E0 221 Discrete Structures / August-December 2012

(ME, MSc. Ph. D. Programmes)

Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

5. The Natural Numbers - The Fundamental Theorem of Arithmetic

5.1 (a) Let $a, b, m, k \in \mathbb{N}$ be such that $\binom{a}{k} \leq m<\binom{a+1}{k}$ and $\binom{b}{k} \leq m<\binom{b+1}{k}$. Show that $a=b$. (Hint : Suppose that $a<b$, i.e., $a+1 \leq b$, then $m<\binom{a+1}{k} \leq\binom{ b}{k} \leq m$, since $\mathfrak{P}_{k}(\{1, \ldots, a+1\}) \subseteq$ $\mathfrak{P}_{k}(\{1, \ldots, b\})$ a contradiction.)
(b) Let $k \in \mathbb{N}^{+}$be a positive natural number and let $n \in \mathbb{N}$ be an arbitrary natural number. Show that there exist unique $a_{1}, \ldots, a_{k} \in \mathbb{N}$ such that $0 \leq a_{1}<a_{2}<\cdots<a_{k}$ and $n=\sum_{j=1}^{k}\binom{a_{j}}{j}$. (Hint : The existence of a_{1}, \ldots, a_{k} is proved by induction on k. If $k=1$, then $n=\binom{n}{1}$ is the required representation. Assume $k>1$ and choose $a_{k} \in \mathbb{N}$ with $\binom{a_{k}}{k} \leq n<\binom{a_{k}+1}{k}$. For the number $m:=n-\binom{a_{k}}{k} \geq 0$ by induction hypothesis there exists a representation $m=\sum_{j=1}^{k-1}\binom{a_{j}}{j}$ with $0 \leq a_{1}<a_{2}<\cdots<a_{k-1}$. Now we need to show that $a_{k-1}<a_{k}$. Since $\binom{a_{k}+1}{k}=\binom{a_{k}}{k}+\binom{a_{k}}{k-1}$, we have $n=\sum_{j=1}^{k-1}\binom{a_{j}}{j}+\binom{a_{k}+1}{k}-\binom{a_{k}}{k-1}<\binom{a_{k}+1}{k}$; in particular, $\binom{a_{k-1}}{k-1}<\binom{a_{k}}{k-1}$ and hence $a_{k-1}<a_{k}$. Now we prove the uniqueness of a_{1}, \ldots, a_{k}. If $k=1$, this is trivial. Assume $k>1$ and suppose that $n=\sum_{j=1}^{k}\binom{a_{j}}{j}=\sum_{j=1}^{k}\binom{b_{j}}{j}$ with $0 \leq a_{1}<a_{2}<\cdots<a_{k}$ and $0 \leq b_{1}<b_{2}<\cdots<b_{k}$. It is enough to show that $\binom{a_{k}}{k} \leq n<\binom{a_{k}+1}{k}$ and $\binom{b_{k}}{k} \leq n<\binom{b_{k}+1}{k}$, for then, $a_{k}=b_{k}$ by part a) and by induction hypothesis to the two representations of $m:=n-\binom{a_{k}}{k}=n-\binom{b_{k}}{k}$, we get $a_{j}=b_{j}$ for all $k=1, \ldots, k-1$. Now, we show that $\binom{a_{k}}{k} \leq n<\binom{a_{k}+1}{k}$. If $a_{k}<k$, then $a_{j}=j-1$ for all $j=1, \ldots, k$ and $\binom{a_{k}}{k}=\binom{k-1}{k}=0=n<\binom{a_{k}+1}{k}=\binom{k}{k}=1$. Therefore suppose that $a_{k} \geq k$. Then $\binom{a_{k}+1}{k}=\sum_{i=0}^{k}\binom{a_{k}-i}{k-i}$ (by recursion formula ${ }^{1}$) and hence $\binom{a_{k}}{k}=\binom{a_{k}+1}{k}-\sum_{i=1}^{k}\binom{a_{k}-i}{k-i}$ and $n=\sum_{i=0}^{k}\binom{a_{i}}{i}=\sum_{j=1}^{k-1}\binom{a_{k-j}}{k-j}+\binom{a_{k}}{k}=$ $\binom{a_{k}+1}{k}-\binom{a_{k}-k}{0}+\sum_{j=1}^{k-1}\left(\binom{a_{k-j}}{k-j}-\binom{a_{k}-j}{k-j}\right)=\binom{a_{k}+1}{k}-1-\sum_{j=1}^{k-1}\left(\binom{a_{k-j}}{k-j}-\binom{a_{k}-j}{k-j}\right)$. Now, since $a_{k}-1 \geq a_{k-1}$ and by induction $a_{k}-j \geq a_{k-j}$ for every $1 \leq j \leq k-1$ and hence $\sum_{j=1}^{k-1}\left(\binom{a_{k-j}}{k-j}-\binom{a_{k}-j}{k-j}\right) \geq 0$. This proves that $n<\binom{a_{k}+1}{k}$, the other inequality $\binom{a_{k}}{k} \leq n$ is trivial.)
(c) For $k \in \mathbb{N}, k \geq 1$, show that the map $\mathbb{N}^{k} \rightarrow \mathbb{N}$ defined by

$$
\left(m_{1}, m_{2}, \ldots, m_{k}\right) \mapsto\binom{m_{1}}{1}+\binom{m_{1}+m_{2}+1}{2}+\cdots+\binom{m_{1}+m_{2}+\cdots+m_{k}+k-1}{k}
$$

is bijective. (Hint : Use part (b).)
5.2 (Gödelisation) Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ be (infinite) sequence of the prime numbers.
${ }^{1}$ Recursion formula for binomial coefficients: $\binom{n+1}{k}=\binom{n}{k}+\binom{n-1}{k-1}+\cdots+\binom{n-k+1}{1}+\binom{n-k}{0}$. This follows from the equality $\binom{n+1}{m}=\binom{n}{m}+\binom{n}{m-1}$.
(a) Let A be a countable set with an enumeration $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}, a_{i} \neq a_{j}$ for $i \neq j$. Then the map $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \mapsto p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$ is an injective map from the set $\mathrm{W}(A):=\biguplus_{n \in \mathbb{N}} A^{n}$ of finite sequences (of arbitrary lengths) of elements from A - such sequences are also called words over the alphabet A - into the set \mathbb{N}^{*} of positive natural numbers. (Remark : Such a coding of the words over A is called a Gödelisation (due to K. Gödel ${ }^{2}$). The natural number associated to a word is called the Gödel number of this word.)
(b) Let A be a finite alphabet $\left\{a_{1}, a_{2}, \ldots, a_{g}\right\}$ with g letters, $g \geq 2$, and $a_{0} \notin A$ be another letter. A word $W=\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$ over A can be identified by filling a_{0} with the infinite sequence $\left(a_{i_{1}}, \ldots a_{i_{n}}, a_{0}, a_{0}, \ldots\right)$. Show that: the map $\left(a_{i_{v}}\right)_{v \in \mathbb{N}^{*}} \mapsto \sum_{v=1}^{\infty} i_{v} g^{v-1}$ is a bijective map from the set of words over A onto the set \mathbb{N} of the natural numbers and in particular, is a Gœdelisation.
(Remark : This is a variant of the g-adic expansion (see Test-Exercise T5.21).)
5.3 Let $g \in \mathbb{N}^{*}, g \geq 2, n$ be a natural number with digit-sequence $\left(r_{i}\right)_{i \in \mathbb{N}}$ in the g-adic expansion of n and let $d \in \mathbb{N}^{*}$. (see Test-Exercise T5.21.)
(a) Suppose that d is a divisor of g^{α} for some $\alpha \in \mathbb{N}^{*}$. Then $n \equiv\left(r_{\alpha-1}, \ldots, r_{0}\right)_{g} \bmod d$. In particular, d divides the number n if and only if d divides the number $\left(r_{\alpha-1}, \ldots, r_{0}\right)_{g}$.
(b) Suppose that d is a divisor of $g^{\alpha}-1$ for some $\alpha \in \mathbb{N}^{*}$ and

$$
S:=\left(r_{\alpha-1}, \ldots, r_{0}\right)_{g}+\left(r_{2 \alpha-1}, \ldots, r_{\alpha}\right)_{g}+\cdots
$$

Then $n \equiv S \bmod d$. In particular, d divides the number n if and only if d divides the sum S.
(c) Suppose that d is a divisor of $g^{\alpha}+1$ for some $\alpha \in \mathbb{N}^{*}$ and

$$
W:=\left(r_{\alpha-1}, \ldots, r_{0}\right)_{g}-\left(r_{2 \alpha-1}, \ldots, r_{\alpha}\right)_{g}+\cdots
$$

Then $n \equiv W \bmod d$. In particular, d divides the number n if and only if d divides the alternating sum W. (Remark : With the help of this exercise one can find criterion, which one can decide on the basis the digit-sequence of the natural number n in the decimal system whether d is a divisor of n with $2 \leq d \leq 16$. (with $d=3$ and $d=9$ one uses the simple check-sum, with $d=11$ the simple alternating sum. The divisibility by 7,11 and 13 at the same time can be tested with the alternating sum of the 3 -grouped together in view of the part (c). See Test-Exercise T5.21-(d) for details.)
5.4 (a) For $a, m, n \in \mathbb{N}^{*}$ with $a \geq 2$ and $d:=\operatorname{gcd}(m, n)$, show that $\operatorname{gcd}\left(a^{m}-1, a^{n}-1\right)=a^{d}-1$. In particular, $a^{m}-1$ and $a^{n}-1$ are relatively prime if and only if $a=2$ and m and n are relatively prime. (Hint : By substituting a^{d} by a one may assume that $d=1$. Then show that $\left(a^{m}-1\right) /(a-1)=$ $a^{m-1}+\cdots+a+1$ and $\left(a^{n}-1\right) /(a-1)=a^{n-1}+\cdots+a+1$ are relatively prime.)
(b) Suppose that $a_{1}, \ldots, a_{n} \in \mathbb{N}^{*}$ are relatively prime. Show that there exists a natural number $f \in \mathbb{N}$ such that every natural number $b \geq f$ can be represented as $b=u_{1} a_{1}+\cdots+a_{n} a_{n}$ with natural numbers u_{1}, \ldots, u_{n}. In the case $n=2$, we have $f:=\left(a_{1}-1\right)\left(a_{2}-1\right)$ is the smallest such number; further in this case there are exactly $f / 2$ natural numbers c, which do not have a representation of the form $u_{1} a_{1}+u_{2} a_{2}, u_{1}, u_{2} \in \mathbb{N}$. (Hint : For $0 \leq c \leq f-1$, exactly one of the number c and $f-1-c$ can be represented in the above form.)
(c) Let $a, b \in \mathbb{N}^{*}$ and $d:=\operatorname{gcd}(a, b)=s a+t b$ with $s, t \in \mathbb{Z}$. Then $d=s^{\prime} a+t^{\prime} b$ for $s^{\prime}, t^{\prime} \in \mathbb{Z}$ if and only if there exists $k \in \mathbb{Z}$ such that $s^{\prime}=s-k\left(\frac{b}{d}\right), t^{\prime}=t+k \cdot\left(\frac{a}{d}\right)$.
5.5 (a) Let $x, y \in \mathbb{Q}_{+}^{\times}$and $y=c / d$ be the canonical representation of y with $c, d \in \mathbb{N}^{*}$ and

[^0]$\operatorname{gcd}(c, d)=1$. Show that x^{y} is rational if and only if x is the d-th power of a rational number.
(b) Show that other than $(2,4)$ there is no pair (x, y) of positive integers numbers with $x<y$ and $x^{y}=y^{x}$. The pairs of rational numbers (x, y) with $x<y$ and $x^{y}=y^{x}$ are precisely the pairs: $\left(\left(1+\frac{1}{n}\right)^{n},\left(1+\frac{1}{n}\right)^{n+1}\right), n \in \mathbb{N}^{*}$. (Hint : Prove that for each real positive number of x with $1<x<e$ there exists exactly one real number $y>x$ such that $x^{y}=y^{x}$. (observe that necessarily $y>e$.) For the proof of the above assertion : note that $x^{y}=y^{x}$ if and only if $(\ln x) / x=(\ln y) / y$ and consider the function $(\ln x) / x$ on \mathbb{R}_{+}^{\times}.)

(c) Let $x \in \mathbb{Q}_{+}^{\times}$and a be a positive natural number which is not of the form b^{d} with $b, d \in \mathbb{N}^{*}, d \geq$ 2. Then show that $\log _{a} x$ is either integer or irrational.
(d) For which $x, y \in \mathbb{Q}_{+}^{\times}, y \neq 1$, the real number $\log _{y} x$ rational ? For which $x \in \mathbb{Q}_{+}^{\times}$, the real number $\log _{10} x$ rational ?
(e) Let $n \in \mathbb{N}^{*}, n \geq 2$ and $y \in \mathbb{Q}_{+}^{\times} \backslash \mathbb{N}^{*}$. Then both the numbers $\sqrt[n]{n!}$ and $(n!)^{y}$ are irrational. (Hint : The natural number n ! has simple prime factors.)
5.6 (a) (Perfect numbers) A natural number $n \in \mathbb{N}^{*}$ is called perfect if $\sigma(n)=2 n$, where $\sigma(n):=\sum_{d \mid n} d$ denote the sum of positive divisors of n.
(Theorem of Euclid-Euler) An even number $n \in \mathbb{N}^{*}$ is perfect if and only if n is of the form $2^{s}\left(2^{s+1}-1\right)$ with $s \in \mathbb{N}^{*}$ and $2^{s+1}-1$ prime. (Hint : Suppose that n is perfect, $n=2^{s} b s, b \in \mathbb{N}^{*}$ and b odd. Then $2^{s+1} b=2 n=\sigma(n)=\left(2^{s+1}-1\right) \sigma(b)$ and so there exists $c \in \mathbb{N}^{*}$ such that $\sigma\left(b=2^{s+1} c\right.$, $b=\left(2^{s+1}-1\right) c, \sigma(b)=b+c$.
(b) (Mersenne Numbers) Let $a, n \in \mathbb{N}$ with $a, n \geq 2$. If $a^{n}-1$ is prime, then $a=2$ and n is prime. (Hint : Use geometric series $a^{n}-1=(a-1)\left(a^{n-1}+a^{n-2}+\cdots+a+1\right)$ to conclude that $a=2$; if $n=r s$ with $r>1, s>1$, then $2^{n}-1=\left(2^{r}\right)^{s}-1=\left(2^{r}-1\right)\left(1+2^{r}+2^{2 r}+\cdots+\left(2^{r}\right)^{s-1}\right)$. - The natural numbers of the form $a^{p}-1, p \in \mathbb{P}$ prime, are called Mersenne numbers. For $p=2,3,5,7$ the corresponding Mersenne numbers $3,7,31,127$ are prime, but corresponding to $p=11$, it is $M_{11}=2^{11}-1=2047=23.89$ which is not prime. -Remarks: It was asserted by Mersenne ${ }^{3}$ in 1644 that: $M_{p}=2^{p}-1$ is prime for $2,3,5,7,13,17,19,31,61,89,107,127$, and composite for the other remaining 44 values of $p \leq 257$. For example, $47\left|M_{23}, 233\right| M_{29}, 223\left|M_{37}, 431\right| M_{43}$ and $167 \mid M_{83}$. The first mistake was found in 1886 by Perusin and Seelhoff that M_{61} is prime. Subsequently four further mistakes were found and it need no longer be taken seriously. In 1876 Lucas found a method for testing whether M_{p} is prime and used it to prove that M_{127} is prime. This remained the largest known prime until 1951. The problem of Mersenne's numbers is connected with that of "perfect" numbers which are defined in the part (a) above. Every two distinct Mersenne numbers are relatively prime. It is not known whether there are infinitely many Mersenne numbers that are prime. The biggest known ${ }^{4}$ prime is the Mersenne number M_{p} corresponding to

