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3. Ordered Sets

∗3.1 Let r ∈N+. The set Nr =N×·· ·×N (r-times) of the r-tuples of natural numbers is ordered
by the product order of the usual order on N, i. e. by definition (x1, . . . ,xr) ≤ (y1, . . . ,yr) if and
only if xi ≤ yi for all i = 1, . . . ,r. For r ≥ 2, this product order is not a total order. For r = 2, the
set of points ≥ (x1,x2) is shaded in the following picture:
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Sketch the picture for the set of points ≤ (x1,x2). Clearly (0, . . . ,0)∈Nr is the least element of Nr.
Let X be an arbitrary subset of Nr (with the induced order from the product order of Nr). Show
that X has only finitely many minimal elements. (Hint : Proof by induction on r. For this one may
assume that if a r-tuple x ∈ X , then all r-tuples y ∈Nr with x ≤ y also belong to X . This means replace X
by the set

∪
x∈X

(x+Nr). Note that this does not change the set of minimal elements. For the inductive step

from r to r+1, apply induction-hypothesis to the sets X ′
n := {x′ ∈Nr | (x′,n) ∈ X} ⊆Nr, n ∈N. Observe

that X ′
0 ⊆ X ′

1 ⊆ X ′
2 ⊆ ·· · and there exists n0 ∈N such that X ′

n = X ′
n0

for all n ≥ n0. This already proves the
case from r = 1 to r+1 = 2 :

elements of

and makes it clear how can one make a general argument.)

3.2 On the set N+ of positive natural numbers, let | denote the relation “divides”, i. e. for m,n ∈
N+, m | n if and only if n = am for some a ∈N+. Show that:
(a) | is an order on N+ and that the element 1 is the least element.
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(b) The prime numbers are precisely the minimal elements in (N+ \{1}, |).
(c) Draw the Hasse-Diagrams for the set of divisors of 12 and 30.
(d) The chains in (N+, |) are either finite or an infinite sequence of the type

C = (q0, q0q1, q0q1q2, . . . )

with qn ∈N+, qn ≥ 2 for all n ≥ 1. Moreover, C is a maximal chain if and only if the sequence
(q0, q1, q2, . . . ) is infinite and q0 = 1 and qn, n ≥ 2 are all prime numbers.

3.3 (a) Let I be any set and let P(I) be the power set of I. The natural inclusion ⊆ defines and
order on P(I). Moreover, the ordered set (P(I),⊆) is a complete ordered set.

(b) The set of natural numbers N with the usual order ≤ is a conditionally complete ordered set.
In this ordered set there are no lower cuts. For each n ∈N, the ordered set ({0,1, . . . ,n},≤) is a
complete ordered set.

(c) Give an order ≼ on the set N of natural numbers so that (N ,≼) is a complete ordered set.

3.4 Give an order ≼ on the set N×N so that:
(a) The ordered set (N×N ,≼) has infinitely many lower cuts.
(b) The ordered set (N×N ,≼) has no lower cuts.

3.5 Let (X ,≤) be an dense ordered set and let a and b be two elements of X with a < b. Prove that
there exist infinitely elements distinct elements x ∈ X such that a < x < b, i. e. the open interval
(a,b) of X is infinite.

3.6 Let (X ,≤) be a simply ordered set.
(a) Show that X is dense if and only if no element of X has an immediate successor.
(b) Let x,y ∈ X and I(x) be an initial segment of X . Then show that:
(i) If the initial segment I(y) of X is a subset of I(x), then I(y) is also an initial segment of I(x).
(ii) If I(y) is an initial segment of I(x), then I(y) is also an initial segment of X .
(c) Give an example of a simply ordered set (X ,≤), such that every initial segment of which
contains only finitely many elements.

3.7 (a) Well order the set of natural numbers N so that exactly five of its elements do not have
predecessors.
(b) Give three well orders on the set Z of integers.
(c) Give a well order on the set Q of rational numbers..

