi j(a), i > j from left, we can even find an invertible upper triangular matrix A2 and an invertible lower
triangular matrix A1 such that from the matrix A1AA2 one can obtain Ur by multiplying columns and rows
by suitable scalars and permuting them.)

∗∗8.8 Let K be an arbitrary field and let a := (a1, . . . ,an) ∈ Kn, n ∈ N+. Let U ⊆ Kn be a K-
subspace of the K-vector space Kn generated by the n! vectors aσ := (aσ(1), . . . ,aσ(n)) , σ ∈Sn,
obtained by permuting the coordinates of (a1, . . . ,an). Compute the dimension Dim KU of U .
(Hint : Let A :=

(
aσ(i)

)
σ∈Sn ,
1≤i≤n

∈Mn!×n(K) and let t f : Kn→ Kn! be the K-linear map defined by t f (ei) :=

ci = ∑σ∈Sn aσ(i)eσ , i = 1, . . . ,m, where e1, . . . ,en ∈ Kn and eσ ∈ Kn! = KSn , σ ∈Sn are the standard bases of
Kn and Kn!, respectively and ci denote the i-th column of A. Then Dim KU = RankA= Rank tA= Rank t f .
Now compute the kernel Ker t f and use the Rank-Theorem to compute Rank t f .)

Ans: Dim KU =


0, if a1 = · · ·= an = 0 ,
1, if a1 = · · ·= an 6= 0 ,
n−1, if a1 6= a2 and ∑

n
i=1 ai = 0 ,

n, if a1 6= a2 and ∑
n
i=1 ai 6= 0 ,

On the other side one can see auxiliary results and (simple) Test-Exercises.
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Auxiliary Results/Test-Exercises

To understand and appreciate the Test-Exercises which are marked with the symbol † one may pos-
sibly require more mathematical maturity than one has! These are steps towards applications to var-
ious other branches of mathematics, especially to analysis, number theory and Affine and Projective
Geometry.

T8.1 (M a t r i x m u l t i p l i c a t i o n7) The following (classical) example may help you to understand
why multiplication of matrices is defined the way it is. One can also see the (boring) numerical example8.
Let

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

· · · · · · · · · · · ·
am1x1 +am2x2 + · · ·+amnxn = bm

be a system of m linear equations in n unknowns x1, . . . ,xn over a field K. If we make the linear ( h o -
m o g e n e o u s ) c h a n g e o f v a r i a b l e s, (i. e. substitute the following expressions for x1, . . . ,xn)

x1 = b11y1 +b12y2 + · · ·+b1`y`
x2 = b21y1 +b22y2 + · · ·+b2`y`
· · · · · · · · · · · ·
xn = bm1y1 +bm2y2 + · · ·+bn`y`

7Matrix multiplication is very different from matrix addition and subtraction. we do not multiply corresponding
entries; in particular,

(
2 3

)
·
(
4 5

)
6=
(
2 ·4 = 8 3 ·5 = 15

)
! Indeed, we know that these matrices are not even

“compatible" for matrix multiplication. At first glance, the definition of matrix multiplication may seem strange and
complicated. However, it is defined in a way that makes it perfect for working with systems of equations.

8The students in a large high school (grades 9 through 12) get there in a variety of ways: by bike, by bus, and by car.
The percentage of students using different modes of transportation is summarized on the left below. The total number
of male and female students in each grade is summarized in the table on the top right.

Gender Male Female
9th 110 105
10th 100 95
11th 95 90
12th 85 80

Modes of
Transportation

9th 10th 11th 12th

Bike 25% 20% 15% 10%
0.25×110+0.20×100

+0.15×95+0.10×85 = 70

0.25×105+0.20×95
+0.15×90+0.10×80 = 67

Bus 55% 65% 55% 40% 0.55×110+0.65×100
+0.55×95+0.40×85 = 212

0.55×105+0.65×95
+0.55×90+0.40×80 = 201

Car 20% 15% 30% 50% 0.20×110+0.15×100
+0.15×95+0.30×85 = 108

0.20×105+0.15×95
+0.15×90+0.30×80 = 102

Now strip away the labels, record the percentages as decimals, and suppress the computations. Put the “Modes" matrix
in blue and the “Gender" matrix in purple. The product of these two matrices is shown in white and is displayed in the
most conventional way as:0.25 0.20 0.15 0.10

0.55 0.65 0.55 0.40
0.20 0.15 0.30 0.50

 ·


110 105
100 95
95 90
85 80

=

 70 67
212 201
108 102

 .
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in the above system of linear equations, then we obtain the following new system of m linear equations in `
unknowns y1, . . . ,y`:

c11y1 + c12y2 + · · ·+ c1`y` = b1

c21y1 + c22y2 + · · ·+ c2ny` = b2

· · · · · · · · · · · ·
cm1y1 + cm2y2 + · · ·+ cmny` = bm

where the matrix of coefficients C = (cir) 1≤i≤m
1≤r≤`

∈ Mm,`(K) is obtained by multiplying the m× n-matrix

of coefficients A = (ai j) 1≤i≤m
1≤ j≤n

∈Mm,n(K) with the n× `-matrix of coefficients of the change of variables

B= (b jr) 1≤ j≤n
1≤r≤`
∈Mn,`(K), i. e. C= A ·B , or equivalently,

cir = (ai1, . . . ,ain) ·

b1r
...

bnr

=
n

∑
j=1

ai jb jr = ai1b jr + · · ·+ainbnr .

