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4. Finite Sets – Elementary Counting Techniques

4.1 Let X be a finite set with n elements.
(a) The number of subsets of X is 2n . (Hint : The map P(X)→{0,1}X , A 7→ eA is bijective.)
(b) If n ∈N∗ , then the number of subsets of X with an even number of elements is equal to the
number of subsets of X with an odd number of elements. Moreover, this number is equal to 2n−1.
(Hint : Let a ∈ X . The map defined by A 7→ A∪{a} , if a /∈ A , resp. Ar {a} , if a ∈ A , is a bijective
map from the set of subsets with an even number of elements onto the set of subsets with an odd number of
elements.)
(c) For n ∈N , prove that :

(n
0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n . (Hint : Use part (a).)

(d) For n ∈N∗ , prove that :
(n

0

)
−
(n

1

)
+ · · ·+(−1)n(n

n

)
= 0. (Hint : Use part (b) or (1−1)n = 0.)

(e) Prove that ∑n
k=0

(2n+1
2k

)
= 4n = ∑n

k=0
(2n+1

2k+1

)
for n∈N and ∑n

k=0
(2n

2k

)
= 4n

2 = ∑n−1
k=0

( 2n
2k+1

)
for n∈N∗. (Hint : Use part (b).)
(f) Let Y be a k-element subset of X . Then the number of m-element subsets of X which contain
Y is

(n−k
m−k

)
.

(g) For natural numbers m,n with m ≤ n , show that ∑m
k=0

(n
k

)(n−k
m−k

)
= 2m(n

m

)
. (Hint : Compute the

sum of all numbers in the part f), where Y runs through all k-element subsets of X in two different ways or
use the formula

(n
k

)(n−k
m−k

)
=
(n

m

)(m
k

)
.)

(h) For m,n,k ∈N, prove that(
m+n

k

)
=

(
m
0

)(
n
k

)
+

(
m
1

)(
n

k−1

)
+ · · ·+

(
m
k

)(
n
0

)
.

In particular,
(2n

n

)
=

(n
0

)2
+
(n

1

)2
+ · · ·+

(n
n

)2 for n ∈ N. (Hint : Let X ,Y be disjoint sets with |X | =
m, |Y |= n. The assignment A 7→ (A∩X , A∩Y ) defines a bijective map P(X ∪Y )→P(X)×P(Y ).)
(i) What is the cardinality of the set P≥n+1({1,2, . . . ,2n+1})? (see also Test-Exercise T4.3-(b),
parts (e) and (d) above.)

4.2 Let X be a finite set with n elements.
(a) Prove that the number of pairs (X1, X2) in P(X)×P(X) with X1 ∩ X2 = /0 is 3n . More
generally : The number of m–tuples (X1, . . . ,Xm) of pairwise disjoint subsets X1, . . . ,Xm ⊆ X is
equal (m+1)n .
(b) For n,r ∈N, prove that ∑m

(n
m

)
= rn , where m run through the set of all r-tuples (m1, . . . ,mr)∈

Nr of natural numbers with m1 + · · ·+mr = n . (Hint : Use rn = (1+ · · ·+1)n or the part a).)
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4.3 ( S y l v e s t e r ’ s S i e v e - - f o r m u l a 1) Let X1, . . . ,Xn be finite sets. For J ⊆ {1, . . . ,n}, let
XJ :=

∩
i∈J Xi with X/0 :=

∪n
i=1 Xi. Prove that

∑
J∈P({1,...,n})

(−1)|J||XJ|= 0 , i.e. |X |= ∑
/0̸=J∈P({1,...,n})

(−1)|J|−1|XJ| .

(Hint : By induction on n. — Variant : For k = 1, . . . ,n, let Yk be the set of elements x ∈ X/0 which belong
to exactly k of the sets X1, . . . ,Xn. Then Yk,1 ≤ k ≤ n are pairwise disjoint. Using Exercise 4.1 (b) show that

∑
J∈P({1,...,n})

|J|even

|XJ|=
n

∑
k=1

2k−1|Yk|= ∑
J∈P({1,...,n})

|J|odd

|XJ| .)

4.4 Let X be a finite set with m elements.
(a) Let pm denote the number of permutations of X which donot have fixed points and let sm = m!
be the number of all permutations of X . Show that :

pm

sm
=

1
0!

− 1
1!

+ · · ·+(−1)m · 1
m!

.

(Hint : Let X = {x1, . . . ,xm}. Set Xi := {σ ∈ S(X) : σ(xi) = xi} and compute sm − pm = |
∪m

i=1 Xi| using
the Sieve formula in Exercise 4.3.) – (Remark : Note that limm→∞ (pm/sm) = e−1, where e := limn→∞(1+
1
n)

n = 2.71828182845904523536 . . . is the Euler’s number which is base of the natural logarithm.) – The
number of permutations of X with exactly r fixed points is

(m
r

)
pm−r, 0 ≤ r ≤ m. (Proof!)

(b) Let X be a finite set with m elements and let Y be a finite set with n elements. The number of
surjective maps from X in Y is

nm −
(

n
1

)
(n−1)m +

(
n
2

)
(n−2)m −·· ·+(−1)n

(
n
n

)
(n−n)m .

(Hint : Let Y = {y1, . . . ,yn}. Set Pi := { f ∈ Y X : yi /∈ im f} and compute the number |
∪n

i=1 Pi| of non-
surjective maps using the Sieve formula in Exercise 4.3.))

4.5 Let I be a finite index set with n elements and let σi ∈N for i ∈ I, π := ∏i∈I σi, σ := ∑i∈I σi
and σH := ∑i∈H σi for H ⊆ I. Then

∑
H⊆I

(−1)|H|
(

σH

n

)
= (−1)nπ and ∑

H⊆I
(−1)|H|

(
σH

n+1

)
=

(−1)n

2
(σ −n)π ,

(Hint : Let X =
∪

i∈I Xi, where Xi are pairwise disjoint subsets with |Xi| = σi. For a proof of the first
formula consider the set Pn(X) and its subsets Yi := {A ∈Pn(X) | A∩Xi = /0} and use the Sieve formula in
Exercise 4.3 to find |

∪
i∈I Yi|.)

4.6 Let m,n be two natural numbers.
(a) Let a(m,n) (respectively, b(m,n) ) denote the number of m–tuples (x1, . . . ,xm) ∈ Nm with
x1 + · · ·+ xm ≤ n (respectively, x1 + · · ·+ xm = n) . Show that

a(m,n) =
(

n+m
m

)
and b(m,n) =

(
n+m−1

m−1

)
.

