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10. Eigen-values, Characteristic Polynomials, Minimal Polynomials

Submit a solution of any one of the x-Exercise ONLY
Due Date : Wednesday, 30-11-2011 (Before the Class)
e Solution of the xx-Exercise (Exercise 10.8) carries 10 Bonus Points.
ee Solution of the * x x-Exercise (Exercise 10.10)) carries 20 Bonus Points!
e e ¢ Highly recommended x x xx-Exercise (Test-Exercise T10.50)) for many applications!

*10.1 Let V:=K® andlet 7 € R be a positive real number. Let fr : V — V be the linear operator
defined by fr(x)(t) :=x(t+T) forx V.
(a) Show that O is neither a spectral value nor an eigen value for f7 and the eigen-space of fr at
1is Vi, (1) = Vper,7 := {x € V | x is periodic with period T} .

(b) Let IK =C. Show thatevery A € C* is an eigen-value of fr with eigen function exp

ln;l)t)

where, if A is a negative real number then we put In(A4) :=In(|A|) +i7 and the eigen-space of fr
. In(1)
at A is exp T t ) Voer,T-

(¢) Let IK =IR. Show that every positive real number A is an eigen-value of f7 and the eigen-space
of fr at A s ;Lt/TVperﬁT.

(d) Let K =R. The eigen-space of fr at the eigen-value —1 is called the half periodic
functions and is usually denoted by Viper, 7. Show that

(1) Every half periodic function is period with period 27

(i1) Vhper,r = cos (%) Vper,T + sin (ﬂ%) Voer, T -

(iii) For a positive real number A, the eigen-space of fr at —A is Vp,(—A) = A’ / TVhpenT.

(e) Eigen-function corresponding to an eigen-value A # 1 are called periodic functions
of second kind with multiplicator A. Show thatif A is a n-th root of unity then every

eigen-function of second kind with multiplicator A is periodic with period nT . (Remark : The same
assertions (a) to (e) hold for the restriction of vr to the subspaces Ck (R), k € NU {0, @}.)

10.2 Let A € M, (K), n > 2 be a nilpotent matrix.

(a) If A"~! £ 0, then there does not exists any matrix B € M,, (K) with B2 = 9.

(b) The following statements are equivalent: (1) Uy = Yo (=X my ., (2) At #0. (3) Rank 2 =
n—1. (4) There exists a r € K" such that A'r, i =0,...,n— 1 is a basis of K". (Hint : Prove the
implication (3) = (2) by induction on n.)

10.3 Let f:V — V be an operator on the K-vector space V. The following statements are equivalent:
(1) f is a homothecy. (2) Every subspace of V is f-invariant. (3) Every vector 0 in V is an
eigen-vector of f.
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10.4 Let 2l and *B be two n x n-matrices over the field K, assume that one of them is invertible. Then
there exists atmost z distinct elements a € K such that the matrix a2( + ‘B is not invertible. (Hint :
Suppose that 2 is invertible, then Det2 # 0. Now, since Det (a2l +B) = Det (a®, + BA") - Det (2A) =
A_sa1 (@) - Det (A), only for at most n eigen-values a of —BA~!, Det (a + B) = 0.

Now suppose that B is invertible, then a2l + B is invertible for a = 0 and for a # 0, a2+ B is not
invertible only for the n eigen-values of —AB~!, since Det (a2 +B) = Det (AB ' +a~'¢,) -Det (B) =
a X_yp-i(a") Det(B).)

*10.5 Let n € N and let K be a field with k- 1x #0 forall k=1,...,n.

(a) Anoperator f on the n-dimensional K-vector space V is nilpotent if and only if Tr f = Tr f> =
e =Trf"=0. (Hint : If f is nilpotent, then so are f2, f3, ..., f" and hence the characteristic
polynomials x; = X", in particular, Tr fi=0foralli=1,...,n. Prove the converse by induction on .
Since Tr(f") =0 for all i = 1,...,n, by Cayley-Hamilton Theorem 0 = x/(f) = f* — (Tr(f))f* '+ +
(—1)"Detidy and hence applying the trace map, we get 0 = Tr(x/(f)) = Tr(f") — (Tr(f))Tr(f* ) +---+

(—=1)"Det Tr(idy ) = (1)"nDet (f). It follows that Det f = 0 and hence f is not injective and DimgV < n =
Dim gV, where V :=V /Ker f. Now use Test-Exercise T10.24 and apply induction.)

(b) Suppose that ay,...,a, are elements in K with
al+---+a,=0.
Then a; =--- =a, =0. (Hint : Let f: K" — K" be the linear map defined by the diagonal matrix

Diag(ay,...,a,) (with respect to the standard basis ej,...,e, of K"). Then for every k = 1,...,n, the
matrix of f¥ (with respect to the standard basis) is the diagonal matrix Diag (a’l‘ ,...,a’) and by hypothesis
Tr(f) = Tr(f?) =--- =Tr(f") = 0. Now apply the part (a) above, to conclude that 2 is nilpotent. — Remark:
The parts (a) and (b) are equivalent: There exists (by Kronecker’s Theorerrﬂ) a field extension K C L such
that the characteristic polynomial xy of f splits into liner factors s = (X —ay)--- (X —ay,) in L[X]. Then

the trace Tr(f*) = ak +--- +ak, see Example 11.B.13.)

10.6 Find the characteristic polynomial of the following matrices :

a 0 0 0 0 b
0 a 0 O by O
0 0 a, by 0 0
@ a=|g o o 0 o | eMu).
0 by - 0 0 - a O
by 0 - 0 0 --- 0 a

(Ans : xo =TIi— (X —ax —br)(X —ax +by).) (Hint : See Test-Exercise T9.55-(c).)

a b, -+ b,
¢ 0 -+ 0

b) A:=1. . . .| eM(K). (Ans : yo = X"—aX" ' — (Li_,brck) X" 2 n>2)
¢, 0 -+ 0

'Kronecker’s Theorem Let K be a field and let P € K[X] be a non-zero polynomial. Then there exists a field
extension K C L such that P factores into linear factors in L[X]. Moreover, one can also choose L such that L has finite
dimension over K (as an K-algebra).
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010 0 0O

1 1 - 00O

010 - 00O
© Fue=|: : - i il eM(R).

000 - 010

000 -+ 101

000 - 01P0
(Ans : 2"U,(X/2), where U, is the n-th Tchebychev polynomial of second kind (see Test-Exercise T9.53-
(¢)) In particular, A4 :=2cos (kr/(n+1)), k=1,...,n are eigen-value s of §,. The vector with components
sin(kmwi/(n+1)), i=1,...,n is an eigen-vector corresponding to A .)

10.7 Let f and g be operators on the K-vector space V.

(a) Ifeither fg or gf isalgebraic, then both fg and gf are algebraic and the minimal polynomials
of fg and gf are either equal or differ by the factor X. Moreover, if either f or g is invertible,
then pse = Uer. Give examples of operators f and g on K? such that MUro 7 Ugr-

(b) Suppose that V' is finite dimensional. Then Y, = X¢r. (Hint : Use Exercise 8.4-(b) to assume
that either f is invertible or f is a projection.)

**10.8 Let f be an operator on the K-vector space V and let x € V. Then show that

@ Vy:=Y,,en Kf™(x) is the smallest f-invariant subspace of V which contain x. (Remark : The
subspace V, is called the f-cyclic subspace generated by x.)

(b) V; is finite dimensional if and only if there exists a monic polynomial P € K[X]| such that
P(f)(x) = 0. Moreover, in this case, if P, is the monic polynomial of the smallest degree with
P:(f)(x) =0, then P, is the minimal polynomial and the characteristic polynomial of f|V;. (Re-
mark : This polynomial P, is called the f-annihilator of x and denoted by anns(x). With this
Deganny(x) = DimgV,. )

(¢) If V is finite dimensional and x,...,x, is a generating system for V', then s is equal to
LCM (Py,,..., P, ). (Hint : It is enough to prove the equality V = Yp—1 Vi, » see Test-Exercise T10.14.)

(d) Suppose that V is finite dimensional. Then the following statements are equivalent :

(1) Vy, =V forsome xp€V.

(ii) There exists a K-basis v = {vy,...,v,} of V such that the matrix of f with respect to the basis
v is of the form

00 0 —aqag
1 0 0 —daj
Ap:=|: + . : € M, (K)
00 0 —a,
00 1 —a,

(iii) 2r = My -

(Remark : If any one of the above equivalent statements hold, then the operator f is called a cyclic
operator and the element xp is calleda cyclic element for f. The matrix 2p is called the
companion matrix of the polynomial P.)

