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5. The Natural Numbers — The Fundamental Theorem of Arithmetic

5.1 (a) Let a,b,m,k ∈N be such that
(

a
k

)
≤m<

(
a+1

k

)
and

(
b
k

)
≤m<

(
b+1

k

)
. Show that

a = b. (Hint : Suppose that a < b, i.e., a+1 ≤ b, then m <
(a+1

k

)
≤

(b
k

)
≤ m, since Pk({1, . . . ,a+1})⊆

Pk({1, . . . ,b}) a contradiction.)

(b) Let k ∈N+ be a positive natural number and let n ∈N be an arbitrary natural number. Show

that there exist unique a1, . . . ,ak ∈N such that 0 ≤ a1 < a2 < · · ·< ak and n =
k

∑
j=1

(
a j

j

)
. (Hint :

The existence of a1, . . . ,ak is proved by induction on k. If k = 1, then n =
(n

1

)
is the required representation.

Assume k > 1 and choose ak ∈N with
(ak

k

)
≤ n <

(ak+1
k

)
. For the number m := n−

(ak
k

)
≥ 0 by induction

hypothesis there exists a representation m = ∑k−1
j=1

(a j
j

)
with 0 ≤ a1 < a2 < · · · < ak−1. Now we need

to show that ak−1 < ak. Since
(ak+1

k

)
=

(ak
k

)
+
( ak

k−1

)
, we have n = ∑k−1

j=1

(a j
j

)
+
(ak+1

k

)
−
( ak

k−1

)
<

(ak+1
k

)
;

in particular,
(ak−1

k−1

)
<

( ak
k−1

)
and hence ak−1 < ak. Now we prove the uniqueness of a1, . . . ,ak. If k = 1,

this is trivial. Assume k > 1 and suppose that n = ∑k
j=1

(a j
j

)
= ∑k

j=1
(b j

j

)
with 0 ≤ a1 < a2 < · · ·< ak and

0 ≤ b1 < b2 < · · ·< bk. It is enough to show that
(ak

k

)
≤ n <

(ak+1
k

)
and

(bk
k

)
≤ n <

(bk+1
k

)
, for then, ak = bk

by part a) and by induction hypothesis to the two representations of m := n−
(ak

k

)
= n−

(bk
k

)
, we get a j = b j

for all k = 1, . . . ,k−1. Now, we show that
(ak

k

)
≤ n <

(ak+1
k

)
. If ak < k, then a j = j−1 for all j = 1, . . . ,k

and
(ak

k

)
=

(k−1
k

)
= 0 = n <

(ak+1
k

)
=

(k
k

)
= 1. Therefore suppose that ak ≥ k. Then

(ak+1
k

)
= ∑k

i=0
(ak−i

k−i

)
(by recursion formula 1) and hence

(ak
k

)
=

(ak+1
k

)
−∑k

i=1
(ak−i

k−i

)
and n = ∑k

i=0
(ai

i

)
= ∑k−1

j=1

(ak− j
k− j

)
+
(ak

k

)
=(ak+1

k

)
−
(ak−k

0

)
+∑k−1

j=1

((ak− j
k− j

)
−
(ak− j

k− j

))
=

(ak+1
k

)
−1−∑k−1

j=1

((ak− j
k− j

)
−
(ak− j

k− j

))
. Now, since ak −1 ≥ ak−1

and by induction ak − j ≥ ak− j for every 1 ≤ j ≤ k−1 and hence ∑k−1
j=1

((ak− j
k− j

)
−
(ak− j

k− j

))
≥ 0. This proves

that n <
(ak+1

k

)
, the other inequality

(ak
k

)
≤ n is trivial.)

(c) For k ∈N, k ≥ 1, show that the map Nk →N defined by

(m1,m2, . . . ,mk) 7→
(

m1

1

)
+

(
m1 +m2 +1

2

)
+ · · ·+

(
m1 +m2 + · · ·+mk + k−1

k

)
is bijective. (Hint : Use part (b).)

5.2 ( G ö d e l i s a t i o n ) Let p1 = 2, p2 = 3, p3 = 5, . . . be (infinite) sequence of the prime
numbers.

1Recursion formula for binomial coefficients:
(n+1

k

)
=

(n
k

)
+
(n−1

k−1

)
+ · · ·+

(n−k+1
1

)
+
(n−k

0

)
. This follows from

the equality
(n+1

m

)
=
(n

m

)
+
( n

m−1

)
.
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(a) Let A be a countable set with an enumeration A = {a1,a2,a3, . . .}, ai ̸= a j for i ̸= j. Then
the map (ai1, . . . ,ain) 7→ pi1

1 · · · pin
n is an injective map from the set W(A) :=

⊎
n∈NAn of finite

sequences (of arbitrary lengths) of elements from A - such sequences are also called w o r d s over
the a l p h a b e t A - into the set N∗ of positive natural numbers. (Remark : Such a coding of the
words over A is called a G ö d e l i s a t i o n (due to K.Gödel2 ). The natural number associated to a word is
called the G ö d e l n u m b e r of this word.)

(b) Let A be a finite alphabet {a1,a2, . . . ,ag} with g letters, g ≥ 2, and a0 ̸∈ A be another let-
ter. A word W = (ai1, . . . ,ain) over A can be identified by filling a0 with the infinite sequence
(ai1 , . . .ain ,a0,a0, . . .). Show that: the map (aiν )ν∈N∗ 7→ ∑∞

ν=1 iνgν−1 is a bijective map from the
set of words over A onto the set N of the natural numbers and in particular, is a Gœdelisation.
(Remark : This is a variant of the g-adic expansion (see Test-Exercise T5.21).)

5.3 Let g ∈N∗, g ≥ 2, n be a natural number with digit-sequence (ri)i∈N in the g-adic expansion
of n and let d ∈N∗. (see Test-Exercise T5.21.)

(a) Suppose that d is a divisor of gα for some α ∈N∗. Then n ≡ (rα−1, . . . ,r0)g mod d. In partic-
ular, d divides the number n if and only if d divides the number (rα−1, . . . ,r0)g.

(b) Suppose that d is a divisor of gα −1 for some α ∈N∗ and

S := (rα−1, . . . ,r0)g +(r2α−1, . . . ,rα)g + · · · .
Then n ≡ S mod d. In particular, d divides the number n if and only if d divides the sum S.

(c) Suppose that d is a divisor of gα +1 for some α ∈N∗ and

W := (rα−1, . . . ,r0)g − (r2α−1, . . . ,rα)g + · · · .
Then n ≡ W mod d. In particular, d divides the number n if and only if d divides the alternating
sum W . (Remark : With the help of this exercise one can find criterion, which one can decide on the
basis the digit-sequence of the natural number n in the decimal system whether d is a divisor of n with
2 ≤ d ≤ 16. (with d = 3 and d = 9 one uses the simple check-sum, with d = 11 the simple alternating sum.
The divisibility by 7,11 and 13 at the same time can be tested with the alternating sum of the 3-grouped
together in view of the part (c). See Test-Exercise T5.21-(d) for details.)

5.4 (a) For a,m,n ∈N∗ with a ≥ 2 and d := gcd(m,n), show that gcd(am −1 ,an −1) = ad −1.
In particular, am−1 and an−1 are relatively prime if and only if a= 2 and m and n are relatively
prime. (Hint : By substituting ad by a one may assume that d = 1. Then show that (am −1)/(a−1) =
am−1 + · · ·+a+1 and (an −1)/(a−1) = an−1 + · · ·+a+1 are relatively prime.)

(b) Suppose that a1, . . . ,an ∈ N∗ are relatively prime. Show that there exists a natural number
f ∈ N such that every natural number b ≥ f can be represented as b = u1a1 + · · ·+ anan with
natural numbers u1, . . . ,un. In the case n = 2, we have f := (a1 − 1)(a2 − 1) is the smallest
such number; further in this case there are exactly f/2 natural numbers c, which do not have
a representation of the form u1a1 + u2a2, u1,u2 ∈ N. (Hint : For 0 ≤ c ≤ f − 1, exactly one of the
number c and f −1− c can be represented in the above form.)

(c) Let a,b ∈N∗ and d := gcd(a,b) = sa+ tb with s, t ∈ Z. Then d = s′a+ t ′b for s′, t ′ ∈ Z if

and only if there exists k ∈ Z such that s′ = s− k
(

b
d

)
, t ′ = t + k ·

(a
d

)
.

5.5 (a) Let x,y ∈ Q×
+ and y = c/d be the canonical representation of y with c,d ∈ N∗ and

2K u r t G ö d e l (1906-1978) was born on 28 April 1906 in Brünn, Austria-Hungary (now Brno, Czech Republic)
and died on 14 Jan 1978 in Princeton, New Jersey, USA. Gödel proved fundamental results about axiomatic systems
showing in any axiomatic mathematical system there are propositions that cannot be proved or disproved within the
axioms of the system.
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gcd(c,d) = 1. Show that xy is rational if and only if x is the d-th power of a rational number.

(b) Show that other than (2,4) there is no pair (x,y) of positive integers numbers with x< y
and xy = yx. The pairs of rational numbers (x,y) with x<y and xy = yx are precisely the pairs:(
(1+ 1

n)
n,(1+ 1

n)
n+1) , n ∈ N∗. (Hint : Prove that for each real positive number of x with 1< x< e

there exists exactly one real number y > x such that xy = yx. (observe that necessarily y>e.) For the proof
of the above assertion : note that xy = yx if and only if (lnx)/x = (lny)/y and consider the function (lnx)/x
on R×

+.)

(c) Let x∈Q×
+ and a be a positive natural number which is not of the form bd with b,d ∈N∗, d ≥

2. Then show that loga x is either integer or irrational.

(d) For which x,y ∈ Q×
+, y ̸= 1, the real number logy x rational ? For which x ∈ Q×

+, the real
number log10 x rational ?

(e) Let n ∈ N∗, n ≥ 2 and y ∈ Q×
+ \N∗. Then both the numbers n

√
n! and (n!)y are irrational.

(Hint : The natural number n! has simple prime factors.)

5.6 (a) ( P e r f e c t n u m b e r s ) A natural number n ∈N∗ is called p e r f e c t if σ(n) = 2n, where
σ(n) := ∑d|n d denote the sum of positive divisors of n.
( T h e o r e m o f E u c l i d - E u l e r ) An even number n ∈N∗ is perfect if and only if n is of the form
2s(2s+1 − 1) with s ∈ N∗ and 2s+1 − 1 prime. (Hint : Suppose that n is perfect, n = 2sb s,b ∈ N∗

and b odd. Then 2s+1b = 2n = σ(n) = (2s+1 −1)σ(b) and so there exists c ∈N∗ such that σ(b = 2s+1c,
b = (2s+1 −1)c, σ(b) = b+ c.)

(b) ( M e r s e n n e N u m b e r s ) Let a,n ∈N with a,n ≥ 2. If an−1 is prime, then a = 2
and n is prime. (Hint : Use geometric series an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a+ 1) to conclude
that a = 2; if n = rs with r > 1,s > 1, then 2n − 1 = (2r)s − 1 = (2r − 1)(1+ 2r + 22r + · · ·+(2r)s−1).
— The natural numbers of the form ap−1, p ∈ P prime, are called M e r s e n n e n u m b e r s . For
p = 2,3,5,7 the corresponding Mersenne numbers 3,7,31,127 are prime, but corresponding to p = 11, it is
M11 = 211−1= 2047= 23 ·89 which is not prime. — Remarks : It was asserted by Mersenne3 in 1644 that :
Mp = 2p −1 is prime for 2,3,5,7,13,17,19,31,61,89,107,127, and composite for the other remaining 44
values of p ≤ 257. For example, 47

∣∣M23, 233
∣∣M29, 223

∣∣M37, 431
∣∣M43 and 167

∣∣M83. The first mistake was
found in 1886 by Perusin and Seelhoff that M61 is prime. Subsequently four further mistakes were found
and it need no longer be taken seriously. In 1876 Lucas found a method for testing whether Mp is prime
and used it to prove that M127 is prime. This remained the largest known prime until 1951. The problem
of Mersenne’s numbers is connected with that of “perfect” numbers which are defined in the part (a) above.
Every two distinct Mersenne numbers are relatively prime. It is not known whether there are infinitely many
Mersenne numbers that are prime. The biggest known4 prime is the Mersenne number Mp corresponding to

3M a r i n M e r s e n n e (1588-1648) was a French monk who is best known for his role as a clearing house for
correspondence between eminent philosophers and scientists and for his work in number theory.

4The largest known prime, as of 2009 (update), was discovered 23 August 2008 by the distributed comput-
ing project Great Internet Mersenne Prime Search (This discovery was part of the Great Internet Mersenne Prime
Search (GIMPS)): 243,112,609−1. This number has 12,978,189 digits and is the 47-th known Mersenne prime by size
as of June 2009 (update). Just a few weeks later, on 6 September 2008 a smaller Mersenne prime was discovered,
237,156,667 − 1, also by GIMPS. This was the second largest known prime at the time, until 242,643,801 − 1 was found
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p = 43,112,609; this prime number has [log10((2
43,112,609)]+1 = [43,112,609 · log10 2]+1 = 12,978,189

digits!)

(c) ( F e r m a t N u m b e r s ) Let a,n ∈N∗ with a ≥ 2. If an +1 is prime, then a is even and n is
a power of 2. (Hint : If a is odd then an +1 is even and if n = 2t ·m with t,m ∈Nand m odd, then (put
k := 2t ) 2n +1 = 1− (−2k)m = (1+2k)(1−2k +22k −·· ·+2(m−1)k) and if m > 1, then k < n and hence
1 < 1+2k < 1+2n. Therefore m = 1. – Remarks : The natural number of the form 22n

+1, n ∈N is called
the n - th Fermat number and is denoted by Fn := 22n

+1, n∈N. The Fermat numbers corresponding to
n = 0,1,2,3,4 are F0 = 2,F1 = 5,F2 = 17,F3 = 257,F4 = 65537 are prime (already discovered by Fermat5

himself) and hence conjectured that all were prime, but in 1732 Euler proved that : F5 = 225
+1 = 232+1 =

641 ·6700417, since 641= 54+24 = 5 ·27+1 divides 54 ·228+232 and 54 ·228−1 and hence the difference
232+1 = F5. In 1880 L a n d r y proved that F6 = 226

+1 = 274177 ·67280412310721. More recently it is
proved that Fn is composite for 7 ≤ n ≤ 16 n = 18,19,23,36,38,39,55,63,73 and many larger values of
n. M o r e h e a d and W e s t e r n proved that F7 and F8 are composite without determining a factor. No
factor is known for F13 or for F14, but in all the other cases proved to be composite a factor is known. No
prime Fn has been found beyond F4, so that Fermat’s conjecture has not proved a very happy one. There
are practical “primality tests” for Mersenne and Fermat numbers developed by L u c a s and P e p i n, see
Test-Exercise T5.38 for more details. It is perhaps more probable that the number of Fermat primes Fn is
finite. Fermat numbers are of great interest in many ways, for example, it was proved by Gauss6 that : if
Fn = p is a prime, then a regular polygon of p sides can be inscribed in a circle by Euclidean methods
(constructions by ruler and compass). The property of the Fermat numbers which is relevant here is : No
two Fermat numbers have a common divisor greater than 1, i.e., gcd(Fn,Fm) = 1, n ̸= m. For, suppose that
d divides both the Fermat numbers Fn and Fn+k, k > 0. Then putting x = 22n

, we have

Fn+k −2
Fn

=
22n+k −1
22n

+1
=

x2k −1
x+1

= x2k−1 − x2k−2 + · · ·−1

and so Fn
∣∣Fn+k −2. This proves that d

∣∣Fn+k and d
∣∣Fn+k −2 and therefore d

∣∣2. But Fn is odd and so d = 1.
Therefore each of the Fermat numbers F0,F1, . . . ,Fn is divisible by an odd prime number which does not
divide any of the others and hence there are at least n odd primes not exceeding Fn. This proves (proof
due to George Pólya7 ) Euclid’s theorem (see Test-Exercise T5.24-(b)). Moreover, we have the inequality
pn+1 ≤ Fn = 22n

+1 which is little stronger than the inequality in Test-Exercise T5.25-(a).))

5.7 Let m,n ∈ N∗ be relatively prime numbers and let a0,a1, . . . be the sequence defined recur-
sively as a0 = n, ai+1 = a0 · · ·ai +m, i ∈ N. Then ai+1 = (ai −m)ai +m = a2

i −mai +m for all
i ≥ 1.

(a) gcd(ai,a j) = 1 for all i, j ∈ N with i ̸= j. The prime divisors of ai, i ∈ N supply infinitely
many different prime numbers. (Remark : The ai are suitable well for testing prime factorizing proce-
dures.)

(b) For all i ∈N, show that 1
a0

+
m
a1

+ · · ·+ mi

ai
=

m+1
n − mi+1

ai+1 −m .

to be prime by GIMPS in April 2009. The predecessor as largest known prime, 232,582,657 −1, was first shown to be
prime on 4 September 2006 by GIMPS also. GIMPS found the 11 latest records on ordinary computers operated by
participants around the world. Such huge prime numbers are used in problems related to Cryptography.

5P i e r r e d e F e r m a t (1601-1665) was a French lawyer and government official most remembered for his
work in number theory; in particular for Fermat’s Last Theorem. He is also important in the foundations of the
calculus.

6What no one suspected before G a u s s (see Footnote No.30) was that a regular 17-gon can be constructed
by ruler and compass. Gauss was so proud of his discovery that he requested that a regular polygon of 17 sides be
engraved on his tombstone; for some reason, this wish was never fulfilled, but such a polygon is inscribed on the side
of a monument to Gauss erected in Brunswick, Germany, his birthplace.

