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10. Eigen-values, Characteristic Polynomials, Minimal Polynomials

Submit a solution of any one of the ∗-Exercise ONLY
Due Date : Wednesday, 30-11-2011 (Before the Class)

• Solution of the ∗∗-Exercise (Exercise 10.8) carries 10 Bonus Points.
•• Solution of the ∗∗∗-Exercise (Exercise 10.10)) carries 20 Bonus Points!
••• Highly recommended ∗∗∗∗-Exercise (Test-Exercise T10.50)) for many applications!

∗10.1 Let V :=KR and let T ∈R be a positive real number. Let fT : V →V be the linear operator
defined by fT (x)(t) := x(t +T ) for x ∈V .
(a) Show that 0 is neither a spectral value nor an eigen value for fT and the eigen-space of fT at
1 is VfT (1) =Vper ,T := {x ∈V | x is periodic with period T} .

(b) Let K=C . Show that every λ ∈C× is an eigen-value of fT with eigen function exp
(

ln(λ )
T

t
)
,

where, if λ is a negative real number then we put ln(λ ) := ln(|λ |)+ iπ and the eigen-space of fT

at λ is exp
(

ln(λ )
T

t
)

Vper ,T .

(c) Let K=R . Show that every positive real number λ is an eigen-value of fT and the eigen-space
of fT at λ is λ t/TVper ,T .
(d) Let K = R . The eigen-space of fT at the eigen-value −1 is called the h a l f p e r i o d i c
f u n c t i o n s and is usually denoted by Vhper ,T . Show that
(i) Every half periodic function is period with period 2T .

(ii) Vhper ,T = cos
(

π t
T

)
Vper ,T + sin

(
π t
T

)
Vper ,T .

(iii) For a positive real number λ , the eigen-space of fT at −λ is VfT (−λ ) = λ t/TVhper ,T .
(e) Eigen-function corresponding to an eigen-value λ 6= 1 are called p e r i o d i c f u n c t i o n s
o f s e c o n d k i n d w i t h m u l t i p l i c a t o r λ . Show that if λ is a n-th root of unity then every
eigen-function of second kind with multiplicator λ is periodic with period nT . (Remark : The same
assertions (a) to (e) hold for the restriction of vT to the subspaces Ck

K(R) , k ∈N∪{∞,ω} . )

10.2 Let A ∈Mn(K) , n≥ 2 be a nilpotent matrix.
(a) If An−1 6= 0, then there does not exists any matrix B ∈Mn(K) with B2 = A.
(b) The following statements are equivalent: (1) µA = χA (= Xn) . (2) An−1 6= 0. (3) Rank A=
n− 1. (4) There exists a x ∈ Kn such that Aix , i = 0, . . . ,n− 1 is a basis of Kn. (Hint : Prove the
implication (3)⇒ (2) by induction on n.)

10.3 Let f :V →V be an operator on the K-vector space V . The following statements are equivalent:
(1) f is a homothecy. (2) Every subspace of V is f -invariant. (3) Every vector 6= 0 in V is an
eigen-vector of f .
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10.4 Let A and B be two n×n-matrices over the field K, assume that one of them is invertible. Then
there exists atmost n distinct elements a ∈ K such that the matrix aA+B is not invertible. (Hint :
Suppose that A is invertible, then DetA 6= 0. Now, since Det(aA+B) = Det(aEn +BA−1) ·Det(A) =
χ−BA−1(a) ·Det(A), only for at most n eigen-values a of −BA−1, Det(aA+B) = 0.
Now suppose that B is invertible, then aA+B is invertible for a = 0 and for a 6= 0, aA+B is not
invertible only for the n eigen-values of −AB−1, since Det(aA+B) = Det(AB−1 +a−1En) ·Det(B) =

a ·χ−AB−1(a−1) ·Det(B). )

∗10.5 Let n ∈N and let K be a field with k ·1K 6= 0 for all k = 1, . . . ,n .

(a) An operator f on the n-dimensional K-vector space V is nilpotent if and only if Tr f = Tr f 2 =
· · · = Tr f n = 0 . (Hint : If f is nilpotent, then so are f 2, f 3, . . ., f n and hence the characteristic
polynomials χ f i = Xn, in particular, Tr f i = 0 for all i = 1, . . . ,n. Prove the converse by induction on n.
Since Tr( f i) = 0 for all i = 1, . . . ,n, by Cayley-Hamilton Theorem 0 = χ f ( f ) = f n− (Tr( f )) f n−1 + · · ·+
(−1)nDet idV and hence applying the trace map, we get 0 = Tr(χ f ( f )) = Tr( f n)− (Tr( f ))Tr( f n−1)+ · · ·+
(−1)nDet Tr(idV ) = (1)n nDet( f ) . It follows that Det f = 0 and hence f is not injective and Dim KV < n =

Dim KV , where V :=V/Ker f . Now use Test-Exercise T10.24 and apply induction.)

(b) Suppose that a1, . . . ,an are elements in K with
a1

1+ · · ·+a1
n=0

· · · · · · · · · · · ·
an

1+ · · ·+an
n=0 .

Then a1 = · · · = an = 0. (Hint : Let f : Kn → Kn be the linear map defined by the diagonal matrix
Diag(a1, . . . ,an) (with respect to the standard basis e1, . . . ,en of Kn). Then for every k = 1, . . . ,n, the
matrix of f k (with respect to the standard basis) is the diagonal matrix Diag(ak

1, . . . ,a
k
n) and by hypothesis

Tr( f ) = Tr( f 2) = · · ·= Tr( f n) = 0. Now apply the part (a) above, to conclude that A is nilpotent. – Remark:
The parts (a) and (b) are equivalent: There exists (by Kronecker’s Theorem1) a field extension K ⊆ L such
that the characteristic polynomial χ f of f splits into liner factors χ f = (X −a1) · · ·(X −an) in L[X ]. Then
the trace Tr( f k) = ak

1 + · · ·+ak
n, see Example 11.B.13.)

10.6 Find the characteristic polynomial of the following matrices :

(a) A :=



a1 0 · · · 0 0 · · · 0 b1
0 a2 · · · 0 0 · · · b2 0
...

... . . . ...
... . . . ...

...
0 0 · · · an bn · · · 0 0
0 0 · · · bn an · · · 0 0
...

... . . . ...
... . . . ...

...
0 b2 · · · 0 0 · · · a2 0
b1 0 · · · 0 0 · · · 0 a1


∈M2n(K) .

(Ans : χA = ∏
n
k=1(X−ak−bk)(X−ak +bk).) (Hint : See Test-Exercise T9.55-(c).)

(b) A :=


a b2 · · · bn
c2 0 · · · 0
...

... . . . ...
cn 0 · · · 0

 ∈Mn(K). (Ans : χA = Xn−aXn−1−
(
∑

n
k=2 bkck

)
Xn−2 n≥ 2.)

1Kronecker’s Theorem Let K be a field and let P ∈ K[X ] be a non-zero polynomial. Then there exists a field
extension K ⊆ L such that P factores into linear factors in L[X ]. Moreover, one can also choose L such that L has finite
dimension over K (as an K-algebra).
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(c) Fn :=



0 1 0 · · · 0 0 0
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 0


∈Mn (R) .

(Ans : 2nUn(X/2) , where Un is the n-th Tchebychev polynomial of second kind (see Test-Exercise T9.53-
(c)) In particular, λk := 2cos(kπ/(n+1)) , k = 1, . . . ,n are eigen-value s of Fn . The vector with components
sin(kπi/(n+1)) , i = 1, . . . ,n is an eigen-vector corresponding to λk .)

10.7 Let f and g be operators on the K-vector space V .
(a) If either f g or g f is algebraic, then both f g and g f are algebraic and the minimal polynomials
of f g and g f are either equal or differ by the factor X . Moreover, if either f or g is invertible,
then µ f g = µg f . Give examples of operators f and g on K2 such that µ f g 6= µg f .
(b) Suppose that V is finite dimensional. Then χ f g = χg f . (Hint : Use Exercise 8.4-(b) to assume
that either f is invertible or f is a projection.)

∗∗10.8 Let f be an operator on the K-vector space V and let x ∈V . Then show that
(a) Vx := ∑m∈NK f m(x) is the smallest f -invariant subspace of V which contain x . (Remark : The
subspace Vx is called the f - c y c l i c s u b s p a c e g e n e r a t e d b y x .)
(b) Vx is finite dimensional if and only if there exists a monic polynomial P ∈ K[X ] such that
P( f )(x) = 0. Moreover, in this case, if Px is the monic polynomial of the smallest degree with
Px( f )(x) = 0, then Px is the minimal polynomial and the characteristic polynomial of f |Vx . (Re-
mark : This polynomial Px is called the f - a n n i h i l a t o r of x and denoted by ann f (x) . With this
Degann f (x) = Dim KVx . )
(c) If V is finite dimensional and x1, . . . ,xr is a generating system for V , then µ f is equal to
LCM(Px1, . . . ,Pxr) . (Hint : It is enough to prove the equality V = ∑

r
ρ=1Vxρ

, see Test-Exercise T10.14.)
(d) Suppose that V is finite dimensional. Then the following statements are equivalent :
(i) Vx0 =V for some x0 ∈V .
(ii) There exists a K-basis v= {v1, . . . ,vn} of V such that the matrix of f with respect to the basis
v is of the form

AP :=


0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

... . . . ...
...