(e) If x has only simple prime factors, then f is cyclic. (Hint : In this case y; = us by 11.A.14.)

10.9 Let V be a finite dimensional K-vector space of dimension 7.

(a) Let f and g be invertible operators on V. Then all operators A f — ug, (A,u) € K> —{(0,0)}
are invertible if and only if the characteristic polynomial -1, of f ~l¢ has no zeroes, i.e. f~!g
has no eigen-value.
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(b) Let ®: V xV — V be bilinear. If K is algebraically closed and n > 2, then & has a zero
divisor, i.e. there exist x,y € V with x # 0 # y and ®(x,y) =0.If K =R and n is odd and > 3,
then @ has a zero divisor. (Hint : For x € V consider the operators f,: y — ®(x,y) on V. — A deep
theorem states that if K =R and n#0,1,2,4,8, then ® has a zero divisor.)

©*10.10 Let A € K be an eigen-value of the matrix 2l = (a;;) € M, (KK). Then |4 —a;;| <Y 4 |aij|
for at least one i € {1,...,n} and also [A —a;;| < Y,.;|a;;| foratleastone j € {1,...,n}.

(a) In particular, (Gershgorin circle theore nﬂ): the (eigen) spectrum Spec 2l is
contained in the union U!_ Dy (21) of the closed discs D;(2) := B(aii,R;) centered at a;; and
radius R; =Y jila;j|, i=1,...,n. The closed discs D;(2l), i =1,...,n, are called the Ger-
shgorin discs. — For a diagonal matrix ©, the union of the Gershgorin discs U?_D;(D)

coincides with the spectrum Spec ©, and conversely. (Use Exercise 4.2, see also Exercise 9.7. —
Remark: The Gershgorin circle theorem is useful in solving matrix equations of the form [y = b for ¢,
where b is a vector and 2{ is a matrix with a large condition number.)

(b) In general Gershgorin circle theorem in the part (a) can be strengthened as follows:

If the union D() := D;, U---UD;, of k Gershgorin-discs is disjoint from the union D'(2) :=
Uie{1,.nW\fir,....ix} Di Of the other n — k Gershgorin-discs then D(21) contains exactly k and D'(2)
n — k eigen-values of 2. (Hint: The assertion is obviously true for diagonal matrices. For a proof consider
B(t):=(1—1)D+1, t €0, 1], where © :=Diag(ayy,...,dn,). Note that the hypothesis D(2() ND'(2() =0,
yields D(B(7)) ND'(B(z)) = 0 for all # > 0, since the centers of the Gershgorin discs of B(¢) are same
as those of 2 and the radii are 7 times those of 2. Let d(z) :=d(D(B(z)),D'(B(r))) denote the distance
between D(B(¢)) and D'(B(z)). Then d(0) =d(D) > d(t) > d(A) = d(1) > 0 (since the discs are closed
and the function 7 — d(t) is decreasing). Since the eigen-values of 2(¢) are continuous functions of ¢
(this is proved below), for any eigen-value A(r) of B(r) in D(B(¢)), its distance 6(¢) := d(A(r),D'(¢))
is also continuous. Obviously 6(z) > d(r) > d(1) > 0 for all ¢ € [0,1] and in particular, 6(0) > d(1) > 0.
Note that since the assertion is obviously true for the diagonal matrices, there are exactly k eigen-values
A1(0),...,4(0) of © in D(®). We shall use this and the continuity of the function ,d to show that the
eigen-values A;(1),...,A4(1) of 2 arein D(®). For this we fix i € {1,...,k} and put A(¢) := A;(¢). Suppose
on the contrary that A(1) € D'(A) =D/(B(1)). Then §(1) =0, and hence 6(0) > d(0) >d(1) >0=35(1).
Therefore by Intermediate value Theorem (see Footnote 4 on Page 4 of Exercise Set 9) there exists a
to € (0,1) such that §(79) =d(1). But, then 0(ty) =d(1) <d(tp) < 6(tp), which is impossible. This proves
the assertion.

Now we shall indicate the proof of the assertion: The zeros of a monic complex polynomial are continuous
functions of its coefficients, which is used in the above proof. More precisely:

Lemma Let A be a zero of the polynomial X" +a, 1 X"~ +---+ag € C[X] of multiplicity m. Further, let
€ > 0 be given. Then there exists a 8 > 0 such that all polynomials X" +b, X"~ +---+ by € C[X] with
|bi—a;| <8 for i=0,...,n—1 have at least m, zeroes in the (open) disc B(A ;€), every zero is counted
with its multiplicity.

Proof. We consider the continuous map ®: C" — C”", which maps every n-tuple of complex numbers
(A1,...,Ay) to the n-tuple (ay,...,a,—1) of the coefficients (other than the leading coefficient) of the poly-
nomial (X —A;)---(X —A,). Then @ is surjective by the Fundamental Theorem of Algebmﬂ and the fibre
of ® passing through the n-tuple (A1,...,4,) is the set of all n-tuples o (A,...,4;) = (Ag-11,--+sA5-1,)
0 € S,,. Further, if A C C" is a closed subset, then its image ®(A) is also closed subset. For, if ®(x),

21t was first published by the Belarusian mathematician Semyon Aranovich Gershgorin (1901-
1933) in 1931, see [Gerschgorin, S. Uber die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd.
Fiz.-Mat. Nauk,7 (1931), 749-754]. He studied at Petrograd Technological Institute from 1923, becoming Professor in
1930, and from 1930 he worked in the Leningrad Mechanical Engineering Institute on algebra, theory of functions of
complex variables, numerical methods and differential equations.

3 Fundamental Theorem of Algebra (d’Alembert - Gauss) Every non-constant polynomial f € C[X]
hasazeroin C. — Jean d’Alembert (1717-1783) was a a French mathematician who was a pioneer in the study
of differential equations and their use of in physics. He studied the equilibrium and motion of fluids. - Johann
Carl Friedrich Gauss (1777-1855) was a German mathematician who worked in a wide variety of fields in
both mathematics and physics including number theory, analysis, differential geometry, geodesy, magnetism, astronomy
and optics. His work has had an immense influence in many areas.
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v e, x, €A, is a convergent sequence in ®(A), then x, € A, is a bounded sequence by the Exerciscﬁ and
hence by the Bolzano-Weierstrass Theorerrﬂ Xy, vV € N, has a convergent subsequence. We may therefore
assume that x,, v € IN, is already convergent. Then, if x := limx, € A, then ®(x) = lim®(x,) € P(A).
Therefore it follows that: If U C C" open, then its image ®(U) is also open. The complement of ®(U) in C"
is ®(C" — Ugee, 0(U)) and hence it is closed by the above proof.

Let X"+a, 1 X" '+---+ao=(X—A)---(X—A,) and € > 0 be given. Then ®(B(A;;€) x ---xB(4,;¢€))
is an open neighbourhood of (ag, . . .,a,_1), which contains a product B(ag;8) x --- X B(a,_1;8) of discs
with 0 > 0. This proves the assertion. °)

Below one can see auxiliary results and (simple) Test-Exercises.

Auxiliary Results/Test-Exercises

To understand and appreciate the Test-Exercises which are marked with the symbol | one
may possibly require more mathematical maturity than one has! These are steps towards ap-
plications to various other branches of mathematics, especially to Analysis, Number Theory,
Graph Theory, Group Theory and Affine and Projective Geometry.

T10.1 Let n € N and let V := K[t],. For the linear operators D :=d/dt :V — V defined by
P+ P :=d/dt(P) and f:V —V defined by P+ P(r+1) compute the characteristic polynomial,
minimal polynomial, eigen-values and eigen-spaces. (Ans: xp =X" = up and xr = (X —1)" = ;.
— Hint: The matrix 21 = 9t{(D) (respectively B = 9i(f)) of the operator D (respectively f) with respect to
the basis t := (1,¢,...,""!) of V = K[t], are

o1 0 --- 0O 0 - 0 0
002 00 0 - 0 0 111 Rk 1 1
000 --- 00 0 -0 0 12 J—=1 n—1
i i i.l
w000 o0 0 o0 0| o [000 (i) () 0
T O 0 0 s O O l+l R 0 0 T 0 O O 1 (l-‘rl) 0
00 0 00 0 0 0 R
o : : 000 - 0 0 ne1
o0 o0 --- 00 0 - 0 0

Therefore yp= Det(X €& —2() = X" and e-Spec (D) = Zik (xp)={0}. Further, since degP’ = degP—1 for
every non-constant P € IK[t],. It follows that the eigen-space Vp(0) = KerD = KK (=the space of constant
polynomials) and since D"~!(#"~!) = (n — 1)! # 0. Therefore D"~! # 0 and hence up = X" = xp, since Lp
divides xp.