7G e o r g e P ó l y a (1888-1985) was a Hungarian Jewish mathematician. He was a professor of mathematics
from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributions
to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics
and mathematics education.
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(c) From the part (a) deduce that
∞

∑
i=0

mi

ai
=

m+1
n .

(d) For m = 2 and n = 1, from b) prove that ai+1 = Fi = 22i
+1, i ∈N. In particular,

∞

∑
i=0

2i

Fi
= 1 .

5.8 (P e r i o d i c S e q u e n c e s) Let us fix the terminology for periodic sequences which is
used at many places: For an arbitrary sequence (xi)i∈N of elements of a set X , a pair (m0,n) ∈
N×N∗ is called a p a i r o f p e r i o d i c i t y for (xi) if xi+n = xi for all i ≥ m0. In this case m0 is
called a p r e - p e r i o d l e n g t h and n a p e r i o d l e n g t h of (xi). If no such pair of periodicity
for (xi) exists, then (xi) is called a p e r i o d i c , otherwise (xi) is called p e r i o d i c .
(a) Show that for a periodic sequence (xi)i∈N, there exists a unique pair of periodicity (k0, ℓ) ∈
N×N∗ with the following property: Any pair of periodicity for (xi) is of the form (m0,mℓ) with
m0 ≥ k0 and m ∈N∗. (Hint : The main point to show is the following: If r,s ∈N∗ are period lengths of
(xi), then GCD(r,s) is also a period length of (xi).) – The natural number k0 is called the pre -pe r iod
l e n g t h of (xi) and the natural number ℓ is called the p e r i o d l e n g t h . The pair (k0, ℓ) itself
is called the ( p e r i o d i c i t y ) t y p e of (xi). The (finite) subsequence (x0, . . . ,xk0−1) is called
the p r e - p e r i o d of (xi) and the (finite) subsequence (xk0, . . . ,xk0+ℓ−1) is called the p e r i o d
of (xi). In this case we simply write (xi)i∈N = (x0, . . . ,xk0−1,xk0, . . . ,xk0+ℓ−1). If k0 = 0 then (xi)
is called p u r e l y p e r i o d i c . The periodicity type of an aperiodic sequence is often denoted by
(∞,0). In particular, by definition, the period length of an aperiodic sequence is 0.

(b) If x is an element of a group, the sequence (xi)i∈N of its powers has period length ordx
and is purely periodic if ordx > 0. For an element x of a monoid the periodicity type of the
sequence (xi)i∈N characterizes the cyclic monoid generated by x up to isomorphism and any type
in N×N∗∪{(∞,0)} may occur.

(c) For an integer r ∈ N∗, compute the periodicity type of the sequence (xri)i∈N in terms of the
periodicity type (k0, ℓ) of (xi)i∈N.

5.9 ( T h e S i e v e o f E r a t o s t h e n e s 8) The so-called sieve of Eratosthenes is an alogrithm for
singling out the prime from among the set of natural numbers ≤ N for arbitrary natural number N.
It depends on the fact that if a natural number n > 1 has no divisior d with 1 < d ≤

√
n, then n

must be a prime number (See Test-Exercise T5.19-(d)). Let N be a positive natural number and
let π(N) denote the number of prime numbers ≤ N. Let p1, . . . , pr be all distinct prime numbers
≤
√

N, i.e, r = π(
√

N). Prove the following well-known formula :

π(N) = N + r−1− ∑
1≤i≤r

[
N
pi

]
+ ∑

1≤i1<i2≤r

[
N

pi1 pi2

]
− ·· · +(−1)r

[
N

p1 · · · pr

]
.

(Proof : For each i = 1, . . . ,r, let Mi := {n ∈ N∗ | n ≤ N and pi
∣∣n} = {pi,2pi, . . . ,

[
N
pi

]
· pi} and hence

|Mi| =
[

N
pi

]
. For an index ν-tuple (i1, . . . , iν) with 1 ≤ i1 < i2 < · · · < iν ≤ r, we have Mi1 ∩ ·· · ∩Miν =

{n ∈N∗ | n ≤ N and pi1
∣∣n, . . . , pinu

∣∣n equivalently pi1 · · · piν

∣∣n} and so |Mi1 ∩ ·· · ∩Miν | =
[

N
pi1 ···piν

]
. This

proves that π(N) = N −1−|∪r
i=1 Mi|+ r. Now use the Sylvester’s sieve formula, see Exercise 4.3.)

5.10 Let n ∈N∗ and let p be a prime number. Show that

(a) The multiplicity of p in n ! is vp(n!) =
[n

p

]
+
[ n

p2

]
+
[ n

p3

]
+ · · · .

8This process is named after the Greek scientist who invented it. E r a t o s t h e n e s C y r e n e (276-194 BC),
a contemporary of A r c h i m e d e s, was a many-sided scholar; nicknamed “Beta” because he stood at least second
in every field. He gave a mechanical solution of the problem of duplicating the cube, and he calculated the diameter
of the earth with considerable accuracy. Chief librarian of the Museum in Alexandria, he became blind in his old age
and committed suicide by starvation.
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In particular, ( L e g e n d r e ’ s f o r m u l a 9) : n! = ∏
p≤n

p∑r≥1[n/pr] .

( Proof : Note that
[

n
pr

]
= 0 if pr > n and hence the sum on the RHS is really a finite sum. The assertion is

proved by induction. It is trivial for 1!. Assume n> 1 and the assertion is true for (n−1)! and let j = vp(n),

i.e., p j
∣∣n but p j+1 ̸

∣∣n. Since n! = n · (n−1)!, it is enough to prove that ∑
[

n
pi

]
−∑

[
(n−1)

pi

]
= j. But[

n
pi

]
=

[
(n−1)

pi

]
=

{
1, if pi

∣∣n,
0, if pi

∣∣n, and hence ∑
[

n
pi

]
=∑

[
(n−1)

pi

]
= j. This proof is rather short and

artificial.

Another proof : First note that
[

n
pr+1

]
=


[

n
pr

]
p

 for every r ∈N (this follows easily from
[ x

m

]
=

[
[x]
m

]
for all x ∈ R and all m ∈ N∗.) Among the natural numbers 1 < k < n, those which are divisible by p

are p ,2p , . . . ,

[
n
p

]
· p ; among these that are divisible by p2 are p2 ,2p2 , . . . ,

[
n
p2

]
· p2 ; among these

that are divisible by p3 are p3 ,2p3 , . . . ,
[

n
p3

]
· p3 and so on. This lead us to conclude that ∑r≥1 [n/pr] =

∑n
k=1 vp(k) = vp(1 · 2 · · · · n) = vp(n!). – More generally : If ni, i ∈ I, is a finite family of positive natural

numbers, then the prime number p occurs in the product ∏i∈I ni with the multiplicity ∑k∈N∗ νk, where for
each k ∈N∗, νk is the number i ∈ I for which ni is divisible by pk.)

(b) Show that (2n)!/(n!)2 is an even integer. Further, show that

vp((2n)!/(n!)2) = ∑
k≥1

([
2n
pk

]
−2

[
n
pk

])
and if n < p < 2n , then show that vp((2n)!/(n!)2) = 1 .

(c) Let n = (rt , . . . ,r0)p be the p-adic expansion of n, where 0 ≤ ri < p for all i = 0, . . . , t. Then
show that

vp(n!) =
(
n−∑

i≥0
ri
)/

(p−1) .

(Hint: The sum on the right hand side of part (a) can be easily computed by recursion :

∑
i≥1

[
n
pi

]
=
(
n−∑

i≥0
ri
)/

(p−1) .)

(d) vp((pk −1)!) = [pk − (p−1)k−1]/(p−1).
(Hint : Use the identity (pk −1) = (p−1)(pk−1 + · · ·+ p2 + p+1).)

(e) Find v3(80!) and v7(2400!).

(f) Find n ∈ N∗ such that vp(n!) = 100. (Hint : For instance for p = 5, begin by considering the
equation (n−1)/4 = 100.)

(g) Let n,k ∈N∗, k ≤ n. Every prime power pr that divides
(

n
k

)
is ≤n. (Hint : Use the part (a).)

9Proved by the French mathematician L e g e n d r e A d r i e n - M a r i e (1752-1833). It was Legendre’s fate
to be eclipsed repeatedly by younger mathematicians. He invented the method of least squares in 1806, but Gauss
revealed in 1809 that he had done the same in 1795. He laboured for 40 years on elliptic integrals and then A b e l
and J a c o b i revolutionized the subject in the 1820s with the introduction of elliptic functions. He conjectured the
prime number theorem and the law of quadratic reciprocity, but could not prove either. Still, he created much beautiful
mathematics, including the determination of the number of representations of an integer as a sum of two squares, and
the exact conditions under which the equation ax2+by2+cz2 = 0 holds for some (x,y,z) ̸= (0,0,0). He also wrote an
elementary geometry text in which, in 39 editions of the English translations, replaced Euclid’s Elements in America
schools.
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(h) For each prime power pα >1 and every k∈N∗, 1≤k≤ pα , show that

vp

((
pα

k

))
= pα−vp(k) .

5.11 (a) Compute the canonical prime decomposition of:

(i) 50! . (ii) the product 1 ·3 ·5 · · ·99 of the first 50 odd natural numbers.

(iii) the least common multiple lcm(1,2,3, . . . ,50) the first 50 positive natural numbers.

(b) The product of two relatively prime natural numbers a and b is the n-th power of a natural
number n ∈N∗ if and only if this hold separately for a and b as well.

∗5.12 Congruences are often used to append extra check digit to identification numbers, in order to rec-
ognize transmission errors or forgeries. Personal identification numbers of some kind on passports, credit
cards, bank accounts and other variety of settings.

(a) Some banks use eight digit identification number a1a2 · · ·a8 together with a final check digit a9. The
check digit is the weighted sum of the eight modulo 10, i. e. a9 ≡ ∑8

i=1 xiai (mod10).
Suppose that a9 ≡ 7a1 +3a2 +9a3 +7a4 +3a5 +9a6 +7a7 +3a8 ≡ (mod10). Then:

(i) Verify that the identification number 815042169 have the check digit 9 . Obtain the check digits that
should be appended to the numbers 55382006 and 81372439.

(ii) The weighting scheme for assigning check digit detects any single-digit error10 in the identification
number. For example, suppose that the digit ai is replaced by a different digit a′i, then the difference between
the correct a9 and the new check digit a′9 is a9 −a′9 ≡ k(ai −a′i) (mod10), where k = 7,3, or 9 depending
position of a′i. If the valid number is 81504216 were incorrectly entered as 81504316, then the check digit
8 would come up rather than the expected 9.

(iii) The bank identification number 237a418538 has an illegible fourth digit. Determine the value of the
obscured digit.

(b) The International Standard Book Number (ISBN) used in many libraries consist of none digits a1a2 · · ·a8a9
followed by a tenth check digit a10 which satisfies a10 ≡ ∑9

i=1 i ·ai (mod10). Determine whether each of the
ISBNs below correct:
(i) 0-07-232569-0 (United States) (ii) 91-7643-497-5 (Sweden) (iii) 1-56947-3034-10 (England).
When printing the ISBN a1a2 · · ·a8a9 two unequal digits were transposed. Show that the check digits
detected this error.

5.13 Let n ∈ N∗ and let +n , ·n denote the binary operations on the quotient set Zn under the
equivalence relation congruence modulo n, see Test-Exercise T5.35.

(a) We characterize the invertible elements in the multiplicative monoid (Zn, ·n) as follows: For
a ∈ Z , show that the following statements are equivalent:

(i) a and n, are relatively prime, i. e. gcd(a,n) = 1.
(ii) The element [a] ∈ (Zn, ·n) is cancelative (or non-zero divisor in the ring (Zn,+n, ·n) ), i. e.
the left multiplication map λ[a] : Zn → Zn , [x] 7→ [a] ·n [x] = [ax] is injective.
(iii) The element [a] ∈ (Zn, ·n) is invertible (with respect to ·n ), i. e. there exists [b] ∈ Zn such
that [a] ·n [b] = [b] ·n [a] = [1] .
(Hint : Use Bezout’s Lemma, see Test-Exercise T5.16-(a) and also T5.19-(a). — Remark: The cardinality
of the unit group #(Zn, ·n)× = #{r ∈N | 0 ≤ r ≤ n with gcd(r,n) = 1} is usually denoted by φ(n) . This
defined a function φ : N∗ →N , n 7→ φ(n) called the E u l e r ’ s t o t i e n t f u n c t i o n .)

10The modulo 10 approach is not entirely effective. For, it does not always detect the common error of transposing
distinct adjacent entries a and b within the string of digits. For example, the identification numbers 81504216 and
81504261 have the same check digit 9. The problem occurs when |a− b| = 5. More sophisticated methods are
available with larger moduli and different weights that would prevent this error.
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(b) Show that the commutative ring (Zn,+n, ·n) is a field (i. e. every non-zero element [a] ∈ Zn
is invertible (with respect to the multiplication ·n ) if and only if n is a prime number.

5.14 Let p be a prime number.

(a) Let r,k ∈N with r < k < p. show that p divides
(

p+ r
k

)
. In particular, p divides

(
p
k

)
for

all 0 < k < p. (Hint : p divides the numerator (p+ r) · · ·(p+ r− k+1) , since p+ r− k+1 < p < p+ r
and p does not divide the denominator k .)

(b) (F e r m a t ’ s L i t t l e T h e o r e m) For every natural number n , p divides np − n, i. e.
np ≡ n modulo p. (Hint : Use induction and the above part (b). Another proof can be given by using
Test-Exercise T5.35-(d).)

(c) Let p and q be distinct prime numbers and let a be an integer with ap ≡ a(mod q) and
aq ≡ a(mod p) . Show that apq ≡ a(mod pq) .
(d) Let p and q be two distinct prime numbers. For every integer a, prove that

apq −ap −aq +a ≡ 0(mod pq) . (Hint : Use the Fermat’s Little Theorem, see the part
(b).)

5.15 (a) (W i l s o n ’ s T h e o r e m11 ) If p is a prime number, then (p−1)! ≡−1(mod p) .

(b) The converse of Wilson’s Theorem is also true: If (n−1)! ≡ −1(mod n) , then n must be a
prime number. (Hint : If n is not prime, then n has a factor d with 1 < d < n . Further, d|(n− 1)! and
hence d divides (n−1)!+1 too, a contradiction.)

(c) Prove that:

(i) An integer n > 1 is prime if and only if (n−2)! ≡ 1(mod n) .
(ii) If n is a composite number, then (n−1)! ≡ 0(mod n) except when n = 4.

(d) For a prime number p , prove the congruence (p−1)! ≡ p−1(mod (1+2+ · · ·+(p−1))) .

(e) Let p be a prime number. For any integer a , prove the congruences
(i) ap +(p−1)! ·a ≡ 0(mod p) . (ii) (p−1)! ·ap +a ≡ 0(mod p) .

(Hint : By Wilson’s Theorem (see the part (a)) ap +(p−1)! ·a ≡ ap −a(mod p) .)

(f) Prove that the quadratic congruence X2 +1 ≡ 0(mod p) , where p is an odd prime, has a
solution if and only if p ≡ 1(mod 4) .

Below one can see auxiliary results and (simple) Test-Exercises.

11The English mathematician E d w a r d W a r i n g (1743-1798) announced an interesting property of prime
numbers in his Mediationes Algebraicae, Cambridge, 1770, which was reported to him by his student J o h n W i l -
s o n (1741-1793): If p is a prime number, then p divides (p− 1)!+ 1. It appears that neither Wilson nor Waring
knew how to prove it. Confessing this inability, Waring wrote ”Theorems of this kind will be very hard to prove
because of absence of a notations to express prime numbers.” reading this passage, Gauss uttered his comment on
“notationes versus notiones”, implying that it was the notion that really mattered, not the notation. Soon afterward in
1771, L a g r a n g e12 gave a proof of what in literature is called “Wilson’s Theorem” and observed that the converse
also holds.
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Auxiliary Results/Test-Exercises

There is a dictum that anyone who desires to get at the roots of the subject should study
its history. Endorsing this the pain is taken to fit historical remarks in the text whenever
possible.

The Theory of Numbers is concerned with properties on integers and more particularly with the positive
integers (also known as the positive natural numbers) 1,2,3, . . . . The origin of this misnomer harks back to
the early Greeks for whom the number meant positive integer and nothing else. Far from being a gift from
Heaven, number theory has had a long and sometimes painful evolution.

– Few words about the origin of number theory: The Theory of Numbers is one of the oldest branches of
mathematics; its roots goes back to remote date. The Greeks were largely indebted to the Babylonians and
ancient Egyptians for a core of information about the properties of natural numbers, the first rudiments of
this theory are generally credited to Pythagoras13 and his disciples.

P l a t o14 said “God is a geometer” – J a c o b i15 changed this to “God is a arithmatician”. Then
came K r o n e c k e r16 and fashioned the memorable expression “God created the natural numbers
and all the rest is the work of man”. F e l i x K l e i n17 (1849-1925)

T5.1 ( T h e s e t o f N a t u r a l n u m b e r s - - P e a n o ’ s a x i o m s Natural numbers cane be
defined axiomatically as follows:
A set of natural numbers N is a set with special element 0 and there is a map s : N → N \ {0}
satisfying the following properties:
(P1) s is injective.
(P2) (I n d u c t i o n - A x i o m) Suppose that M ⊆N is a subset such that 0 ∈ M and if n ∈ M,
then s(n) ∈ M. Then M =N.