[^1]$p=43,112,609 ;$ this prime number has $\left[\log _{10}\left(\left(2^{43,112,609}\right)\right]+1=\left[43,112,609 \cdot \log _{10} 2\right]+1=12,978,189\right.$ digits!)
(c) (Fermat Numbers) Let $a, n \in \mathbb{N}^{*}$ with $a \geq 2$. If $a^{n}+1$ is prime, then a is even and n is a power of 2. (Hint : If a is odd then $a^{n}+1$ is even and if $n=2^{t} \cdot m$ with $t, m \in \mathbb{N}$ and m odd, then (put $\left.k:=2^{t}\right) 2^{n}+1=1-\left(-2^{k}\right)^{m}=\left(1+2^{k}\right)\left(1-2^{k}+2^{2 k}-\cdots+2^{(m-1) k}\right)$ and if $m>1$, then $k<n$ and hence $1<1+2^{k}<1+2^{n}$. Therefore $m=1$. - Remarks : The natural number of the form $2^{2^{n}}+1, n \in \mathbb{N}$ is called the n-th Fermat number and is denoted by $F_{n}:=2^{2^{n}}+1, n \in \mathbb{N}$. The Fermat numbers corresponding to $n=0,1,2,3,4$ are $F_{0}=2, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537$ are prime (already discovered by Fermat ${ }^{5}$ himself) and hence conjectured that all were prime, but in 1732 Euler proved that : $F_{5}=2^{2^{5}}+1=2^{32}+1=$ $641 \cdot 6700417$, since $641=5^{4}+2^{4}=5 \cdot 2^{7}+1$ divides $5^{4} \cdot 2^{28}+2^{32}$ and $5^{4} \cdot 2^{28}-1$ and hence the difference $2^{32}+1=F_{5}$. In 1880 L andry proved that $F_{6}=2^{2^{6}}+1=274177 \cdot 67280412310721$. More recently it is proved that F_{n} is composite for $7 \leq n \leq 16 n=18,19,23,36,38,39,55,63,73$ and many larger values of n. Morehead and Western proved that F_{7} and F_{8} are composite without determining a factor. No factor is known for F_{13} or for F_{14}, but in all the other cases proved to be composite a factor is known. No prime F_{n} has been found beyond F_{4}, so that Fermat's conjecture has not proved a very happy one. There are practical "primality tests" for Mersenne and Fermat numbers developed by Lucas and Pepin, see Test-Exercise T5.38 for more details. It is perhaps more probable that the number of Fermat primes F_{n} is finite. Fermat numbers are of great interest in many ways, for example, it was proved by Gauss ${ }^{6}$ that : if $F_{n}=p$ is a prime, then a regular polygon of p sides can be inscribed in a circle by Euclidean methods (constructions by ruler and compass). The property of the Fermat numbers which is relevant here is : No two Fermat numbers have a common divisor greater than 1, i.e., $\operatorname{gcd}\left(F_{n}, F_{m}\right)=1, n \neq m$. For, suppose that d divides both the Fermat numbers F_{n} and $F_{n+k}, k>0$. Then putting $x=2^{2^{n}}$, we have
$$
\frac{F_{n+k}-2}{F_{n}}=\frac{2^{2^{n+k}}-1}{2^{2^{n}}+1}=\frac{x^{2^{k}}-1}{x+1}=x^{2^{k}-1}-x^{2^{k}-2}+\cdots-1
$$
and so $F_{n} \mid F_{n+k}-2$. This proves that $d \mid F_{n+k}$ and $d \mid F_{n+k}-2$ and therefore $d \mid 2$. But F_{n} is odd and so $d=1$. Therefore each of the Fermat numbers $F_{0}, F_{1}, \ldots, F_{n}$ is divisible by an odd prime number which does not divide any of the others and hence there are at least n odd primes not exceeding F_{n}. This proves (proof due to George Pólya ${ }^{7}$) Euclid's theorem (see Test-Exercise T5.24-(b)). Moreover, we have the inequality $p_{n+1} \leq F_{n}=2^{2^{n}}+1$ which is little stronger than the inequality in Test-Exercise T5.25-(a).))
5.7 Let $m, n \in \mathbb{N}^{*}$ be relatively prime numbers and let a_{0}, a_{1}, \ldots be the sequence defined recursively as $a_{0}=n, a_{i+1}=a_{0} \cdots a_{i}+m, i \in \mathbb{N}$. Then $a_{i+1}=\left(a_{i}-m\right) a_{i}+m=a_{i}^{2}-m a_{i}+m$ for all $i \geq 1$.
(a) $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for all $i, j \in \mathbb{N}$ with $i \neq j$. The prime divisors of $a_{i}, i \in \mathbb{N}$ supply infinitely many different prime numbers. (Remark : The a_{i} are suitable well for testing prime factorizing procedures.)
(b) For all $i \in \mathbb{N}$, show that $\frac{1}{a_{0}}+\frac{m}{a_{1}}+\cdots+\frac{m^{i}}{a_{i}}=\frac{m+1}{n}-\frac{m^{i+1}}{a_{i+1}-m}$.
to be prime by GIMPS in April 2009. The predecessor as largest known prime, $2^{32,582,657}-1$, was first shown to be prime on 4 September 2006 by GIMPS also. GIMPS found the 11 latest records on ordinary computers operated by participants around the world. Such huge prime numbers are used in problems related to Cryptography.
${ }^{5}$ Pierre de Fermat (1601-1665) was a French lawyer and government official most remembered for his work in number theory; in particular for Fermat's Last Theorem. He is also important in the foundations of the calculus.
${ }^{6}$ What no one suspected before Gaus s (see Footnote No. ${ }^{30}$) was that a regular 17-gon can be constructed by ruler and compass. Gauss was so proud of his discovery that he requested that a regular polygon of 17 sides be engraved on his tombstone; for some reason, this wish was never fulfilled, but such a polygon is inscribed on the side of a monument to Gauss erected in Brunswick, Germany, his birthplace.
${ }^{7}$ George Pólya (1888-1985) was a Hungarian Jewish mathematician. He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributions to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics and mathematics education.
(c) From the part (a) deduce that $\sum_{i=0}^{\infty} \frac{m^{i}}{a_{i}}=\frac{m+1}{n}$.
(d) For $m=2$ and $n=1$, from b) prove that $a_{i+1}=F_{i}=2^{2^{i}}+1, i \in \mathbb{N}$. In particular, $\sum_{i=0}^{\infty} \frac{2^{i}}{F_{i}}=1$.
5.8 (Periodic Sequences) Let us fix the terminology for periodic sequences which is used at many places: For an arbitrary sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ of elements of a set X, a pair $\left(m_{0}, n\right) \in$ $\mathbb{N} \times \mathbb{N}^{*}$ is called a pair of periodicity for $\left(x_{i}\right)$ if $x_{i+n}=x_{i}$ for all $i \geq m_{0}$. In this case m_{0} is called a pre-period length and n a period length of $\left(x_{i}\right)$. If no such pair of periodicity for $\left(x_{i}\right)$ exists, then $\left(x_{i}\right)$ is called aperiodic, otherwise $\left(x_{i}\right)$ is called periodic.
(a) Show that for a periodic sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$, there exists a unique pair of periodicity $\left(k_{0}, \ell\right) \in$ $\mathbb{N} \times \mathbb{N}^{*}$ with the following property: Any pair of periodicity for $\left(x_{i}\right)$ is of the form $\left(m_{0}, m \ell\right)$ with $m_{0} \geq k_{0}$ and $m \in \mathbb{N}^{*}$. (Hint : The main point to show is the following: If $r, s \in \mathbb{N}^{*}$ are period lengths of $\left(x_{i}\right)$, then $\operatorname{GCD}(r, s)$ is also a period length of $\left(x_{i}\right)$.) - The natural number k_{0} is called the pre-period length of $\left(x_{i}\right)$ and the natural number ℓ is called the period length. The pair $\left(k_{0}, \ell\right)$ itself is called the (periodicity) type of $\left(x_{i}\right)$. The (finite) subsequence $\left(x_{0}, \ldots, x_{k_{0}-1}\right)$ is called the pre-period of (x_{i}) and the (finite) subsequence $\left(x_{k_{0}}, \ldots, x_{k_{0}+\ell-1}\right)$ is called the period of $\left(x_{i}\right)$. In this case we simply write $\left(x_{i}\right)_{i \in \mathbb{N}}=\left(x_{0}, \ldots, x_{k_{0}-1}, \overline{x_{k_{0}}, \ldots, x_{k_{0}+\ell-1}}\right)$. If $k_{0}=0$ then $\left(x_{i}\right)$ is called purely periodic. The periodicity type of an aperiodic sequence is often denoted by $(\infty, 0)$. In particular, by definition, the period length of an aperiodic sequence is 0 .
(b) If x is an element of a group, the sequence $\left(x^{i}\right)_{i \in \mathbb{N}}$ of its powers has period length ord x and is purely periodic if ord $x>0$. For an element x of a monoid the periodicity type of the sequence $\left(x^{i}\right)_{i \in \mathbb{N}}$ characterizes the cyclic monoid generated by x up to isomorphism and any type in $\mathbb{N} \times \mathbb{N}^{*} \cup\{(\infty, 0)\}$ may occur.
(c) For an integer $r \in \mathbb{N}^{*}$, compute the periodicity type of the sequence $\left(x_{r i}\right)_{i \in \mathbb{N}}$ in terms of the periodicity type $\left(k_{0}, \ell\right)$ of $\left(x_{i}\right)_{i \in \mathbb{N}}$.
5.9 (The Sieve of Eratosthenes ${ }^{8}$) The so-called sieve of Eratosthenes is an alogrithm for singling out the prime from among the set of natural numbers $\leq N$ for arbitrary natural number N. It depends on the fact that if a natural number $n>1$ has no divisior d with $1<d \leq \sqrt{n}$, then n must be a prime number (See Test-Exercise T5.19-(d)). Let N be a positive natural number and let $\pi(N)$ denote the number of prime numbers $\leq N$. Let p_{1}, \ldots, p_{r} be all distinct prime numbers $\leq \sqrt{N}$, i.e, $r=\pi(\sqrt{N)}$. Prove the following well-known formula :
$$
\pi(N)=N+r-1-\sum_{1 \leq i \leq r}\left[\frac{N}{p_{i}}\right]+\sum_{1 \leq i_{1}<i_{2} \leq r}\left[\frac{N}{p_{i_{1}} p_{i_{2}}}\right]-\cdots+(-1)^{r}\left[\frac{N}{p_{1} \cdots p_{r}}\right] .
$$
(Proof : For each $i=1, \ldots, r$, let $M_{i}:=\left\{n \in \mathbb{N}^{*} \mid n \leq N\right.$ and $\left.p_{i} \mid n\right\}=\left\{p_{i}, 2 p_{i}, \ldots,\left[\frac{N}{p i}\right] \cdot p_{i}\right\}$ and hence $\left|M_{i}\right|=\left[\frac{N}{p_{i}}\right]$. For an index v-tuple $\left(i_{1}, \ldots, i_{v}\right)$ with $1 \leq i_{1}<i_{2}<\cdots<i_{v} \leq r$, we have $M_{i_{1}} \cap \cdots \cap M_{i_{v}}=$ $\left\{n \in \mathbb{N}^{*} \mid n \leq N\right.$ and $p_{i 1}\left|n, \ldots, p_{i_{n} u}\right| n$ equivalently $\left.p_{i_{1}} \cdots p_{i_{v}} \mid n\right\}$ and so $\left|M_{i_{1}} \cap \cdots \cap M_{i_{v}}\right|=\left[\frac{N}{p_{i_{1}} \cdots p_{i_{v}}}\right]$. This proves that $\pi(N)=N-1-\left|\cup_{i=1}^{r} M_{i}\right|+r$. Now use the Sylvester's sieve formula, see Exercise 4.3.)
5.10 Let $n \in \mathbb{N}^{*}$ and let p be a prime number. Show that
(a) The multiplicity of p in n ! is $v_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots$.

[^2]In particular, (Legendre's formula ${ }^{9}$) : $n!=\prod_{p \leq n} p^{\sum_{r \geq 1}\left[n / p^{r}\right]}$.
(Proof : Note that $\left[\frac{n}{p^{r}}\right]=0$ if $p^{r}>n$ and hence the sum on the RHS is really a finite sum. The assertion is proved by induction. It is trivial for 1 !. Assume $n>1$ and the assertion is true for $(n-1)$! and let $j=v_{p}(n)$, i.e., $p^{j} \mid n$ but $p^{j+1} \nmid n$. Since $n!=n \cdot(n-1)!$, it is enough to prove that $\sum\left[\frac{n}{p^{i}}\right]-\sum\left[\frac{(n-1)}{p^{i}}\right]=j$. But $\left[\frac{n}{p^{i}}\right]=\left[\frac{(n-1)}{p^{i}}\right]=\left\{\begin{array}{lll}1, & \text { if } & p^{i} \mid n, \\ 0, & \text { if } & p^{i} \mid n,\end{array}\right.$ and hence $\sum\left[\frac{n}{p^{i}}\right]=\sum\left[\frac{(n-1)}{p^{i}}\right]=j$. This proof is rather short and artificial.
Another proof : First note that $\left[\frac{n}{p^{r+1}}\right]=\left[\frac{\left[\frac{n}{p^{r}}\right]}{p}\right]$ for every $r \in \mathbb{N}$ (this follows easily from $\left[\frac{x}{m}\right]=\left[\frac{[x]}{m}\right]$ for all $x \in \mathbb{R}$ and all $m \in \mathbb{N}^{*}$.) Among the natural numbers $1<k<n$, those which are divisible by p are $p, 2 p, \ldots,\left[\frac{n}{p}\right] \cdot p$; among these that are divisible by p^{2} are $p^{2}, 2 p^{2}, \ldots,\left[\frac{n}{p^{2}}\right] \cdot p^{2}$; among these that are divisible by p^{3} are $p^{3}, 2 p^{3}, \ldots,\left[\frac{n}{p^{3}}\right] \cdot p^{3}$ and so on. This lead us to conclude that $\sum_{r \geq 1}\left[n / p^{r}\right]=$ $\sum_{k=1}^{n} v_{p}(k)=v_{p}(1 \cdot 2 \cdots n)=v_{p}(n!)$. - More generally : If $n_{i}, i \in I$, is a finite family of positive natural numbers, then the prime number p occurs in the product $\prod_{i \in I} n_{i}$ with the multiplicity $\sum_{k \in \mathbb{N}^{*}} v_{k}$, where for each $k \in \mathbb{N}^{*}, v_{k}$ is the number $i \in I$ for which n_{i} is divisible by p^{k}.)
(b) Show that $(2 n)!/(n!)^{2}$ is an even integer. Further, show that

$$
v_{p}\left((2 n)!/(n!)^{2}\right)=\sum_{k \geq 1}\left(\left[\frac{2 n}{p^{k}}\right]-2\left[\frac{n}{p^{k}}\right]\right)
$$

and if $n<p<2 n$, then show that $v_{p}\left((2 n)!/(n!)^{2}\right)=1$.
(c) Let $n=\left(r_{t}, \ldots, r_{0}\right)_{p}$ be the p-adic expansion of n, where $0 \leq r_{i}<p$ for all $i=0, \ldots, t$. Then show that

$$
v_{p}(n!)=\left(n-\sum_{i \geq 0} r_{i}\right) /(p-1)
$$

(Hint: The sum on the right hand side of part (a) can be easily computed by recursion :

$$
\left.\sum_{i \geq 1}\left[\frac{n}{p^{i}}\right]=\left(n-\sum_{i \geq 0} r_{i}\right) /(p-1) .\right)
$$

(d) $v_{p}\left(\left(p^{k}-1\right)!\right)=\left[p^{k}-(p-1) k-1\right] /(p-1)$.
$\left(\right.$ Hint : Use the identity $\left(p^{k}-1\right)=(p-1)\left(p^{k-1}+\cdots+p^{2}+p+1\right)$.)
(e) Find $v_{3}(80!)$ and $v_{7}(2400!)$.
(f) Find $n \in \mathbb{N}^{*}$ such that $v_{p}(n!)=100$. (Hint : For instance for $p=5$, begin by considering the equation $(n-1) / 4=100$.)
(g) Let $n, k \in \mathbb{N}^{*}, k \leq n$. Every prime power p^{r} that divides $\binom{n}{k}$ is $\leq n$. (Hint : Use the part (a).)

[^3](h) For each prime power $p^{\alpha}>1$ and every $k \in \mathbb{N}^{*}, 1 \leq k \leq p^{\alpha}$, show that
$$
v_{p}\left(\binom{p^{\alpha}}{k}\right)=p^{\alpha-v_{p}(k)} .
$$
5.11 (a) Compute the canonical prime decomposition of:
(i) 50!. (ii) the product $1 \cdot 3 \cdot 5 \cdots 99$ of the first 50 odd natural numbers.
(iii) the least common multiple $1 \mathrm{~cm}(1,2,3, \ldots, 50)$ the first 50 positive natural numbers.
(b) The product of two relatively prime natural numbers a and b is the n-th power of a natural number $n \in \mathbb{N}^{*}$ if and only if this hold separately for a and b as well.
*5.12 Congruences are often used to append extra check digit to identification numbers, in order to recognize transmission errors or forgeries. Personal identification numbers of some kind on passports, credit cards, bank accounts and other variety of settings.
(a) Some banks use eight digit identification number $a_{1} a_{2} \cdots a_{8}$ together with a final check digit a_{9}. The check digit is the weighted sum of the eight modulo 10, i. e. $a_{9} \equiv \sum_{i=1}^{8} x_{i} a_{i}(\bmod 10)$.
Suppose that $a_{9} \equiv 7 a_{1}+3 a_{2}+9 a_{3}+7 a_{4}+3 a_{5}+9 a_{6}+7 a_{7}+3 a_{8} \equiv(\bmod 10)$. Then:
(i) Verify that the identification number 815042169 have the check digit 9 . Obtain the check digits that should be appended to the numbers 55382006 and 81372439 .
(ii) The weighting scheme for assigning check digit detects any single-digit error ${ }^{10}$ in the identification number. For example, suppose that the digit a_{i} is replaced by a different digit a_{i}^{\prime}, then the difference between the correct a_{9} and the new check digit a_{9}^{\prime} is $a_{9}-a_{9}^{\prime} \equiv k\left(a_{i}-a_{i}^{\prime}\right)(\bmod 10)$, where $k=7,3$, or 9 depending position of a_{i}^{\prime}. If the valid number is 81504216 were incorrectly entered as 81504316 , then the check digit 8 would come up rather than the expected 9 .
(iii) The bank identification number $237 a_{4} 18538$ has an illegible fourth digit. Determine the value of the obscured digit.
(b) The International Standard Book Number (ISBN) used in many libraries consist of none digits $a_{1} a_{2} \cdots a_{8} a_{9}$ followed by a tenth check digit a_{10} which satisfies $a_{10} \equiv \sum_{i=1}^{9} i \cdot a_{i}(\bmod 10)$. Determine whether each of the ISBNs below correct:
(i) 0-07-232569-0 (United States) (ii) 91-7643-497-5 (Sweden) (iii) 1-56947-3034-10 (England).

