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9. Determinants

Submit a solution of the ∗-Exercise ONLY
Due Date : Monday, 14-11-2011 (Before the Class)

• Solution of the ∗∗-Exercise (Exercise 9.7) carries 10 Bonus Points.
•• Solution of the ∗∗∗-Exercise (Exercise 9.2)) carries 20 Bonus Points!

9.1 (B o s s - P u z z l e) Let r,s ∈ N∗, r,s ≥ 2. In an right side box there are rs− 1 numbers
1,2, . . . ,rs−1 are arranged in a r× s-rectangle (as shown in the left-rectangle which is made up of
equal rs sliding square-blocks) by the permutation

ν =

(
1 2 3 · · · rs−2 rs−1
ν1 ν2 ν3 · · · νrs−2 νrs−1

)
∈Srs−1

ν1 · · · νs−1 νs

νs+1 · · · ν2s−1 ν2s

... · · ·
...

...
ν(r−1)s+1 · · · νrs−1 #

1 · · · s−1 s
s+1 · · · 2s−1 2s

... · · ·
...

...
(r−1)(s−1)+1 · · · rs−1 #

The lower-right corner square-block marked with # is kept free. The goal is to reposition the
square-blocks by sliding the square-blocks (one at a time) into the standard-configuration (shown in
left-hand table). Show that this possible if and only if the permutation ν ∈Srs−1 is even.
(Remark: The special case r = 4 and s = 4 is the (original) 15-puzzle 1:

1The 15-puzzle (also called G e m P u z z l e, B o s s P u z z l e, G a m e o f F i f t e e n, M y s t i c S q u a r e
and many others) was "invented" by N o y e s P a l m e r C h a p m a n, a postmaster in Canastota, New York as early
as 1874. The game became a craze in the U. S. in February 1880, Canada in March, Europe in April, but that craze had
pretty much dissipated by July.
S a m u e l L o y d (1841-1911) an American chess player-composer, puzzle author, and recreational mathematician,
claimed from 1891 until his death in 1911 that he invented the 15-puzzle. This is false – Loyd had nothing to do with
the invention or popularity of the puzzle. Later interest was fuelled by Loyd offering a $1,000 prize for anyone who
could provide a solution for achieving a particular combination specified by Loyd, namely reversing the 14 and 15, i. e.
σ = 〈14,15〉. This was impossible, as had been shown over a decade earlier by J o h n s o n and S t o r y (1879), (see:
[Johnson, W. W.; Story, W. E.: Notes on the 15-Puzzle, American Journal of Mathematics, 2 (4), (1879), 397-404])
as it required an even permutation. R o b e r t J a m e s “ B o b b y ” F i s c h e r (1943-2008) an American chess
Grandmaster and the 11-th World Chess Champion, was an expert at solving the 15-Puzzle and had demonstrated on
Nov. 8, 1972 a solution within 25 seconds. Today the puzzle appears on some computer screen savers and a version
is distributed with every Macintosh computer. For larger versions of the n-puzzle, finding a solution is easy, but the
problem of finding the shortest solution is NP-hard (??).
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This puzzle has inspired a sizable number of articles and references in the mathematical literature. Most
references explain the impossibility of obtaining odd permutations, but the result that every even permutation
is indeed possible is proved by few authors and a number of them give unnecessarily complicated explanations.
Indeed, H e r s t e i n and K a p l a n s k y in (see: [Herstein, I. N. and Kaplansky, K.: Matters Mathematical,
Chelsea, New York, 1978, 114-115]) write that “no really easy proof seems to be known”. – Hint: A s i m -
p l e m o v e interchanges the blank-square # with adjacent to it; for example, there are two beginning
simple moves, namely, either interchange # and νrs−1 or interchange # and ν(r−1)s. To analyze the game,
note that each simple move is a special kind of transposition, namely, one that moves # . Moreover,
performing a simple move corresponding to a special transposition τ from a position corresponding to the
permutation σ ) yields a new position (corresponding to the permutation τσ ). For example, if ν is the
position above and τ = 〈#,νrs−1〉, then τν(#) = τ(#) = νrs−1, τν(rs−1) = τ(νrs−1) = # and τν(i) = i for
all other i. Therefore to come to the standard position, one needs special transpositions τ1,τ2, . . . ,τm such
that τm · · ·τ2τ1ν = id. Each simple move takes # up, down , left or right. Therefore the total number m of
moves is u+d + `+ r , where u, d, `, r are the numbers of up, down, left, right moves, respectively. If #
is to return at the position where it was, then u = d and `= r. Therefore the total number of moves must
be m = 2u+ 2r even. The permutation ν ∈ S16 corresponding to the configuration in the above picture
ν = 〈1,15,14,13,3,2〉〈4,12,11,5〉〈6,10〉〈7,9,8〉 is an odd permutation and hence it is not possible to bring
it to the standard configuration. For the converse, use Test-Exercise T9.11-(f) to reduce the problem to the
cases s = 2, r = 2 or 3. – The permutations for which this is possible form a subgroup of Sn, in fact it is the
alternating group An on n symbols.)

∗∗∗9.2 For 1≤ i < n, let mi be the number of inversions2 (i, j) , i< j ≤ n, in the permutation σ ∈Sn
and let σi := 〈i+mi , i+mi−1〉 · · · 〈i+1, i〉 . Show that σ = σ1 · · ·σn−1. (Remark: This proves 9.A.18
again and one can recover the permutation σ from its inversions. More precisely: The permutation σ is
uniquely determined by the (n−1)-tuple (m1, . . . ,mn−1) with 0≤ mi ≤ n−i and every such tuple uniquely
determine a permutation σ ∈Sn. This encoding of the elements of Sn is frequently used. – One can also
examine the analogous problem with the numbers m′i of the inversions ( j, i) , j< i, i = 2, . . . ,n.)

9.3 Let V and W be vector spaces over a field K and let I be a finite indexed set with n elements.
(a) Suppose that in K the element n! = n! ·1K is non-zero, i.e. CharK = 0 or CharK > n . Then
the maps f 7→ 1

n!A f and f 7→ 1
n!S f are projections of the K-vector space of the multi-linear maps

V I →W onto the subspace of the alternating respectively, the symmetric I-linear maps.
(b) Suppose that CharK 6= 2. The space of the bilinear maps V ×V →W is the direct sum of
the subspace of the alternating (i. e. skew-symmetric) and the subspace the symmetric bilinear
maps. The corresponding projections are 1

2A resp. 1
2S. (Remark : A bilinear map f :V ×V →W can be

decomposed into its s k e w - s y m m e t r i c p a r t 1
2 A f and its s y m m e t r i c p a r t 1

2 S f .)

9.4 (a) ( C r a m e r ’ s 3 F o r m u l a) Suppose that V is a n-dimensional vector space over a field K.
For every determinant function ∆ : V n→ K and for arbitrary x0, . . . ,xn ∈V , prove that

n

∑
i=0

(−1)i
∆(x0, . . . ,xi−1 ,xi+1 , . . .xn)xi = 0 .

2I n v e r s i o n s o f a p e r m u t a t i o n σ ∈Sn are the pairs (i, j) such that 1≤ i < j ≤ n and σ(i)> σ( j).
3G a b r i e l C r a m e r (1704-1752) was a Swiss mathematican who worked on analysis and determinants. He is

best known for his formula for solving simultaneous equations.
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(Hint : The left-hand side is by Test-Exercise T9.23 (with g = idV ) is an alternating multi-linear map
V n+1→V , and hence vanish by Corollary 9.B.6, since DimV = n.)

(b) Let A ∈Mm,n(K) be an m×n-matrix over a field K and let DetAI,J be a non-zero r-minor of
A. Show that Rank A= r if and only if every (r+1)-minor DetAI ′,J ′ = 0 with I ⊂ I′ and J ⊂ J′.

9.5 (a) ( V a n d e r m o n d e ’ s d e t e r m i n a n t ) For elements a0, . . . ,an ∈ K , show that∣∣∣∣∣∣∣∣∣
1 1 1 · · · 1
a0 a1 a2 · · · an
...

...
... . . . ...

an
0 an

1 an
2 · · · an

n

∣∣∣∣∣∣∣∣∣= ∏0≤i< j≤n(a j−ai) . (Hint : Induction on n. – See Exercise 8.3.)

(b) ( C a u c h y ’ s D o u b l e - a l t e r n a n t ) Let a1, . . . ,an, b1, . . . ,bn ∈ K with ai +b j 6= 0 for all
i, j = 1, . . . ,n . Show that

Det
(( 1

ai +b j

)
1≤i, j≤n

)
=

∏1≤i< j≤n(a j−ai) ∏1≤i< j≤n(b j−bi)

∏
n
i, j=1(ai +b j)

.

(Hint : Induction on n. – See also Exercise 8.4.)

∗9.6 (a) Show that∣∣∣∣∣∣∣∣∣∣∣

1n 2n 3n · · · (n+1)n

2n 3n 4n · · · (n+2)n

3n 4n 5n · · · (n+3)n

...
...

... . . . ...
(n+1)n (n+2)n (n+3)n · · · (2n+1)n

∣∣∣∣∣∣∣∣∣∣∣
= (−1)(

n+1
2 ) (n!)n+1 .

(Hint : Since (i+ j− 1)n = ∑
n+1
k=1

( n
k−1

)
ik−1( j− 1)n+1−k , the above matrix is the product of two matrices

and their determinants can be computed by using the Vandermonde’s determinant, see Exercise 9.5-(a).)
(b) Compute the determinant of the n×n matrix over a field K:∣∣∣∣∣∣∣∣

1+a1b1 a1b2 · · · a1bn
a2b1 1+a2b2 · · · a2bn

...
... . . . ...

anb1 anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣ .
(Hint: If all ai=0, then it is the identity matrix and hence its determinant is 1. Otherwise, we may assume
that an 6=0. For i = 1, . . . ,n−1, replace i-th row by adding −aia−1

n -times the n-th row to it and then replace
the last row by by adding the −anbi-times the i-th row, we get an upper triangular matrix:∣∣∣∣∣∣∣∣
1+a1b1 a1b2 · · · a1bn

a2b1 1+a2b2 · · · a2bn
...

...
. . .

...
anb1 anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

1 0 · · · −a1a−1
n

0 1 · · · −a2a−1
n...

...
. . .

...
anb1 anb2 · · · 1+anbn

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣∣
1 0 · · · −a1a−1

n
0 1 · · · −a2a−1

n...
...

. . .
...

0 0 · · · 1+
n
∑

i=1
aibi

∣∣∣∣∣∣∣∣∣∣
= 1+

n

∑
i=1

aibi .)

(c) Solve the following system of linear equations by using Cramer’s rule:

x2 + x3 + · · ·+ xn−1 + xn = 1
x1 + x3 + · · ·+ xn−1 + xn = 1
x1 + x2 + · · ·+ xn−1 + xn = 1
· · · · · · · · · · · · · · · · · ·

x1 + x2 + x3 + · · ·+ xn−1 + xn = 1
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∗∗9.7 Let A= (ai j) ∈Mn(R) be n×n-matrix over real numbers .
(a) Suppose that for each i = 1, . . . ,n, |aii|> ∑

n
j=1, j 6=i |ai j| . Then a11 · · ·ann DetA> 0. (Hint: By

Exercise 4.2 DetA 6= 0 for such a matrix. Therefore the continuous polynomial function

f (t) :=

∣∣∣∣∣∣∣∣∣∣

a11 ta12 ta13 · · · ta1n
ta21 a22 ta23 · · · ta2n

...
...