13P y t h a g o r a s o f S a m o s (born between 580 BC and 562 BC) was an Ionian Greek philosopher, mathe-
matician, and founder of the religious movement called Pythagoreanism. Most of the information about Pythagoras
was written down centuries after he lived, so very little reliable information is known about him. He was born on
the island of Samos, and might have traveled widely in his youth, visiting Egypt and other places seeking knowledge.
Around 530 BC, he moved to Croton, a Greek colony in southern Italy, and there set up a religious sect. The school
concentrated on four mathemata or subjects of stud: arithmetica (arithmetic – Number theory rather than the art of cal-
culating), harmonia (music), geometria (geometry) and astrology (astronomy). This fourfold division of knowledge
became known in the Middle Ages as the quadrivium to which was added the trivium of logic, grammar and rhetoric.
These seven liberal arts came to be looked upon as the necessary course of study of an educated person.
Pythagoras made influential contributions to philosophy and religious teaching in the late 6-th century BC. He is often
revered as a great mathematician, mystic and scientist, but he is best known for the Pythagorean theorem which bears
his name. The society took an active role in the politics of Croton, but this eventually led to their downfall. The
Pythagorean meeting-places were burned, and Pythagoras was forced to flee the city. He is said to have ended his days
in Metapontum.

14P l a t o (427 BC-347 BC) is one of the most important Greek philosophers. He founded the Academy in Athens,
an institution devoted to research and instruction in philosophy and the sciences. His works on philosophy, politics
and mathematics were very influencial and laid the foundations for Euclid’s systematic approach to mathematics.

15C a r l G u s t a v J a c o b J a c o b i (1804-1851) made basic contributions to the theory of elliptic functions.
He carried out important research in partial differential equations of the first order and applied them to the differential
equations of dynamics.

16L e o p o l d K r o n e c k e r (1823-1891) was a German mathematician. His primary contributions were in the
theory of equations. He made major contributions in elliptic functions and the theory of algebraic numbers.

17F e l i x C h r i s t i a n K l e i n (1849-1925) was a German mathematician. Felix Klein’s synthesis of geometry
as the study of the properties of a space that are invariant under a given group of transformations, known as the Erlanger
Programm, profoundly influenced mathematical development.
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(Remark : These axioms are known as Peano’s axioms and were introduced by G i u s e p p e P e a n o18

in the “Arithmetices Principia”, Torino, 1889. Peano also showed how one can derive the entire arithmetic
using these axioms.)

The axiom P2 is called the a x i o m o f i n d u c t i o n or i n d u c t i o n - a x i o m. From this
axiom it follows that the map s : N → N \ {0} is surjective and hence it is bijective. Instead of
0,s(0),s(s(0)),s(s(s(0))), . . . , , one can simply write 0,1,2,3, . . . , .

With this one can immediately ask the following two fundamental questions:
(1) Does there exists such a system (N,0,s) which satisfy the axioms P1 and P2, i. e. a model for
natural numbers.
(2) If answer to the question (1) is yes, then ow many such models are there?
For these questions we consider the following concept (due to Dedekind, see the Footnote No.19) :

A set X is called ( s i m p l e ) i n f i n i t e if there exists an injective map f : X → X which is not
surjective. Then clearly (if it exists!) the set N of natural numbers is a “smallest” simple infinite
set. More deeper is the following theorem due to Dedekind: There exists a unique simple infinite
set which is a model (N,0,s) for the set of natural numbers. We shall indicate the existence here
and the unique ness is precisely formulated in Test-Exercise T5.8.
Start with the emptyset /0 and put:

0 := /0,
1 := { /0}= {0}= 0+ ,
2 := { /0}∪{{ /0}}= {0,1}= 1+ ,
3 := { /0,{ /0},{ /0,{ /0}}}= {0,1,2}= 2+

and so on . . . n := {0,1,2, . . . ,n−1}= (n−1)+ .
Now, take N := {0,1,2, . . .} and define s : N→N by s(n) := n+ = n∪{n} = {0,1,2, . . . ,n}. It
is easy to check that (N,0,s) satisfies the Peano’s axioms P1 and P2.
In terms of immediate successors the above can be written as: 1 is the immediate successor of
0, 2 is the immediate successor of 1, . . ., n+ is the immediate successor of n for every n ∈ N.
Moreover, there is a unique relation ≤ on N (actually it is the inclusion relation ⊆ ) which a total
order on N with the smallest element 0. (Remark : This unique order ≤ on N is called the s t a n -
d a r d or u s u a l o r d e r on N. In Test-Exercise T5.2 -(b), we shall prove that the ordered set (N,≤)

is well-ordered, i. e. every non-empty subset M ⊆N has the smallest element (in M).)

T5.2 We use the Induction-axiom to prove its following consequences:

(a) ( F i r s t p r i n c i p l e o f i n d u c t i o n ) Using the third axiom of Peano prove the following :
Suppose that for each natural number n∈N, we have associated a statement S(n). Assume that
the following conditions are satisfied :
(i) S(0) is true. The ( B a s i s o f I n d u c t i o n )
(ii) For every n ∈N, S(n+1) is true whenever S(n) is true. The ( I n d u c t i v e s t e p )
Then S(n) is true for all n ∈N. (Hint : Let M := {n ∈ N | S(n) is true} ⊆ N. Then 0 ∈ M by the
hypothesis (i). Furher, by hypothesis (ii) if n ∈ M, then n+1 ∈ M. Therefore M = N by the induction-
axiom. – Remark: The following variant is also used very often: Let n0 ∈ N. Suppose that for every
natural number n ≥ n0, we have associated a statement S(n). Assume that S(n0) is true and for every

18G i u s e p p e P e a n o (1858-1932) was an Italian mathematician born on 27 August 1858 and died on 20 April
1932, whose work was of exceptional philosophical value. The author of over 200 books and papers, he was a founder
of mathematical logic and set theory, to which he contributed much notation. The standard axiomatization of the
natural numbers is named in his honor. As part of this axiomatization effort, he made key contributions to the modern
rigorous and systematic treatment of the method of mathematical induction. He spent most of his career teaching
mathematics at the University of Turin, Italy.
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n ≥ n0 , S(n+1) is true whenever S(n) is true. Then S(n) is true for all n ≥ n0. For the proof consider the
set M := {n ∈N | n < n0}∪{n ∈N | n ≥ n0 and S(n) is true }.)

(b) ( M i n i m u m P r i n c i p l e ) Every non-empty subset M of N has a smallest element, i.e.,
there exists an element m0 ∈ M such that m0 ≤ m for all m ∈ M. (Hint : For n ∈ N, let S(n) be
the following statement: If M contains a natural number m with m ≤ n, then M has a smallest element.
By using induction show that the statement S(n) is true for all n. – Remark: The minimum principle for
N is also known as the w e l l - o r d e r i n g p r o p e r t y o f N. Moreover, well-ordering property of N is
equivalent to the induction-axiom, see the part (c) below.)

(c) Deduce the induction-axiom from the well-ordering property of N. (Hint : Suppose that M ⊂N

such that 0 ∈ M and if n ∈ M, then n+ 1 ∈ M. To prove that M = N or equivalently to prove that the
complement N\M = /0. If N\M ̸= /0, then by the minimal principle, it has a smallest element say n0, i. e.
n0 ∈N\M and n0 ≤ n for every N\M. But then n0 −1 ∈ M and n0 ̸∈ M a contradiction to the hypothesis
in the induction-axiom.)

(d) (A r c h i m e d e a n P r o p e r t y) For every pair of positive natural numbers a and b , there
exists a positive natural number n∈N∗ such that n ·b ≥ b . (Remark : Note that we have assumed that
the binary operations + , · and the order relation ≤ are defined on N, see Test-Exercise T5.7-(d). Further,
for x,y ∈N, note that x ≤ y if y = x+ z for some z ∈N. – Hint: Suppose that b < n ·a for every n ∈N.
Then M := {b−na | n ∈N} ⊆N and clearly b ∈ M. Therefore by the Minimum Principle M has a smallest
element, say b−m · a . But then b− (m+ 1) · a ∈ M also and b− (m+ 1) · a = b−m · a− a < b−m · a a
contradiction to the minimality of b−m ·a . )

(e) ( S e c o n d p r i n c i p l e o f i n d u c t i o n ) Suppose that for each natural number n∈N, we
have associated a statement S(n). Assume that for every n ∈N, if the S(m) is true for all m < n,
then S(n) is also true. Then S(n) is true for all n ∈N. (Hint : Let M := {n ∈ N | S(n) is NOT
true} ⊆N. Then show that M = /0.)

T5.3 (Some A r i t h m e t i c s e r i e s ) For all n ∈N, prove the following formulas by induction :

(a)
n

∑
k=1

k =
n(n+1)

2
. (b)

n

∑
k=1

k2 =
n(n+1)(2n+1)

6
. (c)

n

∑
k=1

k3 =
(n(n+1)

2

)2
=

( n

∑
k=1

k
)2

.

(d)
n

∑
k=1

(−1)k−1k = 1
4
(
1+(−1)n−1(2n+1)

)
. (e)

n

∑
k=1

(−1)k−1k2 = (−1)n+1 · n(n+1)
2

.

(f)
n

∑
k=1

(2k−1)=n2. (g)
n

∑
k=1

(2k−1)2=
n
3
(4n2 −1) . (h)

n

∑
k=1

k(k+1)= 1
3

n(n+1)(n+2) .

(i)
n

∑
k=1

1
k(k+1)

= 1− 1
n+1

. (j)
n

∑
k=1

1
4k2 −1

=
1
2

(
1− 1

2n+1

)
.

(k)
n

∑
k=1

1
k(k+1)(k+2)

=
1
4
− 1

2(n+1)(n+2)
. (l)

n

∑
k=1

k−1
k(k+1)(k+2)

=
1
4
− 2n+1

2(n+1)(n+2)
.

T5.4 For all n ≥ 1 prove:

(a)
n

∏
k=2

(
1− 1

k2

)
=

1
2

(
1+ 1

n

)
. (b)

n

∏
k=2

(
1− 2

k(k+1)

)
=

1
3

(
1+ 2

n

)
.

(c)
n

∏
k=2

k3 −1
k3 +1

=
2
3

(
1+ 1

n(n+1)

)
.

T5.5 ( F i n i t e g e o m e t r i c s e r i e s ) For every real (or complex) number q ̸= 1 and every n ∈N, prove
that :
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(a) ∑n
k=0 qk = qn+1−1

q−1 (b)
n

∏
k=0

(1+q2k
) =

q2n+1 −1
q−1

. (c)
n

∑
k=1

kqk =
nqn+2 − (n+1)qn+1 +q

(q−1)2 .

T5.6 For all n ≥ 1 prove:

(a) 5 divides 2n+1 +3 ·7n. (b) 3 divides n3 +2n. (c) 6 divides n3 −n.

(d) 7 divides 52n+1 +22n+1. (e) 30 divides n5 −n. (f) 3 divides 22n −1.

(g) 15 divides 3n5 +5n3 +7n. (h) 133 divides 11n+2 +122n+1. (i) 5 divides 3n+1 +23n+1.

T5.7 Proofs by induction are very common in Mathematics and are undoubtedly familiar to the
reader. One also encounters quite frequently – without being conscious of it – definitions by
induction or recursion. For example, powers of a non-zero real number an are defined by a0 =
1,ar+1 = ara. Definition by induction is not as trivial as it may appear at first glance. This can be
made precise by the following well-known recursion theorem proved by Dedekind19 :

(a) ( R e c u r s i o n T h e o r e m ) Let X be a non-empty set and let F : X → X be a map. For
a ∈ X, there exists a unique (sequence in X ) map f : N−−−−−−−−−−−−−−−- X such that (i) f (0) = a and
(ii) f (s(n)) = F( f (n)) for all n ∈N, i.e., the following diagram is commutative.

N −−−−−−−−−−−
s
−−−−−−−−−−−−- N

f
?

f
?

X −−−−−−−−−−−
F
−−−−−−−−−−−−- X

(Hint : Uniqueness of f is clear by induction. For existence, put In := {0,1, . . . ,n}. By induction show that
the following statement S(n) is true for all n ∈N. S(n) : There exists a unique map fn : In → X such that
fn(0) = a and fn(r+ 1) = F( fn(r)) for every r ∈N with r < n. For arbitrary natural numbers m,n ∈N

with m ≤ n, we then have fm = fn|Im. Therefore fn(n) = F( fn(n− 1)) = F( fn−1(n− 1)) for all n ≥ 1.
Now, define f by n 7→ fn(n).) (Remark : One might be tempted to say that one can define inductively by
conditions (i) and (ii). However, this does not make sense since in talking about a function on N we must
have an à priori definition of f (n) for every n ∈N. A proof of the existence of f must use all of Peano’s
axioms. See the example illustrating this in the part (b) below.)

(b) (H e n k i n) Let N = {0,1} and define the map sN : N → N by sN(0) := 1 and sN(1) := 1.
Show that (N,sN) satisfies Peano’s axioms P2 but not P1. Show that the recursion theorem breaks
down for (N,sN). (Hint : Let F : N → N be the map defined by F(0) = 1 and F(1) = 0. Show that there
is no map f : N → N satisfying f (0) = 0 and f (sN(a)) = F( f (a)) for all a ∈ N.)

(c) ( I tera t ion of maps) Let X be a set, Φ : X →X be a map, i.e., Φ∈XX . and let F : XX →XX

be the map defined by Ψ 7→ Φ ◦Ψ. Then there exists a sequence f : N → XX in XX such that
f (0) = idX and f (n+1) = F( f (n)) = Φ◦ f (n) for all n ∈N. For n ∈N the map f (n) : X → X
is called the n- t h i t e r a t e o f Φ and is denoted by Φn. Note that Φ0 = idX ,Φn+1 = Φn ◦Φ for
all n ∈N. Further, (idX)

n = idX for n ∈N.

(d) Show that the a d d i t i o n + :N×N→N and the m u l t i p l i c a t i o n · :N×N→N on
N can be defined by using the recursion theorem. Further, verify the standard properties + and · ,

19J u l i u s W i l h e l m R i c h a r d D e d e k i n d (October 6, 1831 - February 12, 1916) was a German math-
ematician who did important work in abstract algebra (particularly ring theory), algebraic number theory and the
foundations of the real numbers. Dedekind was one of the greatest mathematicians of the nineteenth-century, as well
as one of the most important contributors to number theory and algebra of all time. Any comprehensive history of
mathematics will mention him for his invention of the theory of ideals and his investigation of the notions of algebraic
number, field, module, lattice, etc. Often acknowledged are: his analysis of the notion of continuity, his introduction of
the real numbers by means of Dedekind cuts, his formulation of the Dedekind-Peano axioms for the natural numbers,
his proof of the categoricity of these axioms, and his contributions to the early development of set theory.
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e.g., existence of identity element, associativity, commutativity, distributive laws, cancelation laws,
monotonicity (with respect to the standard order ≤ etc. (Hint : For + apply recursion theorem to X =

N F = s and a=m∈N to get the unique map sm :N→N such that sm(0) =m and sm(s(n)) = s(sm(n) for
all n ∈N. Now, define m+n := sm(n). Note that m+0 = sm(0) = m and m+ s(n) = sm(s(n)) = s(sm(n)).
Further, note that for m ∈ N, the map sm : N → N is the m-th iterate (see b)) sm = s◦ s◦ · · · ◦ s︸ ︷︷ ︸

m-times

of the

successor map s. For m,n ∈N, define the multiplication m ·n := sm
n (0) = (sn)m(0).)

(e) Show that there exists a binary operation of e x p o n e n t i a t i o n ( or n -th p o w e r o f m )
N×N → N, (m,n) 7→ mn. Further, state and verify the standard laws of exponents. (Hint : For
m ∈N, let pm : N→N be the multiplication by m. Define mn := pn

m(1).)

(f) Let X be a set, a ∈ X , Y :=
∪

n∈NXn and let G : Y → X be a map. Then there exists a unique
sequence g : N→ X such that ,g(0) = a and g(n+ 1) = G(g(0),g(1), . . . ,g(n)) for all n ∈ N.
(Hint : Define the map F : Y →Y be (x1, . . . ,xn) 7→ (x1, . . . ,xn,G((x1, . . . ,xn))). Then by recursion theorem
there exists a unique map f : N→Y such that f (0) = a and f (n+1) = F( f (n)) for all n ∈N. Now, define
g : N→ X by n 7→ f (n)(n).)

T5.8 (U n i q u e n e s s o f t h e m o d e l (N,0,s)) Use Recursion Theorem (see Test- Exer-
cise T5.7-(a)) to show that the model (N,0,s) of a set natural numbers (defined in Test-Exercise
T5.1) is essentially unique. More precisely: Let Ñ be a non-empty set, 0̃ ∈ Ñ and let s̃ : Ñ→ Ñ

be a map. Suppose that for each map F : X → X and each a ∈ X , there exists a unique map
f̃ : Ñ→ X such that (i) f̃ (0̃) = a and (ii) f̃ (s̃(n)) = F( f̃ (n)) for all n ∈N, i.e., the diagram

Ñ −−−−−−−−−−−̃
s
−−−−−−−−−−−−- Ñ

f̃
?

f̃
?

X −−−−−−−−−−−
F
−−−−−−−−−−−−- X

is commutative. Then there exists a unique bijective map Φ : N → Ñ such that Φ(0) = 0̃ and
Φ(s(n)) = s̃(Φ(n)) for all n ∈N, i.e., the diagramm

N −−−−−−−−−−−
s
−−−−−−−−−−−−- N

Φ
?

Φ
?

Ñ −−−−−−−−−−−̃
s
−−−−−−−−−−−−- Ñ

is commutative.

T5.9 In this exercise we list some more useful formulations of recursions: Let X and Y be sets.

(a) ( D o u b l e R e c u r s i o n ) Let a ∈ X and let F,G : X → X be two maps. Then there exists a
unique map g : N×N→ X such that g((0,0)) = a,

g((0,n+1)) = F(g(0,n)) for all n ∈N and g((m+1,n)) = G(g(m,n)) for all m,n ∈N .