T8.2 For the following K- linear maps find the matrix Mv
v( f ) ∈MN,N(K) of f with respect to the basis

v := {t i | i ∈N} of the polynomial algebra K[t] .
1) f :K[t]→K[t] , x(t) 7→ ẋ(t) (the derivative of x(t) with respect to t ).
2) f :K[t]→K[t] , x(t) 7→ y(t) · x(t) , where y(t) := a0 + · · ·+antn is a fixed polynomial inK[t] .

3) f :K[t]→K[t] , x(t) 7→ x(t +1) .

T8.3 Let A ∈MI,J(K) and i ∈ I, j ∈ J. Compute eiA and Ae j , where ei ∈ K(I) is the standard row-vector
in K(I) and e j ∈ K(J) is the standard column-vector in K(J).

T8.4 Compute the matrix product a1
...

am

(b1, . . . ,bn) ,

where a1, . . . ,am ,b1, . . . ,bn are elements in a field.

T8.5 Let I,J be finite sets. For a matrix A ∈MI,J(K), compute the products Ei jA respectively, AErs ,
where Ei j ∈MI(K) and Ers ∈MJ(K) are the elements in the standard basis of MI,J(K).

T8.6 Let f :V →W be a K-linear map from the n-dimensional vector space into the m-dimensional vector
space W . There exist bases v= {v1, . . . ,vn} of V and w= {w1, . . . ,wm} of W such that the matrix mv

w( f )
of f with respect to v and w is a matrix of the form

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0


∈Mm,n(K) .

The number of 1’s in this matrix is the rank of f and hence is uniquely determined. (Hint : As in the proof
of Rank-Theorem show that there exists a basis u1, . . . ,ur,v1, . . . ,vs of V such that u1, . . . ,ur is a basis of Ker f and
w1 := f (v1), . . . ,ws := f (vs) is a basis of Im f . Put vs+ j := u j for j = 1, . . . ,r and a basis v := (v1, . . . ,vn), n := r+s of
V . Moreover, extend w1, . . . ,ws to a basis w := (w1, . . . ,wm) of W . Then f (v j) = w j for j = 1, . . . ,r and f (v j) := 0 for
j = r+1, . . . ,n, i. e. Mv

w( f ) has the required form. – On the other hand if Mv
w( f ) has the given form with respect to

some bases v of V and w of W , then the image Im f has the basis w1, . . . ,ws, where s is the number of 1’s and hence
Rank f = Dim Im f = s.)

T8.7 Let V be a finite dimensional K-vector space and let g ∈ EndK(V ) with Rank(g) = 1. Show that
there exist y ∈V and e ∈V ∗ such that g(x) = e(x) · y for every x ∈V . Further, show that
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(a) The elements y, e are unique up to scalar multiples in K× and the element e(y) ∈ K is unique and we
will denote it by λ = λ (g) . Further, show that λ (g) = 0 if and only if g2 = 0.
(b) There exists a basis v= {v1, . . . ,vn} of V such that the matrix Mv

v(g) of g with respect to v is of the
form 

λ 0 · · · 0
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 or


0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


according as λ 6= 0 or λ = 0.

T8.8 ( P s e u d o - r e f l e c t i o n s and r e f l e c t i o n s ) Let V be a finite dimensional K-vector space. An
automorphism f ∈ AutK(V ) is called a p s e u d o - r e f l e c t i o n of V if Rank( f − idV ) = 1. A pseudo-
reflection f of V is called a d i l a t a t i o n (respectively t r a n s v e c t i o n or s h e a r i n g ) if λ ( f − idV ) 6= 0
(respectively λ ( f − idV ) = 0), see Test-Exercise T8.7.
(a) For f ∈ AutK(V ) , show that the following conditions are equivalent :
(i) f is a pseudo-reflection of V . (ii) The set Fix( f ) := {x ∈ V | f (x) = x} of fixed points of f is a
hyperplane in V .
(iii) There exist a vector y ∈V , y 6= 0 and a linear form e ∈V ∗, e 6= 0 on V such that f (x) = x+ e(x) · y
for every x ∈V .
Moreover, if these equivalent conditions are satisfied then f is a dilatation (respectively transvection)
according as e(y) 6= 0 (respectively e(y) = 0).
(b) Show that the inverse of a dilatation (respectively transvection) is a dilatation (respectively transvection).
(Hint : If f ∈ AutK(V ) is a pseudo-reflection then write f−1 in the form idV +h .)
(c) Show that every f ∈ AutK(V ) is a product of transvections and at most one dilatation. (Hint : Prove by
induction on m := Rank( f − idV ) . If m ≥ 2 and z 6∈U := Ker( f − idV ) , then show that there exists f1 ∈ AutK(V )

which is a transvection or a product of two transvections such that f1(z) = f (z) and f1(x) = x for every x ∈U . Now
consider f−1

1 f .)
(d) A pseudo-reflection f ∈ AutK(V ) of V is called a r e f l e c t i o n of V if f 2 = idV . If CharK = 2, then
f ∈ AutK(V ) is a reflection of V if and only if f is a transvection of V . Suppose that CharK 6= 2. For
f ∈ AutK(V ) , show that the following conditions are equivalent :
(i) f is a reflection of V .
(ii) There exist a vector y ∈ V ,y 6= 0 and a linear form e ∈ V ∗ ,e 6= 0 on V such that e(y) = −2 and
f (x) = x+ e(x) · y for every x ∈V .
(iii) There exists a basis v= {v1, . . . ,vn} of V such that the matrix Mv

v( f ) of f with respect to v is of the
form 

−1 0 · · · 0
0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

 .