Further, y;= Det (X&—B) = (X —1)", e-Spec (D) = Zi (xr)={1} and since (t+ 1)/ —t/ = jt/ 1 ... we
have deg(f —id)(P) = deg(P(t+ 1) — P(t)) = deg P(t)—1 for every non-constant P € I{[t],. It follows that
the eigen-space V(1) = Ker (f —id) = K (=the space of constant polynomials) and since (f —id)" ! (#""!) =
(n—1)! % 0. Therefore (f —id)"~! # 0 and hence py = (X — 1)" = yxy, since ps divides x.)

T10.2 Let D be the differentiation operator f — f’ on the vector space Cf;(R) of infinitely many

times differentiable IK-valued functions on R. Compute the eigen-values, spectral-values and
eigen-spaces for D. (Ans: e-Spec (D) = SpecD = KK and Vp(A) = IKe* is the eigen-space of A € KK.)

4 Exercise Let f =ag-+ajx+---+a, 1x"~' +x" be a monic polynomial in C[X]. Then for every zero o of f in
C prove the estimates: (a) |a| <Max (1,]ag|+---+|as—1]). () |&| <Max (|aol,1+ |ai],...,1+]an—1]).
(¢) (Cauchy’s Estimates) || <2R mit R := Max (|ay|"/"V),v=0,...,n—1). (Hint : From |a| > 2R
and /(@) = 0. we get |a]" = [ag++++a,10" | < F275 R [o* = R (|a" —R") /(la] ~R) < |o]". a
contradiction.)

> Theorem (Bolzano-Weierstrass) Every bounded sequence of real numbers has a limit point.

D. P. Patil/llSc e0-219-laall-ex10.tex November 30, 2011 ; 9:57 a.m. 5@



Page 6 EO 219 Linear Algebra and Applications / August-December 2011 Exercise Set 10

T10.3 Let P=X"+a, (X" '+ ---a;X +ap= (X —2A1)"--- (X — A4»)"™ be a monic polyno-
mial with coefficients ay, . ..,a,_ € C and pairwise distinct zeros A1, ..., A4, € C of multiplicities
Fly-..,rm > 0, respectively. Let V := {y € C{(C) | P(D)y = 0} be the C-vector space of the
complex-valued solutions of the homogeneous linear differential equation of n-th order P(D)y =
Yy g, 1y 4. oa1y + agy = 0. Show that the differentiation D:V — V, y— Dy =y is a
C-linear operator on V and compute its minimal polynomial, characteristic polynomials, e-Spec D
and the eigen-spaces. (Hint : By construction V = Ker P(D) and Dim¢V =r| + -+ +r, == n = degP.
Since P(D)y = 0, it follows that P(D)(Dy) = D(P(D)y) = 0 and hence D induces an operator on V. Further,
since P(D) = 0 on V, the minimal polynomial uj divides P by the definition of minimal polynomial. Since
V C Ker up(D), it follows that deg P = Dim ¢V < Dim ¢Ker up(D) = deg up and hence pp = P. Moreover
by Cayley-Hamilton Theorem yp = up = P. The eigen-spectrum e-Spec (D) = Z(xp) = {A1,...,An} and
the corresponding eigen-spaces Vp(4;) = Ker (Aid — D) = Ce*, i = 1,...,m, since y € Ker (A;id — D) if
and only if y is a solution of the differential equation y’ — A;y = 0. )

T10.4 For k € NU{e}, let S denote the integration operator f +— (¢t — [j f(7)dt) on the
vector space C’]%(IR) of the k-times continuously differentiable IK-valued functions on R. Then
S has no eigen-value and 0 is the only spectral value S, i. e. e-Spec(S) =0 and Spec S = {0}.

(Hint: From S(f) =0, f € CX.(R), it follows that f = 0 by differentiating with respect to the upper limit of
the integral. Therefore S is injective and hence 0 is not an eigen-value of S. The operator S is not surjective,

since from S(f) = g, f,g € C& (R), it follows that g(0) = fé)f(r)df = 0, and hence no g with g(0) # 0 can
belong to Im ()

Now, let A # 0. We shall show that 4 is not an eigen-value of S, i. e. S — Aid is injective: For an f €
CL(R) with S(f) — A f = 0 implies that £(0) = A~ 'S(f)(0) =21~ f(?f('r)d‘c =0and [ f(7)dT—Af=0.
Differentiating we get f —Af' =0,i.e. f = A~'f = 0. Solutions of this differential equation have the form
f(£) = ce* ' with a constant ¢ € K. But, since f(0) =0, ¢ = 0 and hence f = 0. This proves that

To show that A # 0 cannot be a spectral value of S, i. e. S — Aid is surjective. Therefore for g € CX (R), we
need to construct a function f € C% (R) such that (S — Aid)(f) = g. In the case k > 1, i.. e. if g is continuously
differentiable, this is easy: The (unique) solution f of the linear differential equation y = A~y — A1~ !g
with £(0) = —A~'g(0) is a C¥-function and is the inverse image of g under (S — Aid), since (S — Aid)(f) =
ST = Af(1) = J3(AF(5) + 8 ())dT—AL(r) = (AL(1) +g(1)) + (AF(0) +(0)) — AF (1) = {r). The

case k =0, i. e. g is only continuous, is more difficult and use more analysis!.)

T10.5 Show that the characteristic polynomial of the diagonal matrix © = Diag(ay,...,a,) €
M, (K) is ¥ =T}, = (X —a;) and the minimal polynomial g = [T, (X — a;, ), where a;y, ..., a;,

are the distinct elements among ay,...,a,. Further, show that ® is cyclic (see Exercise 10.8-(d))if
and only if ay,...,a, are distinct. Moreover, in this case x; + --- +Xx, is a cyclic vector (see
Exercise 10.8-(d)) for every operator f : V — V whose matrix with respect to a basis xi,...,x, of a

K-vector space V is ©.

T10.6 Let €5 € M,(K) be the matrix of the permutation 6 € & —n, i. e. €5 = (Si (j)). In
the canonical cycle decomposition of o, suppose that m; cycles of order i for i = 1,...,n. Then
n =Y ,i-m;and show that the characteristic polynomial and the minimal polynomial of & are,
respectively:
n
Xeo = [(X'—1)™ and pe, =LCM (X" —1,...,.X" 1),

i=1
where iy,...,i, are the indices i with m; # 0. Moreover, € is cyclic (see Exercise 10.8-(d)) if and
only if 0 is a cycle of order n. (Hint : See also Test-Exercise T10.14.)

T10.7 Let f be an operator on the n-dimensional K-vector space V. Suppose that the degree of
the minimal polynomial tis is m. Then show that

@) Xr+aid(X) =xr(X —a) and piri4ia(X) = pp(X —a), a € K.

(b) Zap(X) = d"y(X /a) and piop(X) =" pp(X fa). a € K*.
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.. . (=1)" 1
If tible, th. (X)) = X"xr(1/X d u,(X)=—X"ur(1/X
(c) If f is invertible, then  x,-1(X) Det / xr(1/X) and pe(X) 1 0) up(1/X),
—u(0
Further, deduce that : f~! = ““Tu);)( f) and that eigen-value s of f are all non-zero and

0 # A €K is an eigen-value of f if and only if A~! is an eigen-value of f~!.

T10.8 Let V be a K-vector space and let f:V — V be a linear operator. Show that

(a) f is aprojection if and only if the minimal polynomial of f is a divisor of X (X — 1) =X 2_X.
(b) f is an involution if and only if the minimal polynomial of f is a divisor of (X +1)(X —1) =
X2 —1.

(c) For a projection (respectively involution) on a finite dimensional vector space find the charac-
teristic polynomial. (Hint : in the case of the involution give special attention to the case 14+ 1 =0 in
K,i.e. CharK =2. — Ans: xy = (X —a)"- X" with r = Rank f; in particular, Trf = Rank f (respectively
X = (X+1)"(X—1)"""if CharK # 2 (since %(idv — f) is a projection) and xy = (X —1)" if CharK = 2.)

