E0 221 Discrete Structures / August-December 2012

(ME, MSc. Ph. D. Programmes)

Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 2239/(Maths Dept. 3212)		E-mails : dppatil@csa.iisc.ernet.in/patil@math.iisc.ernet.in				
Lectures : Monday and Wednesday ; 11:30-13:00		Venue: CSA, Lecture Hall (Room No. 117)				
TA/Corrections by : Dr. Anita Das (anita@csa.iisc.ernet.in)						
1-st Midterm : Saturday, September 22, 2012; 10:00-12:00 Final Examination : December ??, 2012, 10:00-13:00			2-nd Midterm : Saturday, October 27, 2012; 10:00-12:00			
Evaluation Weightage : Assignments : 20%			Midterms (Two) : 30\%		Final Examination : 50%	
Range of Marks for Grades (Total 100 Marks)						
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76-90	61-75	46-60	35-45	< 35

2. Relations

2.1 Let R and S be relations from a set X to a set Y.
(a) Show that $R \cup S$ is a relation from X to Y and compute $\operatorname{Dom}(R \cup S)$ and $\operatorname{Rng}(R \cup S)$.
(b) Construct relations R and S from X to Y such that $\operatorname{Rng}(R \cap S) \neq \operatorname{Rng}(R) \cap \operatorname{Rng}(S)$.
(c) Express $(R \cup S)^{-1}$ and $(R \cap S)^{-1}$ in terms of R^{-1} and S^{-1}.
2.2 Let R and S, T be relations from X to Y and from Y to Z, respectively. Does the equality $(T \cup S) \circ R=(T \circ R) \cup(S \circ R)$ holds? What happens if union is replaced by intersection?
2.3 Let $I:=[0,1]:=\{x \in R \mid 0 \leq x \leq 1\}$ be a closed interval in \mathbb{R} and let $R:=\{(x, y) \in I \times I \mid x<y\}$. Draw the pictures of $I \times I, R, \delta_{I}, R \cup \Delta_{I}$ and $R \cap \Delta_{I}$.
2.4 Let X be a non-empty set. A non-empty subset \mathfrak{A} of the set of all relations $\operatorname{Rel}(X)$ is called an uniformity on X if the following properties hold:
(1) If $R \in \mathfrak{A}$, then $\Delta_{X} \subseteq R$.
(2) If $R \in \mathfrak{A}$ and $S \in \mathfrak{A}$, then $R \cap S \in \mathfrak{A}$.
(3) If $R \in \operatorname{Rel}(X)$ and $S \in \mathfrak{A}$ with $S \subseteq R$, then $R \in \mathfrak{A}$.
(4) If $R \in \mathfrak{A}$, then $R^{-1} \in \mathfrak{A}$.
(5) If $R \in \mathfrak{A}$ and $S \in \mathfrak{A}$, then $S \circ R \in \mathfrak{A}$.

For each positive real number $r>0$, let $R_{r}:=\{(x, y) \in \mathbb{R} \times \mathbb{R}| | x-y \mid<r\}$ and let

$$
\mathfrak{A}:=\left\{S \in \operatorname{Rel}(\mathbb{R}) \mid R_{r} \subseteq S \text { for some positive real numebr } r\right\} .
$$

Show that \mathfrak{A} is a uniformity on \mathbb{R}.