3.8 Let X and Y be well ordered sets. Let ≤ defined by:

For x1,x2 ∈ X and y1,y2 ∈Y : (x1,y1)≤ (x2,y2) if and only if y1 < y2 or y−1 = y2 and x1 ≤ x2 .

(a) Show that ≤ is a well order on X ×Y .
(b) Is the dictionary order on X ×Y a well ordering?

Below one can see auxiliary results and (simple) Test-Exercises.
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Auxiliary Results/Test-Exercises

Relations which order a set occur in all domains of mathematics and in many branches of the
empirical sciences. There are almost an endless number of interesting theorems about various
ordering relations and their properties.

T3.1 (O r d e r s)
An element b ∈ X is called an i m m e d i a t e s u c c e s s o r of a ∈ X if a < b and there is
no element c ∈ X such that a < c < b. If b is an immediate successor of a, then a is called an
i m m e d i a t e p r e d e c e s s o r of b.

T3.2 Let (X ,≤) be a finite non-empty ordered set. Show that X has (at least one) a minimal and
(at least one) a maximal element. Further, prove that X is simply ordered if and only if X is well
ordered.

T3.3 Let N be the set of natural numbers. Show that each of the relations ≼ defined below on
the set N of natural numbers are orders: For m,n ∈N, define m ≼ n if
(a) m ≤ n (in the usual sense) and m and n have the same parity.
(b) m is even, and m and n have different parity.
(c) m = n or upon the division of m and n by 5, m yields the smaller remainder.
(d) m = n or in the division in (c), m and n yield the same remainder and m < n.

T3.4 For the sake of convenience in giving many examples , we shall use the following configura-
tion such as:

{ . . . , ( . . . ;a ; b ; . . . ; c ; . . . ) , ( . . . ;m ; n ; . . . ) , . . . }

to represent the ordered set (X ,≤), where X = { . . . , a , b , c , . . . , , m , n , . . . } and where x ≤ y
if and only if x and y are contained in the same parentheses and x is not written to the right of y.
For example, in this notation the set of natural numbers (respectively of integers) with the usual
order ≤ is represented as: 5

(N,≤) = { (0; 1 ; 2 ; . . . )} (respectively (Z,≤) = { ( . . . ; −2; −1; 0 ; 1 ; 2 ; . . . )}).

T3.5 Give an example of an ordered set (X ,≤) such that:
(a) there are exactly three minimal elements and two maximal elements and neither a minimum
nor a maximum.
(b) Every non-empty subset Y of X has a least upper bound, but not necessarily a lower bound.
(c) Every non-empty bounded above subset has a least upper bound, but not every subset has a
lower bound.

T3.6 Let (X ,≤) be an ordered set.
(1) (D u a l) The inverse (or opposite) relation ≤−1 (or ≤op) on X is again an order on X . More-
over (≤−1)−1 = (≤op)op =≤. The partially ordered set (X ,≤op) is called the d u a l (or o p -
p o s i t e) of (X ,≤). Clearly (X ,≤) and (X ≤op) are duals of each other.
(2) (D i s t i n g u i s h e d e l e m e n t s) It is clear that a d i s t i n g u i s h e d element – a
minimal, a maximal, the least and the greatest element in (X ,≤) becomes its c o u n t e r p a r t
(or d u a l) – a maximal, a minimal, the greatest and the least element in the dual ordered set
(X ,≤op). Moreover, a lower bound (the subset LBX(Y ) of lower bounds), an upper bound (the
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subset UBX(Y ) of upper bounds), the greatest lower bound (GLBX(Y ) ) and the least upper bound
(LUBX(Y ) ) of a subset Y of X in (X ,≤) becomes its d u a l – an upper bound (the subset
UBXop(Y ) of upper bounds), a lower bound (the subset LBXop(Y ) of lower bounds), the least upper
bound (GLBXop(Y ) ) and the greatest lower bound (LUBXop(Y ) ) of the subset Y of X in the dual
ordered set (X ,≤op).
(3) (D u a l i t y T h e o r e m) Let a statement T be a theorem in every ordered set and let
T dual be the statement (called the dual of T ) obtained from the statement by changing every
distinguished element to its dual and ≤ to ≤op. Then the statement T dual is again a theorem in
every ordered set. (Proof Since the distinguished elements of X as well as those of a subset Y of X in
every ordered set (X ,≤) become their duals in the dual ordered set (X ,≤op) and the ordered sets (X ,≤op)

and (X ,≤) are duals of each other, the assertion is immediate.)