...
. . .

...
tan−1,1 tan−1,2 tan−1,3 · · · tan−1,n

tan1 tan2 tan3 · · · ann

∣∣∣∣∣∣∣∣∣∣
has no zero in the interval [0,1] and so the values f (0) and f (1) have the same sign by the Intermediate
Value Theorem 4. – Remarks: Two important special cases are: (1) (H a d a m a r d 5) Let (ai j) ∈Mn(C).
For every i, suppose that in the i-th row there is at most one element ai, j(i) 6= 0 with j(i) 6= i and for this
element |ai, j(i)|< |aii. Then the matrix (ai j) is invertible. (2) (M i n k o w s k i 6) Let (ai j) ∈Mn(R) with
ai j ≤ 0 for every i 6= j. For every i, suppose that ∑

n
j=1 ai j > 0. Then the matrix (ai j) is invertible. )

(b) Suppose that n∈N is odd. Then show that there exists a real t∈R such that

Det


a11+t a12 · · · a1n

a21 a22+t · · · a2n
...

... . . . ...
an1 an2 · · · ann+t

= 0 .

(Hint: The determinant is a polynomial of odd degree n in t and hence it has (by intermediate value theorem,
see the Footnote 4) a zero in R.)

9.8 Let V be a finite dimensional K-vector space. Compute the determinant of the K-linear map
f :V →V in the following cases: (a) f is the homothecy a idV . (b) f is a projection. (c) f is an
involution (see Test-Ex. T8.9-(b)). (d) f is a transvection or a dilatation (see Test-Ex. T8.9-(c), (d)).

9.9 (a) Let V be an oriented n-dimensional R-vector space and let σ ∈ Sn be a permutation.
Suppose that the orientation of V is represented by the v1, . . . ,vn. Show that vσ(1), . . . ,vσ(n) represent
the orientation of V if and only if σ is an even permutation. Further, show that the basis vn, . . . ,v1
represent the orientation of V if and only if n≡ 0 or n≡ 1 modulo 4.
(b) The bases E11, . . . ,E1n, . . . ,Em1, . . . ,Emn and E11, . . . ,Em1, . . . ,E1n, . . .Emn represent the same
orientation of Mm,n(R) if and only if

(m
2

)(n
2

)
is even.

9.10 (a) Show that the volume of the ellipsoid{
(x1, . . . ,xn) ∈Rn ∣∣ x2

1
a2

1
+ · · ·+ x2

n
a2

n
≤ 1
}
⊆Rn ,

4Intermediate Value Theorem Every continuous function f : [a,b]→R on an interval [a,b] attains every value in
between f (a) and f (b), i. e. for every c ∈R in between f (a) and f (b) there exists x0 ∈ [a,b] such that f (x0) = c.

– For c = 0 above, the statement is also known as Bolzano’s theorem. This theorem was first proved by B e r n a r d
B o l z a n o (1781-1848) (a mathematicain from Prague, Bohemia, Austrian Habsburg domain, now Czech Republic,
who successfully freed calculus from the concept of the infinitesimal. He also gave examples of 1-1 correspondences
between the elements of an infinite set and the elements of a proper subset.) in 1817. A French mathematician
A u g u s t i n L o u i s C a u c h y (1789-1857) (Cauchy pioneered the study of analysis, both real and complex, and
the theory of permutation groups. He also researched in convergence and divergence of infinite series, differential
equations, determinants, probability and mathematical physics) provided a proof in 1821. Both were inspired by the
goal of formalizing the analysis of functions and the work of Lagrange. The insight of Bolzano and Cauchy was to
define a general notion of continuity (in terms of infinitesimals in Cauchy’s case, and using real inequalities in Bolzano’s
case), and to provide a proof based on such definitions.

5J a c q u e s H a d a m a r d (1865-1963) was a French mathematician whose most important result is the prime
number theorem which he proved in 1896. This states that the number of primes < n tends to infinity as fast as n/ lnn.

6H e r m a n n M i n k o w s k i (1864-1909) was a German mathematician who developed a new view of space
and time and laid the mathematical foundation of the theory of relativity.
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a1, . . . ,an ∈R×+ , is ωn a1 · · ·an, where ωn is the volume of the unit-ball

B n−1 :=
{
(x1, . . . ,xn) ∈Rn ∣∣ x2

1 + · · ·+ x2
n ≤ 1

}
.

(Remark: The volume of the unit-sphere is ωn = πn/2/(n/2)! . Note that, for z ∈ C and m ∈N,
(

z
m

)
:=

[z]m
m!

:=
z(z−1) · · ·(z−m+1)

1 ·2 · · ·(m−1) ·m
. – To compute the volume 7 of the unit-ball B n := B(0;1) = {x∈Rn | ‖x‖≤

1} in Rn, where ‖−‖ denote the standard Euclidean norm. We put ωn := λ n(B n) . The volume of a ball with
radius r is then ωnrn. (Why ? see also Exercise ?.??) It is easy to check that ω0 = 1, ω1 = 2, ω2 = π and the
equality of A r c h i m e d e s: ω3 =

4
3 π , since the surface-area λ 2

((
{t}×R2

)
∩B 3

)
= π(1−t2) , −1≤t≤1,

is a polynomial of degree 2 (≤3) in t.

– First, we would like to generalise the Fundamental Theorem of Differential–and Integral Calculus as follows: Let
I⊆R be an interval, X = (X ,A ,µ) be a σ -finite measure space and M⊆ I×X be a measurable set (in the product
measure space (I×X ,B 1⊗A ,λ 1⊗µ)). For every t∈ I, we consider the set M(t) := {x ∈ X | (t,x) ∈M} ⊆ X .

For every t∈ I, the set M(t) is a measurable set in X . Suppose that the following conditions are satisfied:

1) For every t∈ I, we have µ
(
M(t)

)
< ∞.

2) For every t0 ∈ I and every ε > 0, there exists a δ > 0 and measurable sets M′,M′′ ⊆ X such that M′ ⊆M′′,
µ(M′′)≤ µ(M′)+ ε , and M′⊆M(t)⊆M′′ for all t∈ I, |t−t0| ≤ δ .

From (2) it is immediate that the function t 7→ µ
(
M(t)

)
on I is continuous. Moreover:

Theorem Let a,b∈R, a≤b, be the end-points of the interval I with M ⊆ I×X. Then (λ 1⊗µ)(M) =
∫ b

a
µ
(
M(t)

)
dt .

If the interval I = [a,b] in the above theorem is compact of the length h := b− a and the measures µ
(
M(a)

)
,

7In general it is difficult to compute the (volume=) Borel-Lebesgue measure λ n(M) of an arbitrary Borel-set M⊆Rn.
For subsets in R2, we have used the Fundamental Theorem of Differential–and Integral Calculus:
Theorem (F u n d a m e n t a l T h e o r e m o f D i f f e r e n t i a l – a n d I n t e g r a l C a l c u l u s) Let f :

[a ,b]→ R , a ≤ b, be a continuous function with f ≥ 0. Then the integral
∫ b

a
f (t)dt is the area of the compact

set G( f ;a,b) := {(x,y) | a≤ x≤ b, 0≤ y≤ f (x)}.
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µ
(
M( 1

2 (a+b)
))

and µ
(
M(b)

)
are denoted by F0,Fh/2,Fh, respectively, then we get the S i m p s o n - R u l e8 for the

approximation of the volume

V = (λ 1⊗µ)(M)≈ h
6
(F0 +4Fh/2 +Fh) ,

where this approximation is exact if t 7→ µ
(
M(t)

)
is a polynomial function of degree ≤3. This rule is also known as

the K e p l e r ’ s b a r r e l - r u l e 9: It approximate the volume V of a barrel using the height h, areas F0,Fh/2 and Fh of
the base, middle-place and top of the barrel, respectively.

– This is a very special case of a more general theorem proved by an Italian mathematician (B o n a v e n t u r a
F r a n c e s c o C a v a l i e r i (1598-1647) who developed a method of indivisibles which became a factor in the
development of the integral calculus.)

Now, by the above Theorem, for n∈N, we have the recursion-formula:

ωn+1 =
∫ 1

−1
λ

n(Bn(0;
√

1−t2
))

dt = ωn

∫ 1

−1

(√
1−t2

)n dt ,

and so ωn = 2nc1 · · ·cn, where

ck :=
1
2

∫ 1

−1

(√
1−t2

)k−1 dt =
∫

π/2

0
sinkt dt =


π

2
· 1

4m

(
2m
m

)
, if k = 2m is even,

4m

2m+1

/(2m
m

)
, if k = 2m+1 is odd

It follows that

ωn =

{
2m+1πm/1 ·3 · · ·(2m+1) , if n = 2m+1 is odd,

πm/m! , if n = 2m is even.

By using the Γ-function10 this result may be expressed as (in a more appreciated form):

ωn =
πn/2

Γ(n
2 +1)

=
πn/2

(n/2)!
∼ 1√

πn

(2πe
n

)n/2
.

(by using the well-known W a l l i s11 p r o d u c t r e p r e s e n t a t i o n:
√

π = lim
m→∞

2 ·4 · · ·(2m)

1 ·3 · · ·(2m−1)
and the Striling’s formula for the last asymptotic representation for n→ ∞. For which x0 ∈R+, the function
x 7→ πx/x! has maximum at x0?)

(b) Sketch the following set M := H1 ∩H2 ∩H3 in R2 with Hi :=
{
(x,y) ∈ R2

∣∣ fi(x,y) ≥ 0
}
,

i = 1,2,3, and f1(x,y) := x+3y+1, f2(x,y) :=−5x+ y+1, f3(x,y) := x− y+3 and calculate its
surface-area.
On the other side one can see auxiliary results and (simple) Test-Exercises.

8T h o m a s S i m p s o n (1710-1761) was an English mathematician who is best remembered for his work on
interpolation and numerical methods of integration.

9J o h a n n e s K e p l e r (1571-1630) was a German mathematician and astronomer who discovered that the
Earth and planets travel about the sun in elliptical orbits. He gave three fundamental laws of planetary motion. He also
did important work in optics and geometry.

10The function Γ(x) :=
∫

∞

0 tx−1e−tdt, Rex > 0, is called the Γ ( g a m m a )-f u n c t i o n. The following com-
putational rules are important: (1) Γ(x + 1)xΓ(x). (2) Γ(n + 1) = n! for all n ∈ N. (3) Γ( 1

2 (2n + 1)) =
1 ·3 · · ·(2n−1)

√
π/2n for all n ∈N.

11J o h n W a l l i s (1616-1703) was an English mathematician who built on Cavalieri’s method of indivisibles to
devise a method of interpolation. Using Kepler’s concept of continuity he discovered methods to evaluate integrals.
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Auxiliary Results/Test-Exercises

To understand and appreciate the Test-Exercises which are marked with the symbol † one
may possibly require more mathematical maturity than one has! These are steps towards ap-
plications to various other branches of mathematics, especially to Analysis, Number Theory,
Graph Theory, Group Theory and Affine and Projective Geometry.

T9.1 (a) Give an element of biggest possible order in the group S5.

(b) For n≥ 4, the group An is not abelian.

T9.2 For the following permutations compute the number of inversions and the signum.12

(a) The permutation i 7→ n− i+1 in Sn.

(b)
(

1 2 . . . n n+1 . . . 2n
1 3 . . . 2n−1 2 . . . 2n

)
∈S2n .

(c)
(

1 2 . . . n n+1 . . . 2n
2 4 . . . 2n 1 . . . 2n−1

)
∈S2n .