Use double recursion to obtain directly the operations of addition + and · on N.
(Hint : By Recursion Theorem (Test-Exercise T5.7-(a)) there exists a map Ψ0 :N→ X such that Ψ0(0) = 0
and Ψ0(n + 1) = F(Ψ0(n)) for all n ∈ N. Now, apply once again the Recursion Theorem to the map
Φ : XN → XN, φ 7→G◦φ and Ψ0 ∈XN, to get the map Ψ :N→ XN such that Ψ(0) =Ψ0 and Ψ(m+1) =
Φ(Ψ(m)). Finally, define the map g : N×N→ X by g(m,n) := Ψ(m)(n). )

(b) ( S i m u l t a n e o u s R e c u r s i o n ) Let H : X ×Y → X , K : X ×Y → Y be given maps.
For (a,b) ∈ X ×Y , there exist a unique maps f : N → X and g : N → Y such that f (0) = a,
g(0) = b and f (n+ 1) = H( f (n),g(n)), g(n+ 1) = K( f (n),g(n)) for all n ∈ N. (Hint : Apply
recursion theorem to the set X ×Y , the map F := H ×K : X ×Y → X ×Y , (x,y) 7→ (H(x,y),K(x,y)) and
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(a,b) ∈ X ×Y , to get the map G : N → X ×Y such that G(0) = (a,b) and G(n+ 1) = F(G(n)) for all
n ∈N. Now, take f = p◦G and q◦G, where p : X ×Y → X (resp. q : X ×Y →Y ) is the first (resp. second)
projection. Using the properties of G check that f and g have the required properties.)

(c) ( P r i m i t i v e r e c u r s i o n ) Let a ∈ X and let H : X ×N→ X be a given map. Show that
there exists a unique map f : N→ X such that f (0) = a and f (n+1) = H( f (n),n) for all n ∈N.
(Hint : Apply the simultaneous recursion to Y = N, b = 0 and the map K : X ×N → N defined by
(x,n) 7→ n+1.)

(d) Construct a map f : N→N such that f (0) = 1 and f (n) = 1 ·2 · · ·(n−1) ·n (the product of
the first n non-zero natural numbers) for each n > 0. (Hint : Use the primitive recursion to X =N,
a = 1 and H : N×N → N the map defined by H(m,n) = (n+ 1) ·m. – Remark: For each n ∈ N, the
natural number F(n) is called f a c t o r i a l n and is denoted by n!.)

T5.10 ( n - a r y o p e r a t i o n s – g e n e r a l i z e d s u m s a n d p r o d u c t s ) Let n ∈N and let
X{1,...,n} := Xn := X ×·· ·×X︸ ︷︷ ︸

n- times

. A map f : Xn → X is called an n- a r y o p e r a t i o n o n X .

Let ∗ : X ×X → X be a binary operation on X . Then there exists a unique family fn : Xn → X ,
n ∈N∗ of n-ary operation on X such that : f1 = idX , f2 = ∗ and

fn+1((x1, . . . ,xn,xn+1))= fn((x1, . . . ,xn))∗xn+1 for all (x1, . . . ,xn,xn+1)∈Xn+1 and for all n≥ 1 .

(a) Applying the above result to the binary operation of addition + on N, we have a unique family
fn : Nn → X , n ∈N∗ of n-ary operation on N.
For n ∈ N and (x1, . . . ,xn) ∈ Nn, fn((x1, . . . ,xn)) is denoted by ∑n

i=1 xi. Therefore ∑0
i=1 xi = 0

and ∑n+1
i=1 xi = (∑n

i=1 xi)+ xn+1 for all (x1, . . . ,xn,xn+1) ∈Nn+1 and for all n ≥ 1.

(b) Applying the above result to the binary operation of multiplication · on N, we have a unique
family pn : Nn → X , n ∈N∗ of n-ary operation on N.
For n ∈ N and (x1, . . . ,xn) ∈ Nn, pn((x1, . . . ,xn)) is denoted by ∏n

i=1 xi. Therefore ∏0
i=1 xi = 1

and ∏n+1
i=1 xi = (∏n

i=1 xi)+ xn+1 for all (x1, . . . ,xn,xn+1) ∈Nn+1 and for all n ≥ 1.

(c) For n ∈ N, (x1, . . . ,xn) ∈ Nn and any permutation σ of {1, . . . ,n}, prove that ∑n
i=1 xi =

∑n
i=1 xσ(i) and ∏n

i=1 xi = ∏n
i=1 xσ(i).

(d) Applying the above result to the binary operation of composition XX , we have a unique family
Φn : (XX)n → XX , n ∈ N∗ of n-ary operation on XX . For n ∈ N and ( f1, . . . , fn) ∈ (XX)n,
Φn(( f1, . . . , fn)) is denoted by f1 ◦ f2 ◦ · ◦ fn. In particular, if fi = f for every i ≥ 1, then for
n ≥ 1 Φn(( f , f , . . . , f )) = f n is the n-th iterate of f (see also Test-Exercise T5.7-(c)).)

T5.11 ( F i b o n a c c i 20 S e q u e n c e) The sequence fn, n ∈ N, defined recursively by f0 = 0,
f1 = 1 and fn+1 = fn + fn−1 for all n ≥ 1, is called the F i b o n a c c i S e q u e n c e21 and its n-th
term fn is called the n-th F i b o n a c c i n u m b e r . The first few terms of the Fibonacci Sequence
are 0,1,2,3,5,8,13,21,34,55, . . .. (Remark : The Recursion Theorem (see Test-Exercise T5.7-(a))
cannot directly justify its existence, for the value fn+1 for n ≥ 1 depend not only on fn, but upon fn−1 as
well. However, we can justify the simultaneous existence of the two sequences fn and gn satisfying :{

f0 = 0, fn+1 = fn +gn, for n ≥ 0,
g0 = 1,gn+1 = fn, for n ≥ 0.

20L e o n a r d o f P i s a or F i b o n a c c i (1170-1250) an Italian Salesman who wrote a book on “Liber Abaci”
in 1209 and introduced the Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe.
Fibonacci played an important role in reviving ancient mathematics and made significant contributions of his own.

21In 1844 Gabriel Lamé observed that if n division steps are required in the Euclidean algorithm to compute
gcd(a,b), a,b ∈ N∗, then a ≥ fn+2 and b ≥ fn+1. Therefore the sequence was called the Lamé sequence. But
Lucas discovered that Fibonacci had been aware of these numbers six centuries earlier.
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For this we can use the Simultaneous Recursion (see Test-Exercise T5.9-(b)) by taking (a,b) = (0,1), H :
N×N→N is the addition on N and K : N×N→N is the first projection.)

(a) For the n-th Fibonacci number fn , prove the following explicit ( B i n e t ’ s F o r m u l a 22) :
fn =

1√
5

((
1+

√
5

2

)n
−
(

1−
√

5
2

)n)
(b) Prove the following equalities by induction :
(i) fn+m = fn−1 fm + fn fm+1 for all m ≥ 0 and all n ≥ 1.
In particular, f2n = fn( fn−1 + fn+1) = f 2

n+1 − f 2
n−1 for all n ≥ 1.

(ii) f 2
n = fn−1 fn+1 +(−1)n+1 for all n ≥ 1.

(iii) φn = fn−1 + fnφ , for all n∈N∗, where φ := (1+
√

5)/2. (Remark : Using this equality we
can define the Fibonacci-numbers fn for all n ∈Z. We then have fn = fn−1 + fn−2 for all n ∈Z.)
(iv) fn + fn+1 + fn+3 = fn+4 . (v) f2 + f4 + · · ·+ f2n = f2n+1 −1 .

(vi) f1 + f3 + · · ·+ f2n−1 = f2n . (vii) f1 − f2 + f3 −·· ·+(−1)n fn+1 = (−1)n fn +1 .

(viii) fn < (5/3)n . (ix) 2n fn < (
√

5+1)n .

(c) fn = (an−bn)/
√

5, where a and b are the positive and negative zeros of the quadratic equation
X2 −X −1 = 0 . (Hint : Use Binet’s Formula.)

(d) (L u c a s ; 1876) prove the following formula for the Fibonacci numbers in terms of binomial
coefficients:

fn =

(
n−1

0

)
+

(
n−2

1

)
+ · · ·+

(
n− [n−1

2

[n−1
2 ]−1

)
+

(
n− [n−1

2 ]−1

[n−1
2

)
.

(Hint : Use induction with fn = fn−1 + fn−2 and
(m

k

)
=
(m−1

k

)
+
(m−1

k−1

)
.)

(e) For n ≥, prove the formulas:

f2n =

(
n
1

)
· f1+

(
n
2

)
· f2+ · · ·+

(
n
n

)
· fn and − fn =−

(
n
1

)
· f1+

(
n
2

)
· f2+ · · ·+(−1)n

(
n
n

)
· fn

(Hint : Use the Binet’s formula and the Binomial Theorem (1+X)n = ∑n
k=0

(n
k

)
Xk .)

(f) An =

(
fn+1 fn
fn fn−1

)
, where A :=

(
1 1
1 0

)
(g) #(Fn) = fn+2, where Fn := {A ∈P({1,2, . . . ,n}) | {i, i+1} ̸⊆ A for every 1 ≤ i ≤ n−1}.

T5.12 Let X be a non-empty set.

(a) If X is not finite, then show that there exists an injective map N→ X . (Hint : Consider the set
Pf(X) := {A ∈ P(X) | A is finite} of all finite subsets of X . Then for every A ∈ Pf(X), the complement
X \A is a non-empty subset of X and by the axiom of choice there exists a choice function g : Pf(X) →∪

A∈Pf(X) (X \A), i.e., g(A) ∈ X \A for every A ∈ Pf(X). Now, apply recursion theorem to the map F :
Pf(X)→Pf(X) defined by A 7→A∪{g(A)}, to get a sequence f :N→Pf(X) in Pf(X) such that f (0) = /0
and f (n+ 1) = F( f (n)) for all n ≥ 1. Then xn := g( f (n)) ̸∈ f (n) ⊆ {x0, . . . ,xn−1}. Therefore the map
N→ X , n 7→ xn is injective.)

(b) Show that the following statements are equivalent:
(i) X is not finite. (ii) There exists a proper subset Y ( X with a bijective map Y → X .
(Hint : Use part (a). – Remark: Dedekind defined infinite sets using the condition (ii).)

22B i n e t J a c q u e s P h i l i p p e (1786-1856) was a French mathematician who discovered this formula (in
1843) expressing fn in terms of the integer n .
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T5.13 For the recursively defined sequences (an) in the parts (a) , (b) , (c) below, prove the given
explicit representations.

(a) a0 = 2, an = 2−a−1
n−1, n ≥ 1. Then an = (n+2)/(n+1) for all n ∈N.

(b) a0 = 0, a1 = 1, an =
1
2(an−1 +an−2), n ≥ 2. Then an =

2
3

(
1− (−1)n 1

2n

)
for all n ∈N.

(c) a0 = 1, an = 1+a−1
n−1, n ≥ 1. Then an = fn+2/ fn+1 for all n ∈N, where for k ∈N, fk is the

k-th Fibonacci-number (see Test-Exercise T5.11).

(d) a0 = 1, an = ∑n−1
k=0 ak, n ≥ 1. Then an = 2n−1 for all n ≥ 1.

T5.14 ( D i v i s i o n A l g o r i t h m ) Let a,b ∈ Z with b ≥ 1. Then there exists unique integers q
and r such that a = qb+ r with 0 ≤ r < b. Moreover, in the case a ≥ 0, we have q ≥ 0.
– The integers q and r are called q u o t i e n t and r e m a i n d e r , respectively, in the division of a
by b. (Existence of q and r : The subset A := {x ∈ N | x = a− zb with z ∈ Z} ⊆ N is non-empty : if
a ≥ 0, then a ∈ A : if a < 0, then a−ab = a(1−b)≥ 0 and hence a−ab ∈ A. Therefore by the Minimum
Principle A has a minimal element r. Then r = a− qb ≥ 0 for some q ∈ Z. Further, r < b ; otherwise
a− (q+1)b = r−b ≥ 0 and hence r−b ∈ A a contradiction to the minimality of r. Therefore a = qb+ r
is the required equation. If a ≥ 0, then q ≥ 0; otherwise q ≤ −1, i. e., −q ≥ 1 and r = a− qb ≥ b a
contradiction. Uniqueness of q and r : If a = qb+ r = q′b+ r′ with q,q′,q,r′ ∈ Z with 0 ≤ r,r′ < b.
Then r − r′ = (q′ − q)b and so b

∣∣(r − r′). But since 0 ≤ r,r′ ≤ b we have −b ≤ r − r′ ≤ b and hence
r− r′ = 0, i.e., r′ = r. Now from (q′−q)b = 0 and b ̸= 0, it follows that q′ = q. )

T5.15 ( D i v i s i b i l i t y ) An integer d is called a d i v i s o r of a ∈ Z in Z, and is denoted by
d
∣∣a, if there exists v ∈ Z such that a = dv. In this case we also say that d d i v i d e s a or a is

a m u l t i p l e of d (in Z ). If d is not a divisor of a, then we write d ̸
∣∣a. If 0 ̸= d is a divisor of

a, then v ∈ Z in the equation a = dv is uniquely determined by the cancelation law. An integer
a,∈ Z is called e v e n (respectively o d d ) if 2

∣∣a (respectively, 2 ̸
∣∣a ), i. e., a is of the form 2v

(respectively, 2v+1).

(a) The divisibility defines a relation on Z and it satisfies the following basic rules : For all
a,b,c,d ∈ Z, we have :

(i) (Reflexivity) a
∣∣a.

(ii) (Transitivity) If a
∣∣b and b

∣∣c, then a
∣∣c.

(iii) If a
∣∣b and c

∣∣d, then ac
∣∣bd.

(iv) If a
∣∣b and a

∣∣c, then a
∣∣(xb+ yc) for all x,y ∈ Z.

(Remarks : The rule (iii) does not hold if one replaces ac (respectively, bd ) by a+c (respectively, b+d ).
The number 0 is divisible by every integer d ∈ Z, since 0 = d ·0; this is the only case of an integer which
has infinitely many distinct divisors. This is proved in the part b) below which is an important connection
between divisibility relation

∣∣ and the (standard) order ≤ on N.)

(b) Let a ∈ Z, a ̸= 0 and let d ∈ Z be a divisor of a. Then : 1 ≤ |d| ≤ |a|. In particular, every
non- zero integer a has at most finitely many divisors.

(c) Let a,d ∈ Z, a > 0, d > 0. If d
∣∣a and a

∣∣d then d = a. (Remarks : Every integer a has the
four (distinct) divisors a,−a,1,−1; these are called the t r i v i a l d i v i s o r s of a ; other divisors are
called p r o p e r d i v i s o r s of a. Therefore from b) it follows that : If d is a proper divisor of a ̸= 0,
then 1 < |d|< |a|. Since a = dv if and only if −a = d(−v), the integers a and −a have the same divisors.
Therefore, since for every integer a, exactly one of a or −a is a natural number, for the divisibility questions,
we may without loss of generality assume that a ∈N. Further, if d is a divisor of a, then −d is also divisor
of a (since if a = dv with v ∈ Z, then a = (−d)(−v) ) Therefore one knows all divisors of an integer a if
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one knows all positive divisors of |a|. On this basis many considerations in number theory can be reduced
to the set N∗ of positive integers. See for example, τ(n) and σ(n), n ∈N∗ in Test-Exercise T5.32)

T5.16 ( G C D ) For an integer a ∈ Z, let D(a) denote the set of all positive divisors of a. Then
1 and a ∈ D(a) ; D(a) =N⇐⇒ a = 0 ; if a ̸= 0, then D(a) is a finite subset of N. For a,b ∈ Z,
the intersection D(a)∩D(b) is precisely the set of all common divisors of a and b. Moreover, if
(a,b) ̸= (0,0), then D(a)∩D(b) is a finite subset of N and hence it has a largest element; this
element is called the g r e a t e s t c o m m o n d i v i s o r of a and b and is denoted by gcd(a,b).
Therefore for a,b ∈ Z with (a,b) ̸= (0,0), the gcd(a,b) is the positive integer d satisfying :
(i) d

∣∣a and d
∣∣b ; (ii) if c is a positive integer with c

∣∣a and c
∣∣b, then c ≤ d.

We put gcd(0,0) := 0.

(a) ( B e z o u t ’ s L e m m a 23 ) For integers a,b ∈ Z with (a,b) ̸= (0,0) there exists integers
s, t ∈ Z such that gcd(a,b) = sa+ tb. (Hint : Let M := {ua+ vb | u,v ∈ Z and ua+ vb ∈ N∗} be
the set of all positive linear combinations of a and b. Then both |a|, |b| ∈ M and hence by the Minimum
Principle T5.2-(b), M contains a smallest element, say d = sa+ tb , s, t ∈ Z. Show that a = gcd(a,b). See
also Test-Exercise T5.19-(b).)

Deduce that :

(i) For two non-zero integers a,b ∈ Z∗ with (a,b) ̸= (0,0), show that the set {sa+ tb | s, t ∈ Z}
is precisely the set of all multiples of d = gcd(a,b) .
Two integers a,b ∈ Z with (a,b) ̸= (0,0) are said to be r e l a t i v e l y p r i m e if gcd(a,b) = 1,
equivalently, there exist integers s, t ∈ Z such that 1 = sa+ tb.

(ii) If d = gcd(a,b), then gcd(a/d,b/d) = 1, i.e., a/d and b/d are relatively prime.
(iii) If a,b,c ∈Z and a

∣∣c and b|c with gcd(a,b) = 1, then ab
∣∣c . (Hint : Use Bezout’s Lemma.)