(Hint : Remember to put
(−1
−1

)
:= 1. For m ≥ 1, note the equalities a(m− 1,n) = b(m,n) and a(m,n) =

a(m,n−1)+a(m−1,n) and then use induction on n+m . – Variant : The map (x1, . . . ,xm) 7→ {x1+1, x1+

1This formula is attributed to Joseph Sylvester. J a m e s J o s e p h S y l v e s t e r (1814-1897) was an English
mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory
and combinatorics. He played a leadership role in American mathematics in the later half of the 19th century as a
professor at the Johns Hopkins University and as founder of the American Journal of Mathematics. It is sometimes
also named for Abraham de Moivre, Daniel da Silva or Henri Poincaré.
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x2+2, . . . ,x1+ · · ·+xm+m} maps the set of m–tuples (x1, . . . ,xm) ∈Nm with x1+ · · ·+xm ≤ n bijectively
onto the set of m–element subsets of {1,2, . . . ,n+m} .)
(b) Suppose that m ≥ 1. Prove that the number of m–tuples (x1, . . . ,xm) ∈ (N+)m of positive
natural numbers with x1 + · · ·+ xm = n is

(n−1
m−1

)
.

(c) Let k ∈N with k ≤ n . Prove that the subset

X= {A ∈Pk({1, . . . ,n}) | if a ∈ A, then a+1 ̸∈ A}

of Pk({1, . . . ,n}) has cardinality
(n−k+1

k

)
.

(d) Let X = {x1, . . . ,x2n+1} , n ∈ N be a set with 2n+ 1 elements. For k = 0,1, . . . ,n , let Xk
be the set of all those subsets of X of cardinality ≥ n+ 1 which contain xn+k+1 and exactly n
elements from x1, . . . ,xn+k , i.e.

Xk = {A ∈P≥n+1(X) | |A∩{x1, . . .xn+k}|= n and xn+k+1 ∈ A} .

Show that
∪n

k=0Xk =P≥n+1(X) and hence deduce that ∑n
k=0 2n−k(n+k

k

)
= 4n . Note that subsets of

X which are elements of Xk may contain some elements from xn+k+2, . . . ,xn+1 . See also Test-Exercise T4.3-
(b), 4.1-(e) and 4.1-(i).)

4.7 Let X1, . . . ,Xn be finite subsets of a finite set Ω . For /0 ̸= J ⊆ {1, . . . ,n} , let XJ :=
∩

i∈J Xi and
X := X/0 :=

∪n
i=1 Xi . Further, for j = 1, . . . ,n , put ξ j := ∑J∈P j({1,...,n}) |XJ| and ξ0 := |Ω| . Prove

that

(a)

∣∣∣∣∣ n∩
i=1

(Ω\Xi)

∣∣∣∣∣ = n

∑
j=0

(−1) jξ j . (Hint : By Sylvester’s sieve formula (Exercise 4.3), |X | =

∑n
j=1(−1) j−1ξ j . Since ∩n

i=1(Ω\Xi) = Ω\∪n
i=1Xi = Ω\X , we get |∩n

i=1 (Ω\Xi)|= |Ω|− |X | .)

(b) For k = 1, . . . ,n , let Yk be the set of all those elements in X which belongs to exactly k of

the subsets X1, . . . ,Xn . Then show that |Ym|=
n

∑
r=m

(−1)r−m
(

r
m

)
ξr for all 1 ≤ m ≤ n . (Hint : Let

1 ≤ k,m ≤ n and let m be fixed. Suppose that x ∈ Yk and (may) assume that x ∈ X1, . . . ,Xk and x ̸∈ Xi

for all k < i ≤ n . If k < m , then x ̸∈ Ym and hence x does not contribute anything to ξr for r ≥ m . If
k = m , then x ∈ Ym and in the sum on the LHS it contributes only to one term, namely, to

(m
m

)
ξm , since

ξm := ∑J∈Pm({1,...,n}) |XJ| and only one of these intersections, namely, X1 ∩ ·· · ∩ Xm contains x . In the
remaining case k > m , x ̸∈ Ym and hence x contributes nothing. On the other hand its contribution to ξr is(k

r

)
(one in each J ∈Pr({1, . . . ,k}) . Therefore if we let j = r−m , then the problem redusces to prove the

identity ∑k−m
j=0 (−1) j

(m+ j
m

)( k
m+ j

)
= 0 which is stated in Test-Exercise T4.4-(b)-(2).)

4.8 The purpose of this Exercise is to give an alternative proof of the Exersicse 4.7-(b). Let Ω be

a finite set and let f : Ω×P(Ω)→R be the map defined by (x,A) 7→

{
0, if x ̸∈ A,
1, if x ∈ A.

Show that :
(a) For each A ∈P(Ω) , the map f (−,A) is the indicator function eA of A . In particular, for any
two subsets A,B ∈P(Ω) , we have :

(1) f (x,Ω\A) = 1− f (x,A) ;
(2) f (x,A∩B) = f (x,A) · f (x,B) ;
(3) f (x,A∪B) = f (x,A)+ f (x,B)− f (x,A∩B) ;
(4) |A|= ∑x∈Ω f (x,A) . (Hint : See the Exercise 1.??.)

(b) Let I := {1,2, . . . ,n} and let X1, . . . ,Xn ∈P(Ω) and for each J ∈P(I) , let XJ :=∩ j∈JX j (and
X/0 := Ω ). Then prove that ∑

J∈P j(I)
|XJ|= ∑

x∈Ω

(
∑

J∈P j(I)
f (x,XJ)

)
. (Hint : Use the part (a).)
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(c) If an element x ∈ Ω belongs to exactly k of the subsets X1, . . . ,Xn , then prove that

∑
J∈Pr(I)

f (x,XJ)=

(
k
r

)
.

(Hint : Here we use the understanding that
(0

0

)
= 1. We may assume that x ∈ X1 ∩ ·· ·∩Xk and x ̸∈ Xi for

all k < i ≤ n . For every J ∈Pr({1, . . . ,n}) , f (x,XJ) = ∏ j∈J f (x,X j) = 1 if and only if J ⊆ {1, . . . ,k} , i.e.,
J ∈Pr({1, . . . ,k}) . This proves that LHS is equal to the cardinality |Pr({1, . . . ,k})|=

(k
r

)
.)