(d)
(

1 . . . n− r+1 n− r+2 . . . n
r . . . n 1 . . . r−1

)
∈Sn, 1≤ r ≤ n . (Ans : (−1)(r−1)(n+1).)

(e)
(

1 2 3 4 5 6 . . . 2n
1 2n 3 2(n−1) 5 2(n−2) . . . 2

)
∈S2n .

T9.3 For a subset J ⊆ {1, . . . ,n} with J = { j1, . . . , jm} , j1 < · · ·< jm , let σJ be the permutation

σJ =

(
1 . . . m m+1 . . . n
j1 . . . jm i1 . . . in−m

)
∈Sn ,

where the numbers i1 < · · ·< in−m are the elements of the complement of J in {1, . . . ,n}. (Hint :
The number of inversions of σJ is F(σJ) =

(
∑

m
k=1 jk

)
−
(m+1

2

)
and hence Sign(σJ) = (−1)F(σJ) .)

T9.4 Let σ respectively τ be permutations of the finite sets I respectively J. Compute the sign of
the permutation σ ×τ : (i, j) 7→ (σ i, τ j) of I×J (in terms of Signσ , Signτ and m := |I|, n := |J|).
T9.5 A subgroup of the permutation group Sn, n∈N+, which contain an odd permutation contains
equal number of even and odd permutations.

T9.6 (a) A permutation σ ∈Sn, n ∈N+, which is of odd order is an even permutation.

(b) The square σ2 of a permutation σ ∈Sn, n ∈N+, is an even permutation.

12S i g n u m is the Latin word for “mark” or “token”, of course, it has become the word s i g n a t u r e or just
s i g n. Another notation for the sign of a permutation is given by the more general L e v i - C i v i t a s y m b o l
εσ , which is defined for all maps from σ : {1, . . . ,n} → {1, . . . ,n} , and has value zero for non-bijective maps, in

fact: εσ =
n−1

∏
i=1

(
1
i!

n

∏
j=i+1

(σ( j)−σ(i)

)
. The Levi-Civita symbol, also called the a n t i s y m m e t r i c s y m b o l,

or a l t e r n a t i n g s y m b o l, is a mathematical symbol used in particular in tensor calculus. It is named after
the Italian mathematician and physicist T u l l i o L e v i - C i v i t a (1873-1941). In 1900 he and G r e g o r i o
R i c c i - C u r b a s t r o (1853-1925) published the theory of tensors in “Méthodes de calcul différentiel absolu et
leurs applications”, which A l b e r t E i n s t e i n (1879-1955) (Einstein contributed more than any other scientist
to the modern vision of physical reality. His special and general theories of relativity are still regarded as the most
satisfactory model of the large-scale universe that we have) used as a resource to master the tensor calculus, a critical
tool in Einstein’s development of the theory of general relativity. In one of the letters, regarding Levi-Civita’s work,
Einstein wrote “I admire the elegance of your method of computation; it must be nice to ride through these fields upon
the horse of true mathematics while the like of us have to make our way laboriously on foot”. In 1933 Levi-Civita
contributed to Paul Dirac’s equations in quantum mechanics as well.
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T9.7 Let σ = 〈i0, . . . , ik−1〉 be a cycle of length k≥ 2. What is the inverse of σ ? For which m ∈Z,
σm is a cycle of length k ?

T9.8 Let σ ∈Sn and m ∈ Z. Every orbit of σ of length k decomposes into gcd(k,m) orbits of the
length k/gcd(k,m) of σm.

T9.9 Let I be a finite set. The inverse σ−1 of a permutation σ ∈S(I) has the same orbits and same
sign as those of σ .

T9.10 Let m = pα1
1 · · · pαr

r be the canonical prime factorisation of m ∈N∗. Then the permutation
group Sn contain an element of order m if and only if n≥ pα1

1 + · · ·+ pαr
r . For which n ∈N there

exists an element of order 3000 (respectively 3001) in the group Sn?

†T9.11 Let T be a set of transpositions in the group Sn , n≥ 1. We associate the graph 13 ΓT to T
as follows: the vertices of ΓT are the numbers 1, . . . ,n and two vertices i and j with i 6= j are joined
by a edge if and only if the transposition 〈i, j〉= 〈 j, i〉 belong to T . Let Γ1, . . . ,Γr be the connected
components of ΓT .

(a) The transpositions in T generate the group14 Sn if and only if ΓT is connected, i.e. if any two
vertices of ΓT can be joined by the sequence of edges in ΓT . The subgroup of Sn generated by T
is the product S(Γ1)×·· ·×S(Γr)⊆Sn .

(b) If T is a generating system for the group Sn , then T has at least n− 1 elements. (Hint :
Let τ1, . . . ,τm be the elements of T (may be with repetitions) with τ1 · · ·τm = id . Then m is even and
m≥ 2∑

r
ρ=1( |Γρ |−1) .)

(c) Every generating system of Sn consisting of transpositions contain a (minimal) generating
system of Sn with n−1 elements. (Remarks : The graphs corresponding to such a minimal generating
systems are called t r e e s . Every connected graph has a generating system which is a tree. See also remarks
in Subsection 6.D. –There are exactly nn−2 generating systems consisting n−1 transpositions (C a y l e y15).
For this prove somewhat general: For 1≤ k≤n, let fn,k denote the number of forests with the vertex set
{1, . . . ,n} and exactly k marked trees (so-called r o o t - t r e e s ), then fn,n = 1, (n−k+1) fn,k−1 = n(k−1) fn,k

(by "grafting" one can get from a forest with k ≥ 2 root-trees n(k−1) forest with k−1 root-trees and by

13Simplicial Complexes and Graphs. A s i m p l i c i a l c o m p l e x K is a set V(K ) called the v e r t e x s e t
(of K ) and a family of subsets of V(K ) , called s i m p l e x e s (in K ) such that (i) for each v ∈V(K ), the singleton
set {v} is a simplex in K. and (ii) if s is a simplex in K then so is every subset of s.

A simplex s in K is called a q-s i m p l e x if card(s) = q+1 and say that s has d i m e n s i o n q. For a simplicial
complex K , we put dim(K ) := sup{q | there exists a q-simplex in K } and is called the d i m e n s i o n of K . A
simplicial complex of dimension ≤ 1 is called a g r a p h .

An e d g e in K is an ordered pair (v0,v1) of vertices such that {v0,v1} is a simplex in K . If e = (v0,v1) is an edge
in K , then we put v0 = α(e) and v1 = ε(e)) and are called the i n i t i a l and e n d points of e, respectively.

A p a t h γ in K of length n is a sequence e1e2 · · ·en of edges in K with ε(ei) = α(ei+1) for every 1≤ i≤ n−1. For a
path γ = e1e2 · · ·en, we put α(γ) = α(e1) and ε(γ) := ε(en) and are called the i n i t i a l and e n d points of γ .

A simplicial complex K is called c o n n e c t e d if for every pair (v0,v1) of vertices in K there exists a path α in K
such that orig(α) = v0 and end(α) = v1.

14The smallest subgroup H(ai | i ∈ I) of a group G containing a family ai, i ∈ I, of elements in G, is called the
s u b g r o u p g e n e r a t e d b y t h e f a m i l y ai, i ∈ I (it is the intersection of the subgroups of G containing all
ai, ∈ I) and the family ai, i ∈ I, is called a g e n e r a t i n g s y s t e m for the subgroup H(ai | i ∈ I). A family ai,
i ∈ I, is called a g e n e r a t i n g s y s t e m for the group G if G = H(ai | i ∈ I). We say that a group in f i n i t e l y
g e n e r a t e d if there exists a finite family a1, . . . ,ar ∈G such that G = H(a1, . . . ,ar). Finite groups are clearly finitely
generated. The groups (Z,+) and (Zn,+n) are generated by single elements, namely by 1 and [1]n, respectively. Such
groups are called c y c l i c g r o u p s. The groups (Q,+) and (Q×, ·) are not finite generated!

15A r t h u r C a y l e y (1821-1895) an English mathematician and leader of the British school of pure mathematics
that emerged in the 19th century. The most important of Cayley’s work is in developing the algebra of matrices and
work in non-euclidean and n-dimensional geometry.
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removing a edge at a time from a forest with k−1 root-trees n−k+1 forest with k root-trees) and hence
fn,k =

(
n−1
k−1

)
nn−k, 1≤k≤n. – The required number is fn,1/n.)

(d) The transpositions 〈1,2〉 , 〈2,3〉 , . . . ,〈n− 1,n〉 (respectively 〈1,2〉 , 〈1,3〉 , . . . ,〈1,n〉) form a
minimal generating system of Sn . (Hint : If a, b, c ∈ {1, . . . ,n} are three distinct elements, then we have
〈a,b〉〈a,c〉〈a,b〉= 〈b,c〉.)
(e) An analogous assertion to the part (a) also hold for the alternating group. For a “triangle”
4 = {a,b,c} ∈P3({1, . . . ,n}), let α(4) denote the set of the two 3-cycles 〈a,b,c〉, 〈a,c,b〉 =
〈a,b,c〉−1 (which is independent of an order or of “orientation” of the4). For 3-sets16 41, . . . ,4m ∈
P3({1, . . . ,n}), show that α(41)∪ ·· · ∪ α(4m) generates the group A(Γ1)×·· ·×A(Γr) ⊆ An,
where Γ1, . . . ,Γr are the connected components of the graph with vertex-set {1, . . . ,n} and whose
edges belongs to any one of the triangle 41, . . . ,4m. (Hint : By induction on t prove that: If 41, . . . ,4t

are 3-sets with 4i∩4i+1 6= /0 for i = 1, . . . , t−1, then α(41)∪·· ·∪α(4t) generates the alternating group
A(41∪ ·· · ∪4t).) Deduce that: The minimal number of 3-cycles which generates the group An,
n≥ 3, is d(n−1)/2e. Give three 3-cycles which generates the group A5, but no two (= d(5−1)/2e)
among them generate the group A5.
(f) For n ≥ 3, the set of 3-cycles 〈1,2,3〉 , 〈2,3,4〉 , . . . ,〈n− 2,n− 1,n〉 (respectively, 〈1,2,3〉 ,
〈1,2,4〉 , . . . ,〈1,2,n〉 ) form a generating system for the alternating group An.

†T9.12 A permutation σ ∈Sn with s orbits has a representation as a product of n− s transpositions
and no representation as a product of less number of n−s transpositions. (Remark : This Exercise has
a natural generalisation: Let T ⊆Sn be a set of transpositions which generates the group Sn (for example,
by the given connected graph Γ = ΓT on the vertex set {1, . . . ,n} , see Test-Exercise 9.11-(a)). For σ ∈Sn

determine the minimum `(σ) = `T (σ) of the m∈N, for which there is a representation σ = τ1 · · ·τm with
τi∈T . Incidentally, `(σ) = `(σ−1) , and d(σ1,σ2) := `(σ2σ

−1
1 ) , σ1,σ2∈Sn, is a metric on Sn. Further, the

left- and right-translations (λτ : Sn→Sn, σ 7→ τσ and ρτ : Sn→Sn, σ 7→ στ) are distance preserving
(enough to check that d(τσ1,τ(σ2) = `(τσ2 · (τσ1)

−1)`(τσ2σ
−1
1 τ−1) = `(σ2σ

−1
1 ) = d(σ1,σ2) and similarly,

d(σ1τ,σ2τ) = d(σ1,σ2) for every transposition τ ∈Sn). For ΓT , besides the complete graphs, one can also
consider the following examples:

1
1 1

2
2

233

n n

n etc.