0 0 · · · 0 −an−2
0 0 · · · 1 −an−1

 ∈Mn(K)

(iii) χ f = µ f .
(Remark : If any one of the above equivalent statements hold, then the operator f is called a c y c l i c
o p e r a t o r and the element x0 is called a c y c l i c e l e m e n t for f . The matrix AP is called the
c o m p a n i o n m a t r i x of the polynomial P.)
(e) If χ f has only simple prime factors, then f is cyclic. (Hint : In this case χ f = µ f by 11.A.14.)

10.9 Let V be a finite dimensional K-vector space of dimension n .
(a) Let f and g be invertible operators on V . Then all operators λ f −µg , (λ ,µ) ∈ K2−{(0,0)}
are invertible if and only if the characteristic polynomial χ f−1g of f−1g has no zeroes, i.e. f−1g
has no eigen-value.
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(b) Let Φ : V ×V → V be bilinear. If K is algebraically closed and n ≥ 2, then Φ has a zero
divisor, i.e. there exist x,y ∈V with x 6= 0 6= y and Φ(x,y) = 0. If K =R and n is odd and ≥ 3,
then Φ has a zero divisor. (Hint : For x ∈ V consider the operators fx : y 7→ Φ(x,y) on V . – A deep
theorem states that if K =R and n 6= 0,1,2,4,8 , then Φ has a zero divisor.)

∗∗∗10.10 Let λ ∈K be an eigen-value of the matrix A=(ai j)∈Mn (K) . Then |λ−aii| ≤∑ j 6=i |ai j|
for at least one i ∈ {1, . . . ,n} and also |λ −a j j| ≤ ∑i 6= j |ai j| for at least one j ∈ {1, . . . ,n} .

(a) In particular, (G e r s h g o r i n c i r c l e t h e o r e m2): the (eigen) spectrum Spec A is
contained in the union ∪n

i=1D1(A) of the closed discs Di(A) := B(aii,Ri) centered at aii and
radius Ri := ∑ j 6=i |ai j| , i = 1, . . . ,n. The closed discs Di(A), i = 1, . . . ,n, are called the G e r -
s h g o r i n d i s c s. – For a diagonal matrix D, the union of the Gershgorin discs ∪n

i=1Di(D)
coincides with the spectrum Spec D , and conversely. (Use Exercise 4.2, see also Exercise 9.7. –
Remark: The Gershgorin circle theorem is useful in solving matrix equations of the form Ax = b for x ,
where b is a vector and A is a matrix with a large condition number.)

(b) In general Gershgorin circle theorem in the part (a) can be strengthened as follows:
If the union D(A) := Di1 ∪ ·· · ∪Dik of k Gershgorin-discs is disjoint from the union D′(A) :=
∪i∈{1,...,n}\{i1,...,ik}Di of the other n− k Gershgorin-discs then D(A) contains exactly k and D′(A)
n− k eigen-values of A. (Hint: The assertion is obviously true for diagonal matrices. For a proof consider
B(t) := (1−t)D+tA, t ∈ [0,1], where D :=Diag(a11, . . . ,ann). Note that the hypothesis D(A)∩D′(A) = /0,
yields D(B(t))∩D′(B(t)) = /0 for all t ≥ 0, since the centers of the Gershgorin discs of B(t) are same
as those of A and the radii are t times those of A. Let d(t) := d(D(B(t)),D′(B(t))) denote the distance
between D(B(t)) and D′(B(t)). Then d(0) = d(D)≥ d(t)≥ d(A) = d(1)> 0 (since the discs are closed
and the function t 7→ d(t) is decreasing). Since the eigen-values of B(t) are continuous functions of t
(this is proved below), for any eigen-value λ (t) of B(t) in D(B(t)) , its distance δ (t) := d(λ (t),D′(t))
is also continuous. Obviously δ (t)≥ d(t)≥ d(1)> 0 for all t ∈ [0,1] and in particular, δ (0)≥ d(1)> 0.
Note that since the assertion is obviously true for the diagonal matrices, there are exactly k eigen-values
λ1(0), . . . ,λk(0) of D in D(D). We shall use this and the continuity of the function ,δ to show that the
eigen-values λ1(1), . . . ,λk(1) of A are in D(D). For this we fix i∈ {1, . . . ,k} and put λ (t) := λi(t). Suppose
on the contrary that λ (1) ∈ D′(A) = D′(B(1)). Then δ (1) = 0, and hence δ (0)≥ d(0)> d(1)> 0 = δ (1).
Therefore by Intermediate value Theorem (see Footnote 4 on Page 4 of Exercise Set 9) there exists a
t0 ∈ (0,1) such that δ (t0) = d(1). But, then δ (t0) = d(1)< d(t0)≤ δ (t0), which is impossible. This proves
the assertion.

Now we shall indicate the proof of the assertion: The zeros of a monic complex polynomial are continuous
functions of its coefficients, which is used in the above proof. More precisely:
Lemma Let λ be a zero of the polynomial Xn +an−1Xn−1 + · · ·+a0 ∈ C[X ] of multiplicity m. Further, let
ε > 0 be given. Then there exists a δ > 0 such that all polynomials Xn +bn−1Xn−1 + · · ·+b0 ∈ C[X ] with
|bi−ai| ≤ δ for i = 0, . . . ,n−1 have at least m, zeroes in the (open) disc B(λ ;ε), every zero is counted
with its multiplicity.
Proof. We consider the continuous map Φ : Cn → Cn, which maps every n-tuple of complex numbers
(λ1, . . . ,λn) to the n-tuple (a0, . . . ,an−1) of the coefficients (other than the leading coefficient) of the poly-
nomial (X−λ1) · · ·(X−λn). Then Φ is surjective by the Fundamental Theorem of Algebra3, and the fibre
of Φ passing through the n-tuple (λ1, . . . ,λn) is the set of all n-tuples σ(λ1, . . . ,λn) = (λσ−11, . . . ,λσ−1n) ,
σ ∈ Sn . Further, if A ⊆ Cn is a closed subset, then its image Φ(A) is also closed subset. For, if Φ(xν) ,

2It was first published by the Belarusian mathematician S e m y o n A r a n o v i c h G e r s h g o r i n (1901-
1933) in 1931, see [Gerschgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd.
Fiz.-Mat. Nauk, 7 (1931), 749-754]. He studied at Petrograd Technological Institute from 1923, becoming Professor in
1930, and from 1930 he worked in the Leningrad Mechanical Engineering Institute on algebra, theory of functions of
complex variables, numerical methods and differential equations.

3 Fundamental Theorem of Algebra (d’A l e m b e r t - G a u s s) Every non-constant polynomial f ∈ C[X ]
has a zero in C. – J e a n d’A l e m b e r t (1717-1783) was a a French mathematician who was a pioneer in the study
of differential equations and their use of in physics. He studied the equilibrium and motion of fluids. – J o h a n n
C a r l F r i e d r i c h G a u s s (1777-1855) was a German mathematician who worked in a wide variety of fields in
both mathematics and physics including number theory, analysis, differential geometry, geodesy, magnetism, astronomy
and optics. His work has had an immense influence in many areas.
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ν ∈N, xν ∈ A, is a convergent sequence in Φ(A) , then xν ∈ A, is a bounded sequence by the Exercise4 and
hence by the Bolzano-Weierstrass Theorem5 xν , ν ∈N, has a convergent subsequence. We may therefore
assume that xν , ν ∈ N, is already convergent. Then, if x := limxν ∈ A, then Φ(x) = limΦ(xν) ∈ Φ(A) .
Therefore it follows that: If U ⊆ Cn open, then its image Φ(U) is also open. The complement of Φ(U) in Cn

is Φ
(
Cn−

⋃
σ∈Sn

σ(U)
)

and hence it is closed by the above proof.
Let Xn+an−1Xn−1+ · · ·+a0 = (X−λ1) · · ·(X−λn) and ε > 0 be given. Then Φ

(
B(λ1 ;ε)×·· ·×B(λn ;ε)

)
is an open neighbourhood of (a0, . . . ,an−1) , which contains a product B(a0 ;δ )×·· ·×B(an−1 ;δ ) of discs
with δ > 0. This proves the assertion. •)
Below one can see auxiliary results and (simple) Test-Exercises.

Auxiliary Results/Test-Exercises

To understand and appreciate the Test-Exercises which are marked with the symbol † one
may possibly require more mathematical maturity than one has! These are steps towards ap-
plications to various other branches of mathematics, especially to Analysis, Number Theory,
Graph Theory, Group Theory and Affine and Projective Geometry.

T10.1 Let n ∈ N+ and let V := K[t]n . For the linear operators D := d/dt : V → V defined by
P 7→ P′ := d/dt(P) and f : V →V defined by P 7→ P(t+1) compute the characteristic polynomial,
minimal polynomial, eigen-values and eigen-spaces. (Ans: χD = Xn = µD and χ f = (X −1)n = µ f .
– Hint: The matrix A=Mt

t(D) (respectively B=Mt
t( f )) of the operator D (respectively f ) with respect to

the basis t := (1, t, . . . , tn−1) of V = K[t]n are

A :=



0 1 0 · · · 0 0 0 · · · 0 0
0 0 2 · · · 0 0 0 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 i 0 · · · 0 0
0 0 0 · · · 0 0 i+1 · · · 0 0
0 0 0 · · · 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0 · · · 0 n−1
0 0 0 · · · 0 0 0 · · · 0 0


and B :=



1 1 1 · · · 1 1 · · · 1
0 1 2 · · · j−1 j · · · n−1
...

...
...

. . .
...

...
. . .