When printing the ISBN $a_{1} a_{2} \cdots a_{8} a_{9}$ two unequal digits were transposed. Show that the check digits detected this error.
5.13 Let $n \in \mathbb{N}^{*}$ and let $+_{n}, \cdot{ }_{n}$ denote the binary operations on the quotient set \mathbb{Z}_{n} under the equivalence relation congruence modulo n, see Test-Exercise T5.35.
(a) We characterize the invertible elements in the multiplicative monoid $\left(\mathbb{Z}_{n},{ }_{n}\right)$ as follows: For $a \in \mathbb{Z}$, show that the following statements are equivalent:
(i) a and n, are relatively prime, i. e. $\operatorname{gcd}(a, n)=1$.
(ii) The element $[a] \in\left(\mathbb{Z}_{n}, \cdot{ }_{n}\right)$ is cancelative (or non-zero divisor in the ring $\left(\mathbb{Z}_{n},+_{n}, \cdot n\right)$), i. e. the left multiplication map $\lambda_{[a]}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n},[x] \mapsto[a] \cdot n[x]=[a x]$ is injective.
(iii) The element $[a] \in\left(\mathbb{Z}_{n}, \cdot{ }_{n}\right)$ is invertible (with respect to $\cdot{ }_{n}$), i. e. there exists $[b] \in \mathbb{Z}_{n}$ such that $[a] \cdot{ }_{n}[b]=[b] \cdot n[a]=[1]$.
(Hint : Use Bezout's Lemma, see Test-Exercise T5.16-(a) and also T5.19-(a). - Remark: The cardinality of the unit group $\#\left(\mathbb{Z}_{n}, \cdot n\right)^{\times}=\#\{r \in \mathbb{N} \mid 0 \leq r \leq n$ with $\operatorname{gcd}(r, n)=1\}$ is usually denoted by $\varphi(n)$. This defined a function $\varphi: \mathbb{N}^{*} \rightarrow \mathbb{N}, n \mapsto \varphi(n)$ called the Euler's totient function.)

[^4](b) Show that the commutative ring $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ is a field (i. e. every non-zero element $[a] \in \mathbb{Z}_{n}$ is invertible (with respect to the multiplication \cdot_{n}) if and only if n is a prime number.
5.14 Let p be a prime number.
(a) Let $r, k \in \mathbb{N}$ with $r<k<p$. show that p divides $\binom{p+r}{k}$. In particular, p divides $\binom{p}{k}$ for all $0<k<p$. (Hint : p divides the numerator $(p+r) \cdots(p+r-k+1)$, since $p+r-k+1<p<p+r$ and p does not divide the denominator k.)
(b) (Fermat's Little Theorem) For every natural number n, p divides $n^{p}-n$, i. e. $n^{p} \equiv n$ modulo p. (Hint : Use induction and the above part (b). Another proof can be given by using Test-Exercise T5.35-(d).)
(c) Let p and q be distinct prime numbers and let a be an integer with $a^{p} \equiv a(\bmod q)$ and $a^{q} \equiv a(\bmod p)$. Show that $a^{p q} \equiv a(\bmod p q)$.
(d) Let p and q be two distinct prime numbers. For every integer a, prove that
$$
a^{p q}-a^{p}-a^{q}+a \equiv 0(\bmod p q) .(\text { Hint }: \text { Use the Fermat's Little Theorem, see the part }
$$
(b).)
5.15 (a) (Wilson's $\mathrm{Theorem}{ }^{11}$) If p is a prime number, then $(p-1)!\equiv-1(\bmod p)$.
(b) The converse of Wilson's Theorem is also true: If $(n-1)$! $\equiv-1(\bmod n)$, then n must be a prime number. (Hint : If n is not prime, then n has a factor d with $1<d<n$. Further, $d \mid(n-1)$! and hence d divides $(n-1)!+1$ too, a contradiction.)
(c) Prove that:
(i) An integer $n>1$ is prime if and only if $(n-2)!\equiv 1(\bmod n)$.
(ii) If n is a composite number, then $(n-1)!\equiv 0(\bmod n)$ except when $n=4$.
(d) For a prime number p, prove the congruence $(p-1)!\equiv p-1(\bmod (1+2+\cdots+(p-1)))$.
(e) Let p be a prime number. For any integer a, prove the congruences
(i) $a^{p}+(p-1)!\cdot a \equiv 0(\bmod p)$.
(ii) $(p-1)!\cdot a^{p}+a \equiv 0(\bmod p)$.
(Hint : By Wilson's Theorem (see the part (a)) $a^{p}+(p-1)!\cdot a \equiv a^{p}-a(\bmod p)$.)
(f) Prove that the quadratic congruence $X^{2}+1 \equiv 0(\bmod p)$, where p is an odd prime, has a solution if and only if $p \equiv 1(\bmod 4)$.

Below one can see auxiliary results and (simple) Test-Exercises.

[^5]
Auxiliary Results/Test-Exercises

There is a dictum that anyone who desires to get at the roots of the subject should study its history. Endorsing this the pain is taken to fit historical remarks in the text whenever possible.

Abstract

The Theory of Numbers is concerned with properties on integers and more particularly with the positive integers (also known as the positive natural numbers) $1,2,3, \ldots$ The origin of this misnomer harks back to the early Greeks for whom the number meant positive integer and nothing else. Far from being a gift from Heaven, number theory has had a long and sometimes painful evolution. - Few words about the origin of number theory: The Theory of Numbers is one of the oldest branches of mathematics; its roots goes back to remote date. The Greeks were largely indebted to the Babylonians and ancient Egyptians for a core of information about the properties of natural numbers, the first rudiments of this theory are generally credited to Pythagoras ${ }^{13}$ and his disciples.

Plato ${ }^{14}$ said "God is a geometer"- Jacobi ${ }^{15}$ changed this to "God is a arithmatician". Then came Kronecker ${ }^{16}$ and fashioned the memorable expression "God created the natural numbers and all the rest is the work of man".

Felix Klein ${ }^{17}$ (1849-1925)

T5.1 (The set of Natural numbers -- Peano's axioms Natural numbers cane be defined axiomatically as follows:
A set of natural numbers \mathbb{N} is a set with special element 0 and there is a map $s: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}$ satisfying the following properties:
$\left(\mathrm{P}_{1}\right) s$ is injective.
$\left(\mathrm{P}_{2}\right)($ Induction-Axiom) Suppose that $M \subseteq \mathbb{N}$ is a subset such that $0 \in M$ and if $n \in M$, then $s(n) \in M$. Then $M=\mathbb{N}$.

[^6](Remark : These axioms are known as Peano's axioms and were introduced by Giuseppe Peano ${ }^{18}$ in the "Arithmetices Principia", Torino, 1889. Peano also showed how one can derive the entire arithmetic using these axioms.)
The axiom P_{2} is called the axiom of induction or induction-axiom. From this axiom it follows that the map $s: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}$ is surjective and hence it is bijective. Instead of $0, s(0), s(s(0)), s(s(s(0))), \ldots$, , one can simply write $0,1,2,3, \ldots$, .
With this one can immediately ask the following two fundamental questions:
(1) Does there exists such a system ($\mathbb{N}, 0, s$) which satisfy the axioms P_{1} and P_{2}, i. e. a model for natural numbers.
(2) If answer to the question (1) is yes, then ow many such models are there?

For these questions we consider the following concept (due to Dedekind, see the Footnote No. ${ }^{19}$) :

A set X is called (simple) infinite if there exists an injective map $f: X \rightarrow X$ which is not surjective. Then clearly (if it exists!) the set \mathbb{N} of natural numbers is a "smallest" simple infinite set. More deeper is the following theorem due to Dedekind: There exists a unique simple infinite set which is a model ($\mathbb{N}, 0, s$) for the set of natural numbers. We shall indicate the existence here and the unique ness is precisely formulated in Test-Exercise T5.8.
Start with the emptyset \emptyset and put:

$$
\begin{aligned}
& 0:=\emptyset, \\
& 1:=\{\emptyset\}=\{0\}=0^{+}, \\
& 2:=\{\emptyset\} \cup\{\{\emptyset\}\}=\{0,1\}=1^{+}, \\
& 3:=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}=\{0,1,2\}=2^{+} \\
& \text {and so on } \ldots \quad n:=\{0,1,2, \ldots, n-1\}=(n-1)^{+} .
\end{aligned}
$$

Now, take $\mathbb{N}:=\{0,1,2, \ldots\}$ and define $s: \mathbb{N} \rightarrow \mathbb{N}$ by $s(n):=n^{+}=n \cup\{n\}=\{0,1,2, \ldots, n\}$. It is easy to check that ($\mathbb{N}, 0, s$) satisfies the Peano's axioms P_{1} and P_{2}.
In terms of immediate successors the above can be written as: 1 is the immediate successor of 0,2 is the immediate successor of $1, \ldots, n^{+}$is the immediate successor of n for every $n \in \mathbb{N}$. Moreover, there is a unique relation \leq on \mathbb{N} (actually it is the inclusion relation \subseteq) which a total order on \mathbb{N} with the smallest element 0 . (Remark : This unique order \leq on \mathbb{N} is called the standard or usual order on \mathbb{N}. In Test-Exercise T5.2-(b), we shall prove that the ordered set (\mathbb{N}, \leq) is well-ordered, i. e. every non-empty subset $M \subseteq \mathbb{N}$ has the smallest element (in M).)

T5.2 We use the Induction-axiom to prove its following consequences:
(a) (First principle of induction) Using the third axiom of Peano prove the following: Suppose that for each natural number $n \in \mathbb{N}$, we have associated a statement $\mathrm{S}(n)$. Assume that the following conditions are satisfied :
(i) $\mathrm{S}(0)$ is true. The (Basis of Induction)
(ii) For every $n \in \mathbb{N}, \mathrm{~S}(n+1)$ is true whenever $\mathrm{S}(n)$ is true. The (Inductive step)

Then $\mathrm{S}(n)$ is true for all $n \in \mathbb{N}$. (Hint : Let $M:=\{n \in \mathbb{N} \mid \mathrm{S}(n)$ is true $\} \subseteq \mathbb{N}$. Then $0 \in M$ by the hypothesis (i). Furher, by hypothesis (ii) if $n \in M$, then $n+1 \in M$. Therefore $M=\mathbb{N}$ by the inductionaxiom. - Remark: The following variant is also used very often: Let $n_{0} \in \mathbb{N}$. Suppose that for every natural number $n \geq n_{0}$, we have associated a statement $\mathrm{S}(n)$. Assume that $\mathrm{S}\left(n_{0}\right)$ is true and for every

[^7]$n \geq n_{0}, \mathrm{~S}(n+1)$ is true whenever $\mathrm{S}(n)$ is true. Then $\mathrm{S}(n)$ is true for all $n \geq n_{0}$. For the proof consider the set $M:=\left\{n \in \mathbb{N} \mid n<n_{0}\right\} \cup\left\{n \in \mathbb{N} \mid n \geq n_{0}\right.$ and $\mathrm{S}(n)$ is true $\}$.)
(b) (Minimum Principle) Every non-empty subset M of \mathbb{N} has a smallest element, i.e., there exists an element $m_{0} \in M$ such that $m_{0} \leq m$ for all $m \in M$. (Hint : For $n \in \mathbb{N}$, let $S(n)$ be the following statement: If M contains a natural number m with $m \leq n$, then M has a smallest element. By using induction show that the statement $S(n)$ is true for all n. - Remark: The minimum principle for \mathbb{N} is also known as the well-ordering property of \mathbb{N}. Moreover, well-ordering property of \mathbb{N} is equivalent to the induction-axiom, see the part (c) below.)
(c) Deduce the induction-axiom from the well-ordering property of \mathbb{N}. (Hint : Suppose that $M \subset \mathbb{N}$ such that $0 \in M$ and if $n \in M$, then $n+1 \in M$. To prove that $M=\mathbb{N}$ or equivalently to prove that the complement $\mathbb{N} \backslash M=\emptyset$. If $\mathbb{N} \backslash M \neq \emptyset$, then by the minimal principle, it has a smallest element say n_{0}, i. e. $n_{0} \in \mathbb{N} \backslash M$ and $n_{0} \leq n$ for every $\mathbb{N} \backslash M$. But then $n_{0}-1 \in M$ and $n_{0} \notin M$ a contradiction to the hypothesis in the induction-axiom.)
(d) (Archimedean Property) For every pair of positive natural numbers a and b, there exists a positive natural number $n \in \mathbb{N}^{*}$ such that $n \cdot b \geq b$. (Remark : Note that we have assumed that the binary operations,$+ \cdot$ and the order relation \leq are defined on \mathbb{N}, see Test-Exercise T5.7-(d). Further, for $x, y \in \mathbb{N}$, note that $x \leq y$ if $y=x+z$ for some $z \in \mathbb{N}$. - Hint: Suppose that $b<n \cdot a$ for every $n \in \mathbb{N}$. Then $M:=\{b-n a \mid n \in \mathbb{N}\} \subseteq \mathbb{N}$ and clearly $b \in M$. Therefore by the Minimum Principle M has a smallest element, say $b-m \cdot a$. But then $b-(m+1) \cdot a \in M$ also and $b-(m+1) \cdot a=b-m \cdot a-a<b-m \cdot a$ a contradiction to the minimality of $b-m \cdot a$.)
(e) (Second principle of induction) Suppose that for each natural number $n \in \mathbb{N}$, we have associated a statement $\mathrm{S}(n)$. Assume that for every $n \in \mathbb{N}$, if the $\mathrm{S}(m)$ is true for all $m<n$, then $\mathrm{S}(n)$ is also true. Then $\mathrm{S}(n)$ is true for all $n \in \mathbb{N}$. (Hint : Let $M:=\{n \in \mathbb{N} \mid \mathrm{S}(n)$ is NOT true $\} \subseteq \mathbb{N}$. Then show that $M=\emptyset$.)

T5.3 (Some Arithmetic series) For all $n \in \mathbb{N}$, prove the following formulas by induction :
(a) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.
(b) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(c) $\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=\left(\sum_{k=1}^{n} k\right)^{2}$.
(d) $\sum_{k=1}^{n}(-1)^{k-1} k=\frac{1}{4}\left(1+(-1)^{n-1}(2 n+1)\right)$.
(e) $\sum_{k=1}^{n}(-1)^{k-1} k^{2}=(-1)^{n+1} \cdot \frac{n(n+1)}{2}$.
(f) $\sum_{k=1}^{n}(2 k-1)=n^{2}$.
(g) $\sum_{k=1}^{n}(2 k-1)^{2}=\frac{n}{3}\left(4 n^{2}-1\right)$.
(h) $\sum_{k=1}^{n} k(k+1)=\frac{1}{3} n(n+1)(n+2)$.
(i) $\sum_{k=1}^{n} \frac{1}{k(k+1)}=1-\frac{1}{n+1}$.
(j) $\sum_{k=1}^{n} \frac{1}{4 k^{2}-1}=\frac{1}{2}\left(1-\frac{1}{2 n+1}\right)$.
(k) $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}=\frac{1}{4}-\frac{1}{2(n+1)(n+2)}$.
(l) $\sum_{k=1}^{n} \frac{k-1}{k(k+1)(k+2)}=\frac{1}{4}-\frac{2 n+1}{2(n+1)(n+2)}$.

T5.4 For all $n \geq 1$ prove:
(a) $\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{1}{2}\left(1+\frac{1}{n}\right)$.
(b) $\prod_{k=2}^{n}\left(1-\frac{2}{k(k+1)}\right)=\frac{1}{3}\left(1+\frac{2}{n}\right)$.
(c) $\prod_{k=2}^{n} \frac{k^{3}-1}{k^{3}+1}=\frac{2}{3}\left(1+\frac{1}{n(n+1)}\right)$.

T5.5 (Finite geometric series) For every real (or complex) number $q \neq 1$ and every $n \in \mathbb{N}$, prove that:
(a) $\sum_{k=0}^{n} q^{k}=\frac{q^{n+1}-1}{q-1}$
(b) $\prod_{k=0}^{n}\left(1+q^{2^{k}}\right)=\frac{q^{2^{n+1}}-1}{q-1}$.
(c) $\sum_{k=1}^{n} k q^{k}=\frac{n q^{n+2}-(n+1) q^{n+1}+q}{(q-1)^{2}}$.