(d) For every x ∈ Ω , show that f (x,∩n
i=1(Ω \ Xi)) =

n

∑
j=0

(−1) j( ∑
J∈P j(I)

f (x,XJ)
)

. (Hint : For

i ∈ I := {1, . . . ,n} , put X ′
i := Ω \Xi . Then by (a)-(1) , (2) LHS = ∏n

i=1 f (x,X ′
i ) = ∏n

i=1(1− f (x,Xi)) =

1+∑n
j=1(−1) j ∑J∈P j(I)(∏k∈J f (x,Xk)) = 1+∑n

j=1(−1) j ∑J∈P j(I) f (x,XJ)) . – Remark : Suming over the
two sides of this formula as x varies over Ω and using the parts (a) and (b), we get the proof of the formula
given in the Exercise 4.7-(b).)

4.9 For k ∈ N+, a k- a r y s e q u e n c e is a sequence with values in a finite set with k elements
(generally in the set {0, . . . ,k−1} ), i.e. a k-ary sequence is an element in the set {0, . . . ,k−1}N.
For k = 2,3,4,5 these sequences are also called b i n a r y , t e r n a r y , q u a t e r n a r y , q u i n t n a r y
sequences. (See also Test-Exercise T4.2-(c).)

(a) Show that the number of binary sequences of length n in which the digit 1 occurs even number
of times is 2n−1 . This is also the number of binary sequences of length n in which the digit
1 occurs odd number of times. (Hint : Let X := {0,1}{1,...,n} be the set of all binary sequences of
length n and let Xeven(1) (respectively, Xodd(1) be the set of all binary sequences of length n in which
the digit 1 occurs even (respectively, odd) number of times. Then clearly X = Xeven(1)⊎Xodd(1) . First
assume that n is odd. Then the map f : X → X defined by f ((a1, . . . ,an) = (a′1, . . . ,a

′
n) , where a′i = 0 or 1

according as ai = 1 or 0 for all i = 1, . . .n , is a bijection. Moreover, if n is odd, then f (Xeven(1)) = Xodd(1)
and f (Xodd(1)) = Xeven(1) . Therefore |Xeven(1)| = |Xodd(1)| and 2n = |X | = |Xeven(1)|+ |Xodd(1)| = 2 ·
|Xeven(1)| = 2 · |Xodd(1)| . Now, if n is even, then one can reduce the computation to the case when n
is odd : Let A := {(a1, . . . ,an,an+1) ∈ X | an+1 = 1 and B := {(a1, . . . ,an,an+1) ∈ X | an+1 = 0. Then
|A| = |B| = 2n−1 and hence X = A ⊎ B . Further, Xeven(1) = (A ∩ Xeven(1))⊎ (B ∩ Xeven(1)) and hence
|Xeven(1)|= |(A∩Xeven(1))|+ |(B∩Xeven(1))|= 2n−2+2n−2 = 2n−1 , since n−1 is odd. Finally, |Xodd(1)|=
|X |− |Xeven(1))|= 2n −2n−1 = 2n−1 .)

(b) Show that the number of k-ary sequences of length n in which the digit 1 occurs even number

of times is
kn +(k−2)n

2
. (Hint : Let Y := {2,3, . . . ,k − 1}{1,...,n} denote the set of all those k-ary

sequences of length n which do not contain 0 or 1 and let Z : X \Y . Classify the sequences in Z by their
pattern, i.e., consider the equivalence classes ∼ Z1, . . . ,Zs with respect to the equivalence relation on Z .
Then |Z| = |Z1|+ · · ·+ |Zs| . Note that by definition Zi is the set of all k-ary sequences of length n which
have the same pattern of the symbols 2,3, . . . ,k−1 and hence |Zi|= 2n−r , where r is the number of places
filled by the symbols 2,3, . . . ,k− 1. Now by part a) half of these sequences have even number of 1’s and
this is true for all i = 1, . . . ,s . This proves that |Zeven(1)|= ∑s

i=1
1
2 |Zi|= 1

2 |Z|=
1
2(k

n− (k−2)n) . Therefore,
since Xeven(1) = Y ⊎Zeven(1) , we get |Xeven|= |Y |+ |Zeven(1)|= (k−2)n + 1

2(k
n − (k−2)n) . )

(c) For positive natural numbers n,k ∈N+ , k ≥ 2, prove the formula :

∑
r∈N

(
n
2r

)
(k− 1)n−2r =

kn +(k−2)n

2
. (Hint : Follows from the part b), since the

sum on the left is the number of k-ary sequences of length n in which the digit 1 occurs even number of
times.)

(d) Show that the number of k-ary sequences of length n in which both 0 and 1 occur even

number of times is
kn +2(k−2)n +(k−4)n

4
, k ≥ 2 . (Hint : Let 1 occur 2r times in a k-ary
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sequences of length n . Then the remaining (k−1)-ary sequence is of length n−2r . If 0 occur in an even

number of times, then by part (b), there are
(k−1)n−2r +(k−3)n−2r

2
such sequences. Now the assertion

follows by applying the part (c) twice (once for k and then for k−2) and adding.)
(e) Find the number of k-ary sequences of length n in which the digit 1 occurs even number of

times and the digit 0 occurs odd number of times. (Hint : The answer is
kn − (k−4)n

4
– From the

k-ary sequences of length n in which the digit 1 occur even number of times, remove the k-ary sequences
of length n in which the digit 0 occur even number of times, i.e. compute

∑
r∈N

(
n
2r

)[
(k−1)n−2r − (k−1)n−2r +(k−3)n−2r

2
]
.)

4.10 Prove the following (marriage2) theorem : Let Yx , x ∈ X , be a finite family of sets. For every
subset N of X assume that the set YN := ∪x∈NYx has at least |N| elements, i. e., |YN | ≥ |N| for
every N ∈P(X) . Then there exists an injective map f : X → YX with f (x) ∈ Yx for every x ∈ X .
(Proof : Proof by induction on n = |X | . The case of n = 1 and a single pair liking each other requires a mere
technicality to arrange a match. For the inductive step consider two cases :
Case 1: |YN | > |N| for every subset N ⊆ X , N ̸= /0 , N ̸= X . In this case for x ∈ X , choose y ∈ Yx and
consider X ′ := X \ {x} and Y ′

x′ := Yx \ {y} , x′ ∈ X . Then clearly the marriage condition still holds and
hence by the inductive hypothesis, there is an injective map f ′ : X ′ → Y ′