In particular, if f is a reflection then it is a dilatation.

T8.9 Let V be n-dimensional K-vector space and let f ∈ EndK(V ). Show that (in all matrices given below,
entries at the non-marked places are 0)
(a) f is a projection, i.e. f 2 = f if and only if there exists a basis v= {v1, . . . ,vn} of V such that the matrix
Mv

v( f ) of f with respect to v is of the form

1
. . .

1
0

. . .
0


∈Mn(K) .
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(Hint : By Test-Exercise T7.21 f is a projection if and only if there exists a basis x = (x1, . . . ,xn) of V such that
f (xi) = xi , i = 1, . . . ,r, and f (xi) = 0, i = r+1, . . . ,n, or equivalently, the matrix Mx

x( f ) has the required form.)

(b) Suppose that CharK 6= 2. Then f is an involution, i.e. f 2 = idV if and only if there exists a basis
v= {v1, . . . ,vn} of V such that the matrix Mv

v( f ) of f with respect to v is of the form

1
. . .

1
−1

. . .
−1


∈Mn (K) .

(Hint : Note that f is an involution of V if and only if g := 1
2 (idV − f ) is a projection, since g2 = 1

4 (idV− f )2 =
1
4 (idV − 2 f + f 2) = 1

4 (2idV − 2 f ) + 1
4 ( f 2− idV ) = g+ 1

4 ( f 2− idV ), we have g2 = g if and only if f 2 = idV . By
the above part (a) g is a projection if and only if there exists a basis x = (x1, . . . ,xn) of V such that g(xi) = xi ,
i = 1, . . . ,r, and g(xi) = 0, i = r + 1, . . . ,n, and hence (since f = id− 2g) f (xi) = xi− 2xi = −xi , i = 1, . . . ,r, and
f (xi) = xi−0 = xi, i = r+1, . . . ,n, or equivalently, the matrix of f with respect to the basis xn, . . . ,x1 has the required
form.)

(c) Show that f is a transvection (see Test-Exercise T8.8) if and only if there exists a basis v= {v1, . . . ,vn}
of V such that the matrix Mv

v( f ) of f with respect to v is of the form
1 0
1 1

1
. . .

1

 ∈Mn (K) .

(Hint : By definition f is a transvection if the fixed-point space of f is the hyperplane Fix( f ) :=H := {x∈V | f (x) = x}
and if for one (and hence for every) x∈V \H the direction of the reflection f (x)−x belongs to H. In this case choose
a v1∈V −H and extend v2 := f (x)−x 6= 0 by adding v3 . . . ,vn to a basis v2, . . . ,vn of H. Then v = (v1, . . . ,vn) is a
basis of V, and we have f (v1)= v1 +( f (v1)−v1) = v1 + v2 and f (v j) = v j for j = 2, . . . ,n. Mv

v( f ) has the required
form. Conversely, if f has such a matrix representation with respect to a basis v1, . . . ,vn, then ( f (v j) = v j for all
j = 2, . . . ,n, and f (v1) = v1 + v2, and hence H := {x∈V | f (x) = x} (n−1)-dimensional and for x := v1 /∈ H we have
f (x)−x = v2 ∈ H, i. e. f is a transvection.)

(d) Show that f is a dilatation (see Test-Exercise T8.8) if and only if there exists a basis v= {v1, . . . ,vn} of
V such that the matrix Mv

v( f ) of f with respect to v is of the form
λ

1
. . .

1

 ∈Mn (K)

where λ ∈ K ,λ 6= 0,1. (Hint : By definition an automorphism f is a dilatation, if the fixed-point space of f is
the hyperplane Fix( f ) := H := {x∈V | f (x) = x} is a hyperplane in V and if for one (and hence for every) x∈V \H
the direction of the reflection f (x)−x does not lie in H. In this case we put v1 := f (x)−x and extend v1 to a basis
v1,v2, . . . ,vn of H. Then f � H = idH , and f (x) = λx+ h with h∈H, and so λ 6= 0, since otherwise Im f ⊆ H a
contradiction to the bijectivity of f , and further λ 6= 1, since otherwise f (x)−x ∈ H. Moreover, f (v1) = f ( f (x)−x) =
f (λx+h)− f (x) = λ f (x)+h− (λx+h) = λ ( f (x)−x) = λv1 and f (vi) = vi for i= 2, . . . ,n. Therefore Mv

v( f ) has a
required form. The converse is trivial.)