T10.9 Let f:V — V be an operator of rank r on the n-dimensional K-vector space V.
(a) xyis divisible by X" ™", (b) uy has degree < r+ 1. (Hint: Note that Ker f is an f-invariant

subspace of f of dimension n — r by the Rank-Theorem, f | Ker f = 0 and hence Xfkerr =X""", UriKerf =X
and deg yi; < deg x; = DimgV = DimgV — DimgKer f = Rank f = r, where f :V — V is the operator
induced by f on the quotient space V := V /Ker f. Therefore by 11.A.8 Xy = Xfkerf X7 = xXnr. X7
and py divides [gikerf - iy = X - [y, in particular, ¥y is divisible by X"~" and deguy < r+1. See also
Test-Exercise T10.15. )

T10.10 (a) The characteristic polynomial of the n X n-matrix

ab - b
b a - b
A= SRR
b b --- a

is (X +b—a)""'(X —a— (n—1)b). Compute its minimal polynomial. determine the conditions
on a and b so that 2 is invertible, moreover, in these cases, compute the inverse of this matrix.
(Hint : See also Test-Exercise T9.52-(a).)

(b) Let 2Ap,..., 2,1 € M,,,(K). The characteristic polynomial of the mn x mn-matrix

o o --- 0 —Ayp

¢, 0 .- 0 —2U4
-0 & - 0 —2As

o o - &, -2,

is Det(X"€&,, + X, X +2p).

(c) LetA =Diag(a,...,a,) € M,(K) be a diagonal matrix and let B = (b;;) € M,,(K) be a matrix
of rank < 1. Then

AA-—» = Iﬁ(x —a;)+ i bii [1X —a).

=i

If 2 is invertible, then 2 — ‘B is invertible if and only if ¢ := ;?:1 b ja;I = 1. Further, in this case

~1 1y -1
((1_C)ai 6ij+a bija; )1gi,jgn'

_ 1
(A-8)" =

—C
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T10.11 Let f be a linear operator on the K-vector space V. In the parts (c) and (d) below assume
that DimgV = n € IN. Show that

(a) f is nilpotent if and only if us is a power of X. Deduce that: if f is nilpotent, then Tr(f) =0
and Det(f) =0.

(b) fis unipotent, i. e. f —id is nilpotent if and only if s is a power of X — 1. Deduce that: if f is
nilpotent, then Tr(f) =n and Det(f) = 1.

(¢) fis nilpotent if and only if yy = X". (Hint : Use Cayley-Hamilton Theorem.)
(d) fis unipotent if and only if x, = (X —1)".

T10.12 Let K C L be a field extension and let 24 € M,,(K) C M,,(L) . For the minimal- as well as
the characteristic polynomial of 2 are independent if the matrix 2l is considered over K or over L.
(Hint : For the minimal polynomial use the Test-Exercise T9.3. )

T10.13 Let f and g be two commuting operators on the K-vector space V and assume that the
operator g is nilpotent. Then )., = X and in particular, Det (f+g¢) =Det f and Tr(f+g) =Tr f.
(Hint : It is enough to prove the assertion for matrices. Further, X&; — (A +B) = (X¢;, —2) (& — (X & —
Ql)*ISB) , if 2B = B2 and if ‘B is nilpotent. — Remark: Note that the matrix X&; — 2l is invertible in

M;(K(X)).)

T10.14 Suppose that the K-vector space V is the sum of invariant subspaces U and W under the
K-linear operator f: V — V. Then f is algebraic if and only if f|U and f|W are algebraic. Further,
in this case fy = LCM (Usy, Uyjw) - (Remark: See Exercise 10.8-(c) for an application. — Hint: Since
Ur(fTU)=pur(f)1U =0and us(f1W) 1= us(f) 1 W =0, clearly (by definition of minimal polynomial),
Ui and Wy both divide pty. On the other hand put i := LCM (L, typw ) Then pu(f) 1U = u(f1U) =0
and pu(f) 1W =pu(f1W)=0, since u is a multiple of both tis; and psw. Now, since V =U+W, it
follows that p(f) = 0. Therefore (by definition of ps) uy divides p.)

T10.15 Let f:V — V be an operator and let u be the minimal polynomial of the restriction of f
on im f. Then either ¢ or X - u is the minimal polynomial of f. In particular, an operator f of
finite rank r is algebraic and the degree of its minimal polynomial is < -+ 1. (Hint : Note that for the
minimal polynomial iy of f, the operator ts(f) =0 and hence ps(f 1Imf) = pus(f) 1 Im f = 0. Therefore
M = Usim s divides py. On the other hand (X - ) (f) = fou(f) = u(f)o f =0, since p(f) 1 Im f = 0. This
proves that p1; divides X - u and hence the only possibilities are either p1y = g or piy =X - u.)

T10.16 Let f be an invertible operator on the K-vector space V. Show that A € K is an eigen-value
(respectively a spectral-value) of f if and only if 1/A is an eigen-value (respectively spectral-value)
of 71, i.e. e-Spec(f ') = (e-Spec f) ' :={A ' | A €e-Spec f} and Spec (f ') = (Spec f) " :=
{A~'| A € Specf}.

T10.17 Let f and g be operators on the K-vector space V. Then show that

(a) The non-zero eigen-value s of fg and gf are same.

(b) The non-zero spectral-values of fg and gf are same. (Hint : For a € K*, fg —aid is invertible if
and only if gf — aid invertible. In this case (gf —aid) ™' =a~' (g(fg—aid)~' f—id).)

(¢) Given an example such that the eigen-value s (resp. spectral-values) of fg and gf are not
same. (Hint : Let f,g:V := K[X] — V = K[X] be the K-linear operators on the K-vector space V = K[X]
of polynomials over K (with basis X", n € IN) defined by f(X") := X"*!, n € IN and g(X") := X""!, for
n>1and g(X°) =g(1) =0, i.e. f:=Ax is the left multiplication by X and g(P) := (P — P(0)) /X for
PinK[X]. Then 0 is an eigen-value (and hence a spectral-value) of fg, since (fg)(1) = f(0)=0=0-1, but
0 is not an eigen-value (and moreover, not a sspectral-value) of gf, since 0-idy — gf = gf = idy because
(gf)(X") = g(X"1)=X"foralln € IN.)

T10.18 Let f:V — V be a K-linear operator on the K-vector space V and let U C V be an f-
invariant subspace of V. Further, let f : V/U — V /U be the operator on V /U induced by f.
Then
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(a) Show that every eigen-value of f |U is an eigen-value of f and every eigen-value of f is an
eigen-value of f|U or of f.

(b) The same statement as in the part (a) for the spectral-values, 1. e.
Spec f|U C Spec f C Spec (f|U) USpec f.
(c) If fis algebraic, then Spec f = Spec (f|U) U Spec f.

T10.19 Let f:V — V be a K-linear operator and let V' be the direct sum of the f-invariant
subspaces V;, i € I. Show that

(a) The set of all eigen-values of f is the union of the set of all eigen-value s of f|V;, i €1, 1i.e.

e-Spec (f) = | Je-Spec (V7).

icl
(b) For the spectral-values the analogous statement as in the part (a) holds, i.e.

Spec f = JSpec (f1Vi).
icl
(c) Let Ax denote the multiplication by the indeterminate X on the K-vectors space
(i) V = K[X] of polynomials over K, then e-Spec (1x) = 0 and Spec (Ax) = K.
(if) V = K(X) of rational functions over K, then e-Spec (Ax) = Spec (Ax) = 0.
(i) V={P/Q € K(X) | P,Q € K[X],0(0) # 0}, then e-Spec (Ax) = @ and Spec (Ax) = {0}.
(iv) V = K[ X] of formal power series K, then e-Spec (Ax) = 0 and Spec (Ax) = {0}.

T10.20 Let f:V — V be an operator on the K-vector space V and let P € K[X] be a non-constant
polynomial. Then show that

(a) If A is an eigen-value (respectively spectral-value) of f, then P(A) is an eigen-value (respec-
tively a spectral-value) of P(f), i. e. P(e-Spec(f)) C e-Spec P(f) and P(Spec(f)) C SpecP(f).
(Hint : Let A € K. Then A is a zero of the polynomial P(X) — P(1) € K[X] and hence P(X) — P(A) =
(X —2)-Q(X) for some Q € K[X]. Therefore P(A)idy — P(f) = (Aidy — f) o Q(f) = Q(f) o (Aidy — f)
and hence if (Aidy — f) is not injective (respectively not surjective), then P(A)idy — P(f) is not injective
(respectively not surjective).)