[^0]
Auxiliary Results/Test-Exercises

Roughly speaking, a "relation" is a rule for assigning to certain sets certain other sets. For example, to each natural number greater than 2 each natural number greater than it.
T2.1 (Relations) Let X and Y be sets. A (binary) relation 1 from X and Y is a subset $R \subseteq X \times Y$, i.e. an element $R \in \mathfrak{P}(X \times Y)$. For the expression " $(x, y) \in R$ " we shall write " x Ry" and say that " x is related to y with respect to R ", $x \in X, y \in Y$. The set of relations $\mathfrak{P}(X \times Y)$ from X to Y is also denoted by $\operatorname{Rel}(X, Y)$ and its elements are also denoted by the symbols \sim, $\cong \equiv, \leq, \preceq \cdots$. In the case $Y=X$, we put $\operatorname{Rel}(X)=\operatorname{Rel}(X, X)=\mathfrak{P}(X \times X)$ and its elements are called relation on X.
Let R be a relation form a set X to a set Y. The subset $\{x \in X \mid$ there exists $y \in Y$ such that $(x, y) \in R\}$ of X of all first coordinates of R is called the d o m a i nof R and is usually denoted by $\operatorname{Dom}(R)$. The subset $\{y \in Y \mid$ there exists $x \in X$ such that $(x, y) \in R\}$ of Y of all second coordinates of R is called the range or image of R and is usually denoted by $\operatorname{Rng}(R)$ or $\operatorname{Im}(R)$. In particular, $R \subseteq \operatorname{Dom}(R) \times \operatorname{Rng}(R)$, but this inclusion may be strict (see parts (c) and (d) below)
Let X and Y be sets.
(a) The empty set (called the empty relation) \emptyset is a relation from X to Y and $\operatorname{Dom}(\emptyset)=\emptyset=$ $\operatorname{Rng}(\emptyset)$. The product $X \times Y$ is also a relation from X to Y and if $X \times Y \neq \emptyset$, then $\operatorname{Dom}(X \times Y)=X$ and $\operatorname{Rng}(X \times Y)=Y$.
(b) The diagonal subset $\Delta_{X}:=\{(x, x) \mid x \in X\}$ is a relation on X and is called the d i a g o n al or identity relation on X.
(c) The subset $\{(x, A) \in X \times \mathfrak{P}(X) \mid x \in A\}$ is a relation from X to $\mathfrak{P}(X)$, called the ele menthoodrelation, its domain is X and range is $\mathfrak{P}(X) \backslash\{\emptyset\}$.
(d) The subset $\{(A, B) \in \mathfrak{P}(X) \times \mathfrak{P}(X) \mid A \subseteq B\}$ is a relation on $\mathfrak{P}(X)$, called the inclusion relation.
(e) The subset $<:=\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m<n\}$ is a relation, called the strict order relation on \mathbb{N}. Further, $\operatorname{Dom}(<)=\mathbb{N}$ and $\operatorname{Rng}(<)=\mathbb{N} \backslash\{0\}$. In particular, $<\subsetneq \operatorname{Dom}(<) \times \operatorname{Rng}(<)$.
(f) If S are relation form X to Y and if $R \subseteq S$, then R is also a relation from X to Y and $\operatorname{Dom}(R) \subseteq$ $\operatorname{Dom}(S)$ and $\operatorname{Rng}(R) \subseteq \operatorname{Rng}(S)$. In particular, if R and S are relations from X to Y, then $R \cap S$ is also relation from X to Y and $\operatorname{Dom}(R \cap S) \subseteq \operatorname{Dom}(R) \cap \operatorname{Dom}(S)$ and $\operatorname{Rng}(R \cap S) \subseteq \operatorname{Rng}(R) \cap \operatorname{Rng}(S)$.

T2.2 (Composite and Inverse relations) Let R be a relation from X to Y. Then the subset

$$
R^{-1}:=\{(y, x) \in Y \times X \mid(x, y) \in R\} \subseteq Y \times X
$$

is a relation from Y to X, called the inverse (or opposite or reverse) of the relation R and is usually denoted by R^{-1}.
Further, if S be a relation from Y to Z. Then the subset

$$
S \circ R:=\{(x, z) \in X \times Z \mid \text { there exists } y \in Y \text { such that }(x, y) \in R \text { and }(y, z) \in S\} \subseteq X \times Z
$$

is a relation from X to Z, called the composition (or composite or product) relation and is usually denoted ${ }^{2}$ by $S \circ R$.

[^1]For example, $\left(\Delta_{X}\right)^{-1}=\Delta_{X},(<)^{-1}=\{(n, m) \in \mathbb{N} \times \mathbb{N} \mid n>m\}$ is the inverse relation of the strict order relation on \mathbb{N} and $(X \times Y)^{-1}=Y \times X$. The inverse relation of the constantrelation $R_{c}:=\{(x, c) \mid$ $x \in X\}, c \in Y$ is $R_{c}^{-1}=\{(c, x) \mid x \in X\}$.
(1) Let R be a relation from X to Y and let S be a relation from Y to Z. Then
(a) $\operatorname{Dom}\left(R^{-1}\right)=\operatorname{Rng}(R), \operatorname{Rng}\left(R^{-1}\right)=\operatorname{Dom}(R)$ and $\left(R^{-1}\right)^{-1}=R$.
(b) $\operatorname{Dom}(S \circ R)=\operatorname{Dom}(R), \operatorname{Rng}(S \circ R)=\operatorname{Rng}(S)$ and $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$.
(c) $\Delta_{\operatorname{Dom}(R)} \subseteq R^{-1} \circ R$ and $\Delta_{\operatorname{Rng}(R)} \subseteq R \circ R^{-1}$.
(2) Let R, S and T be relations from X to Y, from Y to Z and from Z to W, respectively. Then
(a) (Associativity of composition) $T \circ(S \circ R)=(T \circ S) \circ R$.
(b) $R \circ \Delta_{X}=R=\Delta_{Y} \circ R$.

[^0]: Below one can see auxiliary results and (simple) Test-Exercises.

[^1]: ${ }^{1}$ More generally, for every positive integer n, one can define n - ary relation as a subset of $X^{n}:=X \times \cdots \times X$ (n-times). We shall rarely consider n-ary relation for $n \neq 2$ and so by relation from now on we shall mean a binary relation unless otherwise specified.
 ${ }^{2}$ Despite of our habit of reading/writing from left to right, the definition of $S \circ R$ suggests "first R, then S." Although, it might therefore seem natural to denote the composition of S and R by $R \circ S$, the notation adopted here is justified by its traditional usage in the case of relations which are "functional."