T8.10 Let V be an n-dimensional K-vector space and let f :V →V be a linear operator. Then the matrices
Mv

v( f ) and Mv′

v′( f ) of f with respect to bases v and v′ of V , respectively, are equal if and only if f is a
homothecy a idV , a ∈ K.

T8.11 From the above Test-Exercise T8.8 deduce that : for a finite dimensional K-vector space V :
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(a) The center Z(EndKV ) of the K-algebra EndKV , i.e. the subalgebra of f ∈ EndKV which commute with
all elements of EndKV is equal to the subalgebra {a idV | a ∈ K} of homothecies of V .
(b) The center Z(AutKV ) of the automorphism group AutKV of V is the subgroup {a idV | a ∈ K×} of
homothecies of V .
(c) What is the center of the matrix algebra MI(K) resp. the group GLI(K)? where I is a finite set.

T8.12 Let V be K-vector space of dimensions n, v = {u1, . . . ,ur,w1, . . . ,ws} be a K-basis of V , U :=
Ku1 + · · ·+Kur , W := Kw1 + · · ·Kws and let f ∈ EndK(V ) . Then
(a) The subspace U of V is invariant under f , i.e. f (U) ⊆U if and only if the matrix Mv

v( f ) of f with
respect to v is of the form 

a11 · · · a1r c11 · · · c1s
...

. . .
...

...
. . .

...
ar1 · · · arr cr1 · · · crs

0 · · · 0 b11 · · · b1s
...

. . .
...

...
. . .

...
0 · · · 0 bs1 · · · bss


∈Mr+s(K) .

In this case a11 · · · a1r
...

. . .
...

ar1 · · · arr

 ∈Mr(K) and

b11 · · · b1s
...

. . .
...

bs1 · · · bss

 ∈Ms(K)

is the matrix of f |U with respect to the basis u = {u1 . . . ,ur} of U resp. the matrix of the K-linear map
f : V/U →V/U induced by f̄ with respect to the (residue class-)basis w=
overlinew1, . . . ,ws} of V :=V/U .
(b) Both the subspaces U and W of V are invariant under f , i.e. f (U)⊆U and f (W )⊆W if and only if
ci j = 0 for all 1≤ i≤ r ,1≤ j ≤ s in the matrix Mv

v( f ) of the part a).

T8.13 The matrix Mv
v( f ) of the part a) is usually written as the block matrix

(
A C
0 B

)
, where A ∈

Mr(K) ,B ∈Ms(K) ,C ∈Mr(K) . Show that such a block matrix is invertible if and only if A and B are
invertible. Further, show that (

A C
0 B

)−1

=

(
A−1 −A−1CB−1

0 B−1

)
.

T8.14 The matrix
(

a c
b d

)
∈M2(K) is invertible if and only if ad−bc 6= 0. Its inverse is then

1
ad−bc

(
d −c
−b a

)
.

T8.15 Find the matrix of the linear map f :R2→R4 defined by

f (a1,a2) := (3a1 +3a2 , 2a1−a2 ,−5a1 +3a2 , 4a1−3a2)

with respect to the standard bases of R2 respectively R4; also find it with respect to the bases (1,1) , (1,2)
of R2 respectively (1,0,0,1) , (0,1,1,0) , (0,0,1,1) , (0,0,1,0) of R4.

T8.16 Suppose that the endomorphism f of Q3 have the matrix0 1 1
1 0 1
1 1 0


with respect to the standard basis e1,e2,e3 of Q3. Show that the vectors e1− e2− e3 , 2e2− e3 , e1 + e2 form
a basis of Q3. Moreover, find the matrix of f with respect to this basis of Q3.
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T8.17 Let I be a finite set. The map f : GLI(K)→GLI(K) defined by A 7→ t A−1, (which maps every matrix
to its contra-gredient matrix) is an automorphism of the group GLI(K). Moreover, its inverse is itself. (Hint :
f (AB) = t(AB)−1 = t(B−1A−1) = tA−1 tB−1 = f (A) f (B) . Further, f

(
f (A)

)
= t
(

tA−1
)−1 =

(
A−1

)−1 = A and
hence f 2 = id.)

T8.18 In Mn(K), for all a ∈ K× and all m ∈Z, prove that
a 1 · · · 0 0
0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a 1
0 0 · · · 0 a



m

=



am
(m

1

)
am−1 · · ·

( m
n−2

)
am−n+2

( m
n−1

)
am−n+1

0 am · · ·
( m

n−3

)
am−n+3

( m
n−2

)
am−n+2

...
...

. . .
...

...

0 0 · · · am
(m

1

)
am−1

0 0 · · · 0 am


.