(b) If K is algebraically closedﬁ then every eigen-value (respectively every spectral-value)
of P(f) of the form P(A) with an eigen-value (respectively a spectral-value) A of f, i. e.
P(e-Spec (f)) = e-Spec P(f) and P(Spec(f)) C SpecP(f). (Hint : Let u € K and let P(X) —u =
c(X —MA)-- (X —Ap) with ¢, A4,... 4, € K (since K is algebraically closed. Therefore uidy — P(f) =
(—=1)"'e(Aidy — f) o --- 0 (Auidy — f) and hence if A; & e-Spec f (respectively, A; & Spec f), then pu ¢
e-Spec P(f) (respectively, u & Spec P(f)).)

T10.21 Let f and g be operators on the K-vector space V with [f,g| := fg —gf = aidy and
let @ # 0 in K. Show that if A is an eigen-value of gf with the eigen-vector x € V, then
gf(g"(x)) = (A +na)g"(x), n € N. In particular, if g"(x) # 0, then A + na is also an eigen-value
of gf. Moreover, if g is invertible, then A + na is an eigen-value of gf with the eigen-vector
g"(x) for n € Z. (Hint : By the way the relation fg — gf = aidy with a # 0 is possible only in the case of
a field characteristic 0 and only if V is either O or infinite dimensional. Otherwise, (DimV)-a = Tr(aidy) =
Tr(fg) —Tr(gf) =0 is a contradiction. It follows that there is no finite dimensional subspace 0 # U CV
which is invariant under both f as well as g. In particular, f and g have no common eigen-vectors.)

T10.22 Let f:V — V be an operator on the K-vector space with the dual operator f*:V* — V*.
Then show that

A field Kiscalledan algebraically closed if every non-constant polynomial P € K[X] has a zero in K.
For example, by the Fundamental Theorem of Algebra (see Footnote 2) the field C of complex numbers is algebraically
closed. But the fields Q, R and finite fields are not algebraically closed.
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(a) A subspace U of V is f-invariant if and only if U° is f*-invariant. (Hint : Suppose that
f(U) CU and e € U°. Then e(x) =0 for all x € U and hence (f*(e))(x) = e(f(x)) =0 for all x € U,
since f(x) € U forallx € U, i. e. f*(e) € U°. This proves that f*(U°) C U°. Conversely, suppose that
f(U°) CU° and let x € U. For every e € U°, we have f*(e) € U° and hence e(f(x)) = (f*(e))(x) = 0.
Therefore every e € V* which vanish on U also vanish on f(x) and hence f(x) € U by Theorem 5.G.7. This
proves that f(U) CU.)

(b) If a subspace W of V* is f*-invariant, then °W is f-invariant. If V is finite dimensional,
then the converse hold. (Hint : Suppose that f*(W) C W and let x €° W. Then for every e € W, we have
f*(e) € W and hence e(f(x)) = (f*(e))(x) = 0, since x €° W. Therefore f(°W) C° W. Conversely, suppose
that V is finite dimensional and f(°W) C° W. Then by Theorem 5.G.10 (°W)° = W and hence by the part

@ f*(W) = (CW)?) S (CW)*=W.)
(¢) Spec f* = Spec f and in general e-Spec f* # e-Spec f (Example?).

T10.23 Let V be a n-dimensional vector space over a field K and let A € Altg(n,V) be an
n-alternating linear form V" — K. For f € Endg(V) and xi,...,x, € V, show that

Tl‘(f) -A(Xl,.. . ,xn) = ZA(Xl,.. . ,xi,l,f(xi),x,url, . ,xn) .
i=1

T10.24 Let f:V — V be an operator on the finite dimensional K-vector space V and U be an
f-invariant subspace of V. Then show that

Tef =Te(f 1 U)+Trf,
where f is the operator V /U — V /U induced by f. In particular,

Trf=Tr(f1Imf)+Tr(f) with f:V/Kerf—V/Kerf.
(Hint: By 11.A.8 we have xy = Xru - X7. — Remark: The last equation is used to define trace of an
operator of finite rank on not necessary on finite dimensional vector spaces.)
T10.25 Let f:V — V be an operator on the finite dimensional K-vector space V # 0. Show that
the following statements are equivalent:
(i) xy is a prime polynomial in K[X].
(i1)) OandV are the only f-invariant subspaces of V.

(i11)) Every non-zero x € V is a cyclic vector (see Exercise 10.8-(d)) for f.

(Hint: If U is an f-invariant subspace of V with 0 <m :=DimgU < DimgV, then xy = xr v X7 by 11.A.8
and deg x iy = DimgU = m and hence yry is a proper divisor of ), in particular, y cannot be a prime
polynomial. Conversely, if ) is not a prime polynomial and if P is a proper prime divisor of ), then by
11.A.12 there exists an f-invariant subspace U of V of dimension Dim xU = degP < deg xy = DimgV'.)

T10.26 Let f:V — V be an operator on the finite dimensional K-vector space V. Show that

(a) If f is cyclic (see Exercise 10.8-(d)) with the characteristic polynomial y := )y, then V has
exactly

[T Gz0)+1)

reP(K[X])

f-invariant subspaces and restrictions of f to each one of these subspaces is again a cyclic operator,
where P(K[X]) denote the set of all monic prime polynomials in K[X] and v denote the 7-
exponents.

(b) If K is infinite and if V' has only finitely many f-invariant subspaces, then f is a cyclic operator.
(Hint : Use Exercise 2.2.)

T10.27 Let f:V — V be a cyclic operator (see Exercise 10.8-(d)) on the finite dimensional K-
vector space V of dimension n with the cyclic vector x € V. Then the dual operator f* : V* — V*
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is also a cyclic operator on the dual space V* with a cyclic vector ("~ !(x))*, where (f"~!(x))*
belong to the dual basis of V* with respect to the basis x, f(x),..., " 1 (x) of V.

T10.28 Let f:V — V be an operator on the finite dimensional K-vector space V.

(a) Letv;, i €1 beaK-basis of V. Show that Tr f =Y, vi (f(vi)) . (Hint : Let MY (f) = (@) ; jyerns
be the matrix of f with respect to the basis v = {v; | i € I}, 1. e. f(v;) = Lieja;;vi. Therefore vi(f(v;)) =
Vi(Xieraijvi) = Yieraijv;(vi) = Liey aij6ij = ajj and ¥je vi(f(vy)) = Ljerajj = Tr(f).)

(b) If Rank f <1, then show that f is nilpotent if and only if Tr f = 0. (Hint : By Test-Exercise T10.9
the characteristic polynomial x = X"~'(X —Tr(f)).)

T10.29 Let K be a field and let n € IN*. Then

(a) Show that the commutators [2,B] :=2AB —BA, A B € M, (K), generate a subspace of
codimension 1 in M, (K). This subspace is the kernel of the trace function Tr:M,(K) — K.

(b) Show that every K-linear form i: M, (K) — K with h(AB) = h(*B) for all A,*B € M, (K)
is a scalar multiple of the trace function on M, (K).

T10.30 Let n € IN and let K be a field with k1x #0 for k=1,...,n

(a) For every operator f:V — V with Tr f 0 on a n-dimensional K-vector space V', show that
there exists a basis vy,...,v, of V with v(f(v;)) =0, i=1,...,n. (Hint: By induction on k show

that : there exist linearly 1ndependent vectors vl,...,vk and a subspace Wk of V such that
Kvi®---®Kvy@W, =V and f(v;)€ ZKVj+Wk-
J#i

Suppose that k = 1. If every element of V is an eigen-vector of f, then by Exercise 10.3 f is the homothecy
aidy, a € K and it follows that 0 = Trf = n - a. Therefore a = 0 and f = 0, in this case the assertion is trivial.
Otherwise, there exists a vector v; € V with f(v) & Kv;. Weextend vy, f(v1) toabasis vy, f(vi),wi,...,Wy—2
of V and take W, the subspace of V generated by f(vi),wi,...,w,_2. With this the required assertion holds.