T3.7 (D u a l T h e o r e m s) We give some concrete examples of the dual theorems.

(1) T : An ordered set (X ,≤) has a least element if and only if the empty-set /0 has a least upper
bound in X. (Remark : Note that T is a theorem in every ordered set (X ,≤) : For a proof note that
UBX( /0) = X and hence Min(X) = LUBX( /0) = Min(UBX( /0).)
The dual of T is the following:

T dual : An ordered set (X ,≤) has a greatest element if and only if the empty-set /0 has a
greatest lower bound in X.
(2) T : Let (X ,≤) be an ordered set and let Y ⊆ X and z := LUBX(LBX(Y )). Then

LUBX(LBX(Y )) ∈ LBX(Y ) and LUBX(LBX(Y )) = GLBX(Y ) .

(Remark : Note that T is a theorem in every ordered set (X ,≤) : For a proof note that z ≤ y for every
y ∈ Y and hence z ∈ LBX(Y ). On the other hand x ≤ z for every x ∈ LBX(Y ). Therefore z = GLBX(Y ).)
The dual of T is the following:

T dual : Let (X ,≤) be an ordered set and let Y ⊆ X. Then

GLBX(UBX(Y )) ∈ UBX(Y ) and GLBX(UBX(Y )) = LUBX(Y ) .

T3.8 Theorem Let (X ,≤) be an ordered set. Then every non-empty bounded above subset Z
of X has a least upper bound if and only if every non-empty bounded below subset Y of X has a
greatest lower bound. In other words the following two statements are equivalent :
(i) LUBX(Z) exists for every bounded above subset Z of X.
(ii) GLBX(Y ) exists for every bounded below subset Y of X.
(Proof (i)⇒(ii): Let Y be a non-empty bounded below subset of X . Then LBX(Y ) ̸= /0 and is bounded above
by every element of Y . Therefore LUBX(LBX(Y )) exists by (i) and by LUBX(LBX(Y )) = GLBX(Y ). The
converse (implication (ii)⇒(i)) follows from the duality Theorem T3.6 (3).)

T3.9 (C o n d i t i o n a l l y C o m p l e t e O r d e r e d S e t s) An ordered set (X ,≤) in which
every non-empty subset that is bounded above has a least upper bound (and therefore, in which
every non-empty subset that is bounded below has a greatest lower bound) is called a c o n d i -
t i o n a l l y c o m p l e t e ordered set.

T3.10 As a corollary of the above Theorem in T3.8 we have: Let (X ,≤) be an ordered set. Then
every subset Z of X has a least upper bound if and only if every subset Y of X has a greatest lower
bound. In other words the following two statements are equivalent :
(i) LUBX(Z) exists for every subset Z of X.
(ii) GLBX(Y ) exists for every subset Y of X.
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T3.11 (C o m p l e t e O r d e r e d S e t s) An ordered set (X ,≤) in which every subset has a
least upper bound (and hence, in which every subset has a greatest lower bound) is called a c o m -
p l e t e ordered set or a c o m p l e t e l a t t i c e. Clearly, a complete lattice has a greatest ( Inf /0)
and a least (Sup /0) element. Further, every complete ordered set is conditionally complete.

T3.12 (L o w e r C u t s) Let (X ,≤) be an Ordered Set. A subset L of X is called a l o w e r
c u t of X if
(i) /0 ̸= L ( X , i. e. L is a non-empty proper subset of X .
(ii) L has no greatest element, i. e. MaxL does not exist.
(iii) If x ∈ L, then every element y ∈ X with y ≤ x is also an element of L.