T5.6 For all $n \geq 1$ prove:
(a) 5 divides $2^{n+1}+3 \cdot 7^{n}$.
(b) 3 divides $n^{3}+2 n$.
(c) 6 divides $n^{3}-n$.
(d) 7 divides $5^{2 n+1}+2^{2 n+1}$.
(e) 30 divides $n^{5}-n$.
(f) 3 divides $2^{2 n}-1$.
(g) 15 divides $3 n^{5}+5 n^{3}+7 n$.
(h) 133 divides $11^{n+2}+12^{2 n+1}$.
(i) 5 divides $3^{n+1}+2^{3 n+1}$.

T5.7 Proofs by induction are very common in Mathematics and are undoubtedly familiar to the reader. One also encounters quite frequently - without being conscious of it - definitions by induction or recursion. For example, powers of a non-zero real number a^{n} are defined by $a^{0}=$ $1, a^{r+1}=a^{r} a$. Definition by induction is not as trivial as it may appear at first glance. This can be made precise by the following well-known recursion theorem proved by Dedekind ${ }^{19}$:
(a) (Recursion Theorem) Let X be a non-empty set and let $F: X \rightarrow X$ be a map. For $a \in X$, there exists a unique (sequence in X) map $f: \mathbb{N} \longrightarrow X$ such that (i) $f(0)=a$ and (ii) $f(s(n))=F(f(n))$ for all $n \in \mathbb{N}$, i.e., the following diagram is commutative.

(Hint : Uniqueness of f is clear by induction. For existence, put $I_{n}:=\{0,1, \ldots, n\}$. By induction show that the following statement $\mathrm{S}(n)$ is true for all $n \in \mathbb{N}$. $\mathrm{S}(n)$: There exists a unique map $f_{n}: I_{n} \rightarrow X$ such that $f_{n}(0)=a$ and $f_{n}(r+1)=F\left(f_{n}(r)\right)$ for every $r \in \mathbb{N}$ with $r<n$. For arbitrary natural numbers $m, n \in \mathbb{N}$ with $m \leq n$, we then have $f_{m}=f_{n} \mid I_{m}$. Therefore $f_{n}(n)=F\left(f_{n}(n-1)\right)=F\left(f_{n-1}(n-1)\right)$ for all $n \geq 1$. Now, define f by $n \mapsto f_{n}(n)$.) (Remark : One might be tempted to say that one can define inductively by conditions (i) and (ii). However, this does not make sense since in talking about a function on \mathbb{N} we must have an à priori definition of $f(n)$ for every $n \in \mathbb{N}$. A proof of the existence of f must use all of Peano's axioms. See the example illustrating this in the part (b) below.)
(b) (Henkin) Let $N=\{0,1\}$ and define the map $s_{N}: N \rightarrow N$ by $s_{N}(0):=1$ and $s_{N}(1):=1$. Show that $\left(N, s_{N}\right)$ satisfies Peano's axioms P_{2} but not P_{1}. Show that the recursion theorem breaks down for $\left(N, s_{N}\right)$. (Hint : Let $F: N \rightarrow N$ be the map defined by $F(0)=1$ and $F(1)=0$. Show that there is no map $f: N \rightarrow N$ satisfying $f(0)=0$ and $f\left(s_{N}(a)\right)=F(f(a))$ for all $a \in N$.)
(c) (Iteration of maps) Let X be a set, $\Phi: X \rightarrow X$ be a map, i.e., $\Phi \in X^{X}$. and let $F: X^{X} \rightarrow X^{X}$ be the map defined by $\Psi \mapsto \Phi \circ \Psi$. Then there exists a sequence $f: \mathbb{N} \rightarrow X^{X}$ in X^{X} such that $f(0)=\operatorname{id}_{X}$ and $f(n+1)=F(f(n))=\Phi \circ f(n)$ for all $n \in \mathbb{N}$. For $n \in \mathbb{N}$ the map $f(n): X \rightarrow X$ is called the n-th iterate of Φ and is denoted by Φ^{n}. Note that $\Phi^{0}=\mathrm{id}_{X}, \Phi^{n+1}=\Phi^{n} \circ \Phi$ for all $n \in \mathbb{N}$. Further, $\left(\mathrm{id}_{X}\right)^{n}=\mathrm{id}_{X}$ for $n \in \mathbb{N}$.
(d) Show that the addition $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ and the multiplication $\cdot: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ on IN can be defined by using the recursion theorem. Further, verify the standard properties + and \cdot,

[^8]e.g., existence of identity element, associativity, commutativity, distributive laws, cancelation laws, monotonicity (with respect to the standard order \leq etc. (Hint : For + apply recursion theorem to $X=$ $\mathbb{N} F=s$ and $a=m \in \mathbb{N}$ to get the unique map $s_{m}: \mathbb{N} \rightarrow \mathbb{N}$ such that $s_{m}(0)=m$ and $s_{m}(s(n))=s\left(s_{m}(n)\right.$ for all $n \in \mathbb{N}$. Now, define $m+n:=s_{m}(n)$. Note that $m+0=s_{m}(0)=m$ and $m+s(n)=s_{m}(s(n))=s\left(s_{m}(n)\right)$. Further, note that for $m \in \mathbb{N}$, the map $s_{m}: \mathbb{N} \rightarrow \mathbb{N}$ is the m-th iterate (see b)) $s^{m}=\underbrace{s \circ s \circ \cdots \circ s}_{m \text {-times }}$ of the successor map s. For $m, n \in \mathbb{N}$, define the multiplication $m \cdot n:=s_{n}^{m}(0)=\left(s^{n}\right)^{m}(0)$.)
(e) Show that there exists a binary operation of exponentiation (or n-th power of m) $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N},(m, n) \mapsto m^{n}$. Further, state and verify the standard laws of exponents. (Hint : For $m \in \mathbb{N}$, let $p_{m}: \mathbb{N} \rightarrow \mathbb{N}$ be the multiplication by m. Define $m^{n}:=p_{m}^{n}(1)$.)
(f) Let X be a set, $a \in X, Y:=\bigcup_{n \in \mathbb{N}} X^{n}$ and let $G: Y \rightarrow X$ be a map. Then there exists a unique sequence $g: \mathbb{N} \rightarrow X$ such that,$g(0)=a$ and $g(n+1)=G(g(0), g(1), \ldots, g(n))$ for all $n \in \mathbb{N}$. (Hint : Define the map $F: Y \rightarrow Y$ be $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, G\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right)$. Then by recursion theorem there exists a unique map $f: \mathbb{N} \rightarrow Y$ such that $f(0)=a$ and $f(n+1)=F(f(n))$ for all $n \in \mathbb{N}$. Now, define $g: \mathbb{N} \rightarrow X$ by $n \mapsto f(n)(n)$.

T5.8 (Uniqueness of the model (N, $0, s)$) Use Recursion Theorem (see Test- Exercise T5.7-(a)) to show that the model ($\mathbb{N}, 0, s$) of a set natural numbers (defined in Test-Exercise T5.1) is essentially unique. More precisely: Let $\widetilde{\mathbb{N}}$ be a non-empty set, $\widetilde{0} \in \widetilde{\mathbb{N}}$ and let $\widetilde{s}: \widetilde{\mathbb{N}} \rightarrow \widetilde{\mathbb{N}}$ be a map. Suppose that for each map $F: X \rightarrow X$ and each $a \in X$, there exists a unique map $\widetilde{f}: \widetilde{\mathbb{N}} \rightarrow X$ such that (i) $\widetilde{f}(\widetilde{0})=a$ and (ii) $\widetilde{f}(\widetilde{s}(n))=F(\widetilde{f}(n))$ for all $n \in \mathbb{N}$, i.e., the diagram

is commutative. Then there exists a unique bijective map $\Phi: \mathbb{N} \rightarrow \widetilde{\mathbb{N}}$ such that $\Phi(0)=\widetilde{0}$ and $\Phi(s(n))=\widetilde{s}(\Phi(n))$ for all $n \in \mathbb{N}$, i.e., the diagramm

is commutative.
T5.9 In this exercise we list some more useful formulations of recursions: Let X and Y be sets.
(a) (Double Recursion) Let $a \in X$ and let $F, G: X \rightarrow X$ be two maps. Then there exists a unique map $g: \mathbb{N} \times \mathbb{N} \rightarrow X$ such that $g((0,0))=a$,

$$
g((0, n+1))=F(g(0, n)) \text { for all } n \in \mathbb{N} \text { and } g((m+1, n))=G(g(m, n)) \text { for all } m, n \in \mathbb{N} .
$$

Use double recursion to obtain directly the operations of addition + and \cdot on \mathbb{N}.
(Hint: By Recursion Theorem (Test-Exercise T5.7-(a)) there exists a map $\Psi_{0}: \mathbb{N} \rightarrow X$ such that $\Psi_{0}(0)=0$ and $\Psi_{0}(n+1)=F\left(\Psi_{0}(n)\right)$ for all $n \in \mathbb{N}$. Now, apply once again the Recursion Theorem to the map $\Phi: X^{\mathbb{N}} \rightarrow X^{\mathbb{N}}, \varphi \mapsto G \circ \varphi$ and $\Psi_{0} \in \mathbb{X}^{\mathbb{N}}$, to get the map $\Psi: \mathbb{N} \rightarrow X^{\mathbb{N}}$ such that $\Psi(0)=\Psi_{0}$ and $\Psi(m+1)=$ $\Phi(\Psi(m))$. Finally, define the map $g: \mathbb{N} \times \mathbb{N} \rightarrow X$ by $g(m, n):=\Psi(m)(n)$.)
(b) (Simultaneous Recursion) Let $H: X \times Y \rightarrow X, K: X \times Y \rightarrow Y$ be given maps. For $(a, b) \in X \times Y$, there exist a unique maps $f: \mathbb{N} \rightarrow X$ and $g: \mathbb{N} \rightarrow Y$ such that $f(0)=a$, $g(0)=b$ and $f(n+1)=H(f(n), g(n)), g(n+1)=K(f(n), g(n))$ for all $n \in \mathbb{N}$. (Hint : Apply recursion theorem to the set $X \times Y$, the map $F:=H \times K: X \times Y \rightarrow X \times Y,(x, y) \mapsto(H(x, y), K(x, y))$ and
$(a, b) \in X \times Y$, to get the map $G: \mathbb{N} \rightarrow X \times Y$ such that $G(0)=(a, b)$ and $G(n+1)=F(G(n))$ for all $n \in \mathbb{N}$. Now, take $f=p \circ G$ and $q \circ G$, where $p: X \times Y \rightarrow X$ (resp. $q: X \times Y \rightarrow Y$) is the first (resp. second) projection. Using the properties of G check that f and g have the required properties.)
(c) (Primitive recursion) Let $a \in X$ and let $H: X \times \mathbb{N} \rightarrow X$ be a given map. Show that there exists a unique map $f: \mathbb{N} \rightarrow X$ such that $f(0)=a$ and $f(n+1)=H(f(n), n)$ for all $n \in \mathbb{N}$. (Hint : Apply the simultaneous recursion to $Y=\mathbb{N}, b=0$ and the map $K: X \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $(x, n) \mapsto n+1$.
(d) Construct a map $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(0)=1$ and $f(n)=1 \cdot 2 \cdots(n-1) \cdot n$ (the product of the first n non-zero natural numbers) for each $n>0$. (Hint : Use the primitive recursion to $X=\mathbb{N}$, $a=1$ and $H: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ the map defined by $H(m, n)=(n+1) \cdot m$. - Remark: For each $n \in \mathbb{N}$, the natural number $F(n)$ is called factorial n and is denoted by $n!$.)

T5.10 (n-ary operations - generalized sums and products) Let $n \in \mathbb{N}$ and let $X^{\{1, \ldots, n\}}:=X^{n}:=\underbrace{X \times \cdots \times X}_{n \text {-times }}$. A map $f: X^{n} \rightarrow X$ is called an n-ary operation on X.
Let $*: X \times X \rightarrow X$ be a binary operation on X. Then there exists a unique family $f_{n}: X^{n} \rightarrow X$, $n \in \mathbb{N}^{*}$ of n-ary operation on X such that : $f_{1}=\mathrm{id}_{X}, f_{2}=*$ and
$f_{n+1}\left(\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)\right)=f_{n}\left(\left(x_{1}, \ldots, x_{n}\right)\right) * x_{n+1}$ for all $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in X^{n+1}$ and for all $n \geq 1$.
(a) Applying the above result to the binary operation of addition + on \mathbb{N}, we have a unique family $f_{n}: \mathbb{N}^{n} \rightarrow X, n \in \mathbb{N}^{*}$ of n-ary operation on \mathbb{N}.
For $n \in \mathbb{N}$ and $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}, f_{n}\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is denoted by $\sum_{i=1}^{n} x_{i}$. Therefore $\sum_{i=1}^{0} x_{i}=0$ and $\sum_{i=1}^{n+1} x_{i}=\left(\sum_{i=1}^{n} x_{i}\right)+x_{n+1}$ for all $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{N}^{n+1}$ and for all $n \geq 1$.
(b) Applying the above result to the binary operation of multiplication \cdot on \mathbb{N}, we have a unique family $p_{n}: \mathbb{N}^{n} \rightarrow X, n \in \mathbb{N}^{*}$ of n-ary operation on \mathbb{N}.
For $n \in \mathbb{N}$ and $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}, p_{n}\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is denoted by $\prod_{i=1}^{n} x_{i}$. Therefore $\prod_{i=1}^{0} x_{i}=1$ and $\prod_{i=1}^{n+1} x_{i}=\left(\prod_{i=1}^{n} x_{i}\right)+x_{n+1}$ for all $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{N}^{n+1}$ and for all $n \geq 1$.
(c) For $n \in \mathbb{N},\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and any permutation σ of $\{1, \ldots, n\}$, prove that $\sum_{i=1}^{n} x_{i}=$ $\sum_{i=1}^{n} x_{\sigma(i)}$ and $\prod_{i=1}^{n} x_{i}=\prod_{i=1}^{n} x_{\sigma(i)}$.
(d) Applying the above result to the binary operation of composition X^{X}, we have a unique family $\Phi_{n}:\left(X^{X}\right)^{n} \rightarrow X^{X}, n \in \mathbb{N}^{*}$ of n-ary operation on X^{X}. For $n \in \mathbb{N}$ and $\left(f_{1}, \ldots, f_{n}\right) \in\left(X^{X}\right)^{n}$, $\Phi_{n}\left(\left(f_{1}, \ldots, f_{n}\right)\right)$ is denoted by $f_{1} \circ f_{2} \circ \cdot \circ f_{n}$. In particular, if $f_{i}=f$ for every $i \geq 1$, then for $n \geq 1 \Phi_{n}((f, f, \ldots, f))=f^{n}$ is the n-th iterate of f (see also Test-Exercise T5.7-(c)).)

T5.11 (Fibonacci ${ }^{20}$ Sequence) The sequence $f_{n}, n \in \mathbb{N}$, defined recursively by $f_{0}=0$, $f_{1}=1$ and $f_{n+1}=f_{n}+f_{n-1}$ for all $n \geq 1$, is called the Fibonacci Sequence ${ }^{21}$ and its n-th term f_{n} is called the n-th Fibonacci number. The first few terms of the Fibonacci Sequence are $0,1,2,3,5,8,13,21,34,55, \ldots$ (Remark : The Recursion Theorem (see Test-Exercise T5.7-(a)) cannot directly justify its existence, for the value f_{n+1} for $n \geq 1$ depend not only on f_{n}, but upon f_{n-1} as well. However, we can justify the simultaneous existence of the two sequences f_{n} and g_{n} satisfying :
$\begin{cases}f_{0}=0, f_{n+1}=f_{n}+g_{n}, & \text { for } \quad n \geq 0, \\ g_{0}=1, g_{n+1}=f_{n}, & \text { for } \quad n \geq 0 .\end{cases}$

[^9]For this we can use the Simultaneous Recursion (see Test-Exercise T5.9-(b)) by taking $(a, b)=(0,1), H$: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is the addition on \mathbb{N} and $K: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is the first projection.)
(a) For the n-th Fibonacci number f_{n}, prove the following explicit (Binet's Formula ${ }^{22}$):

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

(b) Prove the following equalities by induction :
(i) $f_{n+m}=f_{n-1} f_{m}+f_{n} f_{m+1}$ for all $m \geq 0$ and all $n \geq 1$.