X ′ with f ′(x′) ∈ Y ′
x′ . Now, define

f : X → YX by f (x) = y and f (x′) = f ′(x′) .
Case 2: There exists a subset /0 ̸= N ⊂ X , with |YN | = |N| . In this case, by the inductive hypothesis,
there exists an injective (in fact bijective) map g : N → YN . The trick is to show that X ′′ := X \N and
Y ′′

x′′ :=Yx′′ \YN , x′′ ∈ X ′′ satisfy the marriage condition, then by the inductive hypothesis, there is an injective
map X ′′ → Y ′′

X ′′ with f ′′(x′′) ∈ Y ′′
x′′ . Now, define f : X → YX by f (x)=g(x) for x ∈ N and f (x′′)= f ′′(x′′)

for x′′ ∈ X ′′ . • )

(a) Let P= (X1, . . . ,Xr) and let q= (Y1, . . . ,Yr) be partitions of the set X into r pairwise disjoint
subsets each of them with n ≥ 1 elements. Show that P and q has a common representative
system, i.e. there exist r distinct elements x1, . . . ,xr in X such that each xi belongs to exactly one
of the subset X1, . . . ,Xr and exactly one of the subset Y1, . . . ,Yr .
(Hint : Using the above Marriage-theorem find a permutation σ ∈ Sr such that Xi ∩Yσ(i) ̸= /0 for every
1 ≤ i ≤ r . – Remark : The assumption that |Xi| = |Yi| = n for all i = 1, . . . ,r can be replaced by some
what weaker condition : for every subset J ⊆ {1, . . . ,r} , the subset XJ := ∪ j∈JX j contains at most |J|
components Y1, . . . ,Yr of q .)

(b) Let A be the n× r integral matrix

A=


1 2 · · · r

r+1 r+2 · · · 2r
...

... . . . ...
(n−1)r+1 (n−1)r+2 · · · nr


2This theorem is popularly known as the ( m a r r i a g e - t h e o r e m ) and it provides the solution for the m a r r i a g e

p r o b l e m which requires to match n girls with the set of n boys. Each girl (after a long and no doubt exhausting
deliberation) submits a list of boys she likes. We also make an assumption that being of noble character no boy will
break a heart of a girl who likes him by turning her down. Sometimes all the girls can be given away, sometimes
no complete match is possible. Therefore for a complete match a (marriage) condition is necessary; the marriage
condition can be formulated in several equivalent ways, for example, For each r = 1, . . . ,n every set of r girls likes at
least r boys. (or equivalently, For each r = 1, . . . ,n every set of r boys likes at least r girls.) The marriage condition
and the marriage theorem are due to the English mathematician P h i l i p H a l l (1904-1982). Hall was the main
impetus behind the British school of group theory and the growth of group theory to be one of the major mathematical
topics of the 20th Century was largely due to him. Therefore Marriage theorem is precisely: Hall’s marriage condition
is both sufficient and necessary for a complete match. The necessary part is obvious. The sufficient part is shown by
induction on n = |X | .
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and let B be another n× r integeral with entries 1,2, . . . ,nr (at arbitrary positions). Show that
there exists a permutation σ ∈Sr such that for every i = 1, . . . ,r , the i-th column of A and the
σ(i)-th column of B contain at least one element in common. (Hint : Use the part (a).)

(c) Let G be a finite group and let H be a subgroup of G . Let G = Hy1 ∪·· ·∪Hyr (respectively,
G = z1H ∪ ·· · ∪ zrH ) be a right-coset (respectively, left-coset) decomposition for G . Show that
there exist elements x1, . . . ,xr ∈ G such that G = Hx1 ∪ ·· · ∪Hxr = x1H ∪ ·· · ∪ xrH . (Hint : Use
the part (a).)
(d) Let X be a finite set with n elements. For i ∈N, let Pi(X) be the set of all subsets Y of X with
|Y | = i. Show that: If i ∈ N with 0 ≤ i < n/2 (respectively, with n/2 < i ≤ n), then there exists
an injective map fi : Pi(X) → Pi+1(X) such that Y ⊆ fi(Y ) for all Y ∈ Pi(X) (respectively, an
injective map gi : Pi(X)→Pi−1(X) such that gi(Y )⊆Y for all Y ∈Pi(X)). (Hint : Let 0 ≤ i < n/2.
A pair (Y,Y ′) ∈Pi(X)×Pi+1(X) is called amicable if Y ⊆ Y ′. Let R be a subset of Pi(X) with |R| =: r.
Further, let R′ be the set of all those Y ′ ∈Pi+1(X) which are amicable to at least one Y ∈R. Put s := |R′|.
Then r(n− i)≤ s(i+1) and hence r ≤ s. Now use the marriage-theorem.)

4.11 Let X be a finite set with n elements.
(a) Let (m1, . . . ,mr) ∈ Nr be such that m1 + · · ·+mr = n . Show that the number of partitions
p= (X1, . . . ,Xr) of X with |Xi|= mi , for all i = 1, . . . ,r , is the polynomial coefficient(

n
m

)
:=

n!
m!

=
n!

m1! · · ·mr!
.

(Hint : Fix a partition q = (Y1, . . . , ,Yr) of X with |Yi|=mi , i=1, . . . ,r and define a map S(X) −→ Z :=
{p= (X1, . . . ,Xr)∈Parr(X) | |Xi|=mi, i= 1, . . . ,r} , be the map defined by f 7→ p( f ) := ( f (X1), . . . , f (Xr)) .
Show that all the fibres of this map have the same cardinality =m!=m1! · · ·mr! . Now use the Shepherd-rule.
)
(b) ( S t i r l i n g n u m b e r s o f s e c o n d k i n d 3) For n,r ∈N with 0 ≤ r ≤ n , put S(n,r) :=
|Parr(X)| , where Parr(X) is the set of all partitions p= (X1, . . . ,Xr) of X into r subsets. For all
other pairs (n,r) ∈ Z2 , we put S(n,r) = 0.

Show that

(1) For n ≥ 1, S(n,2) = 2n−1 −1.

(2) S(n,r) =
1
r!
|Mapssurj(X ,{1, . . . ,r})|= 1

r!

r

∑
k=0

(−1)k
(

r
k

)
(r− k)n =

r

∑
k=0

(−1)k(r− k)n−1

k! · (r− k−1)!
.

In particular, r! =
r

∑
i=0

(−1)k
(

r
k

)
(r− k)r .

(3)
n

∑
k=1

k! ·
(

r
k

)
·S(n,k) = rn .