(iv) ( E u c l i d ’ s L e m m a ) If a,b,c ∈ Z and a
∣∣bc and gcd(a,b) = 1, then a

∣∣c . (Hint : By
Bezout’s Lemma, there exist integers s, t ∈Z such that 1 = sa+ tb and hence a divides sac+ tbc = c . See
also Test-Exercise T5.19-(d).)
(v) For integers a,b ∈Z with (a,b) ̸= (0,0), a positive integer d is a gcd of a and b if and only
if (i) d

∣∣a and d
∣∣b and (ii) whenever a positive integer c divides both a and b, then c

∣∣d. (Hint:
Use the part (ii). – Remark : The assertion (vi) often serves as a definition of gcd(a,b). The advantage is
the order relationship ≤ is not involved.)

(vi) D(a)∩D(b) = D(gcd(a,b)).
(vii) For integers a,b ∈Z with b ̸= 0 and a = qb+ r, q,r ∈Z, show that gcd(a,b) = gcd(b,r).

(b) ( R u l e s f o r G C D ) For integers a,b,c ∈Z, we have :

(i) gcd(a,a) = |a|. (ii) a
∣∣b ⇐⇒ a = gcd(a,b).

(iii) (Commutativity) gcd(a,b) = gcd(b,a). (iv) (Associativity) gcd(gcd(a,b),c) = gcd(a,gcd(b,c)).

(v) (Distributivity) gcd(ca,cb) = |c|gcd(a,b). (vi) (Product formula) gcd(ab,c) = gcd(gcd(a,c)b,c).

(Remark : These rules are elementary to prove, but gives unwieldy impression; probably because of the
unaccountability of the classical notation gcd. If instead of gcd one uses an elegant symbol, for example,
a⊓b := gcd(a,b), then these rules are more suggestive :

(i) a⊓a = |a| ; (ii) a
∣∣b ⇐⇒ a = a⊓b ;

23É t i e n n e B é z o u t (1730-1783) was a French mathematician who is best known for his theorem on the num-
ber of solutions of polynomial equations. In 1758 Bézout was elected an adjoint in mechanics of the French Academy
of Sciences. Besides numerous minor works, wrote a Théorie générale des équations algébriques, published at Paris
in 1779, which in particular contained much new and valuable matter on the theory of elimination and symmetrical
functions of the roots of an equation: he used determinants in a paper in the Histoire de l’acadé mie royale, 1764, but
did not treat the general theory.
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(iii) (Commutativity) a⊓b = b⊓a ; (iv) (Associativity) (a⊓b)⊓ c = a⊓ (b⊓ c) ;

(v) (Distributivity) (c ·a)⊓ (c ·b) = |c| · (a⊓b) ; (vi) (Product formula) (a ·b)⊓c = ((a⊓c) ·b)⊓c ;

The use of the terms “associativity” and “distributivity” is immediately clear. This example shows the
importance of the good notation; unfortunately in literature till today everybody use the traditional notation
gcd(a,b).)

(c) For positive natural numbers a,b,c,d ,m,n ∈N∗, show that :
(i) gcd(a,1) = 1. (ii) gcd(a,a+n)

∣∣n and hence gcd(a,a+1) = 1.

(iii) If gcd(a,b) = 1 and gcd(a,c) = 1, then gcd(a,bc) = 1. (Hint : 1 = sa+ tb = ua+vc for some
s, t,u,v ∈Z. Then 1 = (sa+ tb)(ua+ vc) = (aus+ cvs+btu)a+(tv)bc.)

(iv) If gcd(a,b) = 1, then gcd(am,bn) = 1. (Hint : Use the above part (iii).)

(v) The relation an|bn implies that a|b. (Hint : Let d := gcd(a,b) and write a = rd and b = sd. Then
gcd(r,s) = 1 and hence gcd(rn,sn) = 1 by (ii). Now show that r = 1, whence a = d, i.e, a

∣∣b.)

(vi) If gcd(a,b) = 1 and c
∣∣a, then gcd(b,c) = 1. (vii) If gcd(a,b) = 1, then gcd(ac,b) =

gcd(c,b).
(viii) If gcd(a,b) = 1 and c

∣∣(a+ b), then gcd(a,c) = gcd(b,c). (Hint : Let d = gcd(a,c). Then
d
∣∣a and d

∣∣c∣∣(a+b) and hence d
∣∣(a+b)−a = b.)

(ix) If gcd(a,b) = 1, then gcd(a+b,ab) = 1. (x) If gcd(a,b) = 1, d
∣∣ac and d

∣∣bc, then d
∣∣c.

(xi) If d
∣∣n, then 2d −1

∣∣2n −1.
(xii) Show that there are no positive natural numbers a,b∈N∗ and n∈N with n> 1 and an−bn

divides an +bn. (Hint : We may assume that b < a and gcd(a,b) = 1.)
(xiii) Show that for a,b ∈N∗, b > 2, 2a +1 is not divisible by 2b −1. (Hint : Prove that a > b.)

(xiv) For m,n ∈ N with m > n, show that a2n
+ 1 divides a2m − 1. Moreover, if m,n,a ∈ N∗,

m ̸= n, then gcd(a2m
+1,a2n

+1) =

{
1, if a is even,
2, if a is odd.

(Hint : a2n
+1

∣∣a2n+1 −1. For the second part use the first part.)

(xv) Suppose that 2n +1 = xy, where x,y ∈N∗, x > 1,y > 1 and n ∈N∗. Show that 2a divides
x−1 if and only if 2a divides y−1. (Hint : Write x−1 = 2a ·b and y−1 = 2c ·d with b and d odd.)

(xvi) Show that gcd(n!+1,(n+1)!+1) = 1.

T5.17 ( L C M ) The concept parallel to that of a gcd is the concept of the least common multiple.
For an integer a ∈ Z, let M(a) = Za = {na | n ∈ Z} denote the set of all multiples of a. Then
M(a) = {0} ⇐⇒ a = 0 ; if a ̸= 0, then M(a) = N · a⊎ (−N+) · a. Further, for a,b ∈ Z∗, the
intersection M(a)∩M(b) is precisely the set of all common multiples of a and b. Moreover,
ab ∈ M(a)∩M(b), in particular, |ab| ∈ N · a∩N · b and hence by minimality principle, it has a
minimal element; this element is called the l e a s t c o m m o n m u l t i p l e of a and b and is
denoted by lcm(a,b). Therefore for a,b ∈Z∗, the lcm(a,b) is the positive integer m satisfying :
(i) a

∣∣m and b
∣∣m ; (ii) if c is a positive integer with a

∣∣c and b
∣∣c, then m

∣∣c (equivalently, m ≤ c ).
We put lcm(0,0) := 0. It is clear that for any two non-zero integers a,b ∈ Z, lcm(a,b) always
exists and lcm(a,b)≤ |ab|.

(a) Let a,b ∈ Z∗. Then gcd(a,b) divides lcm(a,b) and gcd(a,b) · lcm(a,b) = ab. Moreover,
(i) gcd(a,b) = lcm(a,b) if and only if a = b . (ii) gcd(a,b) = 1 if and only if lcm(a,b) = ab .

(b) For a,b,c ∈ Z∗, show that the following statements are equivalent :
(i) a

∣∣b. (ii) gcd(a,b) = a. (iii) lcm(a,b) = b.

(c) For a,b,c ∈ Z, show that lcm(ca,cb) = |c|lcm(a,b).
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(d) For non-zero integers a,b ∈ Z, a positive integer m is a lcm of a and b if and only if

(i) a
∣∣m and b

∣∣m and (ii) whenever a positive integer c is a multiple of both a and b, then m
∣∣c.

(Hint : Put v = lcm(a,b) and use division algorithm to write m = qt + r with q,r ∈ Z, 0 ≤ r < t. Then r
is common multiple of a and b. – Remark : This assertion often serves as a definition of lcm(a,b). The
advantage is the order relationship is not involved.)

(e) For integers a,b ∈ Z, show that M(a)∩M(b) = M(lcm(a,b)).

T5.18 The notion of greatest common divisor can be extended to more than two integers in an
obvious way. Let a1, . . . ,an ∈ N, n ≥ 1, not all zero. Then gcd(a1, . . . ,an) is defined to be the
positive integer d satisfying the following two properties :

(i) d
∣∣ai for every i = 1, . . . ,n ; (ii) if c is a positive integer with c

∣∣ai for every i = 1, . . . ,n, then
c
∣∣d (equivalently c ≤ d).

Note that gcd(a1, . . . ,an−1,an) = gcd(gcd(a1, . . . ,an−1),an) = · · · = gcd(a1,gcd(a2, . . . ,an)) by
Test-Exercise T5.22-(b)-(iv) and hence the gcd depends only on a1, . . . ,an and not on the order in
which they are written.

(a) Let a1, . . . ,an ∈N∗, n ≥ 1 and let a = a1 · · ·an. Show that the following statements are equiv-
alent:

(i) a1, . . . ,an are pairwise relatively prime.

(ii) If each a1, . . . ,an divide the natural number c, then a also divide the number c.

(iii) lcm(a1, . . . ,an) = a.

(iv) The natural numbers b1 := a/a1, . . . ,bn := a/an are relatively prime.

(v) There exist integers s1, . . . ,sn such that 1
a =

s1
a1

+ · · ·+ sn
an

.

(Remark : lcm of finite many numbers a1, . . . ,an are defined like in the case n = 2. If gcd(a1, . . . ,an) = 1,
then a1, . . . ,an are called r e l a t i v e l y p r i m e . Note that this concept is different from that of pairwise
relatively prime.)

(b) For a1, . . . ,an ∈ N∗, n ≥ 1, show that there exist u1, . . . ,un ∈ Z such that gcd(a1, . . . ,an) =
u1a1 + · · ·+ unan. In particular, a1, . . . ,an are relatively prime if and only if there exist integers
u1, . . . ,un such that 1 = u1a1 + · · ·+ unan. (Remark : One can find the coefficients u1, . . . ,un al-
gorithmically by successive use of the lemma of Bezout (see Test-Exercise T5.22-(a)). This algorithm
supplies frequently disproportionately large coefficients u1, . . . ,un. It is better to proceed as follows : First
by renumbering assume that a1 is minimal in {a1, . . . ,an}, and goes then to tuple (a1,r2, . . . ,rn), where
r j the remainder of a j after dividing by a1, after removing the zeros among r j, consider the new tuple as
at the beginning. One has to control, how the coefficients of the tuple constructed are represented as lin-
ear combinations of the a1, . . . ,an, beginning with ai = ∑n

k=1 δikak.) Find integers u1,u2,u3 such that
1 = u1 ·88+u2 ·152+u3 ·209.

T5.19 ( E u c l i d e a n a l g o r i t h m 24 ) Let a,b ∈N∗ with a ≥ b.

We put: r0 := a and r1 := b and consider the system of equations obtained by the repeated use of
division algorithm :

24A more efficient method involving repeated application of division algorithm is given in the VII-th book of the
Elements and it is referred to as the E u c l i d e a n a l g o r i t h m . The French mathematician G a b r i e l L a m é
(1795-1870) proved that the number of steps required to find gcd in the Euclidean algorithm is at most five times
the number of the digits in the smaller integer, i.e., 5 log10 b = (2.17 . . .) logb. Lamé was a primarily a mathematical
physicist. is only other known contributions to number theory were the first proof of Fermat’s Last Theorem for the
exponent 7 and a fallacious “proof” for the general n.
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r0 = q1r1 + r2 , 0 < r2 < r1 ;
r1 = q2r2 + r3 , 0 < r3 < r2 ;
· · · · · ·

rk−1 = qkrk + rk+1 , 0 < rk+1 < rk

rk = qk+1rk+1 .

Then :
(a) gcd(a,b) = rk+1. (Hint : By repeated use of the Test-Exercise T5.16-(a)-(vii), we have gcd(a,b) =
gcd(r0,r1) = gcd(r1,r2) = · · ·= gcd(rk,rk+1) = gcd(rk+1,0) = rk+1.)

(b) For i = 0, . . . ,k+1, define si and ti recursively by :
s0 = 1 , t0 = 0;
s1 = 0 , t1 = 1;

si+1 = si−1 −qisi , i = 1, . . . ,k
ti+1 = ti−1 −qiti , i = 1, . . . ,k

Then:
a = r0 = s0a+ t0b , r1 = s1a+t1b , ri+1 = ri−1−qiri = si−1a+ ti−1b−qisia−qitib = si+1a+ti+1b ,
for all i = 1, . . . ,k . In particular, gcd(a,b) = rk+1 = sk+1a+ tk+1b . (Remark : This proves once
again the Bezout’s Lemma Test-Exercise T5.16-(a).) (c) Let a := 36667 and b := 12247. Then we have:

36667 = 2 ·12247+12173
12247 = 1 ·12173+74
12173 = 164 ·74+37

74 = 2 ·37 .

The integers si and ti can be computed using the following table:

i 0 1 2 3 4
qi 2 1 164
si 1 0 1 −1 165
ti 0 1 −2 3 −494 .

Therefore 37 = gcd(36667,12247) = 165 ·36667−494 ·12247.

(d) (E u c l i d ’ s L e m m a) (see also Test-Exercise T5.16-(a)-(iv)): If a prime number p divides
a product a1 · · ·ar of positive natural numbers, then p divides at least one of the factors ai. (Hint :
We may assume that r = 2 (Induction on r). By hypothesis a1a2 = pc with c ∈N∗. Suppose that p does not
divide b1. Then p and b1 are relatively prime and by Bezout’s Lemma there exist integers s, t ∈Z such that
1 = sp+ tb1. Then b2 = spb2 + tb1b2 = p(sb2 + tc), i. e. p divides b2.)

T5.20 Let ( fn)n∈N denote the Fibonacci sequence (see Test-Exercise T5.11).

(a) For m,n ∈ N∗, show that fmn divides fm. (Hint : Use test-Exercise T5.11-(b)-(i) and induction
on n.)
(b) gcd( fn+2, fn+1) = 1. (Hint: The Euclidean Algorithm for obtaining the gcd leads to the system of n
equations: fn+2 = 1 · fn+1 + fn ; fn+1 = 1 · fn + fn−1 ; · · · f4 = 1 · f3 + f2 f3 = 2 · f2 .)

(c) gcd( fm, fn) = fgcd(m,n). (Hint : If m = qn+ r, then gcd( fm, fn) = gcd( fqn−1 fr + fqn fr+1, fn) by Test-
Exercise T5.11-(b)-(i). Further, since fmn divides fm by (a), it follows (by using gcd(a+c,b) = gcd(a,b) if
b|c) that gcd( fqn−1 fr + fqn fr+1, fn) = gcd( fqn−1 fr, fn) = 1. For the last equality use parts (a) and (b). )
(d) Let p > 5 be a prime number. Show that either p divides fp−1 or p divides fp+1 , but
not both. (Hint : By Test-Exercise T5.11-(c) fp = (an − bn)/

√
5, where a (respectively b ) is a positive
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(respectively, negative) root of X2−X −1 = 0. Expanding ap and bp by the Binomial theorem and reading
modulo p (using

(p
k

)
≡ 0(mod p) and 2p−1 ≡ 1(mod p) ), we get fp ≡ 5(p−1)/2 ≡±1(mod p). Therefore

f 2
p ≡ 1(mod p), i. e. p divides f 2

p − 1. Finally by Test-Exercise T5.11-(b)-(ii) fp−1 fp+1 ≡ 0(mod p) and
hence one of fp−1 and fp+1 is divisible by p. Further, since gcd( fp−1, fp+1) = fgcd(p−1,p+1) = f2 = 1 by (b),
the last assertion is clear. )

T5.21 (g- a d i c - E x p a n s i o n ) Let g be natural number ≥ 2. For every natural number n ≥ 1,
there exist uniquely determined natural numbers r and a0, . . . ,ar with ar ̸= 0 and 0 ≤ ai < g such
that

n = a0 +a1g+ · · ·+argr = ∑r
i=0 aigi .

The d i g i t s ai of this g- a d i c - e x p a n s i o n of n recursively by repeated use of division with
remainder by using the following scheme, with q0 := n:

q0 = q1g+a0 , 0 ≤ a0 < g ,

q1 = q2g+a1 , 0 ≤ a1 < g ,

· · · · · · · · · · · · · · · · · · · · · ·
qr−1 = qrg+ar−1 , 0 ≤ ar−1 < g ,

qr = ar , 0 < ar < g .

The uniqueness of these digits follows immediately follows from the uniqueness of the divison
with remainder. We also write shortly n = (ar . . .a0)g. For g = 2 respectively, g = 3, g = 10,
g = 16, then we also use the terms the d u a l - respectively t e r n a r y - d e c i m a l - h e x a - or
s e d e c i m a l e x p a n s i o n of n. In the last system the digits 10, . . . ,15 denoted by the letters
A, . . . ,F. Conversely, from the g-adic expansion n = a0 + a1g+ · · ·+ argr one can compute the
number n rapidly by using the recursion25 :

n0 = ar ,

n1 = n0g+ar−1 (= arg+ar−1) ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·
nr−1 = nr−2g+a1 (= argr−1 +ar−1gr−2 + · · ·+a2g+a1) ,

nr = nr−1g+a0 = n .

Let n ∈N∗ and let n = amgm +am−1gm−1 + · · ·+a1g+a0, m ∈N and a j ∈ {0,1, . . . ,g−1} be
the g-adic expansion of n. Put Qg(n) := a0 + · · ·+ am and Q ′

g(n) := a0 − a1 + · · ·+(−1)mam .
Then:

(a) n ≡ Qg(n)(mod (g−1)) and n ≡ Q ′
g(n)(mod (g+1)) .

In particular, g−1 |n ⇐⇒ g−1 |Qg(n) and g+1 |n ⇐⇒ g+1 |Q ′
g(n).