(Hint : We denote by Dn,1 := (δi+1, j)1≤i, j≤n = (δi, j−1)1≤i, j≤n ∈Mn(K) the (n×n)-matrix, in which the first next-
diagonal above the main-diagonal has 1 everywhere and all other coefficients are 0. More generally, we put Dn,k :=
(δi+k, j)1≤i, j≤n ∈Mn(K) the (n×n)-matrix, in which k-th next-diagonal above the main-diagonal has 1 everywhere and
all other coefficients are 0 everywhere. Then Dn,0 = En the identity matrix, and for k∈N, we have (Dn,1)

k =Dn,k.
From this the inductive -step from k to k+1 follows, since the element in the i-th row and the `-th column of

Dn,1)
k+1 = (Dn,1)

k Dn,1 =Dn,k Dn,1 is equal to
n
∑
j=1

δi+k, j δ j,`−1 = δi+k,`−1 = δi+k+1,` , which is also the corresponding

element of Dn,k+1. In particular, it follows that Dn
n,1 = Dn,n = 0. Now, the m-th power of the matrix aEn+Dn,1

is: (aEn+Dn,1)
m =

n

∑
k=1

(m
k

)
am−k(En)

m−k (Dn,1)
k =

n

∑
k=1

(m
k

)
am−kDn,k . This is precisely the given matrix on the

right-hand side.)

T8.19 In Mn(K) with n−1 ∈ K×, prove that



1 1 · · · 1 0

1 1 · · · 0 1
...

...
. . .

...
...

1 0 · · · 1 1
0 1 · · · 1 1



−1

=
1

n−1


1 1 · · · 1 2−n
1 1 · · · 2−n 1
...

...
. . .

...
...

1 2−n · · · 1 1
2−n 1 · · · 1 1

 .

(Hint : It is enough to show that the product
(
1−δn−i+1, j

)
1≤i, j≤n ·

( 1
n−1 −δ j,n−`+1

)
1≤ j,`≤n is the identity matrix. This

follows from the fact that in the i-th row and `-th column of the product of these matrices is the following element:
n

∑
j=1

(1−δn−i+1, j)
( 1

n−1 −δ j,n−`+1
)
=

n

∑
j=1

1
n−1 −

1
n−1

n

∑
j=1

δn−i+1, j−
n

∑
j=1

δ j,n−`+1 +
n

∑
j=1

δn−i+1, j δ j,n−`+1

= n
n−1 −

1
n−1 −1+δi` = δi` .)

T8.20 Let v= (vi)i∈I and v′ = (vi)i∈I be bases of the finite dimensional K-vector space V and let v∗ resp.
v′ ∗ be the corresponding dual bases of V ∗. If A=Mv

v′(idV ) is the transition matrix from the basis v to the
basis v′ , then show that the contra-gradient matrix tA−1 is the transition matrix Mv′∗

v∗ (idV ∗) from the basis
v∗ to the basis v′ ∗ .

†T8.21 ( C l a s s i c a l s p a c e - t i m e - w o r l d ) Perhaps the greatest obstacle to understand the theories of
special and general relativity 9 arises from the difficulty in realising that a number of previously held basic
assumptions about the nature of space and time are wrong. We therefore spell-out some key assumptions

9The general theory of relativity is one of the greatest intellectual achievements of all time. Its originality and
unorthodox approach exceed that of special relativity. And for so more than special relativity, it was almost completely
the work of a single man, A l b e r t E i n s t e i n (1879-1955). The philosophic impact of relativity theory on the
thinking of man has been profound and the vistas of science opened by it are literally endless.
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about space and time. We can consider space and time (≡ space-time 10) to be a continuum composed of
e v e n t s , where each event can be thought as a point of space at an instant of time.
Up to now we have only considered the universe S over the vector space VS of translations, and time was
ignored. Classically, time is a real affine line T . The corresponding vector space is denoted by VT ; for
the measurement of time, we choose a basis τ of VT , pointing into the “future”, i.e. for given moments t1
and t2 in T , we say that “t1 comes before t2” if the vector −→t1t2 has a representation aτ with a positive real
number a ( a r r o w i n t h e d i r e c t i o n o f t i m e ) . The motion of a free particle on a line in the universe
gives an isomorphism of this line onto T . The most naive description of the space-time-world as a whole is
done through the four-dimensional product space S×T which is, in a natural way, an affine space over the
R-vector space VS×VT . Both the projections of S×T onto S and T are affine maps. They associate to every
w o r l d - p o i n t in S×T its position resp. its time. The fibres of these projections are the points with the
same position resp. time.
It has been known from early times – at least from the time of Aristotle – that it does not make sense to talk
about two events taking place at different times at the same place. Description of position is only possible
relative to a frame of reference; one cannot distinguish any one of these frames of reference as a fixed frame
of reference. On the other hand, in the area of classical physics one has the concept of simultaneousness:
Two distinct world-points are n o t s i m u l t a n e o u s if and only if (at least in the mental experiment) the
same mass-point can occupy both these world-points.
Therefore one describes the classical space-time-world as a four dimensional real affine space E with an
affine (non-constant) map z : E → T from E onto the time T . For an event P ∈ E, we call z(P) the t i m e
at which the event P takes place. The fibres of the affine map z define the space-directions. Our universe,
which we have handled so far, was always such a fibre. All these fibres are parallel to the three-dimensional
subspace VS of the vector space VE corresponding to E.
Two world-points P and Q in E differ from each other by the vector