(Hint : To prove (1) show that each fibre of the map P(X)\{ /0,X}→Par2(X) defined by Y 7→ (Y,X \Y )
has cardinality 2 and hence 2n −2 = |P(X)\{ /0,X}|= 2 · |Par2(X)| by Shepherd-rule. To prove (2) show
that each fibre of the map Mapssurj(X ,{1, . . . ,r})→Parr(X) defined by f 7→ ( f−1(1), . . . , f−1(r)) has car-
dinality r! and hence by the Shepherd-rule and Exercise 4.4-(b), we have r! · |Parr(X)| =
|Mapssurj(X ,{1, . . . ,r})| . The last part follows from the equality π(r,r) = 1. For the proof of (3), com-
pute the cardinality of each fibre of the map

Maps(X ,{1, . . . ,r})→
n⊎

k=1

Pk ({1, . . . ,r})×Park(X)) , f 7→ ( f (X),p( f )) ,

where p( f ) := ( f−1(i))i∈ f (X) and then use (2). – Remarks : The Stirling numbers appear in many other
problems. Clearly S(n,r) = 0 for r > n , S(n,n) = 1, S(n,1) = 1; S(n,n−1) =

(n
2

)
; a less trivial result is

3 J a m e s S t i r l i n g (1692-1770) was a Scottish mathematician whose most important work Methodus Dif-
ferentialis in 1730 is a treatise on infinite series, summation, interpolation and quadrature.
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the formula for S(n,2) given in the part (1). For r > 2, there is no easy formula for S(n,r) . For small values
of n and r one can find S(n,r) by actually considering all partitions of a set with n elements. For higher
values this becomes impracticable and also unreliable. The important recurrence relation given below in c)
which allows us to compute a Stirling numbers by first computing the lower Stirling numbers. Consider the

polynomial F(T ) := T n−
n

∑
k=0

k! ·S(n,k) ·
(

T
k

)
, where

(
T
k

)
:=

T (T −1) · · ·(T − k+1)
k!

are the b i n o m i a l

p o l y n o m i a l s of degree k . Then, since F(T ) is a polynomial of degree ≤ n with integer coefficients
and by (3), the integers 0,1, . . . ,n are n+1 distinct zeroes of F , we conclude that F = 0 and therefore the

Stirling numbers od second kind are also defined by the polynomial equation T n =
n

∑
k=0

k! ·S(n,k) ·
(

T
k

)
. If

one takes this as the definition of the Stirlings numbers S(n,r) of second kind, then (1) and (3) are immediate
by putting T = 2 and T = r respectively. This also leads to the definition of the S t i r l i n g n u m b e r s
o f f i r s t k i n d : For r,n ∈N with 0 ≤ r ≤ n , let S(n,r) ∈ Z be defined by the polynomial equation :(

T
n

)
=

1
n!

·
n

∑
r=0

(−1)n−r ·S(n,r) ·T r . Put S(n,r)=0 otherwise. For the existence of the numbers S(n,r) use

the fact that 1,T, . . . ,T n and
(T

0

)
,
(T

1

)
, . . . ,

(T
n

)
are two bases of the Q-vector space Q[T ]n of polynomials

with rational coefficients of degree ≤ n.)
(c) The Stirling numbers of second kind satisfy the recursion relations :

S(0,r) = δ0r , and S(n+1,r) = rS(n,r)+S(n,r−1) ,

where δi j denote the Kronecker’s delta. (Hint : From
( T

k+1

)
= T ·

(T
k

)
−k ·

(T
k

)
, we get T n+1 = ∑n

k=0 k! ·
S(n,k) ·T ·

(T
k

)
= ∑n+1

k=0 k! · [k ·S(n,k)+S(n,k−1)] ·
(T

k

)
. — Remark : The Stirling numbers of first kind

satisfy the recursion relations : S(0,r) = δ0r , and S(n+1,r) = n ·S(n,r)+S(n,r−1) .))

(d) Prove that βn =
n

∑
r=0

S(n,r) for every n ∈ N . (Hint : See Test-Exercise T4.?-(?) and use Test-

Exercise T4.?-(?).))

(e) Prove that S(n+1,r) =
n

∑
k=1

(
n
k

)
S(k,r−1) =

n

∑
k=0

rn−kS(k,r−1) .

(Hint: The second equality is proved by induction and using recursion relations (see part (c)) :
S(n + 1,r) = r S(n,r) + S(n,r − 1) = ∑n−1

k=r−1 r · rn−1−k S(k,r − 1) + S(n,r − 1) = ∑n
k=r−1 rn S(k,r − 1) =

∑n
k=0 rn S(k,r−1) .

For the first equality consider the map ⊎k
k=0

(
⊎I∈Pk(X) {I}×Parr−1(I)

)
−→ Park(X ⊎{y}) defined by

(I,(I1, . . . , Ir−1)) 7→ ((X \ I)⊎{y}, I1, . . . , Ir−1) .)

Below one can see auxiliary results and (simple) Test-Exercises.
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Auxiliary Results/Test-Exercises

T4.1 ( T o w e r o f H a n o i ) The puzzle consists of n disks of decreasing diameter placed on a
pole. There are two other poles. The problem is to move the entire pile to another pole by moving
one disk at a time to any other pole, except that no disk may be placed on top of a smaller disk.

Find a formula for the least number of moves needed to move n disks from one pole to another,
and prove the formula by induction.

T4.2 ( I n d i c a t o r f u n c t i o n s ) Let I be a set. For a subset J ∈P(I), let eJ : I → {0,1} be the

i n d i c a t o r f u n c t i o n o f J (with respect to I), i.e. eJ(i) =

{
1, if i ∈ J,
0, if i ∈ I \ J.

. Note that eI = 1

and e /0 = 0. Show that
(a) The map J 7→ eJ is a bijective map from the power set P(I) onto the set {0,1}I of all maps
I →{0,1}.
(b) For subsets J,K ⊆ I, prove that : eJ∩K = eJeK , eJ∪K = eJ +eK −eJeK , eJ\K = eJ(1−eK) .
In particular, eI\J = 1− eJ and eJ△K = eJ + eK −2eJeK .

(c) For J,K ∈P(I), let J+K := J∆K := (J∪K)\ (J∩K) denote the s y m m e t r i c d i f f e r e n c e
of J and K. Show that :

(1) J+K = K + J and J+ /0 = J, J+ J = /0 .
(2) (J+K)+L = J+(K +L) for all J,K,L ∈P(I) .
(3) For every J,L ∈P(I) , there exists a unique K such that J+K = L .
(4) (J+K)∩L = (J∩L)+(K ∩L) for all J,K,L ∈P(I) .