With this definition we have the following:

Theorem Let L (X) be the set of lower cuts of an ordered set (X ,≤). Then the ordered set
(L (X),⊆) is conditionally complete. Moreover, if (X ,≤) is simply ordered, then (L (X),⊆) is
also simply ordered.

T3.13 Let (X ,≤) be a conditionally complete ordered set and f : X → X be a non-decreasing
map from X to X . If there are a,b ∈ X such that a ≤ f (a)≤ f (b)≤ b , then there exists an element
c ∈ X such that a ≤ c ≤ b and f (c) = c. In particular, f has a fixed point.

T3.14 Let (X ,≤) be a complete ordered set and f : X → X be a non-decreasing map from X to
X . Then f has at least one fixed point. (Hint : Since X is complete, it has a least and greatest elements,
put a := MinX and b := MaxX . Then a ≤ f (a)≤ f (b)≤ b and hence we can apply Test-Exercise T3.14.)

T3.15 (I n i t i a l S e g m e n t s) Let (X ,≤) be an ordered set. For every element a ∈ X , the set
I(a) := {x ∈ X | x < a} is called the i n i t i a l s e g m e n t of X determined by a. If I(a) ̸= /0,
then I(a) is called a p r o p e r i n i t i a l s e g m e n t of X .

With this definition we have the following:

(1) Proposition Let (X ,≤) be an ordered set and let I(b) be an initial segment of an element
b ∈ X. If I(b) ̸= /0, then I(b) is a lower cut of X.

(2) Theorem Let I (X) be the set of all initial segments of an ordered set (X ,≤). If (X ,≤) is
simply ordered, then the ordered set (I (X),⊆) is again simply ordered.

T3.16 (D e n s e a n d C o n t i n u o u s O r d e r e d S e t s)
(1) An ordered set (X ,≤) is called d e n s e if for every two elements a,b ∈ X with a < b, there
exists an element c ∈ X such that a < c < b.
(2) An ordered set (X ,≤) is called c o n t i n u o u s if it is simply ordered, dense and condition-
ally complete.

With this definition we have the following:

(3) Theorem Let (X ,≤) be a simply ordered set. Then X is dense if and only if every non-empty
initial segment of X is a lower cut of X.

(4) Theorem Let (X ,≤) be a continuous ordered set and let L ⊆ X. Then L is a lower cut of X if
and only if L is a proper initial segment of X.

(5) Theorem Let L (X) be the set of lower cuts of an ordered set (X ,≤). If X is simply ordered
and dense, then the ordered set (L (X),⊆) is continuous.

T3.17 Let (X ,≤) be an ordered set.
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(a) Let I (X) be the set of initial segments of X . Suppose that X is dense. Is the ordered set
(L (X),⊆) dense?
(b) Let L (X) be the set of lower cuts of X . Suppose that X is simply ordered. Is the ordered set
(I (X),⊆) conditionally complete?
(c) Give an example of an ordered set (X ,≤) such that the ordered set (I (X),⊆) of initial
segments of X is complete and simple ordered.

T3.18 Let (W,≤) be an well ordered set.
(1) Every element in W other than the last element has a unique immediate successor. Moreover,
every element of W has at most one immediate predecessor.
(2) Every well ordered set is conditionally complete.
(3) The ordered set (I (W ),⊆) of initial segments of W is well ordered.

T3.19 One of the significant features of well ordered set ,(W,≤) is that if every element of an
initial segment I(x) of W satisfies a property implies that x satisfies that property, then every ele-
ment of W satisfies that property. This provides a convenient device for proving that a property is
satisfied by every element of well ordered set.This feature is called the theorem (or principle) of
transfinite induction. Clearly, an initial segment I(x) of an ordered set is the set of al predecessors
of x, we can formulate the theorem of transfinite induction as follows:

Theorem (T r a n s f i n i t e I n d u c t i o n) Let (W,≤) be a well ordered set and let V ⊆W. Sup-
pose that every element x ∈W satisfies the following condition: if every predecessor of x belongs
to V , then x ∈V . Then V =W.
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