−→
PQ. P and Q are simultaneous if

and only if
−→
PQ ∈ VS. Therefore the vectors in VS are called s p a c e - l i k e vectors. Every vector in VE ,

which is not a space-like vector, is called t i m e - l i k e . The world-points representing the motion of a free
particle m1 (which is not subject to any outer forces), form an affine line g1 =Rv1 +P1 in E, the so called
w o r l d - l i n e of these mass-points. It is parallel to the line Rv1 in VE generated by some time-like vector v1
( G a l i l e a n l a w o f i n e r t i a ) . Then the line g1 representing the time and the affine subspace VS +P1
give a decomposition of E into space and time (as above) . After normalising the vector v1 by the condition
z0(v1) = τ , where z0 is the linear part of z, this vector v1 is called the a b s o l u t e or f o u r - v e l o c i t y of the
mass-point under consideration.
If m2 is another mass-point with the absolute velocity v2 (moving freely without being subject to outer
forces) , then v2− v1 ∈ VS is a space-like vector. It is called the r e l a t i v e v e l o c i t y o f m2 w i t h
r e s p e c t t o m1.

The simultanousness
as defined above requires arbitrary large relative velocities. Since observations suggest that arbitrary large
velocities cannot occur, one tries to abandon the notion of simultanousness. A first step in this direction is the
special theory of relativity.
As automorphisms of the classical space-time-world E described above we shall consider the affinities f of E,

10H e r m a n n M i n k o w s k i (1864-1909) referred to space-time as t h e w o r l d , hence events are w o r l d -
p o i n t s and a collection of events giving history of a particle is a w o r l d - l i n e . Physical laws on the interaction of
particles can be thought of as the geometric relation between the world-lines. In this sense Minkowski maty be said to
have geometrized physics.
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which are compatible with the time map z :E→ T . By this we mean that there exists an affinity fT :T → T
(which is necessarily uniquely determined) such that z◦ f = fT ◦ z :

E −−−−−−−−−−−−−
f
−−−−−−−−−−−−−−- E

z
?

z
?

T −−−−−−−−−−−−−
fT
−−−−−−−−−−−−−−- T

These automorphisms f of E form a subgroup G of the affine group A(E) of E. This subgroup G is called
the a f f i n e G a l i l e a n g r o u p . An affinity f in A(E) belongs to G if and only if its linear part maps the
vector space VS of the space-like vectors into itself. By G0 we denote the subgroup of automorphisms h of
VE with h(VS)⊆VS. Then the map G→ G0 defined by f 7→ f0 is a surjective group homomorphism, and its
kernel is the group T(E) of all translations of E. In particular, G/T(E)∼= G0 .
Sometimes the subgroup of all f ∈G such that the time-part fT is the identity, is also called the affine Galilean
group.

T8.22 With the notations and concepts as in the above Test-Exercise T8.21, let v1 a time-like vector and
let v2,v3,v4 be a basis of the space VS the space-like vectors. Then show that the affinity f of the space-
time-world E belongs to the affine Galilei-group G if and only if its linear part f0 with respect to the basis
v1, . . . ,v4 of VE is a block-matrix of the form(

a 0
c B

)
, a ∈R× , B ∈ GL3(R) , c ∈R3 = M3,1(R) ,

Further, it preserves the time-orientation if and only if a > 0.

T8.23 Let A,B ∈GLn(R) be inverses of each other with all coefficients are ≥ 0. Then show that every row
and every column of A and B has only one non-zero coefficient. (Remark : Geometrically the hypothesis mean:
A and A−1 maps the cone Rn

+ ⊆Rn into itself.)

T8.24 (a) Compute the rank of the following matrices over Q:
1 1 1
−2 −1 0

0 −1 −2
3 4 5

 ,


1 2 2 −1
2 4 6 −4
5 10 10 −5
3 6 6 3

 ,


1 3 1 −2 −3
1 4 3 −1 −4
2 3 −4 −7 −3
3 8 1 −7 −8

 .

(b) Let K be an arbitrary field. Compute the rank of the 4×4 matrix (magic-square) given in the Exercise 6.6
depending on the characteristic CharK of K. Further, compute the rank of the following n×n-matrix:

1 2 . . . n
n+1 n+2 . . . 2n

...
...

. . .
...

(n−1)n+1 (n−1)n+2 . . . n2

 .

T8.25 Compute the rank of the matrices A,B,AB,BA over Q for

A :=


−2 0 −5 0 1 6
−1 2 2 2 2 0

4 −2 −2 1 1 0
2 0 4 −2 5 3
0 3 6 −2 5 4

 , B :=



2 2 1 1 1
0 3 −2 1 2
4 1 4 1 0
3 −1 0 −4 3
5 1 1 −3 4
0 −1 −1 −2 1

 .

T8.26 Prove the assertion on the ranks of matrices corresponding to the assertions on the ranks of linear maps
given in Test-Exercises T6.16 and T6.17: For matrices A ∈Mm×n(K) , B ∈Mn×`(K) and C ∈M`×p(K) ,
show that
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(a) (S y l v e s t e r ’ s i n e q u a l i t y) RankA+RankB−n≤ RankAB≤min{RankA,RankB} .

(b) (F r o b e n i u s i n e q u a l i t y) RankAB+RankBC≤ RankB+RankABC .