For the inductive step rom & to k + 1, consider the map po f|W;, where p projection onto W, along
ZI;ZIKVJ'. Extend vy,...,v; to a basis vy,...,vg, wi,...,w,—r. Then removing the first k rows and first k
columns from the matrix of f with respect to this basis, we obtain the matrix of p o f|W; with respect to

the basis wy,...,w,_. Since the first k digonal elements of the matrix of f are 0 by construction and since
Trf = 0, it follows that Tr(po f|Wy) =

If every non-zero element of W; is an eigen-vector of p o f|W,, then by Exercise 10.3 p o f|W; is a homothecy
a-idw,, a € K and it follows that 0 = Tr(po f|Wy) = (n— k) - a and hence a = 0 by hypothesis on K. Therefore
poflWy=0,.e. f(Wy) CKviD---®Kvi. We can take arbitrary non-zero vy € Wy and Wy a complement
of Kvk+1 in Wk.

Otherwise there exists vy € Wy such that (po f|Wi)(vit1) & Kvir1 and 8o f(vgr1) € Kvi @ - D Kvp @

Kvii1. We extend vy, ..., Vg, Vs ,f(vk+1) to a basis vi,..., Vg, Ve ,f(vk+1 ),Wl, ..., Wu_x_1 of V and take
Wi the subspace of Wy generated by f(vki1),wi,...,w,_k_1. With this the required assertion holds.

Now, in the case k = n, W, = 0 and hence vy,...,v, is a basis of V such that f(v;) = Y j+iaijvj, 1. e. the
diagonal elements of the matrix of f with respect to this basis are all 0. )

(b) Show that every matrix 2 € M,(K) with Tr2l = 0 is a commutator, i.e. is of the form [*B, €] =
BE — CB. (Hint: By part (a) above the matrix 2 is similar to the matrix 21" whose diagonal entries are
all 0, i. e. there exists an invertible matrix ® € M, (K) such that 2l = DA'D~!. It is enough to show that
there are matrices 2B,¢ € M,,(K) such that [B,¢&] = 2'. For, then A = DA D! = D(BC - B)D ! =
(OBD (DD ! — (DD H(DBD ! = [DBD ! |, DED~!]. Therefore, without loss of generality
assume that all main-diagonal entries of % = (a;;) are 0. Since #K > n by hypothesis on K, there exists
distinct elements by, ...,b, € K. Then for the diagonal matrix 8 = Diag(by,...,by), and an arbitrary matrix
€ = (cij) € M, (K), we have

by 0 - 0 i1 €12t Cln Ccl1 €12 '+ Cln by 0 - 0
0 b, -~ 0 €1 € O 1 €2 O 0 b, -~ 0
0 0 --- 0 el Cpr - Com el Cp - Cm 0 0 --- 0
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bicii bicia -+ biciy bicii bacip -+ bucin
B bacar bycyy -+ bacyp bica1 bycyp --- bpeay
bpcny bpcyy o bpcup bicnt bacny -+ bpcpp
0 (b1 =by)cia -+ (b1 —by)cin
B (b —b1)ca 0 <o (by—Dby)can
(bn — by )Cnl bucnn T 0

Now, one can take ¢;;j := a;j/(b; — b;) for i # j and c;; = 0, so that the equation [B, €] = 2 holds.)

T10.31 Let V be a finite dimensional K-vector space.

(a) Foraprojection p of V, show that Tr p = Rank p (= (Rank p)1g). (Hint : Use Test-Exercise T8.9-
(a).)

(b) Suppose that m - 1x # 0 for 1 <m < DimgV . Further, let py,..., p, be projections of V with
p1+---+ pr =idy. Further, suppose that either CharK =0 or }/_; Rank p; — DimgV < CharK,
if CharK > p. Then show that p;p; = §;;p; for 1 <i,j <r and in particular, V is the direct sum of
the subspaces Im p;, i =1,...,r. (Hint: Since p; + cdots + p, = idy, we have Imp; +---+Imp, =V
and hence Dim gV = Tr(idy ) = Tr(p;) +- - -+ Trp, == Rank p; +- - - +Rank p,. Therefore by the assumption
on the characteristic of K, the equality Dim gV = Rank p; + - - - + Rank p, also hold in IN and hence the sum
V =Im; @---®Imp, is direct. Therefore Imp; C Ker p; for all i # j and hence p;op; =0 forall i, j, i # j.
Further, p; o p; = p;, since p; is a projection, forall i=1,...,r.)

(¢) Suppose that a finite group G operates on V as the group of K- automorphisms and that
|G|-1x # 0 in K. Then show that

is a projection of V onto FixgV (see also Example 6.E.10) and the equality (in K)

DimgFixgV = — ) Tro.
|G| oG

(Hint: For a fixed 7 € G, note that G = {76 | 6 € G}. Therefore for p := 7= ¥ 5 0, we have

v #G22 ch_#GZZ #G): -

ocG 1€G oeG oeG
1
Therefore p is a projection of V. For a x € FixgV, 6(x) = x for all 6 € G and hence p(x) = o Z X=X.
oeG
1 1
C ly, fory = Imp, it diate that T o(x) = — ox) = =y f
onversely, for y = p(x) € Imp, it is immediate that 7(y) = #GgeG (x) #Gch (x) = p(x) =y for

all T € G. Therefore Dim g FixgV = DimgImp = Rankp =Trp = #— Z Tro.)
ccG

T10.32 (Jacobson-Lemma) Let K be a field and let f,g be operators on the n-dimensional
K-vector space V with [f,[f,g]] =0. Suppose that m-1x # 0 for 1 <m < DimgV . Then [f,g]
nilpotent. (Hint : The condition [ 0, gH =0 is equivalent with f[f,g| = [f,g|f and hence f commute
with the powers [f,g]", n € N. It follows that [f,g]" = (fg —&f)[f.e]" "' = felf.e]" ' —efIf.e" ' =
relf.gl" "t —glf.g)" ' f = [f.8]f.8]"']. Now, since [f,g]""' are also commutators, they have trace 0 and
hence [f,g] is nilpotent by Exercise 10.5-(a).)

T10.33 Let 2 be a n x n-matrix over the field K. Suppose that the sum of elements of every
row of 2 is equal to A € K. Then show that A is an eigen-value of 20 with the eigen-vector
'(1,1,...,1) € K". If all the column-sum of 2 are equal to A, then A is an eigen-value of 2.
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(Hint: Clearly, A"(1,...,1) ="(A,...,A) = A"(1,...,1), i. e. A is an eigen-value of 2. — Remark: An
eigen-vector corresponding to this eigen-value is, in general, no so easy to give explicitly.)

T10.34 Let A € M, ,(K) and B € M, ,,(K), m > n. Show that Yoo = X" ")me . (Hint: Fill
the matrices 2 and B with zeroes to get square m X m-matrices. (2 0) <%> = 2B and (sB) (A0) =

0 0
BA 0 . : . B
0o o) Therefore the characteristic polynomial )y is equal to that of (21 0) 0 and hence the

X¢,— B 0

characteristic polynomial of B (24 0) is equal to Det =X"""Det(X¢&, —BA) =
0 0 XE_n

X"y by Exercise 10.7-(b).)

T10.35 (a) LetV be a finite dimensional vector space over a field K and let f € EndgV . Further, let

Ly :EndgV — EndgV, g — fg (respectively Ry : EndgV — EndgV, g — g f be the left-translation
by f. Show that

X = r(p) = (xr)"» TrL(f) =TrR(f) = n-Tr f and DetL(f) = DetR(f) = (Det f)" .
( See also Example 11.A.27).

(b) Show that the characteristic polynomial of a complex number z as an element of the R-algebra
Cis g, = (X —2)(X —Z). In particular, N$z = 27 = |z|? and Tr§z = z+Z=2Rez.

T10.36 Let f be an operator on a finite dimensional K-vector space and let P € K[X] be a
polynomial. Show that P(f) is invertible if and only if P and us (or also P and y) are relatively
prime. (Hint : Let Q := ged(P,us). If Q =1, then SP+ T iy = 1 for some polynomials S,7 € K[X| and
hence id = S(f)P(f) + T (f)ur(f) = S(f)P(f), i. e. P(f) is invertible with inverse S(f). Conversely, if
Q#1,then uf =R-Q,P =P -Q with R, P’ € K[X] and degR < deg s and hence R(f) # 0 and Q(f) # 0,
but 0 = ur(f) =R(f) o Q(f) = Q(f) oR(f). Therefore Q(f) is not injective and hence P(f) = P'(f) o Q(f)

is also not injective. In particular, P(f) is not invertible.)