In particular, $f_{2 n}=f_{n}\left(f_{n-1}+f_{n+1}\right)=f_{n+1}^{\overline{2}}-f_{n-1}^{2}$ for all $n \geq 1$.
(ii) $f_{n}^{2}=f_{n-1} f_{n+1}+(-1)^{n+1}$ for all $n \geq 1$.
(iii) $\varphi^{n}=f_{n-1}+f_{n} \varphi$, for all $n \in \mathbb{N}^{*}$, where $\varphi:=(1+\sqrt{5}) / 2$. (Remark : Using this equality we can define the Fibonacci-numbers f_{n} for all $n \in \mathbb{Z}$. We then have $f_{n}=f_{n-1}+f_{n-2}$ for all $n \in \mathbb{Z}$.)
(iv) $f_{n}+f_{n+1}+f_{n+3}=f_{n+4}$. (v) $f_{2}+f_{4}+\cdots+f_{2 n}=f_{2 n+1}-1$.
(vi) $f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}$.
(vii) $f_{1}-f_{2}+f_{3}-\cdots+(-1)^{n} f_{n+1}=(-1)^{n} f_{n}+1$.
(viii) $f_{n}<(5 / 3)^{n}$.
(ix) $2^{n} f_{n}<(\sqrt{5}+1)^{n}$.
(c) $f_{n}=\left(a^{n}-b^{n}\right) / \sqrt{5}$, where a and b are the positive and negative zeros of the quadratic equation $X^{2}-X-1=0$. (Hint : Use Binet's Formula.)
(d) (Lucas ; 1876) prove the following formula for the Fibonacci numbers in terms of binomial coefficients:

$$
f_{n}=\binom{n-1}{0}+\binom{n-2}{1}+\cdots+\binom{n-\left[\frac{n-1}{2}\right.}{\left[\frac{n-1}{2}\right]-1}+\binom{n-\left[\frac{n-1}{2}\right]-1}{\left[\frac{n-1}{2}\right.} .
$$

(Hint : Use induction with $f_{n}=f_{n-1}+f_{n-2}$ and $\binom{m}{k}=\binom{m-1}{k}+\binom{m-1}{k-1}$.)
(e) For $n \geq$, prove the formulas:
$f_{2 n}=\binom{n}{1} \cdot f_{1}+\binom{n}{2} \cdot f_{2}+\cdots+\binom{n}{n} \cdot f_{n}$ and $-f_{n}=-\binom{n}{1} \cdot f_{1}+\binom{n}{2} \cdot f_{2}+\cdots+(-1)^{n}\binom{n}{n} \cdot f_{n}$
(Hint : Use the Binet's formula and the Binomial Theorem $(1+X)^{n}=\sum_{k=0}^{n}\binom{n}{k} X^{k}$.)
(f) $\mathfrak{A}^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$, where $\mathfrak{A}:=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
(g) $\#\left(\mathfrak{F}_{n}\right)=f_{n+2}$, where $\mathfrak{F}_{n}:=\{A \in \mathfrak{P}(\{1,2, \ldots, n\}) \mid\{i, i+1\} \nsubseteq A$ for every $1 \leq i \leq n-1\}$.

T5.12 Let X be a non-empty set.
(a) If X is not finite, then show that there exists an injective map $\mathbb{N} \rightarrow X$. (Hint : Consider the set $\mathfrak{P}_{\mathrm{f}}(X):=\{A \in \mathfrak{P}(X) \mid A$ is finite $\}$ of all finite subsets of X. Then for every $A \in \mathfrak{P}_{\mathfrak{f}}(X)$, the complement $X \backslash A$ is a non-empty subset of X and by the axiom of choice there exists a choice function $g: \mathfrak{P}_{\mathrm{f}}(X) \rightarrow$ $\bigcup_{A \in \mathfrak{P}_{\mathrm{f}}(X)}(X \backslash A)$, i.e., $g(A) \in X \backslash A$ for every $A \in \mathfrak{P}_{\mathrm{f}}(X)$. Now, apply recursion theorem to the map F : $\mathfrak{P}_{\mathrm{f}}(X) \rightarrow \mathfrak{P}_{\mathrm{f}}(X)$ defined by $A \mapsto A \cup\{g(A)\}$, to get a sequence $f: \mathbb{N} \rightarrow \mathfrak{P}_{\mathrm{f}}(X)$ in $\mathfrak{P}_{\mathrm{f}}(X)$ such that $f(0)=\emptyset$ and $f(n+1)=F(f(n))$ for all $n \geq 1$. Then $x_{n}:=g(f(n)) \notin f(n) \subseteq\left\{x_{0}, \ldots, x_{n-1}\right\}$. Therefore the map $\mathbb{N} \rightarrow X, n \mapsto x_{n}$ is injective.)
(b) Show that the following statements are equivalent:
(i) X is not finite. (ii) There exists a proper subset $Y \subsetneq X$ with a bijective map $Y \rightarrow X$.
(Hint : Use part (a). - Remark: Dedekind defined infinite sets using the condition (ii).)

[^10]T5.13 For the recursively defined sequences $\left(a_{n}\right)$ in the parts (a), (b), (c) below, prove the given explicit representations.
(a) $a_{0}=2, a_{n}=2-a_{n-1}^{-1}, n \geq 1$. Then $a_{n}=(n+2) /(n+1)$ for all $n \in \mathbb{N}$.
(b) $a_{0}=0, a_{1}=1, a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n-2}\right), n \geq 2$. Then $a_{n}=\frac{2}{3}\left(1-(-1)^{n} \frac{1}{2^{n}}\right)$ for all $n \in \mathbb{N}$.
(c) $a_{0}=1, a_{n}=1+a_{n-1}^{-1}, n \geq 1$. Then $a_{n}=f_{n+2} / f_{n+1}$ for all $n \in \mathbb{N}$, where for $k \in \mathbb{N}, f_{k}$ is the k-th Fibonacci-number (see Test-Exercise T5.11).
(d) $a_{0}=1, a_{n}=\sum_{k=0}^{n-1} a_{k}, n \geq 1$. Then $a_{n}=2^{n-1}$ for all $n \geq 1$.

T5.14 (Division Algorithm) Let $a, b \in \mathbb{Z}$ with $b \geq 1$. Then there exists unique integers q and r such that $a=q b+r$ with $0 \leq r<b$. Moreover, in the case $a \geq 0$, we have $q \geq 0$.

- The integers q and r are called quotient and remainder, respectively, in the division of a by b. (Existence of q and r : The subset $A:=\{x \in \mathbb{N} \mid x=a-z b$ with $z \in \mathbb{Z}\} \subseteq \mathbb{N}$ is non-empty : if $a \geq 0$, then $a \in A$: if $a<0$, then $a-a b=a(1-b) \geq 0$ and hence $a-a b \in A$. Therefore by the Minimum Principle A has a minimal element r. Then $r=a-q b \geq 0$ for some $q \in \mathbb{Z}$. Further, $r<b$; otherwise $a-(q+1) b=r-b \geq 0$ and hence $r-b \in A$ a contradiction to the minimality of r. Therefore $a=q b+r$ is the required equation. If $a \geq 0$, then $q \geq 0$; otherwise $q \leq-1$, i. e., $-q \geq 1$ and $r=a-q b \geq b$ a contradiction. Uniqueness of q and r : If $a=q b+r=q^{\prime} b+r^{\prime}$ with $q, q^{\prime}, q, r^{\prime} \in \mathbb{Z}$ with $0 \leq r, r^{\prime}<b$. Then $r-r^{\prime}=\left(q^{\prime}-q\right) b$ and so $b \mid\left(r-r^{\prime}\right)$. But since $0 \leq r, r^{\prime} \leq b$ we have $-b \leq r-r^{\prime} \leq b$ and hence $r-r^{\prime}=0$, i.e., $r^{\prime}=r$. Now from $\left(q^{\prime}-q\right) b=0$ and $b \neq 0$, it follows that $q^{\prime}=q$.)

T5.15 (Divisibility) An integer d is called a divisor of $a \in \mathbb{Z}$ in \mathbb{Z}, and is denoted by $d \mid a$, if there exists $v \in \mathbb{Z}$ such that $a=d v$. In this case we also say that d divides a or a is a multiple of d (in \mathbb{Z}). If d is not a divisor of a, then we write $d \nmid a$. If $0 \neq d$ is a divisor of a, then $v \in \mathbb{Z}$ in the equation $a=d v$ is uniquely determined by the cancelation law. An integer $a, \in \mathbb{Z}$ is called even (respectively odd) if $2 \mid a$ (respectively, $2 \nmid a$), i. e., a is of the form $2 v$ (respectively, $2 v+1$).
(a) The divisibility defines a relation on \mathbb{Z} and it satisfies the following basic rules: For all $a, b, c, d \in \mathbb{Z}$, we have :
(i) (Reflexivity) $a \mid a$.
(ii) (Transitivity) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(iii) If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
(iv) If $a \mid b$ and $a \mid c$, then $a \mid(x b+y c)$ for all $x, y \in \mathbb{Z}$.
(Remarks: The rule (iii) does not hold if one replaces $a c$ (respectively, $b d$) by $a+c$ (respectively, $b+d$). The number 0 is divisible by every integer $d \in \mathbb{Z}$, since $0=d \cdot 0$; this is the only case of an integer which has infinitely many distinct divisors. This is proved in the part b) below which is an important connection between divisibility relation \mid and the (standard) order \leq on \mathbb{N}.)
(b) Let $a \in \mathbb{Z}, a \neq 0$ and let $d \in \mathbb{Z}$ be a divisor of a. Then : $1 \leq|d| \leq|a|$. In particular, every non- zero integer a has at most finitely many divisors.
(c) Let $a, d \in \mathbb{Z}, a>0, d>0$. If $d \mid a$ and $a \mid d$ then $d=a$. (Remarks : Every integer a has the four (distinct) divisors $a,-a, 1,-1$; these are called the trivial divisors of a; other divisors are called proper divisors of a. Therefore from b) it follows that: If d is a proper divisor of $a \neq 0$, then $1<|d|<|a|$. Since $a=d v$ if and only if $-a=d(-v)$, the integers a and $-a$ have the same divisors. Therefore, since for every integer a, exactly one of a or $-a$ is a natural number, for the divisibility questions, we may without loss of generality assume that $a \in \mathbb{N}$. Further, if d is a divisor of a, then $-d$ is also divisor of a (since if $a=d v$ with $v \in \mathbb{Z}$, then $a=(-d)(-v)$) Therefore one knows all divisors of an integer a if
one knows all positive divisors of $|a|$. On this basis many considerations in number theory can be reduced to the set \mathbb{N}^{*} of positive integers. See for example, $\tau(n)$ and $\sigma(n), n \in \mathbb{N}^{*}$ in Test-Exercise T5.32)

T5.16 (GCD) For an integer $a \in \mathbb{Z}$, let $\mathrm{D}(a)$ denote the set of all positive divisors of a. Then 1 and $a \in \mathrm{D}(a) ; \mathrm{D}(a)=\mathbb{N} \Longleftrightarrow a=0$; if $a \neq 0$, then $\mathrm{D}(a)$ is a finite subset of \mathbb{N}. For $a, b \in \mathbb{Z}$, the intersection $\mathrm{D}(a) \cap \mathrm{D}(b)$ is precisely the set of all common divisors of a and b. Moreover, if $(a, b) \neq(0,0)$, then $\mathrm{D}(a) \cap \mathrm{D}(b)$ is a finite subset of \mathbb{N} and hence it has a largest element; this element is called the greatest common divisor of a and b and is denoted by $\operatorname{gcd}(a, b)$. Therefore for $a, b \in \mathbb{Z}$ with $(a, b) \neq(0,0)$, the $\operatorname{gcd}(a, b)$ is the positive integer d satisfying :
(i) $d \mid a$ and $d \mid b$;
(ii) if c is a positive integer with $c \mid a$ and $c \mid b$, then $c \leq d$.

We put $\operatorname{gcd}(0,0):=0$.
(a) (Bezout's Lemma ${ }^{23}$) For integers $a, b \in \mathbb{Z}$ with $(a, b) \neq(0,0)$ there exists integers $s, t \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=s a+t b$. (Hint : Let $M:=\left\{u a+v b \mid u, v \in \mathbb{Z}\right.$ and $\left.u a+v b \in \mathbb{N}^{*}\right\}$ be the set of all positive linear combinations of a and b. Then both $|a|,|b| \in M$ and hence by the Minimum Principle T5.2-(b), M contains a smallest element, say $d=s a+t b, s, t \in \mathbb{Z}$. Show that $a=\operatorname{gcd}(a, b)$. See also Test-Exercise T5.19-(b).)
Deduce that:
(i) For two non-zero integers $a, b \in \mathbb{Z}^{*}$ with $(a, b) \neq(0,0)$, show that the set $\{s a+t b \mid s, t \in \mathbb{Z}\}$ is precisely the set of all multiples of $d=\operatorname{gcd}(a, b)$.
Two integers $a, b \in \mathbb{Z}$ with $(a, b) \neq(0,0)$ are said to be relatively prime if $\operatorname{gcd}(a, b)=1$, equivalently, there exist integers $s, t \in \mathbb{Z}$ such that $1=s a+t b$.
(ii) If $d=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}(a / d, b / d)=1$, i.e., a / d and b / d are relatively prime.
(iii) If $a, b, c \in \mathbb{Z}$ and $a \mid c$ and $b \mid c$ with $\operatorname{gcd}(a, b)=1$, then $a b \mid c$. (Hint : Use Bezout's Lemma.)
(iv) (Euclid's Lemma) If $a, b, c \in \mathbb{Z}$ and $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$. (Hint : By Bezout's Lemma, there exist integers $s, t \in \mathbb{Z}$ such that $1=s a+t b$ and hence a divides $s a c+t b c=c$. See also Test-Exercise T5.19-(d).)
(v) For integers $a, b \in \mathbb{Z}$ with $(a, b) \neq(0,0)$, a positive integer d is a gcd of a and b if and only if (i) $d \mid a$ and $d \mid b$ and (ii) whenever a positive integer c divides both a and b, then $c \mid d$. (Hint: Use the part (ii). - Remark : The assertion (vi) often serves as a definition of $\operatorname{gcd}(a, b)$. The advantage is the order relationship \leq is not involved.)
(vi) $\mathrm{D}(a) \cap \mathrm{D}(b)=\mathrm{D}(\operatorname{gcd}(a, b))$.
(vii) For integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and $a=q b+r, q, r \in \mathbb{Z}$, show that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
(b) (Rules for GCD) For integers $a, b, c \in \mathbb{Z}$, we have:
(i) $\operatorname{gcd}(a, a)=|a|$.
(ii) $a \mid b \Longleftrightarrow a=\operatorname{gcd}(a, b)$.
(iii) (Commutativity) $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
(iv) (Associativity) $\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.
(v) (Distributivity) $\operatorname{gcd}(c a, c b)=|c| \operatorname{gcd}(a, b)$. (vi) (Product formula) $\operatorname{gcd}(a b, c)=\operatorname{gcd}(\operatorname{gcd}(a, c) b, c)$.
(Remark : These rules are elementary to prove, but gives unwieldy impression; probably because of the unaccountability of the classical notation gcd. If instead of gcd one uses an elegant symbol, for example, $a \sqcap b:=\operatorname{gcd}(a, b)$, then these rules are more suggestive :
(i) $a \sqcap a=|a|$;
(ii) $a \mid b \Longleftrightarrow a=a \sqcap b ;$

[^11](iii) (Commutativity) $a \sqcap b=b \sqcap a$;
(v) (Distributivity) $(c \cdot a) \sqcap(c \cdot b)=|c| \cdot(a \sqcap b)$;
(iv) (Associativity) $(a \sqcap b) \sqcap c=a \sqcap(b \sqcap c)$;
(vi) (Product formula) $(a \cdot b) \sqcap c=((a \sqcap c) \cdot b) \sqcap c$;

The use of the terms "associativity" and "distributivity" is immediately clear. This example shows the importance of the good notation; unfortunately in literature till today everybody use the traditional notation $\operatorname{gcd}(a, b)$.)
(c) For positive natural numbers $a, b, c, d, m, n \in \mathbb{N}^{*}$, show that :
(i) $\operatorname{gcd}(a, 1)=1$.
(ii) $\operatorname{gcd}(a, a+n) \mid n$ and hence $\operatorname{gcd}(a, a+1)=1$.
(iii) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$. (Hint : $1=s a+t b=u a+v c$ for some $s, t, u, v \in \mathbb{Z}$. Then $1=(s a+t b)(u a+v c)=(a u s+c v s+b t u) a+(t v) b c$.
(iv) If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{m}, b^{n}\right)=1$. (Hint : Use the above part (iii).)
(v) The relation $a^{n} \mid b^{n}$ implies that $a \mid b$. (Hint : Let $d:=\operatorname{gcd}(a, b)$ and write $a=r d$ and $b=s d$. Then $\operatorname{gcd}(r, s)=1$ and hence $\operatorname{gcd}\left(r^{n}, s^{n}\right)=1$ by (ii). Now show that $r=1$, whence $a=d$, i.e, $a \mid b$.)
(vi) If $\operatorname{gcd}(a, b)=1$ and $c \mid a$, then $\operatorname{gcd}(b, c)=1$. (vii) If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a c, b)=$ $\operatorname{gcd}(c, b)$.
(viii) If $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$, then $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)$. (Hint : Let $d=\operatorname{gcd}(a, c)$. Then $d \mid a$ and $d|c|(a+b)$ and hence $d \mid(a+b)-a=b$.)
(ix) If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a+b, a b)=1$. (x) If $\operatorname{gcd}(a, b)=1, d \mid a c$ and $d \mid b c$, then $d \mid c$.
(xi) If $d \mid n$, then $2^{d}-1 \mid 2^{n}-1$.
(xii) Show that there are no positive natural numbers $a, b \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$ with $n>1$ and $a^{n}-b^{n}$ divides $a^{n}+b^{n}$. (Hint : We may assume that $b<a$ and $\operatorname{gcd}(a, b)=1$.)
(xiii) Show that for $a, b \in \mathbb{N}^{*}, b>2,2^{a}+1$ is not divisible by $2^{b}-1$. (Hint : Prove that $a>b$.)
(xiv) For $m, n \in \mathbb{N}$ with $m>n$, show that $a^{2^{n}}+1$ divides $a^{2^{m}}-1$. Moreover, if $m, n, a \in \mathbb{N}^{*}$, $m \neq n$, then $\operatorname{gcd}\left(a^{2^{m}}+1, a^{2^{n}}+1\right)=\left\{\begin{array}{lll}1, & \text { if } a \text { is even }, \\ 2, & \text { if } a \text { is odd. }\end{array}\right.$
(Hint : $a^{2^{n}}+1 \mid a^{2^{n+1}}-1$. For the second part use the first part.)
(xv) Suppose that $2^{n}+1=x y$, where $x, y \in \mathbb{N}^{*}, x>1, y>1$ and $n \in \mathbb{N}^{*}$. Show that 2^{a} divides $x-1$ if and only if 2^{a} divides $y-1$. (Hint : Write $x-1=2^{a} \cdot b$ and $y-1=2^{c} \cdot d$ with b and d odd.) (xvi) Show that $\operatorname{gcd}(n!+1,(n+1)!+1)=1$.