T8.27 Determine which of the following matrices are invertible overQ and in the appropriate cases compute
the inverse matrix: 1 −1 0

1 0 1
1 1 2

 ,

1 1 2
1 2 1
1 1 1

 ,

1 3 2
2 2 2
3 1 2

 ,


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

 ,


5 2 3 −4
8 3 5 7
7 2 4 6
6 2 3 5

 ,


2 5 −3 −2
−2 −3 2 −5

1 3 −2 2
1 6 −4 −3

 .

T8.28 Determine which of the following matrices are invertible over C and in the appropriate cases compute
the inverse matrix: 1 0 1+ i

0 1 i
1− i −i 1

 ,

2 0 i
1 −3 −i
i 1 1

 ,

 1 i −i
2i−1 2+ i i

i 1+ i 0

 .

T8.29 Let I, J be finite sets and let A ∈MI,J(K) .

(a) For every sub-matrix U of A , Rank U≤ RankA .

(b) The rank of A is the maximum of the ranks of the invertible square sub-matrices of A . In partic-
ular, if A = (ai j), r := RankA , then there is an injective maps σ , τ from [1,r] into I resp. J such that
(aσ(i)τ( j))1≤i≤r,1≤ j≤r is invertible.

(c) Let K be a subfield of the field L. Then show that RankKA= RankLA. (Hint : see Test-Exercise T7.36 (a))
Further, show that A is invertible over K if and only if A is invertible over L. (Remark : Naturally, then the
inverses over K and over L are same.)

T8.30 Prove the Theorem 8.B.3 by using the Test-Exercise T8.6 : Let I and J be finite sets and let
A = (ai j) ∈MI,J(K) be an I× J-matrix. Then RankA = Rank tA , i. e. the column-rank of A is equal to
the row-rank of A. Proof: Let f : KJ → KI be the linear map defined by f (x) = Ax. Then A is the matrix of f
with respect to the standard bases of KJ respectively KI . By Test-Exercise T8.6 there exist bases v of KJ and w of
KI such that the matrix D with respect to these bases have all zero coefficients except 1’s on the first r places on the
main-diagonal, where r = Rank f = RankA. If B respectively C are the corresponding transition matrices (with v

as columns of B and w as columns of C), then D = C−1AB by 8.A.14 and it follows from 8.A.18 and 8.A.19 that
D= tD= tB tA tC−1, i. e. D and tA describes the same linear map KI → KJ , (only with respect to different bases).
Once again it follows from the Test-Exercise T8.6 that r= Rank tA.

T8.31 Let A ∈Mm,n(K). Show that RankA≤ r if and only if there exist an m× r-matrix B and an r×n-
matrix C over K such that A=BC. Further, show that the following statements are equivalent:
(i) RankA = r, i. e. A =BC is a rank-factorisation of A. (ii) RankB = RankC = r. (iii) Columns of B
form a basis of the column-space of A. (iv) Rows of C form a basis of the row-space of A.
Formulate the case r = 1 explicitly.
(Remark: For a matrix A∈Mm,n(K) of rank r≥ 1, (B,C) is said to be a r a n k - f a c t o r i s a t i o n of A if A=BC

and B ∈Mm,r(K) and C ∈Mr,n(K). This exercise show that every non-zero matrix has a rank-factorisation. But it is
not unique in general, for instance if (B,C) is a rank-factorisation of A, then for every G ∈ GLr(K), (BG,G−1C) is
also a rank-factorisation of A. However, if (B,C) and (B,C′) are rank-factorisations of A, then C= C′ and similarly, if
(B,C) and (B′,C) are rank-factorisations of A, then B=B′.)

T8.32 Let a1, . . . ,an ∈ Kn be column-vectors. Show that the n× n-matrices ai
ta j ∈Mn(K) , 1 ≤ i, j ≤ n,

form a K-basis of Mn(K), if and only if a1, . . . ,an, is a K-basis of Kn.
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†T8.33 Let Pj = (a1 j, . . . ,am j) , j = 1, . . . ,n, be points in the affine space Am (K) = Km. The dimension of
the affine subspace of Am (K) generated by the points P1, . . . ,Pn is 1 less than the rank of the matrix

1 1 · · · 1
a11 a12 · · · a1n

...
...

. . .
...

am1 am2 · · · amn

 ∈Mm+1,n (K) .

T8.34 Suppose that the solution spaces of the system of linear equations Ax = b and A′ x = b′ with
A ∈ Mm,n(K) , A′ ∈ Mm′,n(K) and column-vectors b ∈ Km , b′ ∈ Km′ , m,m′,n ∈ N, are non-empty affine

spaces of Kn. Show that these subspaces are parallel if and only if the block-matrix
(
A

A′

)
∈Mm+m′,n (K) is

of rank Max (RankA,RankA′).

T8.35 Let r ∈N∗, s ∈N and let B ∈Ms(K) . Show that for every matrix A ∈Ms,r(K) and every column-
vector x ∈ Kr there exists a column-vector y ∈ Ks with Ax+By= 0, if and only if B is invertible. Moreover,
in this case, one can choose y=−B−1Ax.