For the first of these graph see Exercise 9.2. For T ⊆ T ′, it is clear that `T ′ ≤ `T . )

T9.13 (a) The cycles 〈1,2〉 , 〈2, . . . ,n〉 generate the group Sn , n≥ 2. (Hint : Use Test-Exercise 9.11-

(d).)
(b) The cycles 〈1,2〉 , 〈1,2, . . . ,n〉 generate the group Sn , n≥ 2. More generally: if k,n∈N are nat-
ural numbers with 1 < k≤ n, then the cycles 〈1,k〉, 〈1,2, . . . ,n〉 generate the group Sn if and only if
gcd(k−1,n) = 1. (Hint : Use Test-Exercise 9.11-(d).)
(c) 〈1,n〉, 〈1, . . . ,n〉 generate the group Sn, n≥ 2. (Hint : Use Test-Exercise 9.11-(d).)
(d) If n is even (respectively, odd), then the cycles 〈1,2,3〉, 〈1,2,3, . . . ,n〉 (respectively 〈1,2,3〉,
〈2,3, . . . ,n〉) generate the alternating group An. (Hint : Use Test-Exercise 9.11-(f).)

T9.14 Let n ∈N+. Show that
(a) The number of permutations τ ∈Sn which commute with the permutation σ ∈Sn of the type
(ν1, . . . ,νn) is ν1! · · ·νn!1ν1 · · ·nνn . (Hint : These permutations form the centraliser CSn(σ) of σ , see
Example 9.A.20.)

16For any r ∈N, let Pr(I) denote the subset of the power set P(I) of a set I consisting of subsets J ⊆ I of cardinality
exactly r. With this r-s e t is an element Pr({1, . . . ,n}), i. e. a subset of {1, . . . ,n} of cardinality r.
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(b) The number of involutions (= reflections) without any fixed point in S2n is 1 ·3 · · ·(2n−1) =
(2n)!/n!2n (∼

√
2(2n/e)n for n→ ∞).

(c) The number of involutions, i. .e. σ2 = id (also called reflection) in Sn is ∑k≥0

( n
2k

)(2k)!
k!2k .

(d) The number of permutations in Sn with exactly t orbits is the first Stirling’s number 17 s(n, t) .
(e) The number of permutations in Sn such that its canonical decomposition contain a (and hence
exactly one) cycle of length >n/2, is n!

(
∑n/2<k≤n 1/k

)
(∼ n! ln2 for n→ ∞).

(f) The number of permutations in Sn without any fixed point is n!
(

∑
n
k=0(−1)k/k!

)
(∼ n!/e for

n→ ∞).

T9.15 (a) Using the simplicity of the alternating group An, n≥ 5, prove that the group An is the
only non-trivial normal subgroup of the group Sn for n≥ 5. (Hint : See Example 9.A.23.)
(b) Let n≥2 be a natural number. Show that the group Sn is isomorphic to a subgroup of An+2,
but not isomorphic to any subgroup of An+1.

T9.16 (a) The groups A4 and V4 are the only non-trivial normal subgroups in S4.

(b) The group V4 is the only non-trivial normal subgroup in A4. (Hint : See Example 9.A.23.)

T9.17 (a) For a natural number n≥ 2, Sign : Sn→{−1,1} is the only non-trivial group homo-
morphism. (Hint : 〈ab〉 and 〈cd〉 be two transpositions Sn . If σ ∈Sn be an arbitrary permutation with
a 7→ c, b 7→ d , then σ〈ab〉σ−1 = 〈cd〉 and so every homomorphism ϕ : Sn→{1,−1} have the same value
on all transpositions. If this value is 1, then ϕ; if it is −1, then ϕ = Sign.)
(b) Show that An = [Sn,Sn](= the commutator subgroup18 of Sn).

T9.18 Let I be a finite set and let σ ∈S(I) be a permutation of I whose order is a prime-power pm,
p a prime number. Show that the number of fixed points of σ and the cardinality n := # I of I are
congruent modulo p. In particular, we have: (1) If n is not divisible by p, then σ has at least one
fixed point. (2) If n is divisible by p, then the number of fixed points of σ is also divisible by p.
(Remark : This is a special case of the assertion at the end of Example 6.E.5.)

T9.19 Which of the following maps f :R2×R2→R are bilinear, symmetric respectively alternat-
ing?
(a) f

(
(x1,x2) ,(y1,y2)

)
:= x1 + y2 . (b) f

(
(x1,x2) ,(y1,y2)

)
:= x1y2 .

(c) f
(
(x1,x2) ,(y1,y2)

)
:= x1x2− y1y2 . (d) f

(
(x1,x2) ,(y1,y2)

)
:= x1y2− y1x2 .

(e) f
(
(x1,x2) ,(y1,y2)

)
:= x1y2 + y1x2 .

T9.20 Let V and W be K-vector spaces, I be a finite indexed set and f :V I →W be a multi-linear
map. Let g :U → V and h :W → X be K-vector space homomorphisms. Then h◦ f ◦gI :U I → X
is a multi-linear map, where gI is defined by gI((ui)

)
:=
(
g(ui)

)
, (ui) ∈U I . If f is symmetric

(respectively skew-symmetric, alternating), then so is h◦ f ◦gI .

T9.21 Let v j , j ∈ J be a basis of the K-vector space V and let w( ji), ( ji) ∈ JI be a family of
elements of the K-vector space W , where I is a finite indexed set. Then there exists a unique

17The S t i r l i n g ’ s n u m b e r s s(m,n), 0≤ n≤ m, o f f i r s t k i n d are defined by the equation:
(

x
m

)
=

1
m!

m

∑
n=0

(−1)m−n s(m,n)xn (and otherwise s(m,n) = 0). They clearly satisfy the recursion-formula: s(0,n) = δ0n and

s(m+1,n) = ms(m,n)+ s(m,n−1).
18For an arbitrary group G, the subgroup generated (see Footnote 14) by the c o m m u t a t o r s [a,b] := aba−1b−1,

a,b ∈ G, is called the c o m m u t a t o r s u b g r o u p or the d e r i v e d g r o u p of G; it is usually denoted by
[G,G] or by D(G). Clearly, G is abelian if and only if [G,G] is trivial. More generally, [G,G] is a normal subgroup of G
and the quotient group G/[G,G] is abelian.
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K-multi-linear map f :V I →W such that f
(
(v ji)i∈I

)
= w( ji) , ( ji) ∈ JI . If V and W are finite

dimensional, then the K-vector space of the multi-linear maps from V I into W has the dimension
(Dim KV )|I| ·Dim KW .

T9.22 A n-linear map f :V n→W of K-vector spaces is alternating if f (x1, . . . ,xn) = 0 for every
n-tuple (x1, . . . ,xn) in which two consecutive components are equal. (Proof: By induction on d>0,
we shall show that f (x1, . . . ,xn) = 0 for all i, j ∈ {1, . . . ,n} with |i− j|= d, if in the n-tuple (x1, . . . ,xn) the
i-th and the j-th components are equal. The case d=1 is the hypothesis and so induction starts. For the
inductive step we choose a k ∈ {1, . . . ,n} in between i and j. Then |i−k| and | j−k| are smaller than d, and
hence by the induction hypothesis

0 = f ( . . . ,x+ y, . . . ,x+ y, . . . ,x, . . .) = f ( . . . ,x, . . . ,x, . . . ,x, . . .)+ f ( . . . ,y, . . . ,x, . . . ,x, . . .)
+ f ( . . . ,x, . . . ,y, . . . ,x, . . .)+ f ( . . . ,y, . . . ,y, . . . ,x, . . .) = f ( . . . ,x, . . . ,y, . . . ,x, . . .) ,

where only the i-th, k-th and j-th components in the arguments are noted, the remaining are not altered.)

T9.23 Let K be a field and let V , W be vector spaces over K. Let f : V n→ K be an alternating
multi-linear form on V and let g : V →W be a K-linear map. Show that the map

(x0, . . . ,xn) 7−→
n

∑
i=0

(−1)i f (x0, . . . ,xi−1 ,xi+1 , . . . ,xn)g(xi)

is an alternating K-multi-linear map V n+1 →W . (Proof: The map is obviously multi-linear. By
Test-Exercise T9.22 it is enough to show that it vanish on every (n+1)-tuple with two equal consecutive
components, say xi = xi+1 =: x. Since f is alternating, in the above sum all terms except the i-th and the
(i+1)-th term, are all 0. The remaining sum of two terms is:

(−1)i f (x0, . . . ,xi−1 ,xi+1 ,xi+2 , . . . ,xn)g(xi)+(−1)i+1 f (x0, . . . ,xi−1 ,xi ,xi+2 , . . . ,xn)g(xi+1)

= (−1)i
(

f (x0, . . . ,xi−1 ,x ,xi+2 , . . . ,xn)g(x)− f (x0, . . . ,xi−1 ,x ,xi+2 , . . . ,xn)g(x)
)
= 0.)

T9.24 Let A be a K-vector space of dimension n with a (n+1)-multi-linear map An+1→ A,
(x0, . . . ,xn) 7→ x0 · · ·xn+1. Then show that ∑σ∈Sn+1(Signσ)xσ0 · · ·xσn = 0 for all x0, . . . ,xn ∈ A.
(Hint : By 9.B.7 the map (x0, . . . ,xn) 7→ ∑σ∈Sn+1(Signσ)xσ0 · · ·xσn is alternating (n+1)-linear map and by
Corollary 9.B.6 it is 0, since DimA = n. – We mention the following example: Let A×A→ A be a K-bilinear
(or an arbitrary) operation (x,y) 7→ xy on A. Then ∑σ∈Sn+1(Signσ)xσ0 · · ·xσn = 0 for all x0, . . . ,xn ∈ A, if
we compute all the (n+1)-fold products with one and the same fixed given rule of parentheses. – There are

1
n+1

(2n
n

)
possible rules of parentheses.)

T9.25 For the matrices

A :=


1 1 0 1
2 0 0 0
1 1 1 1
2 1 0 1

 and B :=


5 5 3 1
1 2 1 0
2 1 1 1
3 1 1 2


compute the adjoint matrices, the determinants and the product A ·AdjA and B ·AdjB.

T9.26 Determine for which a ∈R the following systems of linear equations over R has exactly
one solution and in this case find the solution by the Cramer’s rule:

ax1+ x2+ x3=b1
x1+ax2+ x3=b2
x1+ x2+ax3=b3 ,

x1+ x2− x2=b1
2x1+3x2+ax2=b2

x1+ax2+3x2=b3 .

T9.27 Let A= (ai j) be an n×n-matrix over the field K. For c1, . . . ,cn ∈ K×, show that Det(ai j) =

Det(cic−1
j ai j) . In particular, Det(ai j) = Det

(
(−1)i+ jai j

)
.

T9.28 Let A and B be n×n invertible matrices over the field K. Then show that:
(a) Adj(AB) = AdjB ·AdjA . (b) AdjA−1 = (AdjA)−1 .
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(c) Det(AdjA) = (DetA)n−1 . (d) Adj(AdjA) = (DetA)n−2A .

(Remark : All these formulas, other than (b) are also valid for not-invertible matrices; for (d) assume n > 1) .)

T9.29 Let A be a non-invertible n×n-matrix over the field K, n ≥ 1. Show that the rank of the
adjoint matrix AdjA is

RankAdjA=

{
1, if Rank A= n−1 ,
0, if Rank A< n−1 ,

Moreover, if RankA= n−1, then show that every non-zero column of AdjA generates the kernel
of A, i. e. the space of all x∈Kn with Ax= 0.