T5.17 (LCM) The concept parallel to that of a gcd is the concept of the least common multiple. For an integer $a \in \mathbb{Z}$, let $\mathrm{M}(a)=\mathbb{Z} a=\{n a \mid n \in \mathbb{Z}\}$ denote the set of all multiples of a. Then $\mathrm{M}(a)=\{0\} \Longleftrightarrow a=0$; if $a \neq 0$, then $\mathbf{M}(a)=\mathbb{N} \cdot a \uplus\left(-\mathbb{N}^{+}\right) \cdot a$. Further, for $a, b \in \mathbb{Z}^{*}$, the intersection $\mathrm{M}(a) \cap \mathrm{M}(b)$ is precisely the set of all common multiples of a and b. Moreover, $a b \in \mathbf{M}(a) \cap \mathbf{M}(b)$, in particular, $|a b| \in \mathbb{N} \cdot a \cap \mathbb{N} \cdot b$ and hence by minimality principle, it has a minimal element; this element is called the least common multiple of a and b and is denoted by $\operatorname{lcm}(a, b)$. Therefore for $a, b \in \mathbb{Z}^{*}$, the $\operatorname{lcm}(a, b)$ is the positive integer m satisfying : (i) $a \mid m$ and $b \mid m$; (ii) if c is a positive integer with $a \mid c$ and $b \mid c$, then $m \mid c$ (equivalently, $m \leq c$).

We put $\operatorname{lcm}(0,0):=0$. It is clear that for any two non-zero integers $a, b \in \mathbb{Z}, \operatorname{lcm}(a, b)$ always exists and $\operatorname{lcm}(a, b) \leq|a b|$.
(a) Let $a, b \in \mathbb{Z}^{*}$. Then $\operatorname{gcd}(a, b)$ divides $\operatorname{lcm}(a, b)$ and $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$. Moreover,
(i) $\operatorname{gcd}(a, b)=\operatorname{lcm}(a, b)$ if and only if $a=b$. (ii) $\operatorname{gcd}(a, b)=1$ if and only if $\operatorname{lcm}(a, b)=a b$.
(b) For $a, b, c \in \mathbb{Z}^{*}$, show that the following statements are equivalent :
(i) $a \mid b$. (ii) $\operatorname{gcd}(a, b)=a$. (iii) $\operatorname{lcm}(a, b)=b$.
(c) For $a, b, c \in \mathbb{Z}$, show that $\operatorname{lcm}(c a, c b)=|c| \operatorname{lcm}(a, b)$.
(d) For non-zero integers $a, b \in \mathbb{Z}$, a positive integer m is a lcm of a and b if and only if
(i) $a \mid m$ and $b \mid m$ and (ii) whenever a positive integer c is a multiple of both a and b, then $m \mid c$.
(Hint : Put $v=\operatorname{lcm}(a, b)$ and use division algorithm to write $m=q t+r$ with $q, r \in \mathbb{Z}, 0 \leq r<t$. Then r is common multiple of a and b. - Remark : This assertion often serves as a definition of $\operatorname{lcm}(a, b)$. The advantage is the order relationship is not involved.)
(e) For integers $a, b \in \mathbb{Z}$, show that $\mathrm{M}(a) \cap \mathrm{M}(b)=\mathrm{M}(\operatorname{lcm}(a, b))$.

T5.18 The notion of greatest common divisor can be extended to more than two integers in an obvious way. Let $a_{1}, \ldots, a_{n} \in \mathbb{N}, n \geq 1$, not all zero. Then $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ is defined to be the positive integer d satisfying the following two properties :
(i) $d \mid a_{i}$ for every $i=1, \ldots, n$; (ii) if c is a positive integer with $c \mid a_{i}$ for every $i=1, \ldots, n$, then $c \mid d$ (equivalently $c \leq d$).
Note that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)=\cdots=\operatorname{gcd}\left(a_{1}, \operatorname{gcd}\left(a_{2}, \ldots, a_{n}\right)\right)$ by Test-Exercise T5.22-(b)-(iv) and hence the gcd depends only on a_{1}, \ldots, a_{n} and not on the order in which they are written.
(a) Let $a_{1}, \ldots, a_{n} \in \mathbb{N}^{*}, n \geq 1$ and let $a=a_{1} \cdots a_{n}$. Show that the following statements are equivalent:
(i) a_{1}, \ldots, a_{n} are pairwise relatively prime.
(ii) If each a_{1}, \ldots, a_{n} divide the natural number c, then a also divide the number c.
(iii) $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)=a$.
(iv) The natural numbers $b_{1}:=a / a_{1}, \ldots, b_{n}:=a / a_{n}$ are relatively prime.
(v) There exist integers s_{1}, \ldots, s_{n} such that $\frac{1}{a}=\frac{s_{1}}{a_{1}}+\cdots+\frac{s_{n}}{a_{n}}$.
(Remark: lcm of finite many numbers a_{1}, \ldots, a_{n} are defined like in the case $n=2$. If $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$, then a_{1}, \ldots, a_{n} are called relatively prime. Note that this concept is different from that of pairwise relatively prime.)
(b) For $a_{1}, \ldots, a_{n} \in \mathbb{N}^{*}, n \geq 1$, show that there exist $u_{1}, \ldots, u_{n} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=$ $u_{1} a_{1}+\cdots+u_{n} a_{n}$. In particular, a_{1}, \ldots, a_{n} are relatively prime if and only if there exist integers u_{1}, \ldots, u_{n} such that $1=u_{1} a_{1}+\cdots+u_{n} a_{n}$. (Remark : One can find the coefficients u_{1}, \ldots, u_{n} algorithmically by successive use of the lemma of Bezout (see Test-Exercise T5.22-(a)). This algorithm supplies frequently disproportionately large coefficients u_{1}, \ldots, u_{n}. It is better to proceed as follows : First by renumbering assume that a_{1} is minimal in $\left\{a_{1}, \ldots, a_{n}\right\}$, and goes then to tuple $\left(a_{1}, r_{2}, \ldots, r_{n}\right)$, where r_{j} the remainder of a_{j} after dividing by a_{1}, after removing the zeros among r_{j}, consider the new tuple as at the beginning. One has to control, how the coefficients of the tuple constructed are represented as linear combinations of the a_{1}, \ldots, a_{n}, beginning with $a_{i}=\sum_{k=1}^{n} \delta_{i k} a_{k}$.) Find integers u_{1}, u_{2}, u_{3} such that $1=u_{1} \cdot 88+u_{2} \cdot 152+u_{3} \cdot 209$.

T5.19 (Euclidean algorithm ${ }^{24}$) Let $a, b \in \mathbb{N}^{*}$ with $a \geq b$.
We put: $r_{0}:=a$ and $r_{1}:=b$ and consider the system of equations obtained by the repeated use of division algorithm :

[^12]\[

$$
\begin{array}{rlrl}
r_{0} & =q_{1} r_{1}+r_{2}, & & 0<r_{2}<r_{1} \\
r_{1} & =q_{2} r_{2}+r_{3}, & 0<r_{3}<r_{2} \\
& \ldots & \ldots & \\
r_{k-1} & =q_{k} r_{k}+r_{k+1}, & & 0<r_{k+1}<r_{k} \\
r_{k} & =q_{k+1} r_{k+1} . & &
\end{array}
$$
\]

Then :
(a) $\operatorname{gcd}(a, b)=r_{k+1}$. (Hint : By repeated use of the Test-Exercise T5.16-(a)-(vii), we have $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{k}, r_{k+1}\right)=\operatorname{gcd}\left(r_{k+1}, 0\right)=r_{k+1}$.)
(b) For $i=0, \ldots, k+1$, define s_{i} and t_{i} recursively by:

$$
\begin{aligned}
s_{0} & =1, t_{0}=0 ; & & \\
s_{1} & =0, t_{1}=1 ; & & \\
s_{i+1} & =s_{i-1}-q_{i} s_{i}, & & i=1, \ldots, k \\
t_{i+1} & =t_{i-1}-q_{i} t_{i}, & & i=1, \ldots, k
\end{aligned}
$$

Then:
$a=r_{0}=s_{0} a+t_{0} b, r_{1}=s_{1} a+t_{1} b, r_{i+1}=r_{i-1}-q_{i} r_{i}=s_{i-1} a+t_{i-1} b-q_{i} s_{i} a-q_{i} t_{i} b=s_{i+1} a+t_{i+1} b$, for all $i=1, \ldots, k$. In particular, $\operatorname{gcd}(a, b)=r_{k+1}=s_{k+1} a+t_{k+1} b$. (Remark : This proves once again the Bezout's Lemma Test-Exercise T5.16-(a).) (c) Let $a:=36667$ and $b:=12247$. Then we have:

$$
\begin{aligned}
36667 & =2 \cdot 12247+12173 \\
12247 & =1 \cdot 12173+74 \\
12173 & =164 \cdot 74+37 \\
74 & =2 \cdot 37 .
\end{aligned}
$$

The integers s_{i} and t_{i} can be computed using the following table:

i	0	1	2	3	4
q_{i}		2	1	164	
s_{i}	1	0	1	-1	165
t_{i}	0	1	-2	3	-494

Therefore $37=\operatorname{gcd}(36667,12247)=165 \cdot 36667-494 \cdot 12247$.
(d) (E uclid's Lemma) (see also Test-Exercise T5.16-(a)-(iv)): If a prime number p divides a product $a_{1} \cdots a_{r}$ of positive natural numbers, then p divides at least one of the factors a_{i}. (Hint : We may assume that $r=2$ (Induction on r). By hypothesis $a_{1} a_{2}=p c$ with $c \in \mathbb{N}^{*}$. Suppose that p does not divide b_{1}. Then p and b_{1} are relatively prime and by Bezout's Lemma there exist integers $s, t \in \mathbb{Z}$ such that $1=s p+t b_{1}$. Then $b_{2}=s p b_{2}+t b_{1} b_{2}=p\left(s b_{2}+t c\right)$, i. e. p divides b_{2}.)

T5.20 Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ denote the Fibonacci sequence (see Test-Exercise T5.11).
(a) For $m, n \in \mathbb{N}^{*}$, show that $f_{m n}$ divides f_{m}. (Hint : Use test-Exercise T5.11-(b)-(i) and induction on n.)
(b) $\operatorname{gcd}\left(f_{n+2}, f_{n+1}\right)=1$. (Hint: The Euclidean Algorithm for obtaining the gcd leads to the system of n equations: $\left.f_{n+2}=1 \cdot f_{n+1}+f_{n} ; \quad f_{n+1}=1 \cdot f_{n}+f_{n-1} ; \quad \cdots \quad f_{4}=1 \cdot f_{3}+f_{2} \quad f_{3}=2 \cdot f_{2}.\right)$
(c) $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}$. (Hint : If $m=q n+r$, then $\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{q n-1} f_{r}+f_{q n} f_{r+1}, f_{n}\right)$ by TestExercise T5.11-(b)-(i). Further, since $f_{m n}$ divides f_{m} by (a), it follows (by using $\operatorname{gcd}(a+c, b)=\operatorname{gcd}(a, b)$ if $b \mid c)$ that $\operatorname{gcd}\left(f_{q n-1} f_{r}+f_{q n} f_{r+1}, f_{n}\right)=\operatorname{gcd}\left(f_{q n-1} f_{r}, f_{n}\right)=1$. For the last equality use parts (a) and (b).)
(d) Let $p>5$ be a prime number. Show that either p divides f_{p-1} or p divides f_{p+1}, but not both. (Hint : By Test-Exercise T5.11-(c) $f_{p}=\left(a^{n}-b^{n}\right) / \sqrt{5}$, where a (respectively b) is a positive
(respectively, negative) root of $X^{2}-X-1=0$. Expanding a^{p} and b^{p} by the Binomial theorem and reading modulo $p\left(\right.$ using $\binom{p}{k} \equiv 0(\bmod p)$ and $2^{p-1} \equiv 1(\bmod p)$), we get $f_{p} \equiv 5^{(p-1) / 2} \equiv \pm 1(\bmod p)$. Therefore $f_{p}^{2} \equiv 1(\bmod p)$, i. e. p divides $f_{p}^{2}-1$. Finally by Test-Exercise T5.11-(b)-(ii) $f_{p-1} f_{p+1} \equiv 0(\bmod p)$ and hence one of f_{p-1} and f_{p+1} is divisible by p. Further, since $\operatorname{gcd}\left(f_{p-1}, f_{p+1}\right)=f_{\operatorname{gcd}(p-1, p+1)}=f_{2}=1$ by (b), the last assertion is clear.)

T5.21 (g-adic-Expansion) Let g be natural number ≥ 2. For every natural number $n \geq 1$, there exist uniquely determined natural numbers r and a_{0}, \ldots, a_{r} with $a_{r} \neq 0$ and $0 \leq a_{i}<g$ such that

$$
n=a_{0}+a_{1} g+\cdots+a_{r} g^{r}=\sum_{i=0}^{r} a_{i} g^{i}
$$

The digits a_{i} of this g-adic-expansion of n recursively by repeated use of division with remainder by using the following scheme, with $q_{0}:=n$:

$$
\begin{aligned}
& q_{0}=q_{1} g+a_{0}, \quad 0 \leq a_{0}<g, \\
& q_{1}=q_{2} g+a_{1}, \quad 0 \leq a_{1}<g, \\
& q_{r-1}=q_{r} g+a_{r-1}, \quad 0 \leq a_{r-1}<g, \\
& q_{r}=a_{r}, \quad 0<a_{r}<g .
\end{aligned}
$$

The uniqueness of these digits follows immediately follows from the uniqueness of the divison with remainder. We also write shortly $n=\left(a_{r} \ldots a_{0}\right)_{g}$. For $g=2$ respectively, $g=3, g=10$, $g=16$, then we also use the terms the dual-respectively ternary- decimal- hexa-or sedecimal expansion of n. In the last system the digits $10, \ldots, 15$ denoted by the letters A, \ldots,F. Conversely, from the g-adic expansion $n=a_{0}+a_{1} g+\cdots+a_{r} g^{r}$ one can compute the number n rapidly by using the recursion ${ }^{25}$:

$$
\begin{aligned}
n_{0} & =a_{r} \\
n_{1} & =n_{0} g+a_{r-1}\left(=a_{r} g+a_{r-1}\right), \\
& \ldots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
n_{r-1} & =n_{r-2} g+a_{1}\left(=a_{r} g^{r-1}+a_{r-1} g^{r-2}+\cdots+a_{2} g+a_{1}\right), \\
n_{r} & =n_{r-1} g+a_{0}=n .
\end{aligned}
$$

Let $n \in \mathbb{N}^{*}$ and let $n=a_{m} g^{m}+a_{m-1} g^{m-1}+\cdots+a_{1} g+a_{0}, m \in \mathbb{N}$ and $a_{j} \in\{0,1, \ldots, g-1\}$ be the g-adic expansion of n. Put $Q_{g}(n):=a_{0}+\cdots+a_{m}$ and $Q^{\prime}{ }_{g}(n):=a_{0}-a_{1}+\cdots+(-1)^{m} a_{m}$. Then:
(a) $n \equiv Q_{g}(n)(\bmod (g-1))$ and $n \equiv Q^{\prime}{ }_{g}(n)(\bmod (g+1))$.