(b) Qg(n+n′)≡ Qg(n)+Qg(n′)(mod g−1) and Q ′
g(n+n′)≡ Q ′

g(n)+Q ′
g(n

′)(mod g+1).

(c) Qg(n ·n′)≡ Qg(n) ·Qg(n′)(mod g−1) and Q ′
g(n ·n′)≡ Q ′

g(n) ·Q ′
g(n

′)(mod g+1).

(d) Let n ∈N∗ and let n = am10m +am−110m−1 + · · ·+a110+a0, m ∈N and a j ∈ {0,1, . . . ,9}
be the decimal expansion of n. Then
(i) 3|n ⇐⇒ 3|(a0+a1+ · · ·+am) ; 5|n ⇐⇒ 5|a0 ; 6|n ⇐⇒ 6|(a0+4a1+4a2+ · · ·+4am) ;
9|n ⇐⇒ 9|(a0 + a1 + · · ·+ am) ; 11|n ⇐⇒ 11|(a0 − a1 + · · ·+ (−1)mam). More generally, if
n = amgm +am−1gm−1 + · · ·+a1g+a0, m ∈N and a j ∈ {0,1, . . . ,g−1} is the g-adic expansion
of n. Then g−1 divides n if and only if g−1 divides the sum am + · · ·+a0 of the digits of n.

25This is a special case of the well known H o r n e r ’ s s c h e m e. Named after W i l l i a m G e o r g e
H o r n e r (1786-1837), who is largely remembered only for the method, Horner’s method, of solving algebraic
equations ascribed to him by Augustus De Morgan and others.
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(ii) 7|n⇐⇒7|(a2,a1,a0)10−(a5,a4,a3)10+ · · · ; 11|n⇐⇒11|(a2,a1,a0)10−(a5,a4,a3)10+ · · · ;
13|n ⇐⇒ 13|(a0 +2a1 + · · ·+2mam) .

†(Remarks: More generally, one can also prove that: Every non-negative real number x ≥ 0 can be rep-
resented uniquely by a infinite convergent series x = ∑∞

ν=0 aν/gν , where the g-digit sequence of natural
numbers (an)n∈N is obtained by the g-adic algorithm and satisfy the following inequalities: an ≥ g−1 for
all n ≥ 1 and an ≤ g−2 for infinitely many n.
Moreover, such a sequence of natural numbers comes as a g-adic digit sequence of a non-negative real
number. The g-adic algorithm of a non-negative real number x ≥ 0 gives a simple criterion to test whether
or not x is rational. More precisely:
A non-negative real number x ≥ 0 is a rational number if and only if the sequence (an)n∈N is periodic (see
Exercise 5.8), i. e. there exist r ∈N and s ∈N∗ such that ar+ν = ar+ν+s for all ν ∈N∗.
We use the notation x = (a0,a1a2 · · ·an · · ·)g and (a0;a1a2 · · ·ar,ar+1 · · ·ar+s)g .
(e) For a rational number x ∈ [0,1) and natural numbers r,s, the following statements are equivalent:
(i) gr(gs −1) · x ∈Z. (ii) x has the g-adic expansion of the form x = (a0;a1a2 · · ·ar,ar+1 · · ·ar+s)g .

(f) For a rational number x = a/b ∈ [0,1) with gcd(a,b) = 1, show that gcd(b,g) = 1 if and only if the g-
adic expansion of x is purely periodic (see Exercise 5.8), i. e. it is of the form x = (0,a1 · · ·as)g . In particular,
the g-adic expansion of reduced fractions x = a

gn−1 is purely periodic with period n. for example, 1
gn−1 =

(0;00 · · ·01)g.

(g) Which of the following (real) numbers are irrational numbers :

(i) The number x with the g-adic expansion x = (0;101001000100001 · · ·)g.

(ii) The number y with the g-adic expansion y = (0;a1a2 · · ·an · · ·)g , where an = 1 if n is prime and 0
otherwise.

(iii) u =
∞

∑
ν=0

(
1
g

)ν
v =

∞

∑
ν=0

(
1
g

)ν(ν+1)/2

and w =
∞

∑
ν=0

(
1
g

)ν2

.

(h) Compute the g-adic exppansions of the numbers
a

g−1
and

a
g+1

. Moreover, show that
1

(g−1)2 =

(0;0123 · · ·(g−3)(g−1))g is purely periodic. )

T5.22 (L i n e a r D i o p h a n t i n e E q u a t i o n) The ancient Greek mathematician Diophantus
26 had initiated the study of solutions (in integers) of equations in one or more indeterminate with
integer coefficients.

(a) The linear Diophantine equation aX + bY = c , ab,c ∈ Z , has a solution if and only if d :=
gcd(a,b) divides c. Moreover, if (x0,y0) is a particular solution of this equation, then all other
solutions are given by (x,y) = (x0,y0)+(b/d,−a/d)t , t ∈ Z.

(b) Let a and b be relatively prime positive integers. Prove that the Diophantine equation
aX − bY = c has infinitely many solutions in the positive integers. (Hint : There exists integers
x0,y0 such that ax0 + by0 = c. Then (x,y) = (x0,−y0)+ (b,a)t , t ∈ Z with t ≥ Max(|x0|/b, |y0|/a) are
positive solutions of the given equation.)

26D i o p h a n t u s o f A l e x a n d r i a (A.D. 200 and 214 - between 284 and 298 at age 84), sometimes called
"the father of algebra", was an Alexandrian Greek mathematician and the author of a series of books called Arithmetica.
These texts deal with solving algebraic equations, many of which are now lost. In studying Arithmetica, Fermat
concluded that a certain equation considered by Diophantus had no solutions, and noted without elaboration that
he had found "a truly marvelous proof of this proposition," now referred to as Fermat’s Last Theorem. This led
to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and
of Diophantine approximations remain important areas of mathematical research. Diophantus was the first Greek
mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients
and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for
which integer solutions are sought. Diophantus also made advances in mathematical notation.
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(c) The contents of the Mathematical classic of C h a n g C h’ i u-c h i e n27 (6th century) attest to the
algebraic abilities of the Chinese scholars contains the following famous problem: If an Apple costs Rs. 5, an
Orange Rs. 3 and three Bananas together Rs. 1, how many Apples, Oranges and Bananas, totaling 100 , can
be bought for Rs. 100? (Hint : Solve the Diophantine equations 5X +3Y + 1

3 Z = 100 and X +Y +Z = 100
simultaneously by eliminating one unknown (for example, Z).)

(d) (M a h a v i r a c h a r y a, 850) There were 63 equal piles of plantain fruit put together and 7 single
fruits. They were divided evenly among 23 travelers. What is the number of fruits in each pile? (Hint :
Solve the Diophantine equation 63X +7 = 23Y .)

(e) When Mr. Dey cashed a check at his bank, the teller mistook the number of paise for the number
of rupees and vice versa. Unaware of this, Mr. Dey spent 68 paise and then noticed to his surprise that
he had twice the amount of the original check. Determine the smallest value for which the check could
have been written. HintIf x denotes the number of rupees and y the number of paise in the check, then
100y+ x−68 = 2(100x+ y).

T5.23 (C o n t i n u e d F r a c t i o n s 28 ) (see the book 29 ) A finite continued fraction is a
fraction of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
1

an−1 +
1
an

,

where a0,a1, . . . ,an are real numbers with a1, . . . ,an are positive. The numbers a1, . . . ,an are
called p a r t i a l d e n o m i n a t o r s of this fraction. Such a fraction is called s i m p l e if all
a0,a1, . . . ,an are integers.

(a) Every rational number can be can be written as a finite simple continued fraction. (Hint: Let
x= a/b, a,b∈Z, b ̸= 0, be an arbitrary rational number. Then the Euclidean algorithm for finding gcd(a,b)
gives the equations:
a = ba0+ r1 , 0 < r1 < b ; b = r1a1+ r2 , 0 < r2 < r1 ; · · · ; rn−2= rn−1an−1+ rn , 0 < rn < rn−1 ; rn−1= rnan .

Since each remainder rk ∈N∗, a1, . . . ,an are all positive integers. rewriting the above equations as:

a/b = a0 +
r1

b
= a0 +

1
b/r1

;
b
r1

= a1 +
r2

r1
= a1 +

1
r1/r2

; · · · ;
rn−2

rn−1
= an−1 +

rn

rn−1
;

rn−1

rn
= an .

Now substituting the values ri/ri+1 , i = n, . . .2,1 successively from later equations into earlier equations,
we get the required multi-decked expression.)

Because continued fractions are unwieldy to print or write, we adopt the convention to denote a continued
fraction by a symbol [a0;a1, . . . ,an]. It is a good practice to express the rational numbers −19

51 and 118
303

27Z h a n g Q i u j i a n (about 430-about 490) was a Chinese mathematician who wrote the text Zhang Qiujian
suanjing (Zhang Qiujian’s Mathematical Manual) This is a work of historical significance not only because existing
treatises of very early mathematics are scarce, but also because it provides a rare insight into the early development of
arithmetic – an arithmetic which was built on a numeral system that had the same concept as Hindu-Arabic numeral
system – Jiu zhang suanshu.

28In Liber Abaci Fibonacci (see Footnote 20 ) introduced “continued fractions” – a multiple-decked expressions.
Although giving due credit to Fibonacci, most authorities agree that the theory of continued fractions begins with
R a f a e l B o m b e l l i (1526-1572) the last of the great algebraist of renaissance Italy. In his “L’Algebra Opera”
(1572), Bombelli attempted to find square roots by means of infinite continued fractions – a method both ingenious
and novel. It may be interesting to mention that Bombelli was the first to popularize the work of Diophantus.

29P e r r o n , O . : Die Lehre von den Kettenbrüchen, Bd. 1. 3. Aufl. Stuttgart 1954.
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as finite simple continued fractions. Further, determine the rational numbers which are represented by the
simple continued fractions: [−2;2,4,6,8] and [0;1,2,3,4,3,2,1].
†(Remarks: One of the main use of the theory of continued fractions is finding approximate values of
irrational numbers. For this the notion of infinite continued fractions is necessary. Moreover, one can prove
that: Every real number x is the value of an uniquely determined normalized simple continued fractions.
Moreover, this continued fraction is finite if and only if x is rational. Therefore x = limn→∞[a0;a1, · · · ,an] .

(b) (i) Using continued fractions verify that the first 4 digits in the decimal expansion of the following
square-roots:

√
2 = 1.4142 · · · ;

√
3 = 1.7320 · · · ;

√
5 = 2.2360 · · · ;

√
7 = 2.6457 · · · ;

√
11 = 3.3166 · · · .

(ii) For a,b ∈N∗, show that [a,b,a,b,a,b · · · ] = (ab+
√

a2b2 +4ab)/ab .

(iii) For n ∈N∗, show that :
√

n2 +1 = [n,2n,2n,2n, · · · ] = [n,2n];

(Euler) :
√

n2 +2 = [n,n,2n,n,2n,n,2n, · · · ] = [n,n,2n];√
(n2 +1)2 −1 = [n,1,2n,1,2n,1,2n, · · · ] = [n,1,2n];

(Hint : n+
√

n2 +1 = 2n+(
√

n2 +1−n) = 2n+ 1
n+

√
n2+1

.)

(Euler) : n ≥ 2,
√

(n2 +1)2 −2 = [n,1,n−1,1, ,2n];

(iv) Let q,n ∈N with 1 ≤ q ≤ n−q ≤ n and
n

n−q
= [1,b1,b2, . . .bm] be the continued fraction expansion

of n/(n−q). Show that
n
q
= [1+b1,b2, . . .bm] is the continued fraction expansion of n/q.

(v) If x ∈R\Q, x > 1, is represented by the (infinite) continued fraction [a0;a1,a2, · · · ,an, · · · ] , then show

that
1
x
= [a0;a1,a2, · · · ,an, · · · ] is the continued fraction expansion of 1/x.

(c) The Fibonacci sequence f0, f1, . . . , fn, . . . gives the continued fraction expansion of the golden-ratio (see

Test-Exercise T5.11) φ :=
1+

√
5

2
; i. e. φ = [1,1,1, · · · ].

(d) The beginning of the continued fraction expansion of the number π is:
π = [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84, · · · ] .

Note that [3] = 3
1 < [3;7,5] = 333

106 < π < [3;7,15,1] = 355
113 < [3,7] = 22

7 , this was already known to Archimedes.

(e) The beginning of the continued fraction expansion of the number e which was found by Euler is:
e = [2;1,2,1,1,4,1,1,6,1,1,8, · · · ] .

(f) It is interesting to ask the question: Which numbers have periodic continued fractions? (see Exercise
5.8). For example, the golden-ratio φ = 1+

√
5

2 = [1]. In 1737 Euler proved that: All irrational numbers
x with periodic continued fraction expansion are quadratic irrationalities, i. e. are irrational roots of a
quadratic equation of the form X2 + βX + γ = 0, or equivalently, of aX2 + bX + c = 0, a,b ∈ Z,b ̸= 0.
Moreover, in 1770 Lagrange proved that: Quadratic irrationalities are exactly the ones which have periodic
continued fraction expansion.

(g) Similar to the Question in the part (c) one can also ask: Which quadratic irrational numbers have pure
periodic continued fraction expansion? This was answered by Galois in 1828/29.

T5.24 (Pr ime numbers ) A natural number p is called a pr ime number or an i r reduc ib le
(in N ) if p > 1 and p = ab with a,b ∈N, then either a = 1 or b = 1. A natural number n > 1 is
called c o m p o s i t e or r e d u c i b l e if it is not a prime number. The set of all prime numbers
is denoted by P. Then by definition 1 ̸∈ P. For a natural number p > 1, the following statements
are equivalent :

(i) p ∈ P.
(ii) 1 and p are the only positive divisors of p.
(iii) p has no proper divisor. (Remark : On the basis of the property (iii) prime numbers are also called
irreducible.)
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(a) ( E x i s t e n c e T h e o r e m ) Every natural number a > 1 has a smallest (positive) divisor
t > 1. Moreover, this divisor t is a prime number. (Proof : The set T = {d ∈N∗ | d

∣∣a and d > 1} is
non-empty, since a ∈ T . Therefore by the Minimum Principle (see Test-Exercise T5.2-(b)) T has a minimal
element t. This integer t is a prime number. For, if not, then there is a divisor t ′ of t with 1 < t ′ < t. But
then t ′

∣∣t and t
∣∣a and hence t ′

∣∣a a contradiction to the minimality of t in T .)

(b) (Euc l id ’ s Theorem30 ) There are infinitely many prime numbers, i. e., the set P is infinite.
(Proof : In the text of Euclid the word “infinite” is not mentioned; this theorem was formulated as : Given
any finite set of prime numbers, one can always find a prime number which does not belong to the given
set. Show that : Let q1, . . . ,qn be finite set of prime numbers. Then the smallest (positive) divisor t > 1 of
the natural number a := q1 · q2 · · ·qn + 1 is a prime number which is different from all the prime numbers
q1, . . . ,qn. — Since a > 1, t exists and hence t is a prime number by the Existence theorem in the part (a).
If t is one of the numbers q1, . . . ,qn, then t

∣∣q1 ·q2 · · ·qn. Then t
∣∣a−q1 ·q2 · · ·qn = 1 a contradiction.)

(c) ( E u c l i d ’ s L e m m a ) If a prime number p divides a product ab of two natural numbers
a and b, then p divides one of the factor a or b. More generally, If a prime number p divides a
product a1 · · ·an of n positive natural numbers a1, . . . ,an, then p divides one of the factor ai for
some 1 ≤ i ≤ n. (Proof : The set A := {x ∈ N∗ | p

∣∣ax} contains p and b and hence by the Minimum
Principle (see Test-Exercise T5.2-(b)) it has a smallest element c. We claim that c

∣∣y for every y ∈ A. For, by
division algorithm y = qc+ r with q,r ∈N and 0 ≤ r < c. Then, since p

∣∣ay and p
∣∣ac, p

∣∣ay−q(ac) = ar.
This proves that r = 0; otherwise r ∈ A and r < c a contradiction to the minimality of c in A. Therefore
c
∣∣y for every y ∈ A ; in particular, c

∣∣p and hence c = 1 or c = p. If c = 1, then p
∣∣ac = a. If c = p, then

(since b ∈ A ) by the above claim p
∣∣b. – The last part follows from the first by induction.)

(d) For a natural number p the following statements are equivalent :

(i) p is a prime number. (ii) If p divides a product ab of two integers a and b, then p
∣∣a or p

∣∣b.
(Proof : We may assume that a and b are both positive. The implication (i)⇒(ii) is proved in (c). For the
implication (ii)⇒(i) Let d be any positive divisor of p, i.e., p = dd′ with d′ ∈N. This means that p

∣∣dd′

and hence by (ii) either p
∣∣d or p

∣∣d′. But since 1 ≤ d ≤ p and 1 ≤ d′ ≤ p it follows that either p = d or
p = d′, i.e., either d = p or d = 1. This proves that the only positive divisors of p are 1 and p and hence p
is a prime number. — Remark : The property (ii) is (usually distinguished from the irreducibility property
of p ) called the p r i m e p r o p e r t y . Therefore we can reformulate the part (d) as : A natural number
p > 1 is irreducible if and only if p has the prime property. See also ???.)

T5.25 Let P denote the set of all prime numbers. Let pn denote the n-th prime (in the natural
order ≤ on N∗, i. e. starting with n = 1,2, . . . , ). Then show that :

(a) pn > 2n−1 for n ≥ 5 and pn ≤ 22n−1
for all n ∈N∗. (Hint : Note that pn+1 ≤ p1 · p2 · · · pn+1.)

(b) None of the natural number Pn := p1 · p2 · · · pn +1 is a perfect square. (Hint : Each Pn is of the
form 4m+3.)

(c) The sum
1
p1

+
1
p2

+ · · ·+ 1
pn

is never an integer.

