# E0 219 Linear Algebra and Applications / August-December 2011 <br> (ME, MSc. Ph. D. Programmes) <br> Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/... 



T1.1 (a). For two elements $a, b \in K$ in a field $K$, determine the conditions on $a, b$ so that $(a, b),(b, a) \in K^{2}$ form a basis of the $K$-vector space $K^{2}$.
[2 points]
(b). Let $p_{1}, p_{2}, p_{3}$ be three distinct prime numbers. Show that the square-roots $\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{p_{3}}$ are linearly independent over $\mathbb{Q}$.
[3 points]
T1.2 Let $U$ be the $\mathbb{R}$-subspace (of the $\mathbb{R}$-vector space $\mathbb{R}^{\mathbb{R}}$ of all real-valued functions on $\mathbb{R}$ ) generated by the functions $\cos ^{n} t, n \in \mathbb{N}$, i. e. $U=\sum_{n \in \mathbb{N}} \mathbb{R} \cos ^{n} t$. Further, let $W$ be the $\mathbb{R}$-subspace (of the $\mathbb{R}$-vector space $\mathbb{R}^{\mathbb{R}}$ of all real-valued functions on $\mathbb{R}$ ) generated by the functions $\cos n t, n \in \mathbb{N}$, i. e. $W=\sum_{n \in \mathbb{N}} \mathbb{R} \cos n t$. Show that $U=W$.
[5 points]
(Hint : Use the addition formula $\cos (x+y)=\cos x \cdot \cos y-\sin x \cdot \sin y$ for all $x, y \in \mathbb{R}$.)
T1.3 Let $n \in \mathbb{N}^{*}$ and let $\mathbb{K}[t]_{2 n}$ (respectively, $\mathbb{K}[t]_{n}$ ) denote the $\mathbb{K}$-vector space of all polynomials (over $\mathbb{K}$ ) of degree $<2 n$ (respectively, $<n$ ). Further, let
$T: \mathbb{K}[t]_{2 n} \rightarrow \mathbb{K}[t]_{n}, f \mapsto T(f):=\sum_{k=0}^{n-1} \frac{f^{(k)}(1)}{k!}(t-1)^{k}$, where $f^{(k)}$ denote the $k$-th derivative of $f$, be the map which maps every polynomial $f \in K[t]_{2 n}$ to its Taylor-polynomial of degree $<n$ of $f$ at 1 . Show that $T$ is $\mathbb{K}$-linear. Determine Ker $T$ and $\operatorname{Im} T$. What are $\operatorname{Dim}_{\mathbb{K}} \operatorname{Ker} T$ and $\operatorname{Dim}_{\mathbb{K}} \operatorname{Im} T$ ? Justify your answers.
[5 points]
T1.4 Let $V$ be a $K$-vector space of dimension $n \in \mathbb{N}$ and let $U \subseteq V$ be a subspace of codimension $r\left(=\operatorname{Dim}_{K} V-\operatorname{Dim}_{K} U\right)$ in $V$. Show that there exist $r$ hyper-planes (subspaces of codimension 1) $H_{1}, \ldots, H_{r}$ in $V$ such that $U=H_{1} \cap \cdots \cap H_{r}$.
[5 points]
T1.5 Let $f: V \rightarrow V$ be an operator on the finite dimensional $K$-vector space $V$. Show that the following statements are equivalent :
(i) $\operatorname{Ker} f=\operatorname{Im} f$.
(ii) $f^{2}=0$ and $\operatorname{Dim}_{K} V=2 \cdot \operatorname{Rank} f$.
[5 points]

## GOOD LUCK