...
0 0 0 · · ·

( i
i−1

) (i+1
i−1

)
· · · 0

0 0 0 · · · 1
(i+1

i

)
· · · 0

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · n−1
0 0 0 · · · 0 0 · · · 1



Therefore χD = Det(XE−A) = Xn and e-Spec(D) = ZK(χD)={0}. Further, since degP′ = degP−1 for
every non-constant P ∈K[t]n. It follows that the eigen-space VD(0) = KerD =K (=the space of constant
polynomials) and since Dn−1(tn−1) = (n−1)! 6= 0. Therefore Dn−1 6= 0 and hence µD = Xn = χD, since µD
divides χD.
Further, χ f = Det(XE−B) = (X−1)n, e-Spec(D) = ZK(χ f )={1} and since (t+1) j− t j = jt j−1+ · · · , we
have deg( f − id)(P) = deg(P(t +1)−P(t)) = degP(t)−1 for every non-constant P ∈K[t]n. It follows that
the eigen-space Vf (1) = Ker( f − id) =K (=the space of constant polynomials) and since ( f − id)n−1(tn−1) =

(n−1)! 6= 0. Therefore ( f − id)n−1 6= 0 and hence µ f = (X−1)n = χ f , since µ f divides χ f .)

T10.2 Let D be the differentiation operator f 7→ f ′ on the vector space C∞
K(R) of infinitely many

times differentiable K-valued functions on R . Compute the eigen-values, spectral-values and
eigen-spaces for D . (Ans: e-Spec(D) = SpecD =K and VD(λ ) =Keλx is the eigen-space of λ ∈K.)

4 Exercise Let f = a0 +a1x+ · · ·+an−1xn−1 + xn be a monic polynomial in C[X ]. Then for every zero α of f in
C prove the estimates: (a) |α| ≤Max (1, |a0|+ · · ·+ |an−1|) . (b) |α| ≤Max (|a0|,1+ |a1|, . . . ,1+ |an−1|) .
(c) ( C a u c h y ’ s E s t i m a t e s ) |α| ≤ 2R mit R := Max (|aν |1/(n−ν),ν = 0, . . . ,n−1) . (Hint : From |α| > 2R
and f (α) = 0, we get |α|n = |a0 + · · ·+an−1αn−1| ≤ ∑

n−1
ν=0 Rn−ν |α|ν = R

(
|α|n−Rn

)/(
|α|−R

)
< |α|n, a

contradiction.)
5 Theorem (B o l z a n o - W e i e r s t r a s s) Every bounded sequence of real numbers has a limit point.
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T10.3 Let P = Xn + an−1Xn−1 + · · ·a1X + a0 = (X − λ1)
r1 · · ·(X − λm)

rm be a monic polyno-
mial with coefficients a0, . . . ,an−1 ∈ C and pairwise distinct zeros λ1, . . . ,λm ∈ C of multiplicities
r1, . . . ,rm > 0, respectively. Let V := {y ∈ Cn

C(C) | P(D)y = 0} be the C-vector space of the
complex-valued solutions of the homogeneous linear differential equation of n-th order P(D)y =
y(n)+an−1y(n−1)+ · · ·a1y′+a0y = 0. Show that the differentiation D : V → V , y 7→ Dy = y′ is a
C-linear operator on V and compute its minimal polynomial, characteristic polynomials, e-SpecD
and the eigen-spaces. (Hint : By construction V = KerP(D) and DimCV = r1 + · · ·+ rm == n = degP.
Since P(D)y = 0, it follows that P(D)(Dy) = D(P(D)y) = 0 and hence D induces an operator on V . Further,
since P(D) = 0 on V , the minimal polynomial µD divides P by the definition of minimal polynomial. Since
V ⊆ Ker µD(D), it follows that degP = DimCV ≤ DimCKer µD(D) = deg µD and hence µD = P. Moreover
by Cayley-Hamilton Theorem χD = µD = P. The eigen-spectrum e-Spec(D) = Z(χD) = {λ1, . . . ,λm} and
the corresponding eigen-spaces VD(λi) = Ker(λiid−D) = Ceλit , i = 1, . . . ,m, since y ∈ Ker(λiid−D) if
and only if y is a solution of the differential equation y′−λiy = 0. )

T10.4 For k ∈ N∪{∞} , let S denote the integration operator f 7−→
(
t 7→

∫ t
0 f (τ)dτ

)
on the

vector space Ck
K(R) of the k-times continuously differentiable K-valued functions on R . Then

S has no eigen-value and 0 is the only spectral value S, i. e. e-Spec(S) = /0 and Spec S = {0}.
(Hint: From S( f ) = 0, f ∈ Ck

K(R), it follows that f = 0 by differentiating with respect to the upper limit of
the integral. Therefore S is injective and hence 0 is not an eigen-value of S. The operator S is not surjective,
since from S( f ) = g, f ,g ∈ Ck

K(R), it follows that g(0) =
∫ 0

0 f (τ)dτ = 0, and hence no g with g(0) 6= 0 can
belong to Im(S)

Now, let λ 6= 0. We shall show that λ is not an eigen-value of S, i. e. S− λ id is injective: For an f ∈
C1
K(R) with S( f )−λ f = 0 implies that f (0) = λ−1S( f )(0) = λ−1 ∫ 0

0 f (τ)dτ = 0 and
∫ t

0 f (τ)dτ−λ f = 0.
Differentiating we get f −λ f ′ = 0, i. e. f ′ = λ−1 f = 0. Solutions of this differential equation have the form
f (t) = ceλ−1t with a constant c ∈K. But, since f (0) = 0, c = 0 and hence f = 0. This proves that

To show that λ 6= 0 cannot be a spectral value of S, i. e. S−λ id is surjective. Therefore for g ∈ Ck
K(R), we

need to construct a function f ∈Ck
K(R) such that (S−λ id)( f ) = g. In the case k≥ 1, i. e. if g is continuously

differentiable, this is easy: The (unique) solution f of the linear differential equation y′ = λ−1y−λ−1g
with f (0) =−λ−1g(0) is a Ck-function and is the inverse image of g under (S−λ id), since (S−λ id)( f ) =∫ t

0 f (τ)dτ−λ f (t) =
∫ t

0(λ f (τ)+g′(τ))dτ−λ f (t) = (λ f (t)+g(t))+(λ f (0)+g(0))−λ f (t) = g(t). The
case k = 0, i. e. g is only continuous, is more difficult and use more analysis!.)

T10.5 Show that the characteristic polynomial of the diagonal matrix D = Diag(a1, . . . ,an) ∈
Mn(K) is χD = ∏

n
i=1 = (X−ai) and the minimal polynomial µD = ∏

r
ρ(X−aiρ ), where ai1 , . . . ,air

are the distinct elements among a1, . . . ,an. Further, show that D is cyclic (see Exercise 10.8-(d))if
and only if a1, . . . ,an are distinct. Moreover, in this case x1 + · · ·+ xn is a cyclic vector (see
Exercise 10.8-(d)) for every operator f : V →V whose matrix with respect to a basis x1, . . . ,xn of a
K-vector space V is D.

T10.6 Let Eσ ∈ Mn(K) be the matrix of the permutation σ ∈ S− n, i. e. Eσ =
(
δiσ( j)

)
. In

the canonical cycle decomposition of σ , suppose that mi cycles of order i for i = 1, . . . ,n. Then
n = ∑

n
i=1 i ·mi and show that the characteristic polynomial and the minimal polynomial of Eσ are,

respectively:

χEσ
=

n

∏
i=1

(X i−1)mi and µEσ
= LCM(X i1−1, . . . ,X ir −1) ,

where i1, . . . , ir are the indices i with mi 6= 0. Moreover, Eσ is cyclic (see Exercise 10.8-(d)) if and
only if σ is a cycle of order n. (Hint : See also Test-Exercise T10.14.)

T10.7 Let f be an operator on the n-dimensional K-vector space V . Suppose that the degree of
the minimal polynomial µ f is m . Then show that
(a) χ f+a id(X) = χ f (X−a) and µ f+a id(X) = µ f (X−a) , a ∈ K .
(b) χa f (X) = anχ f (X/a) and µa f (X) = am µ f (X/a) , a ∈ K× .
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(c) If f is invertible, then χ f−1(X) =
(−1)n

Det f
Xn

χ f (1/X) and µ f−1(X) =
1

µ f (0)
Xm

µ f (1/X) ,

Further, deduce that : f−1 =
µ−µ(0)

µ(0)X
( f ) and that eigen-value s of f are all non-zero and

0 6= λ ∈ K is an eigen-value of f if and only if λ−1 is an eigen-value of f−1 .

T10.8 Let V be a K-vector space and let f :V →V be a linear operator. Show that
(a) f is a projection if and only if the minimal polynomial of f is a divisor of X(X−1) = X2−X .
(b) f is an involution if and only if the minimal polynomial of f is a divisor of (X +1)(X−1) =
X2−1.
(c) For a projection (respectively involution) on a finite dimensional vector space find the charac-
teristic polynomial. (Hint : in the case of the involution give special attention to the case 1+ 1 = 0 in
K, i. e. CharK = 2. – Ans: χ f = (X − a)r ·X r with r = Rank f ; in particular, Tr f = Rank f (respectively
χ f = (X +1)r(X−1)n−r if CharK 6= 2 (since 1

2(idV − f ) is a projection) and χ f = (X−1)n if CharK = 2.)

T10.9 Let f :V →V be an operator of rank r on the n-dimensional K-vector space V .
(a) χ f is divisible by Xn−r . (b) µ f has degree ≤ r+1. (Hint: Note that Ker f is an f -invariant

subspace of f of dimension n−r by the Rank-Theorem, f � Ker f = 0 and hence χ f �Ker f = Xn−r, µ f �Ker f = X
and deg µ f ≤ deg χ f = Dim KV = Dim KV −Dim KKer f = Rank f = r, where f : V → V is the operator
induced by f on the quotient space V := V/Ker f . Therefore by 11.A.8 χ f = χ f �Ker f · χ f = Xn−r · χ f
and µ f divides µ f �Ker f · µ f = X · µ f , in particular, χ f is divisible by Xn−r and deg µ f ≤ r + 1. See also
Test-Exercise T10.15. )

T10.10 (a) The characteristic polynomial of the n×n-matrix

A=


a b · · · b
b a · · · b
...