T10.37 Let K be a field.

(a) Let P and Q be monic polynomials over the field K. Suppose that degP = n, Q is a divisor
of P and moreover that P and Q have the same prime factors in K[X]. Then show that on every
n-dimensional K-vector space V there exists an operator f € EndgV with characteristic polynomial
X = P and minimal polynomial = Q.

(b) Let S and S’ be subsets of K with S C §’. Show that there exists a K-linear operator f :V — V
on a K-vector space V such that e-Spec f = S and Spec f = §’. (Hint : Foreacha € K, let g, = — A,
and h, := Ax_, be operators on the K-vector space K[[X]. Then e-Specg, = {a} = Specg,, e-Spech, =0
and Spech, = {a}, see Test-Exercise T10.19-(c). Let g := (Baesga) : K® k) and h:= (Daes\sha) :
K8\ 5 k(58 be the direct sum of operators g,, a € S and h,, a € §"\ S respectively. Now it is easy to
check that the operator f := g @ h have the required properties. See Test-Exercise T10.19 also. )

T10.38 Show that an operator f on a IR-vector space has exactly one real eigen-value if and only
if £2 has an eigen-value > 0. (Hint : /2 —a?%id = (f —aid)(f +aid).)

T10.39 Let f be a C-linear operator on the finite dimensional C-vector space V, which we
consider as R-vector space. Then show that f is also R-linear and

Xf,R=XfC Xy - (forapolynomial P = YaX' € C[X], we put P:= Y @;X")
Further, for the minimal polynomials show that tiy g = LCM ( Hr.Cs ﬁf,@)'

T10.40 Let /A = (a;;) € M,(K) be a n x n-matrix over the field K. Then
(a) Let Xj,...,X, be indeterminates over K. For 1 <i; < --- <i, <n, show that the coefficient of
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Xi, - -+ X;, in the polynomial

an+Xp - ain
: GK[Xl,...,Xn]
anl o gt Xy

is equal to the diagonal minor of 2 obtained by removing the rows and columns numbered by
i1,...,ir. (Hint : Expand the determinant successively using the rows iy, ...,i.)

(b) For r=1,...,n, show that the coefficient a, of X" in the characteristic polynomial g of 2
is (—1)"""-times the sum of the diagonal minors of the order n—r of 2.

T10.41 Let K C L be a field extension and let 2 € M, (K) C M, (L) be a matrix with an eigen-
value A € L — K. Then there exists an eigen-vector r # 0 in L" of 2, i. e. 2xr = Ar; but there is no
eigen-vector in K", i.e. K"NKer, (A&, —2)=0.

T10.42 (Jacobi’s Matrix) For k=0,...,n, let

aj b1 o -- 0 0
1 a b2 0 0
0 cr asz .- 0 0
Dr=1. . . . ) . € My (K)
0 0 o --- (7)/ 3] bkfl
0 0 o --- Ck—1 ay

and let Dy := Det (D) (see exercise (13.30)). Put i := xp, . Show that

@ xo=1,01=X—a1, %=X —a)Xe—1 — bi—1¢cx—1 2k forall k=2,....n.
(b) If K=R and bycy >0 forall k=1,...,n, then ¥, has n-distinct real roots and the number
of positive roots of y,, is the number of changes in the sign of the sequence 1,—Dj,...,(—1)"D,.

T10.43 Let A = (aij)lsiﬁjgn € Mn(K) . Show that
A =X"—s1 X" 450X (= 1)y,

where s is the sum of (}) minors Det (A(i1,i2,...,ix)), 1 <ij <ip <--- <ix <n.

T10.44 Let a,b,c € C with bc # 0 and let

a b 0 00
c ab --- 00
0O ca - 00
To=11. . . . . .| eMi(K), for k=0,...,n.
0 00 a b
000 c a
Show that
k
(a) lk:a—i—Z\/% cos( 7:_1>,k:1,...,n are eigen-values of T,,.
n

i—1
k
(b) For k=1,...,n, the vector with i-th components (\/§> sin < n 1) i=1,...,n is an
n
eigen-vector corresponding to the eigen-value A;. (Hint : We may assume that a = 0. Let p € C
with u? # be and let T, (u) := Det (1€, —%,). Then show that To(u) = 1,71 (1) = pu and Tryo(u) =
(upt' =g

UTpq (1) — beTi () for all k > 0. Therefore by Test-Exercise T10.42 T,(u) = (=) where )
1 — 2
and , are distinct roots of the quadratic X% — uX + bc. Now, determine p so that ui’“ = /.Lf“.)
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T10.45 Let V be a n-dimensional vector space over a field K and let f € Endg (V).

(a) If Char(K) = p > 0 then, show that xs»(X?) = (x¢)”. In particular, Tr(f?) = (Tr(f))".
(Hint : For 2 € M,,(A) we have (X¢&, —2A)? = XP€&, —2P. — This is a special case of the following more
general exercise in part (b) below. )

(b) For r € N, prove that

2 (X7) = (—1yD) _Ijle<c,~x>,

where §;,i=1,...r are the r-throots of unity, i.e. X"—1=]]_;(X — &) . Deduce that x, (X?) =
(=12 (X) 25 (=X

T10.46 Let 2 € M, (K) and let Yoy = X" +a, 1 X" ' +---4+a;X +ag. Show that

(@) Adj(2) = (=" 4, A" 2+ @y €y).

() Xagj) = X"+ (=1)" YL, a; (Det (20)) ' X"~ where a, :=1.

T10.47 Let [ be a finite indexed set. Let R := K[X;; | i, j € I| (respectively, Q := K(X;; | i,j € I})

be a polynomial algebra (respectively the field of rational functions) over a field K and let 2l =
(Xij) € M;(Q). Then the characteristic polynomial Yo € R[X] is a prime polynomial in R[X].

T10.48 Let f, g be operators on a finite dimensional K-vector space V such that s = x,. Then
show that Xp(r) = Xp(g) for every polynomial P € K [X]. (Hint : It is enough to show that: if 2 € M,,(K)
and if % is the companion matric of the polynomial xg(, then Xp) = xp(w) for all P € K [X]. For this
we may take R := K[X;;, Y | i,j € [,k=0,...,m] (respectively, Q := K(X;;,Y | i,j € [Lk=0,...,m}) the
polynomial algebra (respectively the field of rational functions) over K, A := (X;;) € M;(Q) and P =
Yo+ VX4 +Y,X" Now 2 is similar to the companion matrix of 2l by Test-Exercises T10.?? and
T10.72.)

T10.49 Let 2l € M, (K). Show that the following equality holds in the field of rational functions
K(X) over K:
/

d
Tr((X¢,—2)) = v’ where = o X

***T10.50 (Shift operator on the space of sequences) On the K-vector
space KN of the sequences with values in a field K, let

s: KN 5 KN Fss(F):=F :n—F(n+1),
denote the (Ieft) shift operator.

(@ (Sequences with linear recursion equations) For a polynomial P =
ap+a1X +---+a, X" € K[X], show that the kernel of the linear operator P(s) : KN — KN F i
P(s)(F) is:

Ker P(s) = {F € K™ | apF (n) + a;F(n+1)+---+a,F(n+m) =0 forall n€ N}.
We shall say that the sequences in Ker P(s) satisfy the (Iinear) recursion equation
corresponding to the ( recursion) polynomial P.
1) Let P € K[X] be a monic polynomial of degree m. The operator P(s) : K™ — KN is surjective
and the map KerP(s) — K™, F > (F(n))y<,,, is an isomorphism of K-vector spaces.

In particular, Dim g Ker P(s) = m = deg P. Moreover, the sequences Fy, Fi,...,F,_1 € KerP(s) is
a K-basis of Ker P(s) if and only if the Casorati’s determinant

Fy(0) F1(0) e Fu-1(0)
(B Frreo Fy )| O Flfl) mem
Fo(m—1) Fiim—1) - Fu,_1(m—1)
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of Fy,Fy,...,F, 1 is non-zero.

2) Let P=ag+aiX +---+a, 1 X" ' +X™ € K[X] be a monic polynomial of degree m. A
sequence F € KerP(s) is a cyclic element (see Exercise 10.8-(d)) for the restriction operator
SikerP(s) - KerP(s) — KerP(s) if and only if the Hankel’s determinat

FO) F(1) - F(m—1)
H;S?)(F): F(l) F<2) F<m)
Fim—1) F(m) - F(2m—2)

of F' is non-zero.