In particular, $g-1|n \Longleftrightarrow g-1| Q_{g}(n)$ and $g+1|n \Longleftrightarrow g+1| Q_{g}^{\prime}(n)$.
(b) $Q_{g}\left(n+n^{\prime}\right) \equiv Q_{g}(n)+Q_{g}\left(n^{\prime}\right)(\bmod g-1)$ and $Q_{g}^{\prime}\left(n+n^{\prime}\right) \equiv Q_{g}^{\prime}(n)+Q_{g}^{\prime}\left(n^{\prime}\right)(\bmod g+1)$.
(c) $Q_{g}\left(n \cdot n^{\prime}\right) \equiv Q_{g}(n) \cdot Q_{g}\left(n^{\prime}\right)(\bmod g-1)$ and $Q_{g}^{\prime}\left(n \cdot n^{\prime}\right) \equiv Q_{g}^{\prime}(n) \cdot Q_{g}^{\prime}\left(n^{\prime}\right)(\bmod g+1)$.
(d) Let $n \in \mathbb{N}^{*}$ and let $n=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots+a_{1} 10+a_{0}, m \in \mathbb{N}$ and $a_{j} \in\{0,1, \ldots, 9\}$ be the decimal expansion of n. Then
(i) $3|n \Longleftrightarrow 3|\left(a_{0}+a_{1}+\cdots+a_{m}\right) ; \quad 5|n \Longleftrightarrow 5| a_{0} ; \quad 6|n \Longleftrightarrow 6|\left(a_{0}+4 a_{1}+4 a_{2}+\cdots+4 a_{m}\right)$; $9|n \Longleftrightarrow 9|\left(a_{0}+a_{1}+\cdots+a_{m}\right) ; \quad 11|n \Longleftrightarrow 11|\left(a_{0}-a_{1}+\cdots+(-1)^{m} a_{m}\right)$. More generally, if $n=a_{m} g^{m}+a_{m-1} g^{m-1}+\cdots+a_{1} g+a_{0}, m \in \mathbb{N}$ and $a_{j} \in\{0,1, \ldots, g-1\}$ is the g-adic expansion of n. Then $g-1$ divides n if and only if $g-1$ divides the sum $a_{m}+\cdots+a_{0}$ of the digits of n.

[^13](ii) $7|n \Longleftrightarrow 7|\left(a_{2}, a_{1}, a_{0}\right)_{10}-\left(a_{5}, a_{4}, a_{3}\right)_{10}+\cdots ; 11|n \Longleftrightarrow 11|\left(a_{2}, a_{1}, a_{0}\right)_{10}-\left(a_{5}, a_{4}, a_{3}\right)_{10}+\cdots$; $13|n \Longleftrightarrow 13|\left(a_{0}+2 a_{1}+\cdots+2^{m} a_{m}\right)$.
${ }^{\dagger}$ (Remarks: More generally, one can also prove that: Every non-negative real number $x \geq 0$ can be represented uniquely by a infinite convergent series $x=\sum_{v=0}^{\infty} a_{v} / g^{v}$, where the g-digit sequence of natural numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$ is obtained by the g-adic algorithm and satisfy the following inequalities: $a_{n} \geq g-1$ for all $n \geq 1$ and $a_{n} \leq g-2$ for infinitely many n.
Moreover, such a sequence of natural numbers comes as a g-adic digit sequence of a non-negative real number. The g-adic algorithm of a non-negative real number $x \geq 0$ gives a simple criterion to test whether or not x is rational. More precisely:
A non-negative real number $x \geq 0$ is a rational number if and only if the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is periodic (see Exercise 5.8), i. e. there exist $r \in \mathbb{N}$ and $s \in \mathbb{N}^{*}$ such that $a_{r+v}=a_{r+v+s}$ for all $v \in \mathbb{N}^{*}$.
We use the notation $x=\left(a_{0}, a_{1} a_{2} \cdots a_{n} \cdots\right)_{g}$ and $\left(a_{0} ; a_{1} a_{2} \cdots a_{r}, \overline{a_{r+1} \cdots a_{r+s}}\right)_{g}$.
(e) For a rational number $x \in[0,1)$ and natural numbers r, s, the following statements are equivalent:
(i) $g^{r}\left(g^{s}-1\right) \cdot x \in \mathbb{Z}$. (ii) x has the g-adic expansion of the form $x=\left(a_{0} ; a_{1} a_{2} \cdots a_{r}, \overline{a_{r+1} \cdots a_{r+s}}\right)_{g}$.
(f) For a rational number $x=a / b \in[0,1)$ with $\operatorname{gcd}(a, b)=1$, show that $\operatorname{gcd}(b, g)=1$ if and only if the g adic expansion of x is purely periodic (see Exercise 5.8), i. e. it is of the form $x=\left(0, \overline{a_{1} \cdots a_{s}}\right)_{g}$. In particular, the g-adic expansion of reduced fractions $x=\frac{a}{g^{n}-1}$ is purely periodic with period n. for example, $\frac{1}{g^{n}-1}=$ $(0 ; \overline{00 \cdots 01})_{g}$.
(g) Which of the following (real) numbers are irrational numbers:
(i) The number x with the g-adic expansion $x=(0 ; 101001000100001 \cdots)_{g}$.
(ii) The number y with the g-adic expansion $y=\left(0 ; a_{1} a_{2} \cdots a_{n} \cdots\right)_{g}$, where $a_{n}=1$ if n is prime and 0 otherwise.
\[

$$
\begin{equation*}
u=\sum_{v=0}^{\infty}\left(\frac{1}{g}\right)^{v} \quad v=\sum_{v=0}^{\infty}\left(\frac{1}{g}\right)^{v(v+1) / 2} \quad \text { and } \quad w=\sum_{v=0}^{\infty}\left(\frac{1}{g}\right)^{v^{2}} . \tag{iii}
\end{equation*}
$$

\]

(h) Compute the g-adic exppansions of the numbers $\frac{a}{g-1}$ and $\frac{a}{g+1}$. Moreover, show that $\frac{1}{(g-1)^{2}}=$ $(0 ; 0123 \cdots(g-3)(g-1))_{g}$ is purely periodic.)

T5.22 (Linear Diophantine Equation) The ancient Greek mathematician Diophantus ${ }^{26}$ had initiated the study of solutions (in integers) of equations in one or more indeterminate with integer coefficients.
(a) The linear Diophantine equation $a X+b Y=c, a b, c \in \mathbb{Z}$, has a solution if and only if $d:=$ $\operatorname{gcd}(a, b)$ divides c. Moreover, if $\left(x_{0}, y_{0}\right)$ is a particular solution of this equation, then all other solutions are given by $(x, y)=\left(x_{0}, y_{0}\right)+(b / d,-a / d) t, t \in \mathbb{Z}$.
(b) Let a and b be relatively prime positive integers. Prove that the Diophantine equation $a X-b Y=c$ has infinitely many solutions in the positive integers. (Hint : There exists integers x_{0}, y_{0} such that $a x_{0}+b y_{0}=c$. Then $(x, y)=\left(x_{0},-y_{0}\right)+(b, a) t, t \in \mathbb{Z}$ with $t \geq \operatorname{Max}\left(\left|x_{0}\right| / b,\left|y_{0}\right| / a\right)$ are positive solutions of the given equation.)

[^14](c) The contents of the Mathematical classic of Chang Ch i u-chien ${ }^{27}$ (6th century) attest to the algebraic abilities of the Chinese scholars contains the following famous problem: If an Apple costs Rs. 5, an Orange Rs. 3 and three Bananas together Rs. 1, how many Apples, Oranges and Bananas, totaling 100, can be bought for Rs. 100? (Hint : Solve the Diophantine equations $5 X+3 Y+\frac{1}{3} Z=100$ and $X+Y+Z=100$ simultaneously by eliminating one unknown (for example, Z).)
(d) (Mahaviracharya, 850) There were 63 equal piles of plantain fruit put together and 7 single fruits. They were divided evenly among 23 travelers. What is the number of fruits in each pile? (Hint : Solve the Diophantine equation $63 X+7=23 Y$.)
(e) When Mr. Dey cashed a check at his bank, the teller mistook the number of paise for the number of rupees and vice versa. Unaware of this, Mr. Dey spent 68 paise and then noticed to his surprise that he had twice the amount of the original check. Determine the smallest value for which the check could have been written. HintIf x denotes the number of rupees and y the number of paise in the check, then $100 y+x-68=2(100 x+y)$.

T5.23 (Continued Fractions ${ }^{28}$) (see the book ${ }^{29}$) A finite continued fraction is a fraction of the form

where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers with a_{1}, \ldots, a_{n} are positive. The numbers a_{1}, \ldots, a_{n} are called partial denominators of this fraction. Such a fraction is called simple if all $a_{0}, a_{1}, \ldots, a_{n}$ are integers.
(a) Every rational number can be can be written as a finite simple continued fraction. (Hint: Let $x=a / b, a, b \in \mathbb{Z}, b \neq 0$, be an arbitrary rational number. Then the Euclidean algorithm for finding $\operatorname{gcd}(a, b)$ gives the equations:
$a=b a_{0}+r_{1}, 0<r_{1}<b ; b=r_{1} a_{1}+r_{2}, 0<r_{2}<r_{1} ; \cdots ; r_{n-2}=r_{n-1} a_{n-1}+r_{n}, 0<r_{n}<r_{n-1} ; r_{n-1}=r_{n} a_{n}$.
Since each remainder $r_{k} \in \mathbb{N}^{*}, a_{1}, \ldots, a_{n}$ are all positive integers. rewriting the above equations as:
$a / b=a_{0}+\frac{r_{1}}{b}=a_{0}+\frac{1}{b / r_{1}} ; \quad \frac{b}{r_{1}}=a_{1}+\frac{r_{2}}{r_{1}}=a_{1}+\frac{1}{r_{1} / r_{2}} ; \cdots ; \quad \frac{r_{n-2}}{r_{n-1}}=a_{n-1}+\frac{r_{n}}{r_{n-1}} ; \quad \frac{r_{n-1}}{r_{n}}=a_{n}$.
Now substituting the values $r_{i} / r_{i+1}, i=n, \ldots 2,1$ successively from later equations into earlier equations, we get the required multi-decked expression.)
Because continued fractions are unwieldy to print or write, we adopt the convention to denote a continued fraction by a symbol $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$. It is a good practice to express the rational numbers $\frac{-19}{51}$ and $\frac{118}{303}$

[^15]${ }^{29}$ Perron, O . : Die Lehre von den Kettenbrüchen, Bd. 1. 3. Aufl. Stuttgart 1954.
as finite simple continued fractions. Further, determine the rational numbers which are represented by the simple continued fractions: $[-2 ; 2,4,6,8]$ and $[0 ; 1,2,3,4,3,2,1]$.
${ }^{\dagger}$ (Remarks: One of the main use of the theory of continued fractions is finding approximate values of irrational numbers. For this the notion of infinite continued fractions is necessary. Moreover, one can prove that: Every real number x is the value of an uniquely determined normalized simple continued fractions. Moreover, this continued fraction is finite if and only if x is rational. Therefore $x=\lim _{n \rightarrow \infty}\left[a_{0} ; a_{1}, \cdots, a_{n}\right]$.
(b) (i) Using continued fractions verify that the first 4 digits in the decimal expansion of the following square-roots: $\sqrt{2}=1.4142 \cdots ; \sqrt{3}=1.7320 \cdots ; \sqrt{5}=2.2360 \cdots ; \sqrt{7}=2.6457 \cdots ; \sqrt{11}=3.3166 \cdots$.
(ii) For $a, b \in \mathbb{N}^{*}$, show that $[a, b, a, b, a, b \cdots]=\left(a b+\sqrt{a^{2} b^{2}+4 a b}\right) / a b$.
(iii) For $n \in \mathbb{N}^{*}$, show that: $\sqrt{n^{2}+1}=[n, 2 n, 2 n, 2 n, \cdots]=[n, \overline{2 n}]$;
\[

$$
\begin{aligned}
& \text { (Euler) : } \sqrt{n^{2}+2}=[n, n, 2 n, n, 2 n, n, 2 n, \cdots]=[n, \overline{n, 2 n}] \\
& \quad \sqrt{\left(n^{2}+1\right)^{2}-1}=[n, 1,2 n, 1,2 n, 1,2 n, \cdots]=[n, \overline{1,2 n}] ; \\
& \quad\left(\text { Hint }: n+\sqrt{n^{2}+1}=2 n+\left(\sqrt{n^{2}+1}-n\right)=2 n+\frac{1}{n+\sqrt{n^{2}+1}} .\right)
\end{aligned}
$$
\]

(Euler) : $n \geq 2, \sqrt{\left(n^{2}+1\right)^{2}-2}=[n, \overline{1, n-1,1,, 2 n}]$;
(iv) Let $q, n \in \mathbb{N}$ with $1 \leq q \leq n-q \leq n$ and $\frac{n}{n-q}=\left[1, b_{1}, b_{2}, \ldots b_{m}\right]$ be the continued fraction expansion of $n /(n-q)$. Show that $\frac{n}{q}=\left[1+b_{1}, b_{2}, \ldots b_{m}\right]$ is the continued fraction expansion of n / q.
(v) If $x \in \mathbb{R} \backslash \mathbb{Q}, x>1$, is represented by the (infinite) continued fraction $\left[a_{0} ; a_{1}, a_{2}, \cdots, a_{n}, \cdots\right]$, then show that $\frac{1}{x}=\left[a_{0} ; a_{1}, a_{2}, \cdots, a_{n}, \cdots\right]$ is the continued fraction expansion of $1 / x$.
(c) The Fibonacci sequence $f_{0}, f_{1}, \ldots, f_{n}, \ldots$ gives the continued fraction expansion of the golden-ratio (see Test-Exercise T5.11) $\varphi:=\frac{1+\sqrt{5}}{2}$; i. e. $\varphi=[1,1,1, \cdots]$.
(d) The beginning of the continued fraction expansion of the number π is:

$$
\pi=[3 ; 7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84, \cdots] .
$$

Note that $[3]=\frac{3}{1}<[3 ; 7,5]=\frac{333}{106}<\pi<[3 ; 7,15,1]=\frac{355}{113}<[3,7]=\frac{22}{7}$, this was already known to Archimedes.
(e) The beginning of the continued fraction expansion of the number e which was found by Euler is:

$$
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8, \cdots] .
$$

(f) It is interesting to ask the question: Which numbers have periodic continued fractions? (see Exercise 5.8). For example, the golden-ratio $\varphi=\frac{1+\sqrt{5}}{2}=[\overline{1}]$. In 1737 Euler proved that: All irrational numbers x with periodic continued fraction expansion are quadratic irrationalities, i. e. are irrational roots of a quadratic equation of the form $X^{2}+\beta X+\gamma=0$, or equivalently, of $a X^{2}+b X+c=0, a, b \in \mathbb{Z}, b \neq 0$. Moreover, in 1770 Lagrange proved that: Quadratic irrationalities are exactly the ones which have periodic continued fraction expansion.
(g) Similar to the Question in the part (c) one can also ask: Which quadratic irrational numbers have pure periodic continued fraction expansion? This was answered by Galois in 1828/29.