30Proved in the “Elements (Book IX, Theorem 20)” of Euclid. Euclid’s argument is universally regarded as a
model of mathematical elegance. – E u c l i d o f A l e x a n d r i a (325 BC-265 BC) was a Greek mathematician
best known for his treatise on mathematics (especially Geometry) – The Elements. This influenced the development
of Western mathematics for more than 2000 years. The long lasting nature of The Elements must make Euclid the
leading mathematics teacher of all time. However little is known of Euclid’s life except that he taught at Alexandria in
Egypt. Euclid may not have been a first class mathematician but the long lasting nature of The Elements must make
him the leading mathematics teacher of antiquity or perhaps of all time. As a final personal note let me add that my
own introduction to mathematics at school in the 1970s was from an edition of part of Euclid’s Elements and the work
provided a logical basis for mathematics and the concept of proof which seem to be lacking in school mathematics
today.
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(d) Another proof of infiniteness of P : Suppose that there are only finitely many primes, say,
p1, . . . , pn . Now, use the natural number N = p2 · p3 · · · pn + p1 · p3 · · · pn + · · ·+ p2 · p3 · · · pn−1.

T5.26 Let n ∈N∗. Show that :

(a) If n > 1 and if n divides (n−1)!+1, then n must be a prime number.

(b) If n > 2, then there exists a prime number p with n < p < n! . (Hint : Consider a prime divisor
p of n!−1.)

(c) If n > 1, then every prime divisor of n!+1 is an odd integer > n. (Remark : This shows again
that there are infinitely many prime numbers. It is unknown whether infinitely many of n!+1 are prime.)

(d) None of the n natural numbers (n+1)!+2, . . . ,(n+1)!+n+1 are prime. (Remark : Therefore
there are gaps of any size between prime numbers.)

(e) Let n,r ∈ N∗, n ≥ 2. If n has no prime divisor ≤ r+1
√

n, then n is a product of at the most r
(not necessarily different) prime numbers. In particular, if n has no prime divisor ≤

√
n, then n is

prime.

(f) For n ∈N, n ≥ 2, the natural number 4n+n4 is never prime. (Hint : For odd n, we have n4+4n =

(n2 −2
n+1

2 ·n+2n)(n2 +2
n+1

2 ·n+2n).)

T5.27 For a = 3,4,6, show that in the sequence an+(a− 1), n ∈ N, there are infinitely many
prime numbers. (Hint : Make an argument with ap1 · · · pr +(a−1).) (Remark : These are very special
cases of a remarkable theorem of Dirichlet31 on primes in arithmetic progressions established in 1837. The
proof is much too difficult to include here, so that we must content ourselves with the mere statement: If
a,b are relatively prime positive natural numbers, then there are infinitely many prime numbers of the form
an+ b, n ∈ N . — Remarks: For example, (by Dirichelt’s Theorem), there are infinitely many primes
ending 999 such as 1999, 100999, 1000999, . . ., for these appear in the arithmetic progression determined
by 1000n+999, where gcd(1000,999) = 1. )

(a) There is no arithmetic progression a+ n · b , n ∈ N that consists of only of prime numbers.
(Hint : Suppose that p = a+n ·b is a prime number. Then the n+kp-th term of the arithmetic progression
is a+(n+kp) ·b = (a+n ·b)+kp ·b = p(1+kb). This shows that the arithmetic progression must contain
infinitely many composite numbers.)

(b) If all the n > 2 terms of the arithmetic progression p, p+d, . . . , p+(n−1)d are prime num-
bers, then the common difference d is divisible by every prime q < n.

T5.28 ( F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c32 ) Proposition 14 of Book IX of Euclid’s
“Elements” embodies the result which later became known as:
F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c : Every Natural number a > 1 is a prod-
uct of prime numbers and this representation is “essentially” unique, apart from the order in which
the prime factors occur.

31P e t e r G u s t a v L e j e u n e D i r i c h l e t (1805-1859) was a German mathematician with deep contribu-
tions to number theory (including creating the field of analytic number theory), and to the theory of Fourier series and
other topics in mathematical analysis; he is credited with being one of the first mathematicians to give the modern for-
mal definition of a function. Dirichelt’s doctoral advisers were Simeon Poisson and Joseph Fourier. Doctoral students
of Drichelts were Gotthold Eisenstein, Leopold Kronecker, Rudolf Lipschitz, Carl Wilhelm Borchardt. Other notable
students were Richard Dedekind, Eduard Heine, Bernhard Riemann, Wilhelm Weber.

32The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid’s elements, al-
though some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof
seems to have been given by Gauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801), see also Footnote 27.
It was, of course, familiar to earlier mathematicians; but GAUSS was the first to develop arithmetic as a systematic
science.
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More precisely, the existence and uniqueness parts are stated as:

(a) ( E x i s t e n c e o f p r i m e d e c o m p o s i t i o n ) Every natural number a > 1 has a prime
decomposition a = p1 · · · pn, where we may choose p1 as the smallest (prime) divisor of a. (Proof :
Either a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by
Test-Exercise T5.16-(a) there exists a smallest prime divisor p1 of a, i.e., a = p1 ·b with 1 ≤ b < a (since
1 < p1 ≤ a ). Now, by induction hypothesis b has a prime decomposition b = p2 · · · pn and hence a has a
prime decomposition a = p1 · p2 · · · pn.)

(b) ( U n i q u e n e s s o f p r i m e d e c o m p o s i t i o n ) A prime decomposition of every natural
number a > 1 is essentially unique. More precisely, if a = p1 · · · pn and a = q1 · · · qm are two
prime decompositions of a with prime numbers p1, . . . , pn ; q1, . . . ,qm, then m = n and there exists
a permutation ρ ∈Sn such that qi = pρ(i) for every i = 1, . . . ,n. (Proof : We prove the assertion by
induction on n. If n = 1, then p1 = a = q1 · · ·qm, i.e., p1

∣∣q1 · · ·qm and hence by the prime property Test-
Exercise T5.16-(d) p1

∣∣q j for some j, 1 ≤ j ≤ m. Renumbering if necessary, we may assume that j = 1;
further, since q1 is a prime number, we must have p1 = q1 by the irreducibility of q1. Now, by canceling
p1, we get two prime decompositions of the number a′ = p2 · · · pn = q2 · · ·qm. Therefore by induction
hypothesis m− 1 = n− 1 and there exists a permutation ρ ′ ∈ S({2, . . . ,n}) such that qρ(i) = pi for all
i = 2, . . . ,n. Now, define ρ ∈ Sn by ρ(1) = 1 and ρ(i) = ρ ′(i) for all i = 2, . . . ,n. — Remarks : The
above proof for uniqueness use the Euclid’s lemma on the prime property (see Test-Exercise T5-16-(a)-(iv))
and hence uses implicitly the division algorithm and therefore make use of the additive structure of N. The
existence of prime decomposition only uses the multiplicative structure on N and not the additive structure
on N. This leads to the question : Can one give a proof of the uniqueness of the prime decomposition which
only depends on the multiplicative structure of N? The answer to this question is negative as we can see
in the example given in the Test-Exercise T5.30. The uniqueness of the decomposition of a positive natural
number into product of irreducible elements is less obvious than the existence of such a decomposition
(see also Zermelo’s proof given in the Test-exercise T5.29). This can also be seen in the examples in the
Test-Exercises T5.30 and T5.31.

(c) (C a n o n i c a l P r i m e D e c o m p o s i t i o n) Let n ∈ N∗. Collecting the equal prime
factors in the prime decomposition of n , we get the c a n o n i c a l p r i m e d e c o m p o s i -
t i o n n =∏p∈P pαp . In this product P denote the set of all prime numbers and the p-exponents
or m u l t i p l i c i t i e s αp ∈ N are non-zero only for finitely many prime numbers p ∈ P, so
that the above product has only finitely many factors ̸= 1. For example, 1001 = 7 · 11 · 13 and
10200 = 23 ·3 ·52 ·17. Therefore, for every prime number p ∈P, we define a map vp : N∗ →N by
n 7→ vp(n) := αp. The map vp is called the p-adic valuation. It is clear that vp(n) = 0 for almost
all p ∈ P.

If m,n ∈ N∗ and m = ∏p∈P pvp(m) , n = ∏p∈P pvp(n) are the canonical prime decompositions of
m and n respectively. Then:

(i) m divides n if and only if vp(m)≤ vp(n) for all p ∈ P.

(ii) gcd(m,n) = ∏p∈P pMin(vp(m),vp(n)) and lcm(m,n) = ∏p∈P pMax(vp(m),vp(n)) and

For an integer a ∈Z, a ̸= 0, the canonical prime decomposition is a = (−1)ε ∏p∈P pvp(|a|) , where
ε ∈ {0,1} (and hence (−1)ε is the sign of a and |a| is the absolute value of a. Moreover, for
every non-zero rational number x = a/b with a,b ∈ Z \ {0}, combining the canonical prime
decompositions of a and b , we get the c a n o n i c a l p r i m e d e c o m p o s i t i o n of x :
x = (−1)ε ∏p∈P pvp(x) , where the p-exponents vp(x), p ∈ P are integers (and not just the natural
numbers) and are non-zero only for finitely many prime numbers p ∈ P. Note that x is uniquely
determined by the p-exponents vp(x) , p ∈ P and its sign (−1)ε . Further, note that a rational
number x ∈Q\{0} is an integer if and only if vp(x)≥ 0 for all p ∈ P.

T5.29 ( Z e r m e l o ’ s p r o o f o f u n i q u e n e s s o f i r r e d u c i b l e d e c o m p o s i t i o n ) In this
proof we recall that a natural number p ∈N∗ is called an i r r e d u c i b l e n u m b e r if p > 1 and the
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only divisors of p in N∗ are 1 and p itself. Let n ∈ N∗. We shall prove the uniqueness of irreducible
decomposition by induction on n. If n = 1 or n = p is a (irreducible) prime number, then the assertion is
clear by the definition of prime (irreducible) number. Now, suppose that n = p− 1 · · · pr = q1 · · ·qs where
p1, . . . , pr ; q− 1, . . . ,qs are irreducible numbers with r,s ≥ 2. We may assume that p1 ≤ p2 ≤ ·· · ≤ pr ;
q1 ≤ q2 ≤ ·· · ≤ qs and p1 ≤ q1 . If p1 = q1 , then n′ := p2 · · · pr = q2 · · ·qs < n and hence the uniqueness
assertion follows from the induction hypothesis. If p1 < q1 , then we must lead to a contradiction (of the
irreducibility of q1). Put m := n− p1q2 · · ·qs = (q1− p1)q2 · · ·qs = p1(p2 · · · pr −q2 · · ·qs). Then 1 < m < n.
Therefore by induction hypothesis it follows from the uniqueness assertion for m = p1(p2 · · · pr −q2 · · ·qs)
that p1 must occur in every irreducible decomposition of m. In particular, p1 must occur in the product
m = (q1 − p1)q2 · · ·qs, where q2, . . . ,qs are irreducible numbers and p1 ̸= q j for every j = 1, . . . ,s. This
shows that p1 must occur in q1 − p1, i. e. p1 divides q1 − p1 in N∗, or equivalently, q1 − p1 = bp1 with
b ∈N∗, i. e. q1 = (b+1)p1 which contradicts the irreduciblity of q1. •
(Remark : Zermelo’s indirect method of proof is psycological and less convincing. However, this proof
is elegant and didactically difficult to present in the class room. Moreover, the Euclid’s Lemma is not in
this proof. In fact we can now deduce the Euclid’s Lemma as a corollary of the Fundamental Theorem of
Arithmetic.)

T5.30 Let M be the set of all natural numbers which have remainder 1 upon division by 3, i.e.,
M = {3n+1 | n ∈N}. Then M is a multiplicative submonoid of N, i. e., 1 ∈ M and if a1, . . . ,an ∈
M, then a1 · · ·an ∈ M. For this, it is enough (by induction) to note that (3n1 + 1)(3n2 + 1) =
3(3n1n2 + n1 + n2)+ 1. Similar to the irreducibility in N, we say that an element c ∈ M is irre-
ducible if c > 1 and if c = ab with a,b ∈ M, then either a = 1 or b = 1. The first few irreducible
elements in M are : 4,7,10,13,19,22,25,31; the elements 16 = 4 · 4 and 28 = 4 · 7 are not ir-
reducible in M. One can easily (by induction — analogous proof as in the existence of a prime
decomposition) : Every element a ∈ M is a (finite) product a = c1 · · ·cn of irreducible elements
c1, . . . ,cn in M. However, the uniqueness of this representation does not hold, for example, the
element 100∈M has two irreducible decompositions 100= 4 ·25 and 100= 10 ·10 which are not
essentially unique. One can (similar to those of in N ) also define divisibility and prime property in
M, with these definitions 4

∣∣100 = 10 ·10 in M, but 4 ̸
∣∣10 in M, i.e., the element 4 is irreducible

in M, but does not have the prime property in M. In this example what is missing is that the set M
is not additively closed, for example, 4 ∈ M, but 8 = 4+4 ̸∈ M or more generally, 3n1 = 1 ∈ M
and 3n2+1 ∈ M, but (3n1+1)+(3n2+1) = 3(n1+n2)+2 ̸∈ M. We further note that gcd of 40
and 100 does not exists in M and lcm of 4 and 10 does not exits in M (since 4 ̸

∣∣10 in M ).

T5.31 Let q ∈N∗ be an arbitrary prime number (e. g. q := 2 or q := 1234567891 33 ) and N :=
N∗−{q}. Then N is a multiplicatively closed and every element in N is a product of irreducible
elements of N ; such a decomposition is not any more, in general unique. More precisely, prove
that: The irreducible elements in N are usual prime numbers p ̸= q and their products pq with
q and both the elements q2 := q2 and q3 := q3. The element n := q6 ∈ N has two essentially
different decompositions n = q2 · q2 · q2 = q3 · q3 as product of irreducible elements of N. The
irreducible element q3 divides (in N ) the product q2 · q2 · q2, but none of its factor. Similarly,
q2 divides (in N ) the product q3 · q3, but not q3. Similarly, m := pq3 = (pq)q2 has (in N ) two
essentially different decompositions ( p prime number ̸= q).

T5.32 (a) Let n,k ∈ N∗ be relatively prime natural numbers. Show that n divides
(

n
k

)
and k

divides
(

n−1
k−1

)
. (Hint : Think about the formula k

(
n
k

)
= n

(
n−1
k−1

)
.)

(b) For every natural number n, show that 4 ·7 ·9 = 252 divides n8 −n2.

33One can check this with a small computer programm that this number is really a prime number. Is the number
12345678901 also prime?
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(c) Let r ∈ N∗, m = (m1, . . . ,mr) ∈ Nr and n := ∑r
i=1 mi. Let p be a prime number with

Max (m1, . . . ,mr)< p ≤ n . Show that p divides
(

n
m

)
= n!/m1! · · ·mr! .

(d) Find the canonical prime decomposition of the natural number 81057226635000. (Ans :
23 ·33 ·54 ·73 ·112 ·17 ·23 ·37.)

(e) If n = pα1
1 · · · pαr

r is the prime decomposition of the positive natural number n with pairwise
distinct prime numbers p1, . . . , pr, then show that:

(i) T (n) := (α1 +1) · · ·(αr +1) is the number of positive divisors of n in N∗.

(ii) σ(n) :=
r

∏
i=1

(pαi+1
i −1)
(pi −1)

is the sum of all positive divisors of n in N∗.

(f) How many divisors are there for the number given in the part (d)? and what is their sum?

T5.33 (a) Let a ∈ N∗, For how many natural numbers x ∈ N∗, x(x+ a) is a (perfect) square?
Compute these x for a∈{15,30,60,120}. (Hint : You may need Pythagorean triples, see Test-Exercise
T5.38.)

(b) For every s≥ 2, a pair (ms ,ns) :=
(
2(2s−1−1) ,2s+1(2s−1−1)

)
is a pair (m,n) of positive

natural numbers such that m < n and m and n as well as m+1 and n+1 have the same prime divi-
sors. (Remark : There are other such pairs (m,n), for example, (75,1215) is such a pair. See Makowski:
Ens. Math. 14, 193 (1968) .)

T5.34 ( I r r a t i o n a l n u m b e r s 34 ) A real number which is not rational is called an i r r a t i o n a l
number.
(a) Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or
division; The sum, difference, product and quotient of two real numbers, one irrational and the
other a non-zero rational, are irrational.
(b) Let n ∈ N∗, y ∈ Q, y > 0 and let y = pm1

1 · · · pmr
r be the canonical prime factorisation of y.

Show that the following statements are equivalent : (i) There exists a positive rational number x
with xn = y. (ii) n divides all the exponents mi, i = 1, . . . ,r.
(c) ( L e m m a o f G a u s s ) Let x := a/b ∈Q be a normalised fraction, i.e., a,b ∈ Z, b > 0 and
gcd(a,b) = 1. Suppose that anxn + · · ·+a1x+a0 = 0 with a0, . . . ,an ∈ Z and an ̸= 0, n ≥ 1, i.e.,
x is a zero of the polynomial function antn+ · · ·+a0. Then a is a divisior of a0 and b is a divisor
of an. Deduce that :
(i) If the leading coefficient an = 1, then x ∈ Z .

(ii) For every integer a ∈ Z and a natural number n ∈N∗, every rational solution of xn −a is an
integer, in particular, xn −a has a rational solution if and only if a is the n- th power of an integer.
(Remark : It follows at once that

√
2 (Phythagoras)35

√
3,
√

5, . . . ,
√

p, where p is prime number, are
irrational numbers.) More generally :
(iii) Let r ∈ N∗, p1, . . . , pr be distinct prime numbers and let m2, . . . ,mr ∈ N∗ Then for every

n ∈N∗, n > 1, the real number
√

p1 pm2
2 · · · pmr

r is an irrational number.