... . . . ...
b b · · · a


is (X +b−a)n−1(X−a− (n−1)b) . Compute its minimal polynomial. determine the conditions
on a and b so that A is invertible, moreover, in these cases, compute the inverse of this matrix.
(Hint : See also Test-Exercise T9.52-(a).)
(b) Let A0, . . . ,An−1 ∈Mm(K) . The characteristic polynomial of the mn×mn-matrix

B :=


0 0 · · · 0 −A0
Em 0 · · · 0 −A1
0 Em · · · 0 −A2
...

... . . . ...
...

0 0 · · · Em −An−1


is Det(XnEm +Xn−1An−1 + · · ·+XA1 +A0) .
(c) Let A= Diag(a1, . . . ,an)∈Mn(K) be a diagonal matrix and let B= (bi j)∈Mn(K) be a matrix
of rank ≤ 1. Then

χA−B =
n

∏
i=1

(X−ai)+
n

∑
j=1

b j j ∏
i 6= j

(X−ai) .

If A is invertible, then A−B is invertible if and only if c := ∑
n
j=1 b j ja−1

j 6= 1. Further, in this case

(A−B)−1 =
1

1− c

(
(1− c)a−1

i δi j +a−1
i bi ja−1

j
)

1≤i, j≤n .
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T10.11 Let f be a linear operator on the K-vector space V . In the parts (c) and (d) below assume
that DimKV = n ∈N. Show that
(a) f is nilpotent if and only if µ f is a power of X . Deduce that: if f is nilpotent, then Tr( f ) = 0
and Det( f ) = 0.
(b) f is unipotent, i. e. f − id is nilpotent if and only if µ f is a power of X−1. Deduce that: if f is
nilpotent, then Tr( f ) = n and Det( f ) = 1.
(c) f is nilpotent if and only if χ f = Xn. (Hint : Use Cayley-Hamilton Theorem.)
(d) f is unipotent if and only if χ f = (X−1)n.

T10.12 Let K ⊆ L be a field extension and let A ∈Mn(K)⊆Mn(L) . For the minimal- as well as
the characteristic polynomial of A are independent if the matrix A is considered over K or over L.
(Hint : For the minimal polynomial use the Test-Exercise T9.3. )

T10.13 Let f and g be two commuting operators on the K-vector space V and assume that the
operator g is nilpotent. Then χ f+g = χ f and in particular, Det( f +g)=Det f and Tr( f +g)=Tr f .
(Hint : It is enough to prove the assertion for matrices. Further, XEI− (A+B) = (XEI−A)

(
EI− (XEI−

A)−1B
)
, if AB =BA and if B is nilpotent. – Remark: Note that the matrix XEI −A is invertible in

MI(K(X)) .)

T10.14 Suppose that the K-vector space V is the sum of invariant subspaces U and W under the
K-linear operator f : V →V . Then f is algebraic if and only if f |U and f |W are algebraic. Further,
in this case µ f = LCM(µ f |U , µ f |W ) . (Remark: See Exercise 10.8-(c) for an application. – Hint: Since
µ f ( f �U) = µ f ( f ) �U = 0 and µ f ( f �W ) �= µ f ( f ) �W = 0, clearly (by definition of minimal polynomial),
µ f �U and µ f �W both divide µ f . On the other hand put µ :=LCM(µ f |U , µ f |W ). Then µ( f ) �U = µ( f �U)= 0
and µ( f ) � W = µ( f � W ) = 0, since µ is a multiple of both µ f �U and µ f �W . Now, since V = U +W , it
follows that µ( f ) = 0. Therefore (by definition of µ f ) µ f divides µ .)

T10.15 Let f :V →V be an operator and let µ be the minimal polynomial of the restriction of f
on im f . Then either µ or X · µ is the minimal polynomial of f . In particular, an operator f of
finite rank r is algebraic and the degree of its minimal polynomial is ≤ r+1. (Hint : Note that for the
minimal polynomial µ f of f , the operator µ f ( f ) = 0 and hence µ f ( f � Im f ) = µ f ( f ) � Im f = 0. Therefore
µ = µ f �Im f divides µ f . On the other hand (X ·µ)( f ) = f ◦µ( f ) = µ( f )◦ f = 0, since µ( f ) � Im f = 0. This
proves that µ f divides X ·µ and hence the only possibilities are either µ f = µ or µ f = X ·µ .)

T10.16 Let f be an invertible operator on the K-vector space V . Show that λ ∈ K is an eigen-value
(respectively a spectral-value) of f if and only if 1/λ is an eigen-value (respectively spectral-value)
of f−1 , i. e. e-Spec( f−1)= (e-Spec f )−1 := {λ−1 | λ ∈ e-Spec f} and Spec( f−1)= (Spec f )−1 :=
{λ−1 | λ ∈ Spec f}.
T10.17 Let f and g be operators on the K-vector space V . Then show that
(a) The non-zero eigen-value s of f g and g f are same.
(b) The non-zero spectral-values of f g and g f are same. (Hint : For a ∈ K×, f g−a id is invertible if
and only if g f −a id invertible. In this case (g f −a id)−1 = a−1

(
g( f g−a id)−1 f − id

)
. )

(c) Given an example such that the eigen-value s (resp. spectral-values) of f g and g f are not
same. (Hint : Let f ,g : V := K[X ]→V = K[X ] be the K-linear operators on the K-vector space V = K[X ]

of polynomials over K (with basis Xn, n ∈ N) defined by f (Xn) := Xn+1, n ∈ N and g(Xn) := Xn−1, for
n ≥ 1 and g(X0) = g(1) = 0, i. e. f := λX is the left multiplication by X and g(P) := (P−P(0))/X for
PinK[X ]. Then 0 is an eigen-value (and hence a spectral-value) of f g, since ( f g)(1) = f (0) = 0 = 0 ·1, but
0 is not an eigen-value (and moreover, not a sspectral-value) of g f , since 0 · idV −g f = g f = idV because
(g f )(Xn) = g(Xn+1) = Xn for all n ∈N. )

T10.18 Let f :V → V be a K-linear operator on the K-vector space V and let U ⊆ V be an f -
invariant subspace of V . Further, let f : V/U → V/U be the operator on V/U induced by f .
Then
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(a) Show that every eigen-value of f |U is an eigen-value of f and every eigen-value of f is an
eigen-value of f |U or of f .
(b) The same statement as in the part (a) for the spectral-values, i. e.

Spec f |U ⊆ Spec f ⊆ Spec ( f |U)∪Spec f .

(c) If f is algebraic, then Spec f = Spec ( f |U)∪Spec f̄ .

T10.19 Let f :V → V be a K-linear operator and let V be the direct sum of the f -invariant
subspaces Vi , i ∈ I . Show that
(a) The set of all eigen-values of f is the union of the set of all eigen-value s of f |Vi , i ∈ I , i.e.

e-Spec( f ) =
⋃
i∈I

e-Spec( f |Vi) .

(b) For the spectral-values the analogous statement as in the part (a) holds, i.e.

Spec f =
⋃
i∈I

Spec ( f |Vi) .

(c) Let λX denote the multiplication by the indeterminate X on the K-vectors space
(i) V = K[X ] of polynomials over K, then e-Spec(λX) = /0 and Spec(λX) = K.
(ii) V = K(X) of rational functions over K, then e-Spec(λX) = Spec(λX) = /0.
(iii) V = {P/Q ∈ K(X) | P,Q ∈ K[X ],Q(0) 6= 0}, then e-Spec(λX) = /0 and Spec(λX) = {0}.
(iv) V = K[[X ]] of formal power series K, then e-Spec(λX) = /0 and Spec(λX) = {0}.
T10.20 Let f :V →V be an operator on the K-vector space V and let P ∈ K[X ] be a non-constant
polynomial. Then show that
(a) If λ is an eigen-value (respectively spectral-value) of f , then P(λ ) is an eigen-value (respec-
tively a spectral-value) of P( f ) , i. e. P(e-Spec( f )) ⊆ e-SpecP( f ) and P(Spec( f )) ⊆ SpecP( f ).
(Hint : Let λ ∈ K. Then λ is a zero of the polynomial P(X)−P(λ ) ∈ K[X ] and hence P(X)−P(λ ) =
(X −λ ) ·Q(X) for some Q ∈ K[X ]. Therefore P(λ )idV −P( f ) = (λ idV − f ) ◦Q( f ) = Q( f ) ◦ (λ idV − f )
and hence if (λ idV − f ) is not injective (respectively not surjective), then P(λ )idV −P( f ) is not injective
(respectively not surjective).)
(b) If K is algebraically closed,6 then every eigen-value (respectively every spectral-value)
of P( f ) of the form P(λ ) with an eigen-value (respectively a spectral-value) λ of f , i. e.
P(e-Spec( f )) = e-SpecP( f ) and P(Spec( f )) ⊆ SpecP( f ). (Hint : Let µ ∈ K and let P(X)− µ =

c(X − λ1) · · ·(X − λn) with c,λ1, . . .λn ∈ K (since K is algebraically closed. Therefore µidV − P( f ) =
(−1)n−1c(λ1idV − f ) ◦ · · · ◦ (λnidV − f ) and hence if λi 6∈ e-Spec f (respectively, λi 6∈ Spec f ), then µ 6∈
e-SpecP( f ) (respectively, µ 6∈ SpecP( f )).)