T9.30 The n×n-matrix A′ = (a′i j) obtained from the n×n-matrix A= (ai j) by reflection through
the anti-diagonal, i. e. a′i j = an− j+1,n−i+1 . Then show that DetA′ = DetA, i. e.∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1,n−1 a1n
a21 a22 · · · a2,n−1 a2n

...
... . . . ...

...
an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an1 an2 · · · an,n−1 ann

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

ann an−1,n · · · a2n a1n
an,n−1 an−1,n−1 · · · a1,n−1 a1,n−1

...
... . . . ...

...
an2 an−1,2 · · · a22 a12
an1 an−1,1 · · · a21 a11

∣∣∣∣∣∣∣∣∣∣∣
.

(Hint : Use DetA = Det trA and then the permutation σ : {1, . . . ,n} → {1, . . . ,n}, i 7→ n− i + 1 on
the rows or columns of trA and use 9.D.2-(3) to conclude: Det trA′ = Det

(
a′i j

)
= Det (an− j+1,n−i+1) =

Det
(
an− j+1,σ(i)

)
= Sign(σ)Det

(
aσ( j),i

)
= Sign(σ)Sign(σ)Det (a j,i) = (Sign(σ))2Det trA= DetA.)

T9.31 Let A and B be n×n-matrices with columns x1, . . . ,xn ∈ Kn respectively, y1, . . . ,yn ∈ Kn.
For a subset J ⊆ {1, . . . ,n}, let CJ be the n×n-matrix with the columns z(J)1 , . . . ,z(J)n , where

z(J)i :=

{
xi , if i ∈ J ,
yi , if i /∈ J .

Show that

Det(A+B) = ∑
J⊆{1,...,n}

Det CJ .

(Hint : Det(A+B) = ∆e(x1 + y1, . . . ,xn + yn) = ∑J ∆e(z
(J)
1 , . . . ,z(J)n ) = ∑J Det CJ .)

T9.32 (a) Suppose that a column (or a row) of the n× n-matrix A has all entries 1. For the
cofactors (−1)i+ jAi j , i, j = 1, . . . ,n, of A, show that

n

∑
i=1

n

∑
j=1

(−1)i+ jAi j = DetA .

(b) Let A= (ai j) be an n×n-matrix over the field K with the cofactors (−1)i+ jAi j , i, j = 1, . . . ,n.
Further, let

I :=

1 · · · 1
... . . . ...
1 · · · 1

 ∈Mn(K)

is the matrix with all the coefficients are equal to 1. Show that

Det(A+aI) = DetA+a
n

∑
i=1

n

∑
j=1

(−1)i+ jAi j .
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T9.33 Let A= (ai j) ∈Mn(Q) be an invertible matrix with integer coefficients ai j . Show that the
coefficients of the inverse matrix A−1 are again integers if and only if DetA=±1.

T9.34 Let A ∈ Mn(K) be an upper-triangular matrix. Then show that AdjA and A−1 (if A is
invertible) are also upper-triangular matrices.

T9.35 Let fi j , i, j = 1, . . . ,n be differentiable functions on D⊆K . Then show that∣∣∣∣∣∣∣∣∣
f11 · · · f1n
f21 · · · f2n
... . . . ...

fn1 · · · fnn

∣∣∣∣∣∣∣∣∣
′

=

∣∣∣∣∣∣∣∣∣
f ′11 · · · f ′1n
f21 · · · f2n
... . . . ...

fn1 · · · fnn

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
f11 · · · f1n
f ′21 · · · f ′2n
... . . . ...

fn1 · · · fnn

∣∣∣∣∣∣∣∣∣+ · · ·+
∣∣∣∣∣∣∣∣∣
f11 · · · f1n
f21 · · · f2n
... . . . ...

f ′n1 · · · f ′nn

∣∣∣∣∣∣∣∣∣ .
T9.36 If σ ∈S(I) is a permutation of the finite indexed I and let

Pσ = (δiσ( j)) ∈MI(K)

be the pe rmuta t ion mat r ix as soc i a t ed to σ . This is the matrix obtained from the unit matrix
EI by permuting the columns according to σ : The j-th column of Pσ is eσ( j) , see Example 8.C.6.
Then for σ ,τ ∈S(I) : (a) DetPσ = Signσ . (b) Pστ =PσPτ . (c) (Pσ )

−1 =Pσ−1 = t(Pσ ) .

T9.37 Let A= (ai j) ∈MI(K) be a s k e w - s y m m e t r i c matrix (I finite indexed), i.e. tA=−A .
If |I| is odd and if CharK 6= 2, i.e. 2 = 2 ·1K 6= 0 in K, then DetA= 0.

T9.38 Let A :=
(
ai j
)
∈ Mn(Z) be the n× n-matrix defined by ai j :=

(
i

j−1

)
. Compute the

determinant DetA. (Hint : What is ai j−ai−1, j?)

T9.39 For two matrices A ∈Mm,n(K) and B ∈Mn,m(K) with m > n, show that Det(AB) = 0.
(Hint : Consider A and B in Mm,m(K) by filling the extra entries 0.)

T9.40 Let K be a field and let A ∈Mr(K) , B ∈Ms(K) , C ∈Mr,s(K) . Then

Det
(
C A

B 0

)
= (−1)rs DetA ·DetB .

T9.41 Prove the Multiplication-Theorem 9.D.5 for determinants as follows: Let A,B ∈Mn(K).
By adding suitable multiples of the first n columns of the block-matrix(

A 0
−E B

)
to the last n columns transform this matrix to the matrix(

A AB
−E 0

)
and use Theorem 9.E.5 (and Test-Exercise T9.40).

T9.42 Let K be a field and let A=
(
ai j
)
∈Mn(K), n ∈N∗ be a matrix of rank ≤ 1. Show that

Det(aE+A) = an +an−1
n

∑
i=1

aii for all a ∈ K .

T9.43 Let f1, . . . , fn functions on the set D with values in the field K. Then show that f1, . . . , fn
are linearly independent in KD if and only if the function

(t1, . . . , tn) 7−→

∣∣∣∣∣∣∣
f1(t1) · · · f1(tn)

... . . . ...
fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣
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on Dn is not the zero-function. (Remark : See Theorem 5.G.17 – Determinants of this form are called
a l t e r n a n t or (particularly in Physics) S l a t e r ’ s D e t e r m i n a n t . For example the Vandermonde’s
determinant corresponding to fi := t i−1 , i = 1, . . . ,n , D := K , see the Exercise 9.5-(a) and the Cauchy’s
double-alternants, see the Exercise 9.5-(b).)

T9.44 Let f1, . . . , fn be polynomial functions over K of deg < n−1, n∈N∗ . For all t1, . . . , tn ∈K ,
prove that ∣∣∣∣∣∣∣

f1(t1) · · · f1(tn)
... . . . ...

fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣= 0 .

T9.45 For t1, . . . , tn, u1, . . . ,un ∈ C , compute∣∣∣∣∣∣∣∣∣
sin(t1 +u1) sin(t1 +u2) · · · sin(t1 +un)
sin(t2 +u1) sin(t2 +u2) · · · sin(t2 +un)

...
... . . . ...

sin(tn +u1) sin(tn +u2) · · · sin(tn +un)

∣∣∣∣∣∣∣∣∣ .
(Hint : The two cases n≤ 2 and n > 2 seperately. See also Test-Exercise T9.43.)

T9.46 Let D be a set, t1, . . . , tn ∈ D and f0, . . . , fn be linearly independent K-valued functions on
D such that the (n+1)×n-matrix  f0(t1) · · · f0(tn)

... . . . ...
fn(t1) · · · fn(tn)


has the maximal rank n . (because of the linear independence of f0, . . . , fn , this is the case in
general, see Test-Exercise T9.43. In this case we say that the points t1, . . . , tn are in i n g e n e r a l
p o s i t i o n with respect to the f0, . . . , fn .) Then show that the function

t 7−→

∣∣∣∣∣∣∣∣∣
f0(t) f0(t1) · · · f0(tn)
f1(t) f1(t1) · · · f1(tn)

...
... . . . ...

fn(t) fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣∣∣
up to a uniquely determined constant factor λ 6= 0, is a non-trivial linear combination of the
functions f0, . . . , fn , which vanish on the points t1, . . . , tn .

T9.47 Let D be a set, E := {t1, . . . , tn} be a subset of D with n elements and let f1, . . . , fn K-valued
functions on D with ∣∣∣∣∣∣∣

f1(t1) · · · f1(tn)
... . . . ...

fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣ 6= 0 .

Show that the functions f1 � E, . . . , fn � E form a basis of KE . For arbitrary elements b1, . . . ,bn ∈K ,
there exists a unique linear combination f of f1, . . . , fn with f (ti) = bi , i = 1, . . . ,n. This follows
from the equation ∣∣∣∣∣∣∣∣∣

f (t) b1 . . . bn
f1(t) f1(t1) · · · f1(tn)

...
... . . . ...

fn(t) fn(t1) · · · fn(tn)

∣∣∣∣∣∣∣∣∣= 0
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by expanding in terms of the first column. (Remark : The uniquely determined function f is called the
solution of the i n t e r p o l a t i o n p r o b l e m f (ti) = bi , i = 1, . . . ,n w i t h t h e f u n c t i o n s f1, . . . , fn .)

T9.48 (a) Let Pi = (a1i , . . . ,ani) , i = 0, . . . ,n be points in the affine space An(K) = Kn . Then the
Pi are affinely dependent if and only if∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a10 a11 · · · a1n

...
... . . . ...

an0 an1 · · · ann

∣∣∣∣∣∣∣∣∣ .
(b) Let Pi = (a1i, . . . ,ani) , i= 1, . . . ,n be affinely independent points in An(K) =Kn . The equation
of the affine hyperplane H in An(K) generated by the points P1, . . . ,Pn is∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 a11 · · · a1n
...

... . . . ...
xn an1 · · · ann

∣∣∣∣∣∣∣∣∣= 0 ,

i. e. the point P = (x1, . . . ,xn) ∈ Kn belong to H if and only if its component satisfy the above
(affine) equation. (See Test-Exercise T8.33.)

T9.49 Let P1 = (a11 ,a21) , P2 = (a12 ,a22) , P3 = (a13 ,a23) be three points in R2 which do not lie
on a line. Then show that ∣∣∣∣∣∣∣∣

1 1 1 1
x1 a11 a12 a13
x2 a21 a22 a23

x2
1 + x2

2 a2
11 +a2

21 a2
12 +a2

22 a2
13 +a2

23

∣∣∣∣∣∣∣∣= 0

is the equation of the circle passing through P1,P2,P3 .

T9.50 Let (ai j) and (bi j) be two n×n-matrices over the field K . Then show that:

n

∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n
... . . . ...

bi1 · · · bin
... . . . ...

an1 · · · ann[

∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
j=1

∣∣∣∣∣∣∣
a11 · · · b1 j · · · a1n

... . . . ... . . . ...
an1 · · · bn j · · · ann

∣∣∣∣∣∣∣ .
(Hint: If (−1)i+ jAi j are the cofactors of (ai j), then by expanding the determinants by using the i-th row
respectively the j-th column we have the equality:

n

∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1n
...