(b) (Geometric sequences) Letac KandletP:= (X —a)" € K[X], m€ IN*. Consider
the operator A, :=s—a-id: K™ — KN on K. Then P(s) = A.

1) Show that the sequences

((’?>ani> , 1=0,....m—1, (weput (r_l)a"i:0f0rn< i)
L nelN L

form a basis of the kernel KerA!”. (Hint: The elements (x —a)’, i =0,...,m — 1, form a K-basis of
the K-vector (quotient) space K[x| := K[X]|/K[X]|P. — Remark: If a = 1, then KerA! is the arithmetic
sequences of degree < m. For arbitrary a, these sequences are called the geometric sequences
of degree <m with the quotients a.)

2) If Q:= Y™ ,' d:iX' € K[X] is a polynomial of degree < m, then show that F = (Q(n)a"), . is a
geometric sequence of degree < m with the quotients @ and A”~'F = (m —1)!a™'d,,_ 1 Fy, where
Fy is the standard geometric sequence (a"), .y With the quotients a.

3) If a # 0 and Q C K (equivalently, Char K = 0), then the sequences

(n'd"), s i=1,...,m—1,
form a basis of the K-vector space of the geometric sequences of degree < m with the quotients a.

4) If F € KN is a geometric sequence of degree < m with the quotients a, then the Hankel’s
determinant H) (F)= (—1)@) (A7=1F(0))™. In particular, if Q = Yy ldiX' € K[X], then

) o(1) - Q(m—1)
o) Q@2 - QOm)

Om—1) Q(m) - Q@m-2)

(¢) Let F € K™ and let 0 # P € K[X]. If F satisfy a recursion equation P(s)F = 0, then the minimal
polynomial tr of F is also calledthe minimal recursion polynomial of F.

1) If P(s)F =0 and P € K[X] is a monic polynomial of degree m, then P = ur if and only if the

Hankel’s determinnat H,(,? ) (F) # 0. Moreover, in this case SiF,i= 0,...,m—1,is a K-basis of the
space of all sequences G € K™ which satisfy the recursion equation P(s)G = 0.

2) For a € K, the (X — a)-primary component V(a;s) := Uren Vi (a) of s, (where Vi(a) :=
Ker(f —a-idy)"), is the space of geometric sequences with the quotients a, see the part (b).

The space V' (a,s), r € IN, is the space of geometric sequences of degree < r with the quotients a.
If CharK = 0 and a # 0, then it has the basis

(Cﬁwf> . i=0,...r—1.
! nelN
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Moreover, (nia”)nem, i=0,....,r—1lisalsoabasis. If P = (X —a;)"--- (X —a,)" with pairwise
distinct ay,...,a, € K, then the space of sequences F which satisfy the recursion equation P(s)(F) =
0 is the direct sum V¥ (a;;s) ®--- B V' (a,;s).

3) Let P:= (X —ay)--- (X —a,) with pairwise distinct a, . ..,a, € K and

X —a; a 1 -

1
ainl, j=1,...r, a,'jGK.
0

=

i=1,ij 4 di - (X—aj) Plaj)

If F € KN satisfy the recursion equation P(s)F = 0 and the initial conditions F(n) = c,, n =
0,...,r—1, then the matrix-equation

aol atl Ay r—1 a"
1
air a2 Al -1
F(n) = (co,...,cr—1)" :
a
ar—1,1 dr—1,1 """ ar—1,r-1

4) If P € K[X] be a monic quadratic polynomial with distinct zeros aj,ay, then for a sequence
F € KN with P(s)F = 0 and F(0) = co, F(1) = c1, we have
1

F(n)= g ((coap —c1)d} + (—coay +c1)ds) , n€ N.
2 —aj

If P has a double zero a, then
F(n) = coa" + (—c1 — coa)na™ ', ne IN.

For the Fibonacci sequence (f,,) € RN with fy = f; = 1 and f,12 = fuy1 + fn. 1 € N, we have the
Binet’s formula:

| 1+\/§ n+1 1_\/§ n+1
fn:ﬁ ( 5 ) —< 3 ) ,neN.

(d) For a sequence F € KN, show that the following statements are equivalent:
(i) The sequence F satisfy a linear recursion equation P(s)F = 0, where P € K[X|, P # 0.

(ii) There exists a r € IN such that all Hankel’s determinants Hg_?l (F) =0 for all kK € IN, where for
k,m € IN, we put

HY (F) = HY (s"F) = C(sF,s*TIF, ... skt )
F(k)  Fk+1) - Flk+m—1)
| Fet1)  F(k+2) - F(ktm)
Flhom—1) Flkrm) - Fktom—2)

— Suppose that these conditions are satisfied, then: if m € IN is the smallest natural number with

Hfrl;)r] (F) =0 for all k € IN, then m is the degree of the minimal recursion polynomial Py of F
0)

and H,(n (F) # 0. (Hint : For a proof of the implication (ii)=-(i) first show that: for a symmetric matrix
2A € M,,+1(K) with Det 24 = 0, if the cofactor of 2 at the position (n+ 1,n+ 1) is 0, then the cofactor of 2 at
the position (n+1,1) is also 0. Further, we may assume that al/l Hankel’s determinants HY (F), ke N, are
0.)

(e) (Periodic sequences) A sequence F e KN is called periodic if there exist a
s € N and r € IN such that F(n+s) = F(n) for all n > r. If r = 0, then we say that F is stron g-
periodic with period-length s. For a strong-periodic sequence F, if s is the smallest
(positive) period-length, then all other period-lengths are multiples of sy.
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1) A sequence F € KV is periodic (resectively strong-periodic) if and only if it satisfies a recursion
equation P(s)F = 0 for some polynomial P = X" (X* — 1), r € N, s € N+ (respectively P = X* — 1,
seINT).

2) A sequence F € KN is strong-periodic if and only if the minimal recursion polynomial iy of F
has the following property: The residue class x of X in the residue algebra K [X|/K[X]ur = K[x] is
a unit and its order in the unit group K[x]* is positive. Moreover, in this case the order Ordx is the
smallest positive period length of F.

3) Let K = I, be a finite field with ¢ € IN™ elements. Every sequence F € ]FC]IN which satisfies a
recursion equation P(s)F = 0 with € I, [X], P # 0, is periodic and moreover, strong-periodic if
P(0) #0. If up(0) £ 0 and deg pip = m, then the minimal positive period length > ¢” — 1 and is
exactly = ¢" — 1 if and only if ur is a primitive prime polynomial|’| For example, X5 + X + 1 is
a primitive prime polynomial over ;. A strong-periodic 0 — 1-sequence F' of the minimal period
length 25 — 1 is defined by F(n+2) = F(n) 4+ F(n+ 1), n € IN and arbitrary initial conditions
F(0),F(1),...,F(14) € I,.

4) Consider the Fibonacci sequence (f,) with fo = fi = 1 and f,12 = f44+1 + fn- modulo the prime
numbers 11 and 13. Determine their minimal period lengths.

(f) Formula of Bernoulli) If F € CN is a sequence with minimal recursion polynomial
Ur, then show that F'(n) # 0 for large enough n and
Fn+1

im FOHD _

e F ()
where a € C is the dominante zero El of u. (For example, if a sequence F € CN satisfies the initial
conditions F(0) =---=F(m—2) =0, F(m—1) =1 and the equation P(s)F =0, then yir = P. In reasonable
cases, the quotients F'(n+ 1)/F(n) give a very fast converging approximation of a. One can easily test this
in the case P:=X?>—2X —(a—1),a € Rt orfor P:=X"—X —1,m > 2.)

7 A monic prime polynomial 7 € F,[X]iscalleda primitive prime polynomial if the residue class
x of X in the residue field L := If,[X]/TF,[X]x is a generating element of the (cyclic) multiplicative group Lx of L.
There are exactly %(p(q” — 1) primitive polynomials of degree n in I, [X], where ¢ is the Euler’s totient function. The
primitive polynomials over IF, of degree <4 are:X = 1, X>+X + 1, X+ X + 1, X3+ X2+ [, X* 4+ X+ [, X + X3+ 1.
Determine primitive prime polynomials over another finite fields!

8We say that a monic polynomial P of degree m > 1 hasthe dominante zero ac Cifa#0, P(a) =0and
|b] < |a| for every zero b of P with b # a.
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