T10.21 Let f and g be operators on the K-vector space V with [ f ,g] := f g− g f = a idV and
let a 6= 0 in K . Show that if λ is an eigen-value of g f with the eigen-vector x ∈ V , then
g f (gn(x)) = (λ +na)gn(x) , n ∈N . In particular, if gn(x) 6= 0, then λ +na is also an eigen-value
of g f . Moreover, if g is invertible, then λ + na is an eigen-value of g f with the eigen-vector
gn(x) for n ∈ Z. (Hint : By the way the relation f g−g f = a idV with a 6= 0 is possible only in the case of
a field characteristic 0 and only if V is either 0 or infinite dimensional. Otherwise, (DimV ) ·a = Tr(a idV ) =

Tr( f g)−Tr(g f ) = 0 is a contradiction. It follows that there is no finite dimensional subspace 0 6=U ⊆V
which is invariant under both f as well as g. In particular, f and g have no common eigen-vectors.)

T10.22 Let f :V →V be an operator on the K-vector space with the dual operator f ∗ :V ∗→V ∗ .
Then show that

6A field K is called an a l g e b r a i c a l l y c l o s e d if every non-constant polynomial P ∈ K[X ] has a zero in K.
For example, by the Fundamental Theorem of Algebra (see Footnote 2) the field C of complex numbers is algebraically
closed. But the fields Q, R and finite fields are not algebraically closed.
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(a) A subspace U of V is f -invariant if and only if U◦ is f ∗-invariant. (Hint : Suppose that
f (U) ⊆ U and e ∈ U◦. Then e(x) = 0 for all x ∈ U and hence ( f ∗(e))(x) = e( f (x)) = 0 for all x ∈ U ,
since f (x) ∈U for all x ∈U , i. e. f ∗(e) ∈U◦. This proves that f ∗(U◦) ⊆U◦. Conversely, suppose that
f ∗(U◦) ⊆U◦ and let x ∈U . For every e ∈U◦, we have f ∗(e) ∈U◦ and hence e( f (x)) = ( f ∗(e))(x) = 0.
Therefore every e ∈V ∗ which vanish on U also vanish on f (x) and hence f (x) ∈U by Theorem 5.G.7. This
proves that f (U)⊆U . )
(b) If a subspace W of V ∗ is f ∗-invariant, then ◦W is f -invariant. If V is finite dimensional,
then the converse hold. (Hint : Suppose that f ∗(W )⊆W and let x ∈◦W . Then for every e ∈W , we have
f ∗(e) ∈W and hence e( f (x)) = ( f ∗(e))(x) = 0, since x ∈◦W . Therefore f (◦W )⊆◦W . Conversely, suppose
that V is finite dimensional and f (◦W )⊆◦ W . Then by Theorem 5.G.10 (◦W )◦ =W and hence by the part
(a) f ∗(W ) = f ∗((◦W )◦)⊆ (◦W )◦ =W .)
(c) Spec f ∗ = Spec f and in general e-Spec f ∗ 6= e-Spec f (Example?).

T10.23 Let V be a n-dimensional vector space over a field K and let ∆ ∈ AltK(n,V ) be an
n-alternating linear form V n→ K . For f ∈ EndK(V ) and x1, . . . ,xn ∈V , show that

Tr( f ) ·∆(x1, . . . ,xn) =
n

∑
i=1

∆(x1, . . . ,xi−1, f (xi),xi+1, . . . ,xn) .

T10.24 Let f :V → V be an operator on the finite dimensional K-vector space V and U be an
f -invariant subspace of V . Then show that

Tr f = Tr( f �U)+Tr f ,

where f is the operator V/U →V/U induced by f . In particular,

Tr f = Tr( f � Im f )+Tr( f ) with f : V/Ker f −→V/Ker f .

(Hint: By 11.A.8 we have χ f = χ f �U · χ f . – Remark: The last equation is used to define t r a c e o f a n
o p e r a t o r o f f i n i t e r a n k on not necessary on finite dimensional vector spaces.)

T10.25 Let f :V →V be an operator on the finite dimensional K-vector space V 6= 0. Show that
the following statements are equivalent:
(i) χ f is a prime polynomial in K[X ].
(ii) 0 and V are the only f -invariant subspaces of V .
(iii) Every non-zero x ∈V is a cyclic vector (see Exercise 10.8-(d)) for f .
(Hint: If U is an f -invariant subspace of V with 0 < m := Dim KU < Dim KV , then χ f = χ f �U ·χ f by 11.A.8
and deg χ f �U = Dim KU = m and hence χ f �U is a proper divisor of χ f , in particular, χ f cannot be a prime
polynomial. Conversely, if χ f is not a prime polynomial and if P is a proper prime divisor of χ f , then by
11.A.12 there exists an f -invariant subspace U of V of dimension Dim KU = degP < deg χ f = Dim KV . )

T10.26 Let f :V →V be an operator on the finite dimensional K-vector space V . Show that
(a) If f is cyclic (see Exercise 10.8-(d)) with the characteristic polynomial χ := χ f , then V has
exactly

∏
π∈P(K[X ])

(vπ(χ)+1)

f -invariant subspaces and restrictions of f to each one of these subspaces is again a cyclic operator,
where P(K[X ]) denote the set of all monic prime polynomials in K[X ] and vπ denote the π-
exponents.
(b) If K is infinite and if V has only finitely many f -invariant subspaces, then f is a cyclic operator.
(Hint : Use Exercise 2.2.)

T10.27 Let f :V → V be a cyclic operator (see Exercise 10.8-(d)) on the finite dimensional K-
vector space V of dimension n with the cyclic vector x ∈V . Then the dual operator f ∗ : V ∗→V ∗
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is also a cyclic operator on the dual space V ∗ with a cyclic vector ( f n−1(x))∗, where ( f n−1(x))∗

belong to the dual basis of V ∗ with respect to the basis x, f (x), . . . , f n−1(x) of V .

T10.28 Let f :V →V be an operator on the finite dimensional K-vector space V .

(a) Let vi , i∈ I be a K-basis of V . Show that Tr f =∑i∈I v∗i ( f (vi)) . (Hint : Let Mv
v( f )= (ai j)(i, j)∈I×I

be the matrix of f with respect to the basis v= {vi | i ∈ I}, i. e. f (v j) = ∑i∈I ai jvi. Therefore v∗j( f (v j)) =

v∗j(∑i∈I ai jvi) = ∑i∈I ai jv∗j(vi) = ∑i∈I ai jδi j = a j j and ∑ j∈I v∗j( f (v j)) = ∑ j∈I a j j = Tr( f ).)

(b) If Rank f ≤ 1, then show that f is nilpotent if and only if Tr f = 0. (Hint : By Test-Exercise T10.9
the characteristic polynomial χ f = Xn−1(X−Tr( f )).)

T10.29 Let K be a field and let n ∈N∗ . Then

(a) Show that the c o m m u t a t o r s [A ,B] := AB−BA , A,B ∈Mn(K) , generate a subspace of
codimension 1 in Mn(K) . This subspace is the kernel of the trace function Tr :Mn(K)→ K .

(b) Show that every K-linear form h : Mn (K)→ K with h(AB) = h(BA) for all A,B ∈Mn(K)
is a scalar multiple of the trace function on Mn(K) .

T10.30 Let n ∈N and let K be a field with k 1K 6= 0 for k = 1, . . . ,n .

(a) For every operator f :V →V with Tr f = 0 on a n-dimensional K-vector space V , show that
there exists a basis v1, . . . ,vn of V with v∗i ( f (vi)) = 0, i = 1, . . . ,n . (Hint: By induction on k show
that : there exist linearly independent vectors v1, . . . ,vk and a subspace Wk of V such that

Kv1⊕·· ·⊕Kvk⊕Wk =V and f (vi) ∈∑
j 6=i

Kv j +Wk .

Suppose that k = 1. If every element of V is an eigen-vector of f , then by Exercise 10.3 f is the homothecy
aidV , a ∈ K and it follows that 0 = Tr f = n ·a. Therefore a = 0 and f = 0, in this case the assertion is trivial.
Otherwise, there exists a vector v1 ∈V with f (v1) 6∈Kv1. We extend v1, f (v1) to a basis v1, f (v1),w1, . . . ,wn−2
of V and take W1 the subspace of V generated by f (v1),w1, . . . ,wn−2. With this the required assertion holds.
For the inductive step rom k to k + 1, consider the map p ◦ f |Wk , where p projection onto Wk along
∑

k
j=1 Kv j . Extend v1, . . . ,vk to a basis v1, . . . ,vk,w1, . . . ,wn−k. Then removing the first k rows and first k

columns from the matrix of f with respect to this basis, we obtain the matrix of p◦ f |Wk with respect to
the basis w1, . . . ,wn−k. Since the first k digonal elements of the matrix of f are 0 by construction and since
Tr f = 0, it follows that Tr(p◦ f |Wk) = 0.
If every non-zero element of Wk is an eigen-vector of p◦ f |Wk, then by Exercise 10.3 p◦ f |Wk is a homothecy
a · idWk , a∈K and it follows that 0 = Tr(p◦ f |Wk) = (n−k) ·a and hence a = 0 by hypothesis on K. Therefore
p◦ f |Wk = 0,i. e. f (Wk)⊆Kv1⊕·· ·⊕Kvk. We can take arbitrary non-zero vk+1 ∈Wk and Wk+1 a complement
of Kvk+1 in Wk.
Otherwise there exists vk+1 ∈Wk such that (p ◦ f |Wk)(vk+1) 6∈ Kvk+1 and so f (vk+1) 6∈ Kv1⊕·· ·⊕Kvk⊕
Kvk+1. We extend v1, . . . ,vk,vk+1, f (vk+1) to a basis v1, . . . ,vk,vk+1, f (vk+1),w1, . . . ,wn−k−1 of V and take
Wk+1 the subspace of Wk generated by f (vk+1),w1, . . . ,wn−k−1. With this the required assertion holds.