. . .
...

bi1 · · · bin
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
i=1

n

∑
j=1

(−1)i+ jbi jAi j =
n

∑
j=1

n

∑
i=1

(−1)i+ jbi jAi j =
n

∑
j=1

∣∣∣∣∣∣∣
a11 · · · b1 j · · · a1n

...
. . .

...
. . .

...
an1 · · · bn j · · · ann

∣∣∣∣∣∣∣ .)

T9.51 Compute the following n×n-determinants over Q :∣∣∣∣∣∣∣∣∣∣∣

1 n n · · · n
n 2 n · · · n
n n 3 · · · n
...

...
... . . . ...

n n n · · · n

∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣

1 2 2 · · · 2
2 2 2 · · · 2
2 2 3 · · · 2
...

...
... . . . ...

2 2 2 · · · n

∣∣∣∣∣∣∣∣∣∣∣
,
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∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · n
2 1 2 3 · · · n−1
3 2 1 2 · · · n−2
...

...
...

... . . . ...
n n−1 n−2 n−3 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n−2 n−1 n
2 3 4 · · · n−1 n 1
3 4 5 · · · n 1 2
...

...
... . . . ...

...
...

n 1 2 · · · n−3 n−2 n−1

∣∣∣∣∣∣∣∣∣∣∣
.

T9.52 Verify the following determinant formulas for (n+1)× (n+1)-matrices with coefficients
in a field K. (At the places marked by ∗ one may take arbitrary elements of K.)
(a) ∣∣∣∣∣∣∣∣∣∣∣

a b b · · · b
b a b · · · b
b b a · · · b
...

...
... . . . ...

b b b · · · a

∣∣∣∣∣∣∣∣∣∣∣
= (a+nb)(a−b)n .

(b) For a1, . . . ,an, b1, . . . ,bn be elements of K:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 ∗ ∗ ∗ · · · ∗ 1
b1 a2 ∗ ∗ · · · ∗ 1
b1 b2 a3 ∗ · · · ∗ 1
b1 b2 b3 a4 · · · ∗ 1
...

...
...

... . . . ...
...

b1 b2 b3 b4 · · · an ∗
b1 b2 b3 b4 · · · bn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · · 1 1
b1 a1 a1 a1 · · · a1 a1
∗ b2 a2 a2 · · · a2 a2
∗ ∗ b3 a3 · · · a3 a3
...

...
...

... . . . ...
...

∗ ∗ ∗ ∗ · · · an−1 an−1
∗ ∗ ∗ ∗ · · · bn an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a1−b1) · · ·(an−bn) .

(c) ∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 · · · an
1 a1 +b1 ∗ · · · ∗
1 a1 a2 +b2 · · · ∗
...

...
... . . . ...

1 a1 a2 · · · an +bn

∣∣∣∣∣∣∣∣∣∣∣
= b1 · · ·bn .

(d) ∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1 a1 0 · · · 0 0
0 −a2 a2 · · · 0 0
0 0 −a3 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · −an an
1 1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n(n+1)a1 · · ·an .

T9.53 Prove the following determinant formulas for the n× n-matrices over a field K : Let
a1, . . . ,an, b1, . . . ,bn, c1, . . . ,cn−1 be elements of K and let

Dn :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 0 · · · 0 0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · an−1 bn−1
0 0 0 · · · cn−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
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(a) (Recursion formula): Dk = akDk−1−bk−1ck−1Dk−2 , for all k = 2, . . . ,n .
(b) In part (a) put b1 = · · ·= bn−1 = c1 = · · ·cn−1 =: b and Dn := D(b;a1, . . . ,an). Then

D(b;a1, . . . ,an) = anD(b;a1, . . . ,an−1)−b2D(b;a1, . . . ,an−2) for all n≥ 2.

(c) Compute the determinant D(b;a1, . . . ,an) in the following cases: (1) b = a1 = · · ·= an = 1.
(2) a1 = · · ·= an = 0. (3) K =K and b = 1, a1 = cosϕ , a2 = · · ·= an = 2cosϕ .∣∣∣∣∣∣∣∣∣∣∣

cos ϕ 1 0 · · · 0
1 2cosϕ 1 · · · 0
0 1 2cos ϕ · · · 0
...

...
... . . . ...

0 0 0 · · · 2cos ϕ

∣∣∣∣∣∣∣∣∣∣∣
= cos nϕ , ϕ ∈ C.

(Remark: For the modified T c h e b y c h e v P o l y n o m i a l T̃n see the recursion-formula in (3)-(iii) below.
– Recall the definition and some properties of Tchebychev Polynomials: For n ∈N the polynomials

Tn(X) :=
[n/2]

∑
k=0

(
−1

4

)k n
n− k

(
n− k

k

)
Xn−2k and Un(X) :=

[n/2]

∑
k=0

(
−1

4

)k(n− k
k

)
Xn−2k

are called T c h e b y c h e v p o l y n o m i a l s o f f i r s t a n d s e c o n d k i n d respectively.

Properties of Tchebychev polynomials.

1) T0 = 2,T1 = X and Tn+2 = XTn+1− 1
4 Tn for every n ∈N.

2) 2n−1Tn(cos(ϕ)) = cos(nϕ) for every n ∈N and ϕ ∈R.
3) For n ∈N, put T̃n(X) := 2n−1Tn(X). Then:

(i) T̃0 = 1, T̃1 = X and T̃n+2 = 2XT̃n+1− T̃n for every n ∈N.

(ii) Let n ∈N. Then T̃n(1) = 1, T̃n(−1) = (−1)n and T̃n(0) =
{
(−1)n/2 if n is even
0 if n is odd.

(iii) T̃n(cos(ϕ)) = cos(nϕ) for every n ∈N and ϕ ∈R.
4) Tn and T̃n have n-distinct real zeros in the open interval (−1,1), namely : cos((2k + 1)π/2n) for

k = 0, . . . ,n−1 and therefore Tn(X) =
n−1

∏
k=0

(
X− cos((2k+1)π/2n)

)
for every n≥ 1.

5) U0 = 1,U1 = X and Un+2 = XUn+1− 1
4Un for every n ∈N.

6) 2n−1Un−1(cos(ϕ)) =
sin(nϕ)

sin(ϕ)
for every n ∈N+ and ϕ ∈R, with ϕ 6∈Zπ.

7) Let n ∈N. Then Un(X) =
n

∏
k=1

(
X− cos((kπ)/(n+1))

)
and U2n(X) =

n

∏
k=1

(
X2− cos2((kπ)/(2n+1))

)
.

In particular, n + 1 = 2nUn(1) = 2n ·
n

∏
k=1

(
1 − cos((kπ)/(n + 1))

)
and 2n + 1 = 22nU2n(1) =

22n ·
n

∏
k=1

(
1− sin2((kπ)/(2n+1))

)
for every n≥ 1. )

(4) a1 = · · ·= an =: a.∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 · · · 0 0
b a b · · · 0 0
0 b a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · a b
0 0 0 · · · b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[n/2]

∑
k=0

(−1)k
(

n− k
k

)
an−2kb2k .
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For a = 2, b = 1 and for a = b = 1 compute the value of this determinant directly and verify this
with the given sum-formula.
(d) In part (a) put b1 = · · ·= bn−1 =−c1 = · · ·− cn−1 =: b and Dn := ∆(b;a1, . . . ,an). Then

∆(b;a1, . . . ,an) = an∆(b;a1, . . . ,an−1)−b2∆(b;a1, . . . ,an−2) for all n≥ 2.
Further, for a1 = · · ·= an =: a,

∆(b;a, . . . ,a) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 · · · 0 0
−b a b · · · 0 0

0 −b a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · a b
0 0 0 · · · −b a

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[n/2]

∑
k=0

(
n− k

k

)
an−2kb2k .

For a = b = 1, this determinant ∆(1;1, . . . ,1) is the F i b o n a c c i - n u m b e r 19 fn+1 .
(e) Compute the determinants of the following matrices in Mn(Z):

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 · · · 0 0 0
1 2 1 · · · 0 0 0
0 1 2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 1 2 1
0 0 0 · · · 0 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 12 0 0 · · · 0 0 0 0
−1 1 22 0 · · · 0 0 0 0
0 −1 1 32 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · −1 1 (n−2)2 0
0 0 0 0 · · · 0 −1 1 (n−1)2

0 0 0 0 · · · 0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(Hint : Use induction on n. See also part (c).)
(f) ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
T9.54 Let a1, . . . ,an,b and ai j, 1≤ i, j ≤ n be elements of a field K. Then show that
(a) ∣∣∣∣∣∣∣∣∣∣∣

a0 +a1 a1 0 · · · 0
a1 a1 +a2 a2 · · · 0
0 a2 a2 +a3 · · · 0
...

...
... . . . ...

0 0 0 · · · an−1 +an

∣∣∣∣∣∣∣∣∣∣∣
=

n

∑
k=0

(
∏
i6=k

ai

)
.

19Fibonacci-numbers. The sequence ( fn)n∈N of integers which is defined recursively as : f0 = 0 , f1 = 1 , fn =
fn−1 + fn−2 for n ≥ 2 is called the F i b o n a c c i s e q u e n c e and its n-th term fn is called the n-th F i b o n a c c i
n u m b e r . First few terms of the Fibonacci sequence are 0,1,1,2,3,5,8,13,21,34,55, . . . For the n-th Fibonacci

number there is an explicit formula ( B i n e t ’ s f o r m u l a ) : fn :=
1√
5

((
1+
√

5
2

)n

−

(
1−
√

5
2

)n)
.
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(b) ∣∣∣∣∣∣∣∣∣
a11 +b a12 +b · · · a1n +b
a21 +b a22 +b · · · a2n +b

...
... . . . ...

an1 +b an2 +b · · · ann +b

∣∣∣∣∣∣∣∣∣= a+b

(
n

∑
i , j=1

a′i j

)
,

where a := Det
(
ai j
)

and a′i j is the (i, j)-th cofactor of
(
ai j
)
, 1≤ i, j ≤ n.

T9.55 Prove the following determinant formulas by induction:
(a) ∣∣∣∣∣∣∣∣∣∣∣

a1 +b1 b1 b1 · · · b1
b2 a2 +b2 b2 · · · b2
b3 b3 a3 +b3 · · · b3
...

...
... . . . ...

bn bn bn · · · an +bn

∣∣∣∣∣∣∣∣∣∣∣
= a1 · · ·an +

n

∑
k=1

(
∏
i6=k

ai

)
bk ,

(b) ∣∣∣∣∣∣∣∣∣∣∣∣∣

x+a1 a2 a3 · · · an−1 an
−1 x 0 · · · 0 0
0 −1 x · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · x 0
0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= xn +a1xn−1 + · · ·+an , .

(c) ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 · · · 0 0 · · · b1
... . . . ...

... . . . ...
0 · · · an bn · · · 0
0 · · · bn an · · · 0
... . . . ...

... . . . ...
b1 · · · 0 0 · · · a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n

∏
k=1

(a2
k−b2

k) .

T9.56 Suppose that the matrix A= (ai j) ∈ GLn(K) satisfy the hypothesis of Test-Exercise T8.42
and suppose that A= LDR′ with a diagonal matrix D= Diag(a1, . . . ,an) and a normalised lower
respectively upper triangular matrix L respectively R′. Then ak = Dk/Dk−1 , k = 1, . . . ,n , where
Dk = Det(ai j)1≤i, j≤k is the k-th principal minor of A , k = 0, . . . ,n . (Put D0 = 1.)