T8.36 Let r,s ∈ N with 1 ≤ r,s ≤ m and r 6= s . For all a,b in the field K, show that Brs(a+ b) =
Brs(a)Brs(b) in Mm(K) , i.e. the map (K,+)→ GLm(K), a 7→Brs(a) is an (injective) homomorphism of
the additive group of K in the group GLm(K) of the invertible matrices. (Hint : (En + aErs)(En + bErs) =

En +bErs +aErs +abErsErs = En +(a+b)Ers , since ErsErs = δrsErs = 0.)

T8.37 Let 1 ≤ j ≤ m and let a j+1, . . . ,am ∈ K . Show that the elementary matrices B j+1, j(a j+1) , . . . ,
Bm, j(am) ∈ Mm(K) are pairwise commutative and their product B j+1, j(a j+1) · · ·Bm, j(am) is the nor-
malized upper triangular matrix B j(a j+1, . . . ,am) which is obtained from the identity matrix by replac-
ing j-th column by adding the elements a j+1, . . . ,am under the main-diagonal, i.e. B j(a j+1, . . . ,am) =

En +∑
m− j
k=1 a j+kE j+k , j . The map (a j+1, . . . ,am) 7−→ B j(a j+1, . . . ,am) is a homomorphism of from the

additive group Km− j into the group GLm(K) . In particular, B j(a j+1, . . . ,am)
−1 = B j(−a j+1, . . . ,−am) .

(Remark : In the concrete situation it is practical for the row-operations to pre-multiply by the matrices of the type
B j(a j+1, . . . ,am) . Similarly for column-operations.)

T8.38 The normalised lower (respectively, upper) triangular matrices
LTn(K) := {(ai j) ∈Mn(K) | ai j = 0 for all i < j and aii = 1 for all i = 1, . . . ,n} (respectively, UTn(K) :=
{(ai j) ∈Mn(K) | ai j = 0 for all i > j and aii = 1 for all i = 1, . . . ,n} in Mn(K) form a subgroup of GLn(K) .

T8.39 The center of the group GLn(K) is the subgroup K×En = {aEn | a ∈ K×} , where En is the unit
matrix. (Hint : Use ABrs(1)−Brs(1)A=AErs−ErsA for 1≤ r,s≤ n with r 6= s . See also Test-Exercise T8.11-(c).)

T8.40 Let r,s, i be pairwise distinct indices in {1, . . . ,n} and let a ∈ K. Then in GLn(K) show that
PrsBis(a) =Bir(a)Prs , PrsBrs(a) =Bsr(a)Prs .

T8.41 Let A ∈Mm,n(K) be a m×n-matrix of rank m .

(a) Show that there exists elementary matrices C1, . . . ,Cq ∈Mn(K) and a diagonal matrix D= Diag(d,1, . . . ,1)∈
Mm,n(K) such that AC1 · · ·Cq =D .

(b) Show that there exists a normalised lower triangular matrix L ∈Mm(K) , a normalised upper triangular
matrix R′ ∈Mm,n(K) , a diagonal matrix D= Diag(d1, . . . ,dm) ∈ GLm(K) and a permutation matrix Pϕ ∈
Mn(K) such that APϕ = LDR′ . (Hint : Analogous to 8.C.8 respectively, 8.C.9.)

T8.42 Let A= (ai j) ∈ GLn(K) . For k = 1, . . . ,n , let

Ak :=

a11 · · · a1k
...

. . .
...

ak1 · · · akk

 .

Show that there exist a lower triangular matrix L and an upper triangular matrix R in GLn(K) such that
A= LR if and only if Ak ∈ GLk(K) for k = 1, . . . ,n . (Remark : Therefore we have a criterion : In the case of
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invertible matrices in Theorem 8.C.9 and Test-Exercise T8.41-(b), when exactly we do not need the permutation matrix.
In particular, in the case of a positive or negative definite real-symmetric or complex-hermitian matrices A , there exist
L and R . Moreover, if we choose L normalized, then L and R are uniquely determined.)

T8.43 Compute the product representation corresponding to Theorem 8.C.8, Theorem 8.C.9 and Test-
Exercise T8.41 for the matrices

A :=

 1 2 4
1 3 5
−2 −1 2

 respectively A :=

0 1 1
1 0 1
1 1 0


and therefore determine A−1 in GL3(R) .

T8.44 Let

A=


2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 ∈M5(R) .

Compute a normalized lower triangular matrix L and an upper triangular matrix R such that A= LR .

T8.45 Suppose that the well-known t r i - d i a g o n a l m a t r i x

A=



a1 c1 0 · · · 0 0
b2 a2 c2 · · · 0 0
0 b3 a3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · an−1 cn−1
0 0 0 · · · bn an


∈Mn(K)

satisfy the equivalent conditions of the Test-Exercise T8.42, i. e. all principal minors DetAk 6= 0 for all
k = 1, . . . ,n. Show that (by induction on n), there exists a normalised lower triangular matrix L of the form

L=B21(β2)B32(β3) · · ·Bn,n−1(βn) =


1 0 · · · 0 0
β2 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · βn 1


and an upper triangular matrix R of the form

R=


α1 c1 · · · 0 0
0 α2 · · · 0 0
...

...
. . .

...
...

0 0 · · · αn−1 cn−1
0 0 · · · 0 αn


in Mn(K) such that A= LR .
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