(Remark : For verification of these properties use indicator functions and their rules given in (b). These
properties of the symmetric difference △ show that the power set P(I) with the symmetric difference ∆ as
addition and the intersection ∩ as multiplication is a commutative ring with /0 as the zero element 0 and I as
the unit element 1. This ring (P(I),△,∩) is called the s e t - r i n g of I. Moreover, it is a finite dimensional
algebra over the prime field Z2 of dimension |I| ; if |I|= 1, then it is the prime field Z2 ; in the case |I|> 1,
it is not a field – nor even an integral domain.)

T4.3 Use induction to prove that : For all n ∈N :

(a) ∑n
k=0 k · (k !) = (n+1)!−1. (b) ∑n

k=0 2n−k(n+k
k

)
= 4n. (see also Exercise 4.6-(d).)

(c) ∑n
k=m

(k
m

)
=
(n+1

m+1

)
, m ∈N, m ≤ n .

T4.4 (a) Let X , Y be finite sets and Z := X ×Y . For x ∈ X , let Px := {y ∈ Y | (x,y) ∈ Z} and
for y ∈ Y , let Qy := {x ∈ X | (x,y) ∈ Z} . Then show that ∑x∈X |Px|= ∑y∈Y |Qy| .
(b) Let r,k,n,m ∈N .

(1) If r ≤ k ≤ n , then
(n

k

)(k
r

)
=
(n

r

)(n−r
k−r

)
. (Hint : Just compute both sides!. Variant : Suppose from

n objects we choose k and put a white tag on the selected objects. Then out of these k objects we select
r objects and put a black tag on those selected. This is equivalent to selecting r objects (and putting white
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and a black tag on each) and then selecting k− r objects from the remaining n− r putting a white tag on
the the selected objects.)

(2) If m ≤ k , then ∑k−m
j=0 (−1) j(m+ j

m

)( k
m+ j

)
= 0.

(Hint : ∑k−m
j=0 (−1) j

(m+ j
m

)( k
m+ j

)
= ∑k−m

j=0 (−1) j
(k

m

)(k−m
j

)
=
(k

m

)
∑k−m

j=0 (−1) j
(k−m

j

)
= 0 by Exercise 4.1-(d).)

(c) Let k ∈N+ be a positive natural number.
(1) Find how many palindromes4 of length n can be formed with an alphabet of k letters. (Ans :

km if n = 2m and km+1 if n = 2m+1.)
(2) How many k-ary sequences of length n are there? (Ans : kn = |{0,1, . . . ,k−1}{1,...,n}| .)
(3) How many k-ary sequences of length n are there in which no two consecutive entries are

the same? (Ans : k(k−1)n−1 .)
(4) How many ternary sequences of length n are there which either start with 012 or end with

012? (Ans : 0 if n ≤ 2; 2 ·3m−3 , if 3 ≤ n ≤ 5; and 2 ·3n−3 −3n−6 , if n ≥ 6.)

T4.5 ( R e l a t i o n s ) Let X and Y be sets. A ( b i n a r y ) r e l a t i o n 5 R from X and Y is a subset
R ⊆ X ×Y , i.e. an element R ∈P(X ×Y ) . For the expression “(x,y) ∈ R” we shall write “xRy”
and say that “x is related to y with respect to R”, x ∈ X, y ∈Y . The set of relations P(X ×Y ) from
X to Y is also denoted by Rel(X ,Y ) and its elements are also denoted by the symbols ∼ , ∼= ≡ ,
≤ , ≼ ·· · . In the case Y = X , we put Rel(X) = Rel(X ,X) =P(X ,X) and its elements are called
r e l a t i o n o n X .

(a) The map Γ : Maps(X ,Y )→P(X ×Y ) defined by f 7→ Γ f := {(x, f (x)) | x ∈ X} the graph of
f is injective. (Remark : Therefore (if we identify maps with its graphs) every map from X to Y is a
relation from X to Y . Further, since the map Γ is not surjective if X ̸= /0 and (|X |, |Y |) ̸= (1,1) , in this
case there are relations from X to Y which are not maps from X to Y . For example, each of the relations
{(x,y),(x,y′) | x ∈ X ; y,y′ ∈ Y,y ̸= y′} and (if |X | > 1) {(x,y) | x ∈ X ,y ∈ Y} from X to Y is not a map
from X to Y . The graph of the identity map idX : X → X is the d i a g o n a l ∆X := {(x,x) | x ∈ X} and
hence the d i a g o n a l r e l a t i o n ∆X from X to X is also called the i d e n t i t y r e l a t i o n on X . The
relation R = /0 and R = X ×Y are called the e m p t y - r e l a t i o n and the a l l - r e l a t i o n from X to Y ,
respectively. Further, we can also define i n t e r s e c t i o n and u n i o n of arbitrary family of relations.)

(b) The map P(X ×Y )→P(Y )X defined by R 7→
(
x 7→ {y ∈ Y | xRy}

)
is bijective. What is the

inverse of this map? (Remark : With this bijection, one can identify every relation R ⊆ X ×Y between X
and Y as a map from X into P(Y ).)

T4.6 Let X be a set. A relation R ∈P(X ×X) on X is called (1) r e f l e x i v e if xRx for all
x ∈ X ; (2) s y m m e t r i c if for x,y ∈ X , xRy implies yRx ; (3) t r a n s i t i v e if for x,y,z ∈ X ,
xRy and yRz implies xRz ; (4) a n t i - s y m m e t r i c if for x,y ∈ X , xRy and yRx implies x = y .

(a) ( E q u i v a l e n c e r e l a t i o n s ) A relation R on X is called an e q u i v a l e n c e r e l a t i o n if
it is reflexive, symmetric and transitive. The identity relation δX and the all-relation X ×X on X
are clearly equivalence relations on X .
Let R be an equivalence relation on X . Then for x ∈ X , the subset [x]R = [x] = {a∈ X | (a,x)∈ R}
is called the e q u i v a l e n c e c l a s s of x under R (sometimes equivalence classes are also denoted
by a ).

(1) For every x ∈ X , x ∈ [x] . In particular, [x] ̸= /0 for every x ∈ X and X =
∪

x∈X [x] .

(2) For all x,y ∈ X , the following statements are equivalent :

4A p a l i n d r o m e is a word which reads the same backward or forward, e. g., “MADAM”, “ANNA”.
5More generally, for every positive integer n , one can definen- a r y r e l a t i o n as a subset of Xn := X ×·· ·×X

(n-times). We shall rarely consider n-ary relation for n ̸= 2 and so by relation from now on we shall mean a binary
relation unless otherwise specified.
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(i) [x] = [y] . (ii) [x]∩ [y] ̸= /0 . (iii) (x,y) ∈ R .