T9.57 Let n ∈N∗ and let K be a field. The canonical exact sequence

1−→ SLn(K)−−−−−−−−−−−−−−−- GLn(K)−−−−−−−
Det
−−−−−−−−- K× −→ 1

is a weak-split. Further, it is strong-split if and only if the power-map x 7→ xn is an automorphism
of K×. (Remarks: An exact sequence (i. e. (i) ϕ is injective, (ii) ψ is surjective and (iii) Imϕ = Kerψ .)

(*) 1→ N −−−−−−−−
ϕ

−−−−−−−−−- G−−−−−−−−
ψ

−−−−−−−−−- H→ 1

of groups (not necessary abelian) is called a w e a k s p l i t s e q u e n c e if ψ has a section σ , i. e.
there exists a homomorphism σ : H→ G such that ψσ = idH (this means G is the semi-direct product of
Imϕ ∼= N and Imσ ∼= H) and Imσ is called a w e a k c o m p l e m e n t of Imϕ in G. – If there exists a
projection π : G→ N such that πϕ = idN , then G is a direct product of Imϕ ∼= N and Kerπ ∼= H, i. e. the
map Imϕ×Kerπ → G, (x,y) 7→ xy is an isomorphism of groups. In this we say that the exact sequence (∗)
is a s t r o n g s p l i t s e q u e n c e and Kerπ is called a s t r o n g c o m p l e m e n t of Imϕ in G.
– Every strong split sequence is a weak split sequence. If σ is a section of ψ and if Imσ is a normal in G,

D. P. Patil/IISc e0-219-laa11-ex09.tex November 1, 2011 ; 11:58 a.m. 19/25



Page 20 E0 219 Linear Algebra and Applications / August-December 2011 Exercise Set 9

then Imσ is a strong complement if Imϕ in G and the exact sequence (∗) is a strong split. – If G (and hence
H and N are abelian) then an exact sequence (∗) is weak split if and only if its strong split. )

T9.58 Let f :V →V be a nilpotent endomorphism of the n-dimensional K-vector space V . Then
show that Det(a idV + f ) = an for all a ∈ K. More generally, show that Det(g+ f ) = Detg for
every operator g on V which commute with f , i. e. g f = f g.

T9.59 Let V := K[t] be the vector space of all polynomial functions over the infinite field K and let
Vn := K[t]n be the subspace of all polynomial functions of degree < n, n ∈N∗.
(a) For a,b ∈ K, let ε :V →V be defined by f (t) 7→ f (at +b) . Show that ε linear and ε(Vn)⊆Vn
for all n. Further, compute the determinant Det(ε|Vn) .
(b) Let K =K. For c0, . . . ,cr ∈K, let δ :V →V be the differential operator

f (t) 7→
r

∑
k=0

ck f (k)(t) .

Show that δ linear and for every n ∈N∗, δ (Vn)⊆Vn. Further, compute the determinant Det(δ |Vn) .

T9.60 Let m,n ∈N with m ≤ n. For arbitrary matrices A =
(
ai j
)
∈Mm,n(K) and B =

(
b ji
)
∈

Mn,m(K) over a field K, show that

Det(AB) = ∑
1≤ j1<···< jm≤n

∣∣∣∣∣∣
a1, j1 · · · a1, jm

... . . . ...
am, j1 · · · am, jm

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
b j1,1 · · · b j1,m

... . . . ...
b jm,1 · · · b jm,m

∣∣∣∣∣∣
(Hint : Let f : Kn→ Km and g : Km→ Kn be the linear maps defined by the matrices A and B (with respect
to the standard bases), respectively. Then compute the composition Alt(m, f ◦ g) = Alt(m,g) ◦Alt(m, f )
using the basis ∆H , H ∈Pm({1, . . . ,n}) of the K-vector space Alt(m,Kn).)

T9.61 (N o r m) Let A be a finite dimensional K-algebra. For x ∈ A, let λx : A→ A be the left-
multiplication y 7→ xy by x on A. Show that λx is a K-linear operator on A. Its determinant is called
the N o r m o f x (over K) and is denoted by NA

K (x) = N(x) .

(a) For all x,y ∈ A, N(xy) = N(x)N(y) .
(b) For all a ∈ K, N(a) := N(a ·1A) = an, n := DimKA.
(c) An element z ∈ A is a unit in A if and only if N(x) 6= 0 in K.

T9.62 For all elements z of theR-AlgebraC, show that NCR (z)= |z|2. (Hint : see Test-Exercise T9.61.)

T9.63 Let A = Mn(K) be the algebra of n× n-matrices over the field K. For all A ∈ A, show
that NA

K(A) = (DetA)n (Hint : see, Test-Exercise T9.61. – One can use the least computation by using:
NA

K(A) = (DetA)m for a fixed m ∈N. Compute this m by specialising the matrix A, see 9.D.9.)

T9.64 Let V be a finite dimensional C-vector space and let f :V →V be a C-linear operator on V .
We consider V as a R-vector space, then f is a R-linear operator and its determinant is denoted by
DetR f . Show that DetR f = |Det f |2 . (Hint: If A+ iB , A,B ∈Mn(R) , is the matrix of f with respect
to the C-Basis v1, . . . ,vn of V , then (

A −B
B A

)
∈M2n(R)

is the matrix of f with respect to the R-Basis v1, . . . ,vn , iv1, . . . , ivn and∣∣∣∣A −B
B A

∣∣∣∣= ∣∣∣∣A− iB −B
B+ iA A

∣∣∣∣= ∣∣∣∣A− iB −B
0 A+ iB

∣∣∣∣ .)
In particular, if A is a finite dimensional C-algebra, then for all x ∈ A (see Test-Exercise T9.61)

show that

NA
R(x) = |NA

C(x)|2 .
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T9.65 Determine which of the following affinities of an n-dimensional oriented real affine spaces
are orientation preserving: (a) point-reflections. (b) reflections of a hyperplanes along a lines and
product of such r reflections, r ∈N. (c) transvections. (d) dilatations. (e) magnifications.

T9.66 Let E be an oriented n-dimensional R-affine space. Suppose that the affine basis P0, . . . ,Pn
represents the orientation of E. For a permutation σ in S({0, . . . ,n}), show that the affine basis
Pσ(0), . . . ,Pσ(n) represents the orientation of E if and only if σ is even. Further, show that the affine
Basis Pn, . . . ,P0 also represents the orientation of E if and only if n≡ 0 or n≡ 3 modulo 4. (Hint :
See also Exercise 9.9-(a).)

T9.67 In every subgroup of the affine group A(E) of an oriented finite dimensional real affine
space E which has at least one orientation reversing map, the subset of all orientation preserving
maps form a subgroup of index 2.

T9.68 Suppose that the finite dimensional R-vector space V is the direct sum of the subspaces U
and W . By the following specifications of orientations on two of the spaces U,V,W a orientation on
the third is determined: Suppose that u= (u1, . . . ,ur) respectively w= (w1, . . . ,ws) are bases of U
respectively W . Then the basis (u1, . . . ,ur ,w1, . . . ,ws) represents the orientation of V =U⊕W if
and only if the bases u respectively w both represents (or both don’t represent) the orientations of U
and W respectively. (Hint : Note the dependence on the sequence U and W .)

T9.69 Let V be a finite dimensional R-vector space and let V ′ ⊆V be a subspace with the corre-
sponding quotient space V =V/V ′. By the specifications of the orientations on the two of the spaces
V ′,V,V a orientation on the third is determined: Suppose that v′1, . . . ,v

′
r ∈ V ′ is a basis of V ′ and

that the residue-classes of v1, . . . ,vs ∈V form a basis of V . Show that the basis v′1, . . . ,v
′
r ,v1, . . . ,vs

of V represents the orientation of V if and only if the bases v′1, . . . ,v
′
r of V ′ and v1, . . . ,vs of V both

represent (or both don’t represent) the orientations of V ′ and V respectively.

T9.70 Determine which of the following bases of Rn represent the standard orientation:
(a) n = 2; v1 = (1,1) , v2 = (1,−1) .
(b) n = 3; v1 = (−1,0,1) , v2 = (0,−1,1) , v3 = (1,−1,1) .
(c) n = 4; v1 = (1,1,1,1) , v2 = (1,2,1,1) , v3 = (1,1,3,1) , v4 = (1,1,1,4) .

T9.71 (a) Every C-linear isomorphism of finite dimensional complex vector spaces is orientation
preserving. (see Example 9.F.6)
(b) A C-anti-linear isomorphism of finite dimensional complex vector spaces (see Example 5.C.7)
is orientation preserving if and only if their common complex dimension is even.

T9.72 Let E be a real affine plane with the volume-function λv with respect to the basis v1,v2
of the space of the translations of E and P0, . . . ,Pr, r ≥ 2, be points with the coordinates (a j,b j) ,
j = 0, . . . ,r, with respect to an affine coordinate system O ;v1,v2. Furthermore, let [P0,P1, . . . ,Pr,P0]
be a simple closed polygon, i. e. the edges meet exactly at the adjacent vertices. Show that the
surface area of enclosed polygon is, up to a sign, equal to

1
2

(
Det
(

a0 a1
b0 b1

)
+ · · ·+Det

(
ar−1 ar
br−1 br

)
+Det

(
ar a0
br b0

))
.

(Remark: What do we mean by sign? Think about the orientation of E. – For the inductive-step from r−1
to r use: by suitable numbering of the vertices of the polygon with vertices P0, . . . ,Pr−1 and the complement
of the triangle with the vertices Pr−1 ,Pr ,P0 with only one common edge [Pr−1 ,P0].)
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T9.73 Let f1, . . . , fn be a basis of the space of linear forms on Rn. Let A := (ai j) ∈GLn(R) be the
transition matrix from the dual basis e∗1, . . . ,e

∗
n (with respect to the standard basis e1, . . . ,en of Rn)

to the basis f1, . . . , fn. Therefore f j = ∑
n
i=1 ai je∗i , and f1, . . . , fn is the dual basis with respect to the

basis v j = ∑
n
i=1 bi jei , j = 1, . . . ,n, where B := (bi j) =

tA−1 is the contra-gradient matrix of A (see
Test-Exercise T8.20). Let d := |DetA| . Show that
(a) For c1, . . . ,cn ≥ 0, the volume of

{
x ∈Rn

∣∣ | fi(x)| ≤ ci , i = 1, . . . ,n
}

is equal to 2nc1 · · ·cn/d .

(b) For c≥ 0, the volume of
{

x ∈Rn
∣∣ ∑

n
i=1 | fi(x)| ≤ c

}
is equal to 2ncn/n!d .

(c) For c≥ 0, the volume of the ellipsoid
{

x ∈Rn
∣∣ ∑

n
i=1 | fi(x)|2 ≤ c2} is equal to ωncn/d, where

ωn have the same meaning as in Exercise 9.9-(a).
(d) For c0,c1, . . . ,cn ∈R with c0 ≤ c1 + · · ·+ cn, the volume of the simplex{

x ∈Rn ∣∣ fi(x)≤ ci , i = 1, . . . ,n , f1(x)+ · · ·+ fn(x)≥ c0
}

is equal to bn/n!d mit b := c1 + · · ·+ cn− c0 . (Proof: The matrix of the linear map f : Rn→Rn with
f (x1, . . . ,xn) =

(
f1(x1, . . . ,xn) , . . . , fn(x1, . . . ,xn)

)
with respect to the staandard basis is the transpose trA.

Therefore Det f = Det trA = DetA = d and so |Det f−1| = d−1. Now by Theorem 9.G.2 and the remarks
after that λ n

(
f−1(M)

)
= λ n(M)/d . for every set M for which λ n(M) is defined.