Now, in the case k = n, Wn = 0 and hence v1, . . . ,vn is a basis of V such that f (v j) = ∑ j 6=i ai jv j, i. e. the
diagonal elements of the matrix of f with respect to this basis are all 0. )

(b) Show that every matrix A ∈Mn(K) with TrA= 0 is a commutator, i.e. is of the form [B ,C] =
BC−CB . (Hint: By part (a) above the matrix A is similar to the matrix A′ whose diagonal entries are
all 0, i. e. there exists an invertible matrix D ∈Mn(K) such that A =DA′D−1. It is enough to show that
there are matrices B,C ∈Mn(K) such that [B,C] = A′. For, then A = DA′D−1 = D(BC−CB)D−1 =
(DBD−1)(DCD−1− (DCD−1)(DBD−1 = [DBD−1 , DCD−1]. Therefore, without loss of generality
assume that all main-diagonal entries of A = (ai j) are 0 . Since #K > n by hypothesis on K, there exists
distinct elements b1, . . . ,bn ∈ K. Then for the diagonal matrix B= Diag(b1, . . . ,bn), and an arbitrary matrix
C= (ci j) ∈Mn(K), we have

b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · 0

 ·


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

−


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

 ·


b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · 0
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=


b1c11 b1c12 · · · b1c1n
b2c21 b2c22 · · · b2c2n

...
...

. . .
...

bncn1 bncn2 · · · bncnn

−


b1c11 b2c12 · · · bnc1n
b1c21 b2c22 · · · bnc2n

...
...

. . .
...

b1cn1 b2cn2 · · · bncnn



=


0 (b1−b2)c12 · · · (b1−bn)c1n

(b2−b1)c21 0 · · · (b2−bn)c2n
...

...
. . .

...
(bn−b1)cn1 bncn2 · · · 0

 .

Now, one can take ci j := ai j/(bi−b j) for i 6= j and cii = 0, so that the equation [B,C] = A holds.)

T10.31 Let V be a finite dimensional K-vector space.
(a) For a projection p of V , show that Tr p=Rank p(= (Rank p)1K) . (Hint : Use Test-Exercise T8.9-
(a).)
(b) Suppose that m ·1K 6= 0 for 1≤ m≤ DimKV . Further, let p1, . . . , pr be projections of V with
p1 + · · ·+ pr = idV . Further, suppose that either CharK = 0 or ∑

r
i=1 Rank pi−Dim KV < CharK ,

if CharK > p. Then show that pi p j = δi j pi for 1≤ i, j≤ r and in particular, V is the direct sum of
the subspaces Im pi , i = 1, . . . ,r . (Hint: Since p1 + cdots+ pr = idV , we have Im p1 + · · ·+ Im pr =V
and hence Dim KV =Tr(idV )=Tr(p1)+ · · ·+Trpr ==Rank p1+ · · ·+Rank pr. Therefore by the assumption
on the characteristic of K, the equality Dim KV = Rank p1 + · · ·+Rank pr also hold in N and hence the sum
V = Im 1⊕·· ·⊕ Im pr is direct. Therefore Im p j ⊆ Ker pi for all i 6= j and hence pi ◦ p j = 0 for all i, j, i 6= j.
Further, pi ◦ pi = pi, since pi is a projection, for all i = 1, . . . ,r. )

(c) Suppose that a finite group G operates on V as the group of K- automorphisms and that
|G| ·1K 6= 0 in K . Then show that

1
|G| ∑

σ∈G
σ

is a projection of V onto FixGV (see also Example 6.E.10) and the equality (in K)

Dim KFixGV =
1
|G| ∑

σ∈G
Trσ .

(Hint: For a fixed τ ∈ G, note that G = {τσ | σ ∈ G}. Therefore for p := 1
#G ∑σ∈G σ , we have

p2 =
1

(#G)2 ∑
σ∈G

σ ∑
τ∈G

τσ =
#G

(#,G)2 ∑
σ∈G

σ =
1

#G ∑
σ∈G

σ = p .

Therefore p is a projection of V . For a x ∈ FixGV , σ(x) = x for all σ ∈ G and hence p(x) =
1

#G ∑
σ∈G

x = x.

Conversely, for y = p(x) ∈ Im p, it is immediate that τ(y) =
1

#G ∑
σ∈G

τσ(x) =
1

#G ∑
σ∈G

σ(x) = p(x) = y for

all τ ∈ G. Therefore Dim K FixGV = Dim K Im p = Rank p = Tr p =
1

#G ∑
σ∈G

Trσ .)

T10.32 ( J a c o b s o n - L e m m a ) Let K be a field and let f ,g be operators on the n-dimensional
K-vector space V with

[
f , [ f ,g]

]
= 0. Suppose that m ·1K 6= 0 for 1≤ m≤ DimKV . Then [ f ,g]

nilpotent. (Hint : The condition
[

f , [ f ,g]
]
= 0 is equivalent with f [ f ,g] = [ f ,g] f and hence f commute

with the powers [ f ,g]n, n ∈ N. It follows that [ f ,g]n = ( f g− g f )[ f ,g]n−1 = f g[ f ,g]n−1− g f [ f ,g]n−1 =

f g[ f ,g]n−1−g[ f ,g]n−1 f =
[

f ,g[ f ,g]n−1
]
. Now, since [ f ,g]n−1 are also commutators, they have trace 0 and

hence [ f ,g] is nilpotent by Exercise 10.5-(a).)

T10.33 Let A be a n× n-matrix over the field K . Suppose that the sum of elements of every
row of A is equal to λ ∈ K . Then show that λ is an eigen-value of A with the eigen-vector
t(1,1, . . . ,1) ∈ Kn. If all the column-sum of A are equal to λ , then λ is an eigen-value of A .
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(Hint: Clearly, A tr(1, . . . ,1) = tr(λ , . . . ,λ ) = λ tr(1, . . . ,1), i. e. λ is an eigen-value of A. – Remark: An
eigen-vector corresponding to this eigen-value is, in general, no so easy to give explicitly.)

T10.34 Let A ∈Mm,n(K) and B ∈Mn,m(K) , m ≥ n. Show that χAB = Xm−nχBA . (Hint: Fill

the matrices A and B with zeroes to get square m×m-matrices. (A 0)
(
B
0

)
= AB and

(
B
0

)
(A 0) =(

BA 0
0 0

)
. Therefore the characteristic polynomial χAB is equal to that of (A 0)

(
B
0

)
and hence the

characteristic polynomial of
(
B
0

)
(A 0) is equal to Det

(
XEn−BA 0

0 XEm−n

)
= Xm−nDet(XEn−BA) =

Xm−nχbA by Exercise 10.7-(b).)

T10.35 (a) Let V be a finite dimensional vector space over a field K and let f ∈EndKV . Further, let
L f : EndKV → EndKV , g 7→ f g (respectively R f : EndKV → EndKV , g 7→ g f be the left-translation
by f . Show that

χL( f ) = χR( f ) =
(
χ f
)n

, TrL( f ) = TrR( f ) = n ·Tr f and DetL( f ) = DetR( f ) = (Det f )n .

( See also Example 11.A.27).

(b) Show that the characteristic polynomial of a complex number z as an element of the R-algebra
C is χz = (X− z)(X− z̄) . In particular, NCRz = zz̄ = |z|2 and TrCRz = z+ z̄ = 2Rez .

T10.36 Let f be an operator on a finite dimensional K-vector space and let P ∈ K[X ] be a
polynomial. Show that P( f ) is invertible if and only if P and µ f (or also P and χ f ) are relatively
prime. (Hint : Let Q := gcd(P,µ f ). If Q = 1, then SP+T µ f = 1 for some polynomials S,T ∈ K[X ] and
hence id = S( f )P( f )+T ( f )µ f ( f ) = S( f )P( f ), i. e. P( f ) is invertible with inverse S( f ). Conversely, if
Q 6= 1, then µ f = R ·Q, P = P′ ·Q with R,P′ ∈ K[X ] and degR < deg µ f and hence R( f ) 6= 0 and Q( f ) 6= 0,
but 0 = µ f ( f ) = R( f )◦Q( f ) = Q( f )◦R( f ). Therefore Q( f ) is not injective and hence P( f ) = P′( f )◦Q( f )
is also not injective. In particular, P( f ) is not invertible.)

T10.37 Let K be a field.

(a) Let P and Q be monic polynomials over the field K . Suppose that degP = n , Q is a divisor
of P and moreover that P and Q have the same prime factors in K[X ]. Then show that on every
n-dimensional K-vector space V there exists an operator f ∈ EndKV with characteristic polynomial
χ f = P and minimal polynomial µ f = Q .

(b) Let S and S′ be subsets of K with S⊆ S′. Show that there exists a K-linear operator f : V →V
on a K-vector space V such that e-Spec f = S and Spec f = S′. (Hint : For each a ∈ K, let ga =−λa

and ha := λX−a be operators on the K-vector space K[[X ]]. Then e-Specga = {a}= Specga, e-Specha = /0
and Specha = {a}, see Test-Exercise T10.19-(c). Let g := (⊕a∈Sga) : K(S)→ K(S) and h := (⊕a∈S′\Sha) :
K(S′\S)→ K(S′\S) be the direct sum of operators ga, a ∈ S and ha, a ∈ S′ \S respectively. Now it is easy to
check that the operator f := g⊕h have the required properties. See Test-Exercise T10.19 also. )

T10.38 Show that an operator f on a R-vector space has exactly one real eigen-value if and only
if f 2 has an eigen-value ≥ 0. (Hint : f 2−a2id = ( f −a id)( f +a id) .)