(3) (Quot i en t se t o f an equ iva lence re la t ion ) The set of equivalence classes in X under
the relation R is denoted by X/R (read : “X modulo R”) and is called the q u o t i e n t s e t of X
with respect to R . The canonical map π : X → X/R , x 7→ [x]R is clearly surjective and is called
c a n o n i c a l p r o j e c t i o n o f X onto X/R . The fibres of the canonical projection are precisely
the equivalence classes (in X ) under R . An element x ∈ X is called a r e p r e s e n t a t i v e of the
equivalence class [x]R ; any other element y ∈ is a representative of [x]R if and only if y ∈ [x]R or
equivalently (x,y)∈ R . A ( f u l l ) r e p r e s e n t a t i v e s y s t e m for the quotient set X/R is a family
xi , i ∈ I of elements in X such that the map I → X/R defined by i 7→ [xi] is bijective, i. e., every
equivalence class in X is represented by a unique element xi , i ∈ I . In particular, a subset X ⊆ X
is a representative system for X/R if and only if the restriction π|X ′ : X ′ → X/R of the canonical
projection to X ′ is bijective.

(b) The restriction of the map α : P(X × X) → P
(
P(X)

)
, R 7→

{
{y ∈ X | xRy} | x ∈ X

}
is

injective on the subset Eq(X)⊆P(X ×X) of all equivalence relations on X .

(c) On the set N∗ of poistive natural numbers, let | be the divisibility relation, i.e., x | y if and only
if x is a divisor of y. What is the inverse relation |−1 on N? Show that | is an order on N∗ and 1 is
the smallest element. The minimal elements (with respect to |) in N∗−{1} are precisely the prime
numbers.

(d) Let f : X → Y be a map. The relation ∼ defined by x ∼ y if and only if f (x) = f (y) is an
equivalence relation on X . The equivalence classes with respect to ∼ are precisely the non-empty
fibres of f .

(e) Suppose that X is a finite set with n elements. How many reflexive (respectively, , symmetric,
reflexive and symmetric) relations on X are there? (Ans : 2n(n−1) , 2(

n+1
2 ) and 2(

n
2) .)

(f) ( C o n g r u e n c e r e l a t i o n s ) Let n ∈N+ be a positive natural number Two integers a and
b are called c o n g r u e n t m o d u l o n, if their difference is divisible by n . In this we write
a ≡ b mod n or a ≡ b(n) . This relation on the set of integers Z is an equivalence relation.
Two integers are congruent modulo n if and only if their remainders (between 0 and n−1) after
the division by n are equal. Therefore the numbers 0, . . . ,n−1 form a full representative system
for the quotient set Z/≡ ; there are exactly n equivalence classes these are called the r e s i d u e
c l a s s e s m o d u l o n. The set of these residue classes is usually denoted by Z/Zn . In the case
n = 2, the residue class 0̄ = [0] is the set of all even integers and the residue class 1̄ = [1] is the
set of all odd integers.6 More generally, For a real number T ̸= 0, the relation on R defined by
a≡ b mod T or a≡ b(T ) if the difference b−a is an integral multiple of T , is an equivalence
relation on R . For a ∈R , the equivalence class ā = a+ZT of a is precisely the set of elements
a+kT , k ∈Z . The real numbers T and |T | define the same relation. The numbers in the interval
[0 , |T | [ :=

{
x∈R | 0≤ x< |T |

}
form a full representative system for the quotient set R/ZT . The

unique representative of the equivalence class ā = a+ZT in [0 , |T | [ is a− [a/|T | ] · |T | , where
[−] denote the Gauss-bracket. If T = n ∈N∗, then Z/Zn ⊆R/Zn is the set of those equivalence
classes which have an integral representative.

(g) On the set X := {0,1, . . . ,k − 1}{1,...,n} of all k-ary sequences of length n define a relation
∼ by : (a1, . . . ,an) ∼ (b1, . . . ,bn) if ai = bi whenever xi ̸= 0 or 1 , i = 1, . . . ,n . For example, if
k = 4, then 012311220330 ∼ 112301220331. Show that ∼ is an equivalence relation on X . The
equivalence class with respect to ∼ is called the p a t t e r n o f t h e s y m b o l s 2,3, . . . ,k−1. Two

6The congruence relations were first time systematically studied by C . F . G a u s s (1777-1855) in the “Disqui-
sitiones arithmeticae” (1801). Carl Friedrich Gauss worked in a wide variety of fields in both mathematics and physics
including number theory, analysis, differential geometry, geodesy, magnetism, astronomy and optics. His work has
had an immense influence in many areas.

D. P. Patil/IISc e0-221-ds2012-ex04.tex September 27, 2012 ; 12:46 p.m. 10/12



Exercise Set 4 E0 221 Discrete Structures / August-December 2012 Page 11

k-ary sequences represent the same pattern of the symbols 2,3, . . . ,n if and only if all the symbols
2,3, . . . ,k−1 appear exactly at the same positions in them.

(h) Let ≼ be a reflexive and transitive relation on the set A. Then the relation ∼ defined by a ∼ b
if and only if a ≼ b and b ≼ a, is an equivalence relation on A. On the set A of the equivalence
classes of A with respect to ∼ the relation defined by [a] ≤ [b] if and only if a ≼ b, is a well-
defined relation and is an order. (Remark : It is to be shown in particular that the ≤ -relationship for two
equivalence classes does not depend on the representatives used for the definition. The problem to verify
s u c h i n d e p e n d e n c e f r o m t h e c h o i c e o f t h e r e p r e s e n t a t i v e s is typical for computation
of equivalence classes.)

T4.7 ( T r a n s i t i v e c l o s u r e o f a r e l a t i o n ) For n ∈ N we define the powers Rn of
R recursively as : R0 := ∆X and Rn+1 := R ◦Rn . Then the relation R+ := ∪∞

n=1Rn is called the
t r a n s i t i v e c l o s u r e of R , and the relation R∗ :=∪∞

n=0Rn is called the r e f l e x i v e - t r a n s i t i v e
c l o s u r e of R .

(a) If x,y ∈ X then (x,y) ∈ R∗ is either x = y or there exist x1,x2, . . . ,xn ∈ X such that (x,x1),
(x1,x2), . . . ,(xn−1,xn) are all in R . (Hint : By induction. In fact n ≤ 2i −1)

(b) If R is symmetric then so is R∗ .

