E0 221 Discrete Structures / August-December 2012

(ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/Current Courses/...

Tel: +91-(0)80-2293 2239/(Ma	aths Dept. 3212)	E-mails	mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in			
Lectures : Monday and Wed	Venue: CSA, Lecture Hall (Room No. 117)					
TA/Corrections by : Dr.	Anita Das (anita	@csa.iisc.e	rnet.in)			
1-st Midterm : Saturday, S Final Examination : Dec	eptember 22, 2012; ember ??, 2012, 10	10:00 -12:00 :00 -13:00	2-ne	d Midterm : Sa	aturday, October 27	, 2012; 10:00 -12:00
Evaluation Weightage : Assignments : 20%			Midterms (Two) : 30%		Final Examination : 50%	
	Ra	nge of Marks fo	or Grades (Total 100) Marks)		
	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
Marks-Range	> 90	76–90	61–75	46-60	35-45	< 35

2. Relations

2.1 Let *R* and *S* be relations from a set *X* to a set *Y*.

- (a) Show that $R \cup S$ is a relation from X to Y and compute $Dom(R \cup S)$ and $Rng(R \cup S)$.
- (b) Construct relations R and S from X to Y such that $\operatorname{Rng}(R \cap S) \neq \operatorname{Rng}(R) \cap \operatorname{Rng}(S)$.
- (c) Express $(R \cup S)^{-1}$ and $(R \cap S)^{-1}$ in terms of R^{-1} and S^{-1} .

2.2 Let *R* and *S*, *T* be relations from *X* to *Y* and from *Y* to *Z*, respectively. Does the equality $(T \cup S) \circ R = (T \circ R) \cup (S \circ R)$ holds? What happens if union is replaced by intersection?

2.3 Let $I := [0,1] := \{x \in R \mid 0 \le x \le 1\}$ be a closed interval in \mathbb{R} and let $R := \{(x,y) \in I \times I \mid x < y\}$. Draw the pictures of $I \times I$, R, δ_I , $R \cup \Delta_I$ and $R \cap \Delta_I$.

2.4 Let X be a non-empty set. A non-empty subset \mathfrak{A} of the set of all relations $\operatorname{Rel}(X)$ is called an uniformity on X if the following properties hold:

- (1) If $R \in \mathfrak{A}$, then $\Delta_X \subseteq R$.
- (2) If $R \in \mathfrak{A}$ and $S \in \mathfrak{A}$, then $R \cap S \in \mathfrak{A}$.
- (3) If $R \in \operatorname{Rel}(X)$ and $S \in \mathfrak{A}$ with $S \subseteq R$, then $R \in \mathfrak{A}$.
- (4) If $R \in \mathfrak{A}$, then $R^{-1} \in \mathfrak{A}$.
- (5) If $R \in \mathfrak{A}$ and $S \in \mathfrak{A}$, then $S \circ R \in \mathfrak{A}$.

For each positive real number r > 0, let $R_r := \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid |x - y| < r\}$ and let

 $\mathfrak{A} := \{S \in \operatorname{Rel}(\mathbb{R}) \mid R_r \subseteq S \text{ for some positive real numbr } r\}.$

Show that \mathfrak{A} is a uniformity on \mathbb{R} .

Below one can see auxiliary results and (simple) Test-Exercises.

Auxiliary Results/Test-Exercises

Roughly speaking, a "relation" is a rule for assigning to certain sets certain other sets. For example, to each natural number greater than 2 each natural number greater than it.

T2.1 (R e l a t i o n s) Let X and Y be sets. A (bin a r y) relation ¹ R from X and Y is a subset $R \subseteq X \times Y$, i.e. an element $R \in \mathfrak{P}(X \times Y)$. For the expression " $(x, y) \in R$ " we shall write "xRy" and say that "x is related to y with respect to R", $x \in X$, $y \in Y$. The set of relations $\mathfrak{P}(X \times Y)$ from X to Y is also denoted by Rel(X, Y) and its elements are also denoted by the symbols \sim , $\cong \equiv, \leq, \preceq \cdots$. In the case Y = X, we put Rel $(X) = \operatorname{Rel}(X, X) = \mathfrak{P}(X \times X)$ and its elements are called relation on X.

Let *R* be a relation form a set *X* to a set *Y*. The subset $\{x \in X \mid \text{there exists } y \in Y \text{ such that } (x, y) \in R\}$ of *X* of all first coordinates of *R* is called the d o m a i nof *R* and is usually denoted by Dom(R). The subset $\{y \in Y \mid \text{there exists } x \in X \text{ such that } (x, y) \in R\}$ of *Y* of all second coordinates of *R* is called the r a n g e or i m a g e of *R* and is usually denoted by Rng(R) or Im(R). In particular, $R \subseteq \text{Dom}(R) \times \text{Rng}(R)$, but this inclusion may be strict (see parts (c) and (d) below) Let *X* and *Y* be sets.