(a) The volume of the cuboid Q := [−c1,c2]×·· ·× [−cn,cn] is equal to the product (2c1) · · ·(2cn) = 2nc1 · · ·cn
of the lengths of its sides, and it follows that λ

n(Q) = λ
n({x∈Rn

∣∣ | f1(x)| ≤ c1, . . . , | fn(x)| ≤ cn
})

=

λ
n( f−1([−c1,c2]×·· ·× [−cn,cn]

))
= 2nc1· · ·cn/d .

(b) Since the volume of the simplex {y = (y1, . . . ,yn)∈Rn
+ | y1+ · · ·+yn ≤ c} (by 9.G.4) is equal to cn/n!, the

volume of M := {y = (y1, . . . ,yn)∈Rn | |y1|+ · · ·+ |yn| ≤ c} is 2ncn/n! . It follows that λ
n(M) = λ

n({x∈
Rn
∣∣ | f1(x)|+ · · ·+ | fn(x)|≤ c

})
= λ

n( f−1(M)
)
= 2ncn/dn! . )

T9.74 Let P0, . . . ,Pn ∈Rn be affinely independent points and let S be the (convex) simplex with
these vertices. Further, let y0, . . . ,yn ∈ R+ and H be the affine hyperplane in Rn+1 through the
points (P0,y0) , . . . ,(Pn,yn) ∈Rn+1. Therefore H is the graph of the affine function h :Rn→R with
h(Pi) = yi , i = 0, . . . ,n. If T ⊆Rn+1 is the solid-body in between S and H, i. e.

T :=
{
(x,y) ∈Rn+1 ∣∣ x ∈ S , 0≤ y≤ h(x)

}
,

then
λ

n+1(T ) =
y0 + · · ·+ yn

n+1
λ

n(S) .

(Hint: λ n+1(T ) is additive in (y0, . . . ,yn) and does not change if the values y0, . . . ,yn are permutated. One
can also assume that all yi are equal or that all yi other than a value yi0 vanish.) Compute the volume of the
following solid-bodies in R3, where the top surface area is:

T9.75 The group GLn(R), n ∈N∗, is the direct product of the groups In(R) of volume preserving
(or u n i m o d u l a r) matrices B∈GLn(R) with |DetB|=1 and the group R×+En ∼=R×+ of the sca-
lar matrices aEn, a∈R×+, i. e. every matrix A∈GLn(R) has a representation A= aB=Ba with
uniquely determined (by A) elements a∈R×+ and B∈ In(R). (Remark : Therefore, every linear
automorphism f of Rn is the composition of a volume-preserving automorphism g and a homothecy a · id
with positive stretching-factor a, where g and a = |Det f |1/n are uniquely determined by f . The automorphism
g is called the v o l u m e -p r e s e r v i n g p a r t and a is called the s t r e t c h i n g -f a c t o r of f .)
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†T9.76 ( T c h e b y c h e v – S y s t e m s ) Let K be a field, I be a set and let KI be the algebra the
K–valued functions on I. Further, let f1, . . . , fn ∈ KI .

(a) The following statements are equivalent :

(i) f1, . . . , fn are linearly independent over K .

(ii) There exist j1, . . . , jn ∈ I such that the matrix Vf( j1, . . . , jn) := ( fr( js))1≤r,s≤n ∈Mn(K) is
invertible.

(iii) There exist j1, . . . , jn ∈ I such that the determinant Vf( j1, . . . , jn) := DetVf( j1, . . . , jn) 6= 0.
(Hint : See also Test-Exercise T9.?? – The matrices Vf( j1, . . . , jn) respectively its determinants Vf( j1, . . . , jn)
corresponding to the system of functions f = ( f1, . . . , fn) are called g e n e r a l i s e d V a n d e r m o n d e ’ s
m a t r i c e s respectively d e t e r m i n a n t s and are also called a l t e r n a n t s . The usual Vandermonde’s
matrices and determinants (see Exercise 8.3 and Exercise 9.5-(a)) correspond to the system of the polynomial
functions 1,x, . . . ,xn−1 from K to itself.)

(b) Suppose that |I| ≥ n . The following statements are equivalent :

(i) For every subset J ⊆ I with |J|= n , f1 � J, . . . , fn � J is a basis of KJ .

(ii) For every function g ∈ KI and every subset J ⊆ I with |J|= n , there exists a unique n–tuple
(b1, . . . ,bn) ∈ Kn such that g( j) = ∑

n
r=1 br fr( j) for all j ∈ J . (iii) For b1, . . . ,bn ∈ K , if the

function ∑
n
r=1 br fr has n distinct zeros on I , then b1 = · · ·= bn = 0.

(iv) For distinct elements j1, . . . , jn ∈ I, the generalised Vandermonde’s matrix Vf( j1, . . . , jn) is
invertible.

(v) For distinct elements j1, . . . , jn ∈ I, the generalised Vandermonde’s determinant Vf( j1, . . . , jn)
6= 0. (Remark: A system f = ( f1, . . . , fn) of functions in KI which satisfy these equivalent conditions is
called a T c h e b y c h e v–S y s t e m on I .)

(c) Let ( f1, . . . , fn) be a Tchebychev–system on I (see Remark in part (b)). Then
(1) ( f1 � I′, . . . , fn � I′) is also a Tchebychev–System on I′ for every subset I′ ⊆ I with |I′| ≥ n.
(2) If g1, . . . ,gn : I → K generate the same subspace as that generated by f1, . . . , fn in KI , then
(g1, . . . ,gn) is also a Tchebychev–system on I.

(d) Let f1, . . . , fn be a Tchebychev–system on I and let g ∈ KI . Further, let j1, . . . , jn ∈ I be
distinct elements. For the linear combination f of the f1, . . . , fn with f ( js) = g( js) for s = 1, . . . ,n.
Show that: ∣∣∣∣∣∣∣∣

f g( j1) · · · g( jn)
f1 f1( j1) · · · f1( jn)
· · · · · · · · · · · ·
fn fn( j1) · · · fn( jn)

∣∣∣∣∣∣∣∣= 0 ,

(Remark : In this case f is determined by expanding this determinant in terms of the first column. We say
that the function f is obtained from the function g by i n t e r p o l a t i o n with the system f1, . . . , fn with (
i n t e r p o l a t i o n – ) k n o t s j1, . . . , jn .)

(e) Let I be a topological space and let K = R . Let ∆n(I) denote the set of all those tuples
in In , which have at least two equal components. Suppose that ( j1, . . . , jn) ∈ In r∆n(I) and an
odd permutation σ ∈Sn such that ( j1, . . . , jn) and ( jσ1, . . . , jσn) belong to the same connected
component of In r∆n(I) . Then show that there is no Tchebychev–system ( f1, . . . , fn) on I , where
fr : I→R, r = 1, . . . ,n are continuous functions.

†T9.77 (a) Let K be a field with at least n elements, n ∈ N∗. Then the polynomial functions
1,x, . . . ,xn−1 form a Tchebychev–system on K . (this follows from Test-Exercise T?.??.) More
generally: If I is a set and f : I→ K is injective, then the powers 1, f , . . . , f n−1 for every n≤ |I|
form a Tchebychev–system on I.
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(b) Let K be a field with at least 2n elements, n ∈N∗ and a1, . . . ,an distinct elements in K. Then
the rational functions f1(x) = 1/(x−a1), . . . , fn(x) = 1/(x−an) form a Tchebychev–system on
K r{a1, . . . ,an}. (Hint : Consider f f1, . . . , f fn with f (x) = (x−a1) · · ·(x−an) .)

(c) The functions 1, cos t, . . . , cos(n−1)t, n ∈N∗ form a Tchebychev–system on the real interval
[0,π] . (Remark : 1, cos t, . . . , cos(n−1)t respectively, 1, cos t, . . . , cosn−1 t generate the same function
space, see Question T1.4 in the Test 1.)

(d) The functions sin t, . . . ,sin nt, n ∈ N∗ form a Tchebychev–system on the open real interval
(0,π) . (Remark : sin t, . . . , sinnt respectively, sin t, sin t cos t , . . ., sin t cosn−1 t generate the same function
space.)

(e) Let n ∈N . The 2n+1 functions exp(iν t), ν =−n, . . . ,−1, 0, 1, . . . , n form a Tchebychev–
system on the half-open real interval [0,2π). Similarly the functions 1, cos t, sin t, . . . ,cos nt, sin nt
form a Tchebychev–system on [0,2π). (Remark : The given system is also a Tchebychev–system on
the unit circle S1 . Does there exists a Tchebychev–system with 2n+2 continuous functions S1→R on the
unit circle? See Test-Exercise T9.76-(e).)

†T9.78 The space Mm,n(R) of real (m×n)–matrices has a natural topology which is defined by
the metric d((ai j), (bi j)) := Max{|bi j−ai j| : 1≤ i≤ m, 1≤ j ≤ n} .

(a) The determinant map Det : Mn(R)→R is continuous.

(b) The set GLn(R) of all invertible matrices in Mn(R) is open in Mn(R) . (Remark : In fact, a
dense open subset of Mn(R), see also Exercise 9.7-(b).)

(c) Let r ∈N . The set of all matrices of rank ≥ r in Mm,n(R) is open in Mm,n(R) .

(d) The set of all matrices of maximal rank = Min{m,n} in Mm,n(R) is open in Mm,n(R) .

†T9.79 Let U be an open subset in Rn and let g : U → Rm be a continuously differentiable map,
i. e. the functions gi := pig, i = 1, . . . ,m , where pi :Rm→R are the canonical projections on the
components, are partial differentiable with continuous partial derivatives ∂ jgi = ∂gi/∂ t j, 1≤ i≤m ,
1≤ j ≤ n . For t ∈U , the matrix

I(g)(t) :=

∂1g1(t), · · · , ∂ng1(t)
... . . . ...

∂1gm(t), · · · , ∂ngm(t)


is called the f u n c t i o n a l – or J a c o b i a n – m a t r i x of g in t, in the case m = n its determinant
J(g)(t) := |I(g)(t)| is called the f u n c t i o n a l – or J a c o b i a n – d e t e r m i n a n t of g in t.

(a) Suppose that m = n. Then the function t 7→ J(g)(t) is continuous on U .

(b) Suppose that m = n. The subset {t ∈U | J(g)(t) is invertible} is open in U .

(c) Let r ∈N . The subset {t ∈U | Rank J(g)(t)≥ r} is open in U .

(d) The subset {t ∈U | J(g)(t) has a maximal rank Min{m,n}} is open in U . (Remark : In this
case we say that g is r e g u l a r at such a point in U .)

†T9.80 (a) The map t 7→ (1/t2
1 + · · ·+ t2

n) · t , t = (t1, . . . , tn) ∈ Rn r {0} , has the functional

determinant −(1/(t2
1 + · · ·+ t2

n)
n) . (Hint : Use Test-Exercise T9.42.)

(b) ( P o l a r c o o r d i n a t e s ) For the map g : t 7→ (g1(t), . . . ,gn(t)), t = (t1, . . . , tn) ∈Rn, n≥ 2,
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where

g1(t) = t1 cos tn · · ·cos t3 cos t2
g2(t) = t1 cos tn · · ·cos t3 sin t2
g3(t) = t1 cos tn · · ·sin t3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gn−1(t) = t1 cos tn sin tn−1

gn(t) = t1 sin tn .

Show that: J(g)(t) = tn−1
1 cosn−2 tn · · ·cos t3 . (Hint : Induction on n.)
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