T10.39 Let f be a C-linear operator on the finite dimensional C-vector space V , which we
consider as R-vector space. Then show that f is also R-linear and

χ f ,R = χ f ,C ·χ f ,C . (for a polynomial P = ∑aiX i ∈ C[X ] , we put P := ∑aiX i )

Further, for the minimal polynomials show that µ f ,R = LCM
(
µ f ,C , µ f ,C

)
.

T10.40 Let A= (ai j) ∈Mn(K) be a n×n-matrix over the field K. Then

(a) Let X1, . . . ,Xn be indeterminates over K. For 1≤ i1 < · · ·< ir ≤ n , show that the coefficient of
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Xi1 · · ·Xir in the polynomial ∣∣∣∣∣∣∣
a11 +X1 · · · a1n

... . . . ...
an1 · · · ann +Xn

∣∣∣∣∣∣∣ ∈ K[X1, . . . ,Xn]

is equal to the diagonal minor of A obtained by removing the rows and columns numbered by
i1, . . . , ir . (Hint : Expand the determinant successively using the rows i1, . . . , ir .)
(b) For r = 1, . . . ,n , show that the coefficient ar of X r in the characteristic polynomial χA of A
is (−1)n−r-times the sum of the diagonal minors of the order n− r of A .

T10.41 Let K ⊆ L be a field extension and let A ∈Mn(K) ⊆Mn(L) be a matrix with an eigen-
value λ ∈ L−K . Then there exists an eigen-vector x 6= 0 in Ln of A , i. e. Ax= λ x ; but there is no
eigen-vector in Kn, i. e. Kn∩Ker ,(λEn−A) = 0.

T10.42 ( J a c o b i ’ s M a t r i x ) For k = 0, . . . ,n , let

Dk :=



a1 b1 0 · · · 0 0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · ak−1 bk−1
0 0 0 · · · ck−1 ak

 ∈Mk(K)

and let Dk := Det(Dk) (see exercise (13.30)). Put χk := χDk . Show that
(a) χ0 = 1 , χ1 = X−a1 , χk = (X−ak)χk−1−bk−1ck−1χk−2 for all k = 2, . . . ,n .
(b) If K =R and bkck > 0 for all k = 1, . . . ,n , then χn has n-distinct real roots and the number
of positive roots of χn is the number of changes in the sign of the sequence 1,−D1, . . . ,(−1)nDn .

T10.43 Let A= (ai j)1≤i, j≤n ∈Mn(K) . Show that

χA = Xn− s1Xn−1 + s2Xn−2−·· ·+(−1)nsn,

where sk is the sum of
(n

k

)
minors Det (A(i1, i2, . . . , ik)) , 1≤ i1 < i2 < · · ·< ik ≤ n .

T10.44 Let a,b,c ∈ C with bc 6= 0 and let

Tn :=



a b 0 · · · 0 0
c a b · · · 0 0
0 c a · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · a b
0 0 0 · · · c a

 ∈Mk(K) , for k = 0, . . . ,n .

Show that

(a) λk = a+2
√

bc cos
(

πk
n+1

)
, k = 1, . . . ,n are eigen-values of Tn .

(b) For k = 1, . . . ,n , the vector with i-th components
(√

c
b

)i−1

sin
(

πk
n+1

)
i = 1, . . . ,n, is an

eigen-vector corresponding to the eigen-value λk . (Hint : We may assume that a = 0. Let µ ∈ C
with µ2 6= bc and let Tn(µ) := Det(µEn−Tn) . Then show that T0(µ) = 1,T1(µ) = µ and Tk+2(µ) =

µTk+1(µ)−bcTk(µ) for all k ≥ 0. Therefore by Test-Exercise T10.42 Tn(µ) =
(µn+1

1 −µ
n+1
2 )

(µ1−µ2)
where µ1

and µ2 are distinct roots of the quadratic X2−µX +bc . Now, determine µ so that µ
n+1
1 = µ

n+1
2 .)
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T10.45 Let V be a n-dimensional vector space over a field K and let f ∈ EndK(V ) .
(a) If Char(K) = p > 0 then, show that χ f p(X p) =

(
χ f
)p . In particular, Tr( f p) = (Tr( f ))p .

(Hint : For A ∈Mn(A) we have (XEn−A)p = X pEn−Ap . — This is a special case of the following more
general exercise in part (b) below. )
(b) For r ∈N+, prove that

χ f r(X r) = (−1)n(r−1)
r

∏
i=1

χ f (ζiX) ,

where ζi , i = 1, . . .r are the r-th roots of unity, i.e. X r−1 = ∏
r
i=1(X−ζi) . Deduce that χ f 2(X2) =

(−1)nχ f (X)χ f (−X) .

T10.46 Let A ∈Mn(K) and let χA = Xn +an−1Xn−1 + · · ·+a1X +a0 . Show that
(a) Adj(A) = (−1)n+1(An−1 +an−1A

n−2 + · · ·+a1En).

(b) χAdj(A) = Xn +(−1)n
∑

n
i=1 ai (Det(A))i−1 Xn−i, where an := 1.

T10.47 Let I be a finite indexed set. Let R := K[Xi j | i, j ∈ I] (respectively, Q := K(Xi j | i, j ∈ I})
be a polynomial algebra (respectively the field of rational functions) over a field K and let A =(
Xi j
)
∈MI(Q). Then the characteristic polynomial χA ∈ R[X ] is a prime polynomial in R[X ].

T10.48 Let f ,g be operators on a finite dimensional K-vector space V such that χ f = χg. Then
show that χP( f ) = χP(g) for every polynomial P ∈ K[X ]. (Hint : It is enough to show that: if A ∈Mn(K)

and if B is the companion matric of the polynomial χA, then χP(A) = χP(B) for all P ∈ K[X ]. For this
we may take R := K[Xi j,Yk | i, j ∈ I,k = 0, . . . ,m] (respectively, Q := K(Xi j,Yk | i, j ∈ I,k = 0, . . . ,m}) the
polynomial algebra (respectively the field of rational functions) over K, A := (Xi j) ∈ MI(Q) and P =

Y0 +Y1X + · · ·+YmXm. Now A is similar to the companion matrix of A by Test-Exercises T10.?? and
T10.??.)
T10.49 Let A ∈Mn(K). Show that the following equality holds in the field of rational functions
K(X) over K:

Tr((XEn−A)) =
χ ′A
χA

, where χ
′
A =

d
dX

χA .

∗∗∗∗T10.50 (S h i f t o p e r a t o r o n t h e s p a c e o f s e q u e n c e s) On the K-vector
space KN of the sequences with values in a field K, let

s : KN→ KN F 7→ s(F) := F− : n 7→ F(n+1) ,

denote the (l e f t) s h i f t o p e r a t o r.
(a) (S e q u e n c e s w i t h l i n e a r r e c u r s i o n e q u a t i o n s) For a polynomial P =
a0+a1X + · · ·+anXm ∈ K[X ], show that the kernel of the linear operator P(s) : KN→ KN , F 7→
P(s)(F) is:

Ker P(s) = {F ∈ KN | a0F(n)+a1F(n+1)+ · · ·+anF(n+m) = 0 for all n ∈N} .
We shall say that the sequences in Ker P(s) satisfy the (l i n e a r) r e c u r s i o n e q u a t i o n
c o r r e s p o n d i n g t o t h e ( r e c u r s i o n) p o l y n o m i a l P.
1) Let P ∈ K[X ] be a monic polynomial of degree m. The operator P(s) : KN→ KN is surjective
and the map KerP(s)→ Km , F 7→ (F(n))0≤n<m is an isomorphism of K-vector spaces.
In particular, Dim K KerP(s) = m = degP. Moreover, the sequences F0,F1, . . . ,Fm−1 ∈ KerP(s) is
a K-basis of KerP(s) if and only if the C a s o r a t i ’ s d e t e r m i n a n t

C(F0,F1, . . . ,Fm−1) :=

∣∣∣∣∣∣∣∣
F0(0) F1(0) · · · Fm−1(0)
F0(1) F1(1) · · · Fm−1(1)

...
... . . . ...

F0(m−1) F1(m−1) · · · Fm−1(m−1)

∣∣∣∣∣∣∣∣
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of F0,F1, . . . ,Fm−1 is non-zero.

2) Let P = a0 + a1X + · · ·+ am−1Xm−1 +Xm ∈ K[X ] be a monic polynomial of degree m. A
sequence F ∈ KerP(s) is a cyclic element (see Exercise 10.8-(d)) for the restriction operator
s�KerP(s) : KerP(s)→ KerP(s) if and only if the H a n k e l ’ s d e t e r m i n a t

H(0)
m (F) :=

∣∣∣∣∣∣∣∣
F(0) F(1) · · · F(m−1)
F(1) F(2) · · · F(m)

...
... . . . ...

F(m−1) F(m) · · · F(2m−2)

∣∣∣∣∣∣∣∣
of F is non-zero.

(b) (G e o m e t r i c s e q u e n c e s) Let a ∈ K and let P := (X−a)m ∈ K[X ], m ∈N+. Consider
the operator ∆a := s−a · id : KN→ KN on KN. Then P(s) = ∆m

a .