34The word “irrational” is the translation of the Greek word “αλoγoζ ” in Latin. The Greek word probably means
“not pronounceable”. The misunderstanding that in Latin “ratio” is essentially the meaning of “rationality” made
“irrational numbers”.

35Phythagoras deserve the credit for being the first to classify numbers into odd and even, prime and composite. The
following elementary short proof was given by (T. Estermann in Math. Gazette 59 (1975), pp. 110) : If

√
2 is rational,

then there exists k ∈N∗ such that k
√

2 ∈Z. By the Minimum Principle T5.2-(b) choose a minimal k ∈N∗ with this
property. Then, since 1 <

√
2 < 2, m := (

√
2−1)k ∈N∗ with m < k, but m

√
2 = (

√
2−1)k

√
2 = 2k− k

√
2 ∈ Z a

contradiction.
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(iv) For a,b ∈ Z, a > 0,b > 0 with gcd(a,b) = 1 and a natural number n ∈ N∗, the equation
xn −a/b has a rational solution if and only if both a and b are n-th power of integers.
(d) Let a1, . . . ,ar ∈ Q×

+ be positive rational numbers. Show that
√

a1 + · · ·+
√

ar is rational if
and only if each ai, i = 1, . . . ,r is a square of rational number.
(e) Determine all rational zeros of the polynomial functions t3 + 3

4t2 + 3
2t +3 and 3t7 +4t6 − t5 +

t4 +4t3 +5t2 −4.
(f) Let t be a rational multiple of π 36, i.e. t = rπ with r ∈ Q. Then cos t, sin t and tan t
are irrational numbers apart from the cases where tan t is undefined and the exceptions cos t =
0,±1/2,±1; sin t = 0,±1/2,±1; tan t = 0,±1.
(g) The real numbers log6 9 and log3/ log2 are irrational numbers.
(h) Let z be a real number. Show that the following statements are equivalent :
(i) z is rational. (ii) There exists a positive integer k such that [kz] = kz. (iii) There exists

a positive integer k such that [(k!)z] = (k!)z.
(i) Use the above part (h) to prove that the number e is irrational. (Hint : The number e = ∑∞

i=0
1
i!

is called the Euler’s number. For any positive integer k, we have [(k!)e] = k!∑k
i=0 1/i! < (k!)e.) (Proof:

(due to J . - B . F o u r i e r (1768-1830) a French mathematician and physicist) Suppose that e = P/Q with
P,Q ∈N, P,Q ≥ 1. Then

P/Q = 1+1/1!+1/2!+ · · ·+1/Q!+1/(Q+1)!+ · · ·
Multiplying by Q!, it follows that

(Q−1)! ·P = Q!+Q!+ · · ·+Q+1+1/(Q+1)+1/(Q+1)(Q+2)+ · · ·
i. e. the series

∞

∑
ν=1

1
(Q+1) · · ·(Q+ν)

> 0

has an integer value. But
1

(Q+1) · · ·(Q+ν)
<

1
(Q+1)ν for all ν ≥ 2 ,

and hence
1

(Q+1) · · ·(Q+ν)
<

∞

∑
ν=1

1
(Q+1)ν =

1
Q

≤ 1

a contradiction. For the last equality, we have used the formula37 (for x = 1/(Q+1)≤ 1/2).
– Remark: The proof of irrationality of the number π is not quite so easy!)

T5.35 (C o n g r u e n c e s) In the first chapter of Disquisitiones Arithmaticae38 Gauss introduced
the concept of congruence. He was induced to adopt the symbol ≡ because of the close analogy
with the (algebraic) equality = .
Let n ∈N∗ be a fixed positive natural number. Two integers a and b ∈Z are said to be c o n g r u -
e n t m o d u l o n , denoted by a ≡ b(mod n) if n divides the difference a−b , i. e. a−b = kn
for some integer k ∈ Z.

36What is the definition of the number π ? Ancient Greeks defined the number π as the ratio of the circumference
of a circle to its diameter. The letter π came from Greek the word perimetros. It was Euler’s adoption of the symbol
in his many popular textbooks that made it widely known and used. The first recorded scientific effort to approximate
π appeared in the Measurement of a Circle by the Greek mathematician of ancient Syracuse, a r c h i m e d e s (287-
212 B. C.). His method was to inscribe and circumscribe regular polygon about circle, determine their perimeters and
use these as lower and upper bounds on the circumference. Using a polygon of 96 sides, he obtained the inequality:
223/71 < π < 22/7.

37For every x ∈R with |x|< 1, we have
∞

∑
ν=0

xν =
x

1− x
.

38This monumental work of the German mathematician C a r l F r i e d r i c h G a u s s (1777-1855) appeared
in 1801 when he was 24 years old. In this work Gauss laid the foundations of modern number theory, see also the
Footnote 32
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Given an integer a ∈Z, let q and r denote the quotient and remainder upon division by n, so that
a = qn+ r, 0 ≤ r < n. then a ≡ r (mod n). Therefore every integer is congruent modulo n to
exactly one of 0,1, . . . ,n−1; in particular, a ≡ 0(mod n) if and only if n divides a. Further, note
that a ≡ b(mod n) if and only if a and b have the same remainder upon division by n.

(a) The behavior of ≡ with respect to the addition and multiplication is reminiscent of the ordinary
equality. Some of the elementary properties of equality that carry over to ≡ are:

(i) a ≡ a(mod n). (ii) If a ≡ b(mod n), then b ≡ a(mod n).

(iii) If a ≡ b(mod n) and if b ≡ c(mod n), then a ≡ c(mod n).
(Remark : The above three properties show that ≡ is an equivalence relation on the set of integers. The
equivalence classes of ≡ are precisely the c o n g r u e n c e c l a s s e s m o d u l o n : [r] := r+Z ·n :=
{r+ kn | k ∈ Z} , r = 0, . . . ,n−1. Therefore the quotient set Z/≡= {[r] | 0 ≤ r < n−1}; this quotient set
is usually denoted by Zn and its elements are also called the r e s i d u e c l a s s e s m o d u l o n. The
system 0,1, . . . ,n−1 form a complete representative system for the quotient set Z/≡ .)

(iv) If a ≡ b(mod n) and if c ≡ d (mod n), then a+ c ≡ b+d (mod n) and a · c ≡ b ·d (mod n) .
(v) If a ≡ b(mod n) , then a+ c ≡ b+ c(mod n) and a · c ≡ b · c(mod n) .
(Remark : It follows from (iv) that the binary operations +n (called the a d d i t i o n m o d u l o n ) and
·n (called the m u l t i p l i c a t i o n m o d u l o n ) defined on the quotient set Zn by ([r], [s]) 7→ [r+ s]
and ([r], [s]) 7→ [r · s] are well-defined. Both these binary operations are associative, commutative and [0]
(respectively, [1] ) is the identity element for +n (respectively, ·n ). Therefore (Zn,+n) and (Zn, ·n) are
commutative monoids. Moreover, the monoid (Zn,+n) is a group. Further, the binary operations +n and
cdotn are connected by the distributive laws: ([r] +n [s]) ·n [t] = [r] ·n [t] +n [s] ·n [t] and [r] ·n ([s] +n [t]) =
[r] ·n [s] +n [r] ·n [t] for all r,s, t ∈ {0,1, . . . ,n− 1}. Therefore (Zn,+n, ·n) is a commutative ring with the
(multiplicative) identity [1] . All the above assertions are immediate from the definitions of +n , ·n and the
standard associativity, commutativity and the distributive laws of the standard addition and multiplication
on the set Z of integers. )
One cannot unrestrictedly cancel common factor in the arithmetic of congruences. With suitable
precautions cancellation can be allowed:

(vi) If ca ≡ cb(mod n) , then a ≡ b(mod n/d) , where d = gcd(c,n) . (Hint : Use Euclid’s lemma.)
(vii) If ca≡ cb(mod n) and if gcd(c,n)= 1, then a≡ b(mod n) . In particular, If ca≡ cb(mod n)
and if p is a prime number which does not divide c , then a ≡ b(mod n) .

(b) Let n ∈ N∗, a,b ∈ Z and let P(X) = ∑d
i=0 aiX i be a polynomial with integer coefficients

a0, . . . ,ad ∈ Z. If a ≡ b (mod n) then show that P(a) ≡ P(b) (mod n) . Deduce that if a is a
solution of the congruence P(a)≡ 0 (mod n) and if a ≡ b (mod n) , then b is also a solution.

(c) (i) Find the remainder when 44444444 is divided by 9. (Hint : Use 23 ≡−1(mod 9).)

(ii) For n ≥ 1, show that (−13)n+1 ≡ (−13)n +(−13)n−1(mod 181). (Hint : Note that (−13)2 ≡
−13+1(mod 181) and use induction on n.)

(d) Let a ∈ Z be an integer relatively prime to n . Then:

(i) For every c ∈ Z, the integers c,c+1, . . . ,c+(n−1)a form a complete representative system
for Zn. In particular, any n consecutive integers form a complete representative system for Zn.
(ii) If a1, . . . ,an ∈Z is a complete representative system for Zn, then a ·a1, . . . ,a ·an also form a
complete representative system for Zn.
(iii) Verify that 0,1,2,22, . . . ,29 form a complete representative system for Z11, but that
0,12,22,32, . . . ,102 do not.

(e) Find the remainders when
(i) 15! is divided by 17. (ii) 2 · (26!) is divided by 29. (iii) 4 · (29!)+5! is divided by 31.

(f) Explain why the following curious calculation hold:
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1 ·9+ 2 = 11
12 ·9+ 3 = 111

123 ·9+ 4 = 1111
1234 ·9+ 5 = 11111

12345 ·9+ 6 = 111111
123456 ·9+ 7 = 1111111

1234567 ·9+ 8 = 11111111
12345678 ·9+ 9 = 111111111

123456789 ·9+10 = 1111111111

(Hint: Show that (10n−1 +2 ·10n−2 +3 ·10n−3 + · · ·+n) · (10−1)+(n+1) =
10n+1 −1

9
.)

(g) Determine the last two digits of 999
. (Hint : 99 ≡ 9(mod 10) and hence 999

= 99+10k . Now use
99 ≡ 89(mod 100).)

(h) Determine the last three digits of 7999 . (Hint : 74n ≡ (1+400)n ≡ 1+400n(mod 1000).)

(i) For any n ≥ 1, show that there exists a prime number with at least n of its digits equal to 0.
(Hint : consider the arithmetic progression 10n+1 ·m+1, m ∈N∗.)

(j) Show that 2r divides a integer n if and only if 2r divides the number made up of the last r
digits of n. (Hint : 10k = 2k ·5k ≡ 0(mod2r ) for k ≥ r.)

T5.36 (a) Faliure of the converse of Fermat’s Little Theorem: show that if n ∈ N∗ and if the
congruence an ≡ a(mod n) holds for some integer which is relatively prime to n , then n need not
be prime. (Hint : 2340 ≡ 1(mod 341) , but 341 = 11 ·31 is not prime.)

(b) Use Fermat’s Little Theorem to:

(i) Verify that 17 divides 11104 +1. (ii) verify that 13 divides 1112n+6 +1 for every n ∈N.

(iii) Let p be a prime number and let a be an integer with gcd(a, p) = 1. Verify that x ≡
ap−1b(mod p) is the unique solution of the linear congruence aX ≡ b(mod p) .
(iv) Solve the congruence 2X ≡ 1(mod 31) ; 6X ≡ 5(mod 11) and 3X ≡ 17(mod 29) .

(c) The three most recent appearances of Halley’s comet were in the years 1835, 1910 and 1986;
the next appearance will be in 2061. Prove that 18351910 +19862061 ≡ 0(mod 7) .

(d) Verify the congruence 22225555 +55552222 ≡ 0(mod 7) .

T5.37 Let p be a prime number.
(a) If a and b are integers with gcd(a, p= 1gcd(b, p) and if ap ≡ bp (mod p) , then a≡ b(mod p) .
(b) If p is an odd prime number, then

(i) 1p−1 +2p−1 + · · ·+(p−1)p−1 ≡−1(mod p) .
(ii) 1p +2p + · · ·+(p−1)p ≡ 0(mod p) .

(iii)
(

p−1
k

)
≡ (−1)k (mod p) for every 1 ≤ k ≤ p−1.

(c) Let p and q be two distinct odd prime numbers such that p−1
∣∣q−1 and let a be an integer

with gcd(a, pq) = 1. Show that aq−1 ≡ 1(mod pq) .

(d) Let p and q be two distinct prime numbers. Show that pq−1 +qp−1 ≡ 1(mod pq) .

(e) Verify that 2561 ≡ 2(mod 561) and 3561 ≡ 3(mod 561) . (Remark : It is an unanswered question
whether that exist infinitely many composite numbers n such that n divides both 2n −2 and 3n −3.)
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T5.38 In this test-Exercise we undertake the task of finding all solutions of the Pythagorean equa-
tion X2 +Y 2 = Z2 in the positive integers.

(a) (P y t h a g o r e a n T r i p l e s) A triple (x,y,z)∈Z3 is called a P y t h a g o r e a n t r i p l e
if x2 +y2 = z2 ; the triple is said to be p r i m i t i v e if gcd(x,yz) = 1. The characterization of all
primitive Pythagorean triples is fairly straight forward: (x,y,z) ∈ Z3, gcd(x,y,z) = 1, 2|x, x > 0,
y > 0, z > 0 are given by the formulas: x = 2st, y = s2 − t2, z = s2 + t2 for integers s > t > 0,
gcd(s, t) = 1 and s ̸≡ t (mod 2). (Proof: )

(b) (P y t h a g o r e a n T r i a n g l e s) A right angled triangle is called a P y t h a g o r e a n
t r i a n g l e if all its sides are of integral lengths. An interesting geometric fact concerning
Pythagorean triangles is: The radius of the inscribed circle of a Pythagorean triangle is always
an integer. (Proof: )

(c) Let n ∈N∗. Show that

(i) There are at least n Pythagorean triples having the same first member. (Hint : Let yk =

2k(22n−2k −1) and zk = 2k(22n−2k +1) , k = 0,1, . . . ,n−1. Then (2n+1,yk,zk) are all Pythagorean triples.)
(ii) There exists a Pythagorean triangle the radius of whose inscribed circle is n. (Hint : If r denotes
the radius of the circle inscribed in the Pythagorean triangle having sides a and b and hypotenuse c, then
r = 1

2(a+b− c). Consider the triple (2n+1,2n2 +2n,2n2 +2n = 1).)

†T5.39 (P r i m a l i t y T e s t s39 ) Let n ∈N∗.

(a) (L u c a s ’ s T e s t) If there exists a ∈Z such that an−1 ≡ 1(mod n) and a(n−1)/p ̸≡ 1(mod n) for all
prime numebrs p which divide n−1, then n is a prime number.

(b) (P e p i n ’ s T e s t40 ) The Fermat number Fn = 22n
+1 is prime if and only if 3(Fn−1)/2 ≡−1(mod Fn) .

†T5.40 (F e r m a t ’ s L a s t T h e o r e m) 41

(a)

(b) (F e r m a t ’ s M e t h o d o f I n f i n i t e D e c e n t)

(c) (S o m e H i s t o r y) Some highlights of the 19-th century work on FLT are:

• In 1816 – The French Academy announces a first prize for a solution to FLT.

• in 1820s – S o p h i e G e r m a i n shows that if p and 2p+ 1 are prime, then xp + yp = zp has no solution
with p ̸ | xyz. (This is called the Case I of FLT; the Case II is where p|xyz and is usually much harder.)

• In 1825 – D r i c h l e t and L e g e n d r e prove FLT for n = 5.

• In 1832 – D r i c h l e t attempts to prove FLT for n = 7 and proves FLT for n = 14.

• In 1839 – L a m é proves FLT for n = 7.

• In 1847 – L a m é and C a u c h y presents faulty proof of FLT for general n.

• In 1844-1847 – K u m m e r’s work on FLT:

39L u c a s E d o u a r d (1842-1891) a French number theorist was the first to device an effieint ”primality test”
that is, a procedure that guarantees whether a number is prime or composite without revealing its factors. His primality
criteria for Mersenne and Fermat numbers were developed in a series of 13 papers published between 1876 and 1878.
By imposing further restrictions on the base in Fermat’s congruence an−1 ≡ 1(mod n) , it is possible to obtain a definite
guarantee of primality of n. This result which was proved in 1876 is known as Lucas’s converse of of Fermat’s Little
Theorem. See also Lucas’s book Théorie des Nombres (1891).

40In 1877, the Jesuit Priest T h é o p h i l e P e p i n (1826-1904) devised the practical test for determining the
primality of the Fermant Number Fn.

41By the early 1800s, all of Fermat Problems were solved except for FLT, thus justifying the name “Fermat’s Last
Theorem”.
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– In 1847 – Theorem: FLT holds for p if p ̸ | h (such prime are called r e g u l a r p r i m e s).

– In 1847 – Theorem: p is regular if and only if p does not divide the numerators of the Bernoulli-
numbers42 B2,B4, . . .Bp−3. – As a consequence of this for p < 100 only 37,59,67 are irregular primes.

• In 1850 – The French Academy offers a second prize for a solution to FLT.

• In 1856 – at C a u c h y’s suggestion, the French Academy withdraws the prize and then awards a medal to
K u m m e r.

• In 1857 – K u m m e r develops a complicated criteria for proving FLT for certain irregular primes. – Some
gaps in his proof which are later filled by V a n d i v e r in 1920s. These result establish FLT for p < 100.

• Some highlights of the history of FLT after Kummer:

42Bernoulli-numbers are defined by the power series expansion of the function
x

ex −1
=

∞

∑
n=1

Bn

n!
xn .
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