(c) R+ is the smallest transitive relation containing R .

(d) R∗ is the smallest reflexive and transitive relation containing R .

(e) If R is symmetric then R∗ is the smallest equivalence relation containing R .

(f) Let R 1 be the symmetric closure of the reflexive-transitive closure of R and let R2 be the
reflexive-transitive closure of the symmetric closure R . Then show that R1 ⊆ R2 and give an
example showing that the reverse inclusion does not hold in general.

(g) Let M be the set of all males and let F be a relation “being a father of ...” Then F is not
transitive and the transitive closure of F describes the ancestor-descendant relationship among the
males.

(h) Is the transitive closure of an antisymmetric relation is always antisymmetric?

(i) On Z let R be the relation defined by (x,y) ∈ R if y = x+ n for some fixed n ∈ Z . What is
the equivalence relation on Z generated by R?

T4.8 (Re l a t i on Mat r ix ) Let X := {x1, . . . ,xm} , Y := {y1, . . . ,ym} be finite sets and let R be a
relation from X to Y . Then R can be specified by a matrix whose rows are labled by the elements
of X and whose columns are labeled by the elements of Y . In the i-th row and j-th column we
write the entry 1 if (xi,y j) ∈ R and 0 if (xi,y j) ̸∈ R . This matrix is called a r e l a t i o n m a t r i x
of R and is usually denoted by A(R) .

(a) If X = {a,b} , Y = {c,d,e} and R = {(a,c),(a,d),(b,e)} , R′ = {(b,c),(b,d),(a,e)} . Then

A(R) =
(

1 1 0
0 0 1

)
and A(R′) =

(
0 0 1
1 1 0

)
.

(b) Conversely, each m× n matrix A = (ai j) of 0’s and 1’s defines a relation R from the set X
to the set Y by the rule (xi,y j) ∈ R if and only if ai j = 1. Compute the matrices of the following
relations :
(i) = and ≤ on the sets {−1,0,1},{−2,−1,0,1,2} .
(ii) = and “negative of” on the sets {−1,0,1},{−2,−1,0,1,2} .

(c) Show that the following statements are equivalent :
(i) R is both symmetric and anti-symmetric. (ii) The matrix A(R) = (ai j) is diagonal, that is,
ai j = 0 whenever i ̸= j . (iii) R ⊆ ∆X .
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T4.9 ( B e l l ’ s n u m b e r s 7) Let X be a finite set with n elements. The number of equivalence
relations on X is called the n- B e l l n u m b e r βn , i. e., |Eq(X)|= βn .
(a) The numbers βn satisfy the recursion relations β0 = 1 and βn+1 = ∑n

k=0
(n

k

)
βk for all n ∈N .

(b) Let m,n ∈N with m ≤ n and let βm,n := ∑m
i=0

(m
i

)
βn−i . Then β0,n = βn , β0,n+1 = βn,n and

βm+1,n+1 = βm,n +βm,n+1 for all m,n ∈N with m ≤ n .
(c) Using the above formulas we have the following table :

n 0 1 2 3 4 5 6 7 8 9 10
βn 1 1 2 5 15 52 203 877 4140 21147 115975 .

T4.10 ( P a r t i t i o n s o f a s e t ) Let X be a set. A p a r t i t i o n or d e c o m p o s i t i o n P
of the set X is a subset P ⊆ P(X) of non-empty disjoint subsets of X such that their union is∪

Y∈PY = X . In particular, a partition P of X is an element of the set P
(
P(X)

)
. More generally,

an arbitrary family Xi , i ∈ I of non-empty pairwise disjoint subsets Xi of X with ∪i∈IXi = X is
called a p a r t i t i o n of X (parametrized by the index set I ); in this we write X = ⊎i∈IXi . If
X = ∪i∈IXi without necessarily the condition of pairwise disjointness of Xi, i ∈ I , then the family
Xi, i ∈ I, is called the c o v e r i n g of X .
(a) The partition Xi , i ∈ I of X corresponds to the surjective map f : X → I . (The partition
Xi , i ∈ I , defines the map f (x) := i , if x ∈ Xi and conversely the map f defines the partition
Xi := f−1(i) , i ∈ I , of X .) Therefore partitions are the fibres of the surjective maps. If X is a finite
set, then clearly every partition P of X is finite a finite set and |P| ≤ |X | .
The set of all partitions of X is denoted by Par(X) ; this is a subset of the set P

(
P(X)

)
. As usual

for n ∈N , we put Parn(X) = {P ∈Par(X) | |P| = n} . Clearly the family Parn(X) , n ∈N is
pairwise disjoint and ∪n∈NParn(X) =Par(X) .

(b) The map α : P(X ×X)→P
(
P(X)

)
, R 7→

{
{y ∈ X | xRy} | x ∈ X

}
(see test-Exercise T4.?-

(?)) maps Eq(X) bijectively onto Par(X) , i.e. to each equivalence relation R on X , α associates
a unique partition α(R) of X and conversely. The partition corresponding to the equivalence
relation R on X is denoted by PR and the equivalence relation corresponding to the partition P
is denoted by RP , i.e., the maps P(X) → Eq(X) , p 7→ pR and Eq(X) → Par(X) , R 7→ Rp are
bijective and are inverses of each other. Moreover, if Eqr(X) is the set of all equivalence relations
on X with exactly r equivalence classes. Then |Eqr(X)|= |Parr(X)| and Eq(X)=⊎n

r=0Eqr(X) .

(c) What are the coarest and the finest partitions of a given set X ? What are the corresponding
equivalence relations? What are the partitions corresponding to the equivalence relations ∆X and
X ×X ?

7E r i c T e m p l e B e l l (1883-1960) was a Scottish mathematician and attended Bedford Modern School where
excellent mathematics teaching gave him his life-long interest in the subject. In particular, his interest in number theory
came from this time. Bell wrote several popular books on the history of mathematics. He also made contributions to
analytic number theory, Diophantine analysis and numerical functions. The American Mathematical Society awarded
him the Bôcher Prize in 1924 for his memoir, Arithmetical paraphrases which had appeared in the Transactions of the
American Mathematical Society in 1921. Although he wrote 250 research papers, including the one which received
the Bôcher Prize, Bell is best remembered for his books, and therefore as an historian of mathematics. Bell did not
confine his writing to mathematics and he also wrote sixteen science fiction novels under the name J o h n T a i n e.
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