(a) The empty set (called the e m p t y r e l a t i o n) \emptyset is a relation from X to Y and Dom $(\emptyset) = \emptyset =$ Rng (\emptyset) . The product $X \times Y$ is also a relation from X to Y and if $X \times Y \neq \emptyset$, then Dom $(X \times Y) = X$ and Rng $(X \times Y) = Y$.

(b) The diagonal subset $\Delta_X := \{(x,x) \mid x \in X\}$ is a relation on X and is called the d i a g o n a l or i d e n t i t y relation on X.

(c) The subset $\{(x,A) \in X \times \mathfrak{P}(X) \mid x \in A\}$ is a relation from X to $\mathfrak{P}(X)$, called the element - h o o d r elation, its domain is X and range is $\mathfrak{P}(X) \setminus \{\emptyset\}$.

(d) The subset $\{(A,B) \in \mathfrak{P}(X) \times \mathfrak{P}(X) \mid A \subseteq B\}$ is a relation on $\mathfrak{P}(X)$, called the inclusion relation.

(e) The subset $\langle := \{(m,n) \in \mathbb{N} \times \mathbb{N} \mid m < n\}$ is a relation, called the strict order relation tion on \mathbb{N} . Further, $\text{Dom}(\langle) = \mathbb{N}$ and $\text{Rng}(\langle) = \mathbb{N} \setminus \{0\}$. In particular, $\langle \subsetneq \text{Dom}(\langle) \times \text{Rng}(\langle)$. (f) If S are relation form X to Y and if $R \subseteq S$, then R is also a relation from X to Y and $\text{Dom}(R) \subseteq \text{Dom}(S)$ and $\text{Rng}(R) \subseteq \text{Rng}(S)$. In particular, if R and S are relations from X to Y, then $R \cap S$ is also relation from X to Y and $\text{Dom}(R \cap S) \subseteq \text{Dom}(R) \cap \text{Dom}(S)$ and $\text{Rng}(R) \cap \text{Rng}(S)$.

T2.2 (C omposite and Inverse relations) Let R be a relation from X to Y. Then the subset

$$R^{-1} := \{(y, x) \in Y \times X \mid (x, y) \in R\} \subseteq Y \times X$$

is a relation from Y to X, called the inverse (or opposite or reverse) of the relation R and is usually denoted by R^{-1} .

Further, if S be a relation from Y to Z. Then the subset

 $S \circ R := \{(x,z) \in X \times Z \mid \text{there exists } y \in Y \text{ such that } (x,y) \in R \text{ and } (y,z) \in S\} \subseteq X \times Z$

is a relation from X to Z, called the composition (or composite or product) relation and is usually denoted² by $S \circ R$.

¹More generally, for every positive integer n, one can define n- ary relation as a subset of $X^n := X \times \cdots \times X$ (*n*-times). We shall rarely consider *n*-ary relation for $n \neq 2$ and so by relation from now on we shall mean a binary relation unless otherwise specified.

²Despite of our habit of reading/writing from left to right, the definition of $S \circ R$ suggests "first *R*, then *S*." Although, it might therefore seem natural to denote the composition of *S* and *R* by $R \circ S$, the notation adopted here is justified by its traditional usage in the case of relations which are "functional."

For example, $(\Delta_X)^{-1} = \Delta_X$, $(<)^{-1} = \{(n,m) \in \mathbb{N} \times \mathbb{N} \mid n > m\}$ is the inverse relation of the strict order relation on \mathbb{N} and $(X \times Y)^{-1} = Y \times X$. The inverse relation of the constant relation $R_c := \{(x,c) \mid x \in X\}$, $c \in Y$ is $R_c^{-1} = \{(c,x) \mid x \in X\}$.

- (1) Let R be a relation from X to Y and let S be a relation from Y to Z. Then
- (a) $\text{Dom}(R^{-1}) = \text{Rng}(R)$, $\text{Rng}(R^{-1}) = \text{Dom}(R)$ and $(R^{-1})^{-1} = R$.
- (b) $\operatorname{Dom}(S \circ R) = \operatorname{Dom}(R)$, $\operatorname{Rng}(S \circ R) = \operatorname{Rng}(S)$ and $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.
- (c) $\Delta_{\text{Dom}(R)} \subseteq R^{-1} \circ R$ and $\Delta_{\text{Rng}(R)} \subseteq R \circ R^{-1}$.
- (2) Let R, S and T be relations from X to Y, from Y to Z and from Z to W, respectively. Then
- (a) (Associativity of composition) $T \circ (S \circ R) = (T \circ S) \circ R$.
- **(b)** $R \circ \Delta_X = R = \Delta_Y \circ R.$

Page 3