1) Show that the sequences((
n
i

)
an−i

)
n∈N

, i = 0, . . . ,m−1 , (we put

(
n
i

)
an−i = 0 for n < i)

form a basis of the kernel Ker∆m
a . (Hint: The elements (x− a)i, i = 0, . . . ,m− 1, form a K-basis of

the K-vector (quotient) space K[x] := K[X ]/K[X ]P. – Remark: If a = 1, then Ker∆m
a is the arithmetic

sequences of degree < m. For arbitrary a, these sequences are called the g e o m e t r i c s e q u e n c e s
o f d e g r e e < m w i t h t h e q u o t i e n t s a. )

2) If Q := ∑
m−1
i=0 diX i ∈ K[X ] is a polynomial of degree < m, then show that F = (Q(n)an)n∈N is a

geometric sequence of degree < m with the quotients a and ∆m−1
a F = (m−1)!am−1dm−1F0, where

F0 is the standard geometric sequence (an)n∈N with the quotients a.

3) If a 6= 0 and Q⊆ K (equivalently, CharK = 0), then the sequences(
nian)

n∈N , i = 1, . . . ,m−1 ,

form a basis of the K-vector space of the geometric sequences of degree < m with the quotients a.

4) If F ∈ KN is a geometric sequence of degree < m with the quotients a, then the Hankel’s
determinant H(0)

m (F) = (−1)(
m
2)
(
∆m−1

a F(0)
)m. In particular, if Q = ∑

m−1
i=0 diX i ∈ K[X ], then∣∣∣∣∣∣∣∣

Q(0) Q(1) · · · Q(m−1)
Q(1) Q(2) · · · Q(m)

...
... . . . ...

Q(m−1) Q(m) · · · Q(2m−2)

∣∣∣∣∣∣∣∣= (−1)(
m
2) ((m−1)!)m dm

m−1 .

(c) Let F ∈KN and let 0 6= P∈K[X ]. If F satisfy a recursion equation P(s)F = 0, then the minimal
polynomial µF of F is also called the m i n i m a l r e c u r s i o n p o l y n o m i a l o f F .

1) If P(s)F = 0 and P ∈ K[X ] is a monic polynomial of degree m, then P = µF if and only if the
Hankel’s determinnat H(0)

m (F) 6= 0. Moreover, in this case siF , i = 0, . . . ,m−1, is a K-basis of the
space of all sequences G ∈ KN which satisfy the recursion equation P(s)G = 0.

2) For a ∈ K, the (X − a)-primary component V(a; s) := ∪r∈NVr
f (a) of s, (where Vr

f (a) :=
Ker( f − a · idV )

r), is the space of geometric sequences with the quotients a, see the part (b).
The space V r(a,s), r ∈N, is the space of geometric sequences of degree < r with the quotients a.
If CharK = 0 and a 6= 0, then it has the basis((

n
i

)
an−i

)
n∈N

, i = 0, . . . ,r−1 .
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Moreover,
(
nian)

n∈N, i = 0, . . . ,r−1 is also a basis. If P = (X−a1)
ν1 · · ·(X−ar)

νr with pairwise
distinct a1, . . . ,ar ∈K, then the space of sequences F which satisfy the recursion equation P(s)(F) =
0 is the direct sum Vν1(a1; s)⊕·· ·⊕Vνr(ar; s).
3) Let P := (X−a1) · · ·(X−ar) with pairwise distinct a1, . . . ,ar ∈ K and

∏
i=1,i6= j

X−ai

a j−ai
=

a
(X−a j)

· 1
P′(a j)

=
r−1

∑
i=0

ai jX i , j = 1, . . .r , ai j ∈ K .

If F ∈ KN satisfy the recursion equation P(s)F = 0 and the initial conditions F(n) = cn, n =
0, . . . ,r−1, then the matrix-equation

F(n) = (c0, . . . ,cr−1) ·


a01 a11 · · ·a0,r−1
a11 a12 · · ·a1,r−1

...
... . . . ...

ar−1,1 ar−1,1 · · ·ar−1,r−1

 ·
an

1
...

an
r


4) If P ∈ K[X ] be a monic quadratic polynomial with distinct zeros a1,a2, then for a sequence
F ∈ KN with P(s)F = 0 and F(0) = c0, F(1) = c1, we have

F(n) =
1

a2−a1
((c0a2− c1)an

1 +(−c0a1 + c1)an
2) , n ∈N .

If P has a double zero a, then

F(n) = c0an +(−c1− c0a)nan−1 , n ∈N .

For the Fibonacci sequence ( fn) ∈RN with f0 = f1 = 1 and fn+2 = fn+1 + fn, n ∈N, we have the
B i n e t ’ s f o r m u l a:

fn =
1√
5

(1+
√

5
2

)n+1

−

(
1−
√

5
2

)n+1
 , n ∈N .

(d) For a sequence F ∈ KN, show that the following statements are equivalent:
(i) The sequence F satisfy a linear recursion equation P(s)F = 0, where P ∈ K[X ], P 6= 0.
(ii) There exists a r ∈N such that all Hankel’s determinants H(k)

r+1(F) = 0 for all k ∈N, where for
k,m ∈N, we put

H(k)
m (F) := H(0)

m (sk F) = C(skF,sk+1F, . . . ,sk+m−1F)

=

∣∣∣∣∣∣∣∣
F(k) F(k+1) · · · F(k+m−1)

F(k+1) F(k+2) · · · F(k+m)
...

... . . . ...
F(k+m−1) F(k+m) · · · F(k+2m−2)

∣∣∣∣∣∣∣∣ .
– Suppose that these conditions are satisfied, then: if m ∈N is the smallest natural number with
H(k)

m+1(F) = 0 for all k ∈ N, then m is the degree of the minimal recursion polynomial PF of F

and H(0)
m (F) 6= 0. (Hint : For a proof of the implication (ii)⇒(i) first show that: for a symmetric matrix

A ∈Mn+1(K) with Det A= 0, if the cofactor of A at the position (n+1,n+1) is 0, then the cofactor of A at
the position (n+1,1) is also 0. Further, we may assume that all Hankel’s determinants H(k)

r (F), k ∈N, are
0.)

(e) (P e r i o d i c s e q u e n c e s) A sequence F ∈ KN is called p e r i o d i c if there exist a
s ∈N+ and r ∈N such that F(n+ s) = F(n) for all n≥ r. If r = 0, then we say that F is s t r o n g-
p e r i o d i c with p e r i o d-l e n g t h s. For a strong-periodic sequence F , if s0 is the smallest
(positive) period-length, then all other period-lengths are multiples of s0.
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1) A sequence F ∈ KN is periodic (resectively strong-periodic) if and only if it satisfies a recursion
equation P(s)F = 0 for some polynomial P = X r(X s−1), r ∈N, s ∈N+ (respectively P = X s−1,
s ∈N+).
2) A sequence F ∈ KN is strong-periodic if and only if the minimal recursion polynomial µF of F
has the following property: The residue class x of X in the residue algebra K[X ]/K[X ]µF = K[x] is
a unit and its order in the unit group K[x]× is positive. Moreover, in this case the order Ordx is the
smallest positive period length of F .
3) Let K = Fq be a finite field with q ∈N+ elements. Every sequence F ∈ FNq which satisfies a
recursion equation P(s)F = 0 with ∈ Fq[X ], P 6= 0, is periodic and moreover, strong-periodic if
P(0) 6= 0. If µF(0) 6= 0 and deg µF = m, then the minimal positive period length ≥ qm−1 and is
exactly = qm−1 if and only if µF is a primitive prime polynomial.7 For example, X15 +X +1 is
a primitive prime polynomial over F2. A strong-periodic 0−1-sequence F of the minimal period
length 215− 1 is defined by F(n+ 2) = F(n)+F(n+ 1), n ∈ N and arbitrary initial conditions
F(0),F(1), . . . ,F(14) ∈ F2.
4) Consider the Fibonacci sequence ( fn) with f0 = f1 = 1 and fn+2 = fn+1+ fn. modulo the prime
numbers 11 and 13. Determine their minimal period lengths.

(f) (F o r m u l a o f B e r n o u l l i) If F ∈ CN is a sequence with minimal recursion polynomial
µF , then show that F(n) 6= 0 for large enough n and

lim
n→∞

F(n+1)
F(n)

= a ,

where a ∈ C is the dominante zero 8 of µ . (For example, if a sequence F ∈ CN satisfies the initial
conditions F(0) = · · ·= F(m−2) = 0, F(m−1) = 1 and the equation P(s)F = 0, then µF = P. In reasonable
cases, the quotients F(n+1)/F(n) give a very fast converging approximation of a. One can easily test this
in the case P := X2−2X− (a−1), a ∈R+ or for P := Xm−X−1, m≥ 2.)

7A monic prime polynomial π ∈ Fq[X ] is called a p r i m i t i v e p r i m e p o l y n o m i a l if the residue class
x of X in the residue field L := Fq[X ]/Fq[X ]π is a generating element of the (cyclic) multiplicative group L× of L.
There are exactly 1

n ϕ(qn−1) primitive polynomials of degree n in Fq[X ], where ϕ is the Euler’s totient function. The
primitive polynomials over F2 of degree ≤ 4 are:X = 1, X2 +X +1, X3 +X +1, X3 +X2 +1, X4 +X +1, X4 +X3 +1.
Determine primitive prime polynomials over another finite fields!

8We say that a monic polynomial P of degree m≥ 1 has the d o m i n a n t e z e r o a ∈ C if a 6= 0, P(a) = 0 and
‖b|< |a| for every zero b of P with b 6= a.
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