T5.24 (Prime numbers) A natural number p is called a prime number or an irreducible (in \mathbb{N}) if $p>1$ and $p=a b$ with $a, b \in \mathbb{N}$, then either $a=1$ or $b=1$. A natural number $n>1$ is called composite or reducible if it is not a prime number. The set of all prime numbers is denoted by \mathbb{P}. Then by definition $1 \notin \mathbb{P}$. For a natural number $p>1$, the following statements are equivalent :
(i) $p \in \mathbb{P}$.
(ii) 1 and p are the only positive divisors of p.
(iii) p has no proper divisor. (Remark : On the basis of the property (iii) prime numbers are also called irreducible.)
(a) (Existence Theorem) Every natural number $a>1$ has a smallest (positive) divisor $t>1$. Moreover, this divisor t is a prime number. (Proof : The set $T=\left\{d \in \mathbb{N}^{*}|d| a\right.$ and $\left.d>1\right\}$ is non-empty, since $a \in T$. Therefore by the Minimum Principle (see Test-Exercise T5.2-(b)) T has a minimal element t. This integer t is a prime number. For, if not, then there is a divisor t^{\prime} of t with $1<t^{\prime}<t$. But then $t^{\prime} \mid t$ and $t \mid a$ and hence $t^{\prime} \mid a$ a contradiction to the minimality of t in T.)
(b) (Euclid's Theore m^{30}) There are infinitely many prime numbers, i. e., the set \mathbb{P} is infinite. (Proof : In the text of Euclid the word "infinite" is not mentioned; this theorem was formulated as : Given any finite set of prime numbers, one can always find a prime number which does not belong to the given set. Show that : Let q_{1}, \ldots, q_{n} be finite set of prime numbers. Then the smallest (positive) divisor $t>1$ of the natural number $a:=q_{1} \cdot q_{2} \cdots q_{n}+1$ is a prime number which is different from all the prime numbers q_{1}, \ldots, q_{n}. - Since $a>1, t$ exists and hence t is a prime number by the Existence theorem in the part (a). If t is one of the numbers q_{1}, \ldots, q_{n}, then $t \mid q_{1} \cdot q_{2} \cdots q_{n}$. Then $t \mid a-q_{1} \cdot q_{2} \cdots q_{n}=1$ a contradiction.)
(c) (Euclid's Lemma) If a prime number p divides a product ab of two natural numbers a and b, then p divides one of the factor a or b. More generally, If a prime number p divides a product $a_{1} \cdots a_{n}$ of n positive natural numbers a_{1}, \ldots, a_{n}, then p divides one of the factor a_{i} for some $1 \leq i \leq n$. (Proof: The set $A:=\left\{x \in \mathbb{N}^{*}|p| a x\right\}$ contains p and b and hence by the Minimum Principle (see Test-Exercise T5.2-(b)) it has a smallest element c. We claim that $c \mid y$ for every $y \in A$. For, by division algorithm $y=q c+r$ with $q, r \in \mathbb{N}$ and $0 \leq r<c$. Then, since $p \mid a y$ and $p|a c, p| a y-q(a c)=a r$. This proves that $r=0$; otherwise $r \in A$ and $r<c$ a contradiction to the minimality of c in A. Therefore $c \mid y$ for every $y \in A$; in particular, $c \mid p$ and hence $c=1$ or $c=p$. If $c=1$, then $p \mid a c=a$. If $c=p$, then (since $b \in A$) by the above claim $p \mid b$. - The last part follows from the first by induction.)
(d) For a natural number p the following statements are equivalent:
(i) p is a prime number. (ii) If p divides a product $a b$ of two integers a and b, then $p \mid a$ or $p \mid b$. (Proof : We may assume that a and b are both positive. The implication (i) \Rightarrow (ii) is proved in (c). For the implication (ii) \Rightarrow (i) Let d be any positive divisor of p, i.e., $p=d d^{\prime}$ with $d^{\prime} \in \mathbb{N}$. This means that $p \mid d d^{\prime}$ and hence by (ii) either $p \mid d$ or $p \mid d^{\prime}$. But since $1 \leq d \leq p$ and $1 \leq d^{\prime} \leq p$ it follows that either $p=d$ or $p=d^{\prime}$, i.e., either $d=p$ or $d=1$. This proves that the only positive divisors of p are 1 and p and hence p is a prime number. - Remark : The property (ii) is (usually distinguished from the irreducibility property of p) called the prime property. Therefore we can reformulate the part (d) as : A natural number $p>1$ is irreducible if and only if p has the prime property. See also ???.)

T5.25 Let \mathbb{P} denote the set of all prime numbers. Let p_{n} denote the n-th prime (in the natural order \leq on \mathbb{N}^{*}, i. e. starting with $n=1,2, \ldots$, . Then show that :
(a) $p_{n}>2 n-1$ for $n \geq 5$ and $p_{n} \leq 2^{2^{n-1}}$ for all $n \in \mathbb{N}^{*}$. (Hint : Note that $p_{n+1} \leq p_{1} \cdot p_{2} \cdots p_{n}+1$.)
(b) None of the natural number $P_{n}:=p_{1} \cdot p_{2} \cdots p_{n}+1$ is a perfect square. (Hint : Each P_{n} is of the form $4 m+3$.)
(c) The sum $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{n}}$ is never an integer.

[^16](d) Another proof of infiniteness of \mathbb{P} : Suppose that there are only finitely many primes, say, p_{1}, \ldots, p_{n}. Now, use the natural number $N=p_{2} \cdot p_{3} \cdots p_{n}+p_{1} \cdot p_{3} \cdots p_{n}+\cdots+p_{2} \cdot p_{3} \cdots p_{n-1}$.

T5.26 Let $n \in \mathbb{N}^{*}$. Show that :
(a) If $n>1$ and if n divides $(n-1)!+1$, then n must be a prime number.
(b) If $n>2$, then there exists a prime number p with $n<p<n$!. (Hint : Consider a prime divisor p of $n!-1$.)
(c) If $n>1$, then every prime divisor of n ! +1 is an odd integer $>n$. (Remark: This shows again that there are infinitely many prime numbers. It is unknown whether infinitely many of $n!+1$ are prime.)
(d) None of the n natural numbers $(n+1)!+2, \ldots,(n+1)!+n+1$ are prime. (Remark : Therefore there are gaps of any size between prime numbers.)
(e) Let $n, r \in \mathbb{N}^{*}, n \geq 2$. If n has no prime divisor $\leq \sqrt[r+1]{n}$, then n is a product of at the most r (not necessarily different) prime numbers. In particular, if n has no prime divisor $\leq \sqrt{n}$, then n is prime.
(f) For $n \in \mathbb{N}, n \geq 2$, the natural number $4^{n}+n^{4}$ is never prime. (Hint : For odd n, we have $n^{4}+4^{n}=$ $\left(n^{2}-2^{\frac{n+1}{2}} \cdot n+2^{n}\right)\left(n^{2}+2^{\frac{n+1}{2}} \cdot n+2^{n}\right)$.)

T5.27 For $a=3,4,6$, show that in the sequence $a n+(a-1), n \in \mathbb{N}$, there are infinitely many prime numbers. (Hint : Make an argument with $a p_{1} \cdots p_{r}+(a-1)$.) (Remark : These are very special cases of a remarkable theorem of Dirichlet ${ }^{31}$ on primes in arithmetic progressions established in 1837. The proof is much too difficult to include here, so that we must content ourselves with the mere statement: If a, b are relatively prime positive natural numbers, then there are infinitely many prime numbers of the form $a n+b, n \in \mathbb{N}$. - Remarks: For example, (by Dirichelt's Theorem), there are infinitely many primes ending 999 such as $1999,100999,1000999, \ldots$, for these appear in the arithmetic progression determined by $1000 n+999$, where $\operatorname{gcd}(1000,999)=1$.)
(a) There is no arithmetic progression $a+n \cdot b, n \in \mathbb{N}$ that consists of only of prime numbers. (Hint : Suppose that $p=a+n \cdot b$ is a prime number. Then the $n+k p$-th term of the arithmetic progression is $a+(n+k p) \cdot b=(a+n \cdot b)+k p \cdot b=p(1+k b)$. This shows that the arithmetic progression must contain infinitely many composite numbers.)
(b) If all the $n>2$ terms of the arithmetic progression $p, p+d, \ldots, p+(n-1) d$ are prime numbers, then the common difference d is divisible by every prime $q<n$.

T5.28 (Fundamental Theorem of Arithmetic ${ }^{32}$) Proposition 14 of Book IX of Euclid's "Elements" embodies the result which later became known as:
Fundamental Theorem of Arithmetic: Every Natural number $a>1$ is a product of prime numbers and this representation is "essentially" unique, apart from the order in which the prime factors occur.

[^17]More precisely, the existence and uniqueness parts are stated as:
(a) (Existence of prime decomposition) Every natural number $a>1$ has a prime decomposition $a=p_{1} \cdots p_{n}$, where we may choose p_{1} as the smallest (prime) divisor of a. (Proof : Either a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by Test-Exercise T5.16-(a) there exists a smallest prime divisor p_{1} of a, i.e., $a=p_{1} \cdot b$ with $1 \leq b<a$ (since $1<p_{1} \leq a$). Now, by induction hypothesis b has a prime decomposition $b=p_{2} \cdots p_{n}$ and hence a has a prime decomposition $a=p_{1} \cdot p_{2} \cdots p_{n}$.)
(b) (Uniqueness of prime decomposition) A prime decomposition of every natural number $a>1$ is essentially unique. More precisely, if $a=p_{1} \cdots p_{n}$ and $a=q_{1} \cdots q_{m}$ are two prime decompositions of a with prime numbers $p_{1}, \ldots, p_{n} ; q_{1}, \ldots, q_{m}$, then $m=n$ and there exists a permutation $\rho \in \mathfrak{S}_{n}$ such that $q_{i}=p_{\rho(i)}$ for every $i=1, \ldots, n$. (Proof : We prove the assertion by induction on n. If $n=1$, then $p_{1}=a=q_{1} \cdots q_{m}$, i.e., $p_{1} \mid q_{1} \cdots q_{m}$ and hence by the prime property TestExercise T5.16-(d) $p_{1} \mid q_{j}$ for some $j, 1 \leq j \leq m$. Renumbering if necessary, we may assume that $j=1$; further, since q_{1} is a prime number, we must have $p_{1}=q_{1}$ by the irreducibility of q_{1}. Now, by canceling p_{1}, we get two prime decompositions of the number $a^{\prime}=p_{2} \cdots p_{n}=q_{2} \cdots q_{m}$. Therefore by induction hypothesis $m-1=n-1$ and there exists a permutation $\rho^{\prime} \in \mathfrak{S}(\{2, \ldots, n\})$ such that $q_{\rho(i)}=p_{i}$ for all $i=2, \ldots, n$. Now, define $\rho \in \mathfrak{S}_{n}$ by $\rho(1)=1$ and $\rho(i)=\rho^{\prime}(i)$ for all $i=2, \ldots, n$. - Remarks : The above proof for uniqueness use the Euclid's lemma on the prime property (see Test-Exercise T5-16-(a)-(iv)) and hence uses implicitly the division algorithm and therefore make use of the additive structure of \mathbb{N}. The existence of prime decomposition only uses the multiplicative structure on \mathbb{N} and not the additive structure on \mathbb{N}. This leads to the question : Can one give a proof of the uniqueness of the prime decomposition which only depends on the multiplicative structure of \mathbb{N} ? The answer to this question is negative as we can see in the example given in the Test-Exercise T5.30. The uniqueness of the decomposition of a positive natural number into product of irreducible elements is less obvious than the existence of such a decomposition (see also Zermelo's proof given in the Test-exercise T5.29). This can also be seen in the examples in the Test-Exercises T5.30 and T5.31.
(c) (Canonical Prime Decomposition) Let $n \in \mathbb{N}^{*}$. Collecting the equal prime factors in the prime decomposition of n, we get the canonical prime decomposition $n=\prod_{p \in \mathbb{P}} p^{\alpha_{p}}$. In this product \mathbb{P} denote the set of all prime numbers and the p-exponents or multiplicities $\alpha_{p} \in \mathbb{N}$ are non-zero only for finitely many prime numbers $p \in \mathbb{P}$, so that the above product has only finitely many factors $\neq 1$. For example, $1001=7 \cdot 11 \cdot 13$ and $10200=2^{3} \cdot 3 \cdot 5^{2} \cdot 17$. Therefore, for every prime number $p \in \mathbb{P}$, we define a map $v_{p}: \mathbb{N}^{*} \rightarrow \mathbb{N}$ by $n \mapsto v_{p}(n):=\alpha_{p}$. The map v_{p} is called the p-adic valuation. It is clear that $v_{p}(n)=0$ for almost all $p \in \mathbb{P}$.
If $m, n \in \mathbb{N}^{*}$ and $m=\prod_{p \in \mathbb{P}} p^{v_{p}(m)}, n=\prod_{p \in \mathbb{P}} p^{v_{p}(n)}$ are the canonical prime decompositions of m and n respectively. Then:
(i) m divides n if and only if $v_{p}(m) \leq v_{p}(n)$ for all $p \in \mathbb{P}$.
(ii) $\operatorname{gcd}(m, n)=\prod_{p \in \mathbb{P}} p^{\operatorname{Min}\left(v_{p}(m), v_{p}(n)\right)}$ and $\operatorname{lcm}(m, n)=\prod_{p \in \mathbb{P}} p^{\operatorname{Max}\left(v_{p}(m), v_{p}(n)\right)}$ and

For an integer $a \in \mathbb{Z}, a \neq 0$, the canonical prime decomposition is $a=(-1)^{\varepsilon} \prod_{p \in \mathbb{P}} p^{v_{p}(|a|)}$, where $\varepsilon \in\{0,1\}$ (and hence $(-1)^{\varepsilon}$ is the sign of a and $|a|$ is the absolute value of a. Moreover, for every non-zero rational number $x=a / b$ with $a, b \in \mathbb{Z} \backslash\{0\}$, combining the canonical prime decompositions of a and b, we get the canonical prime decomposition of x : $x=(-1)^{\varepsilon} \prod_{p \in \mathbb{P}} p^{v_{p}(x)}$, where the p-exponents $v_{p}(x), p \in \mathbb{P}$ are integers (and not just the natural numbers) and are non-zero only for finitely many prime numbers $p \in \mathbb{P}$. Note that x is uniquely determined by the p-exponents $v_{p}(x), p \in \mathbb{P}$ and its sign $(-1)^{\varepsilon}$. Further, note that a rational number $x \in \mathbb{Q} \backslash\{0\}$ is an integer if and only if $v_{p}(x) \geq 0$ for all $p \in \mathbb{P}$.

T5.29 (Zermelo's proof of uniqueness of irreducible decomposition) In this proof we recall that a natural number $p \in \mathbb{N}^{*}$ is called an irreducible number if $p>1$ and the
only divisors of p in \mathbb{N}^{*} are 1 and p itself. Let $n \in \mathbb{N}^{*}$. We shall prove the uniqueness of irreducible decomposition by induction on n. If $n=1$ or $n=p$ is a (irreducible) prime number, then the assertion is clear by the definition of prime (irreducible) number. Now, suppose that $n=p-1 \cdots p_{r}=q_{1} \cdots q_{s}$ where $p_{1}, \ldots, p_{r} ; q-1, \ldots, q_{s}$ are irreducible numbers with $r, s \geq 2$. We may assume that $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$; $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$ and $p_{1} \leq q_{1}$. If $p_{1}=q_{1}$, then $n^{\prime}:=p_{2} \cdots p_{r}=q_{2} \cdots q_{s}<n$ and hence the uniqueness assertion follows from the induction hypothesis. If $p_{1}<q_{1}$, then we must lead to a contradiction (of the irreducibility of $\left.q_{1}\right)$. Put $m:=n-p_{1} q_{2} \cdots q_{s}=\left(q_{1}-p_{1}\right) q_{2} \cdots q_{s}=p_{1}\left(p_{2} \cdots p_{r}-q_{2} \cdots q_{s}\right)$. Then $1<m<n$. Therefore by induction hypothesis it follows from the uniqueness assertion for $m=p_{1}\left(p_{2} \cdots p_{r}-q_{2} \cdots q_{s}\right)$ that p_{1} must occur in every irreducible decomposition of m. In particular, p_{1} must occur in the product $m=\left(q_{1}-p_{1}\right) q_{2} \cdots q_{s}$, where q_{2}, \ldots, q_{s} are irreducible numbers and $p_{1} \neq q_{j}$ for every $j=1, \ldots, s$. This shows that p_{1} must occur in $q_{1}-p_{1}$, i. e. p_{1} divides $q_{1}-p_{1}$ in \mathbb{N}^{*}, or equivalently, $q_{1}-p_{1}=b p_{1}$ with $b \in \mathbb{N}^{*}$, i. e. $q_{1}=(b+1) p_{1}$ which contradicts the irreduciblity of q_{1}.
(Remark : Zermelo's indirect method of proof is psycological and less convincing. However, this proof is elegant and didactically difficult to present in the class room. Moreover, the Euclid's Lemma is not in this proof. In fact we can now deduce the Euclid's Lemma as a corollary of the Fundamental Theorem of Arithmetic.)

T5.30 Let M be the set of all natural numbers which have remainder 1 upon division by 3, i.e., $M=\{3 n+1 \mid n \in \mathbb{N}\}$. Then M is a multiplicative submonoid of \mathbb{N}, i. e., $1 \in M$ and if $a_{1}, \ldots, a_{n} \in$ M, then $a_{1} \cdots a_{n} \in M$. For this, it is enough (by induction) to note that $\left(3 n_{1}+1\right)\left(3 n_{2}+1\right)=$ $3\left(3 n_{1} n_{2}+n_{1}+n_{2}\right)+1$. Similar to the irreducibility in \mathbb{N}, we say that an element $c \in M$ is irreducible if $c>1$ and if $c=a b$ with $a, b \in M$, then either $a=1$ or $b=1$. The first few irreducible elements in M are : $4,7,10,13,19,22,25,31$; the elements $16=4 \cdot 4$ and $28=4 \cdot 7$ are not irreducible in M. One can easily (by induction - analogous proof as in the existence of a prime decomposition) : Every element $a \in M$ is a (finite) product $a=c_{1} \cdots c_{n}$ of irreducible elements c_{1}, \ldots, c_{n} in M. However, the uniqueness of this representation does not hold, for example, the element $100 \in M$ has two irreducible decompositions $100=4 \cdot 25$ and $100=10 \cdot 10$ which are not essentially unique. One can (similar to those of in \mathbb{N}) also define divisibility and prime property in M, with these definitions $4 \mid 100=10 \cdot 10$ in M, but $4 \nmid 10$ in M, i.e., the element 4 is irreducible in M, but does not have the prime property in M. In this example what is missing is that the set M is not additively closed, for example, $4 \in M$, but $8=4+4 \notin M$ or more generally, $3 n_{1}=1 \in M$ and $3 n_{2}+1 \in M$, but $\left(3 n_{1}+1\right)+\left(3 n_{2}+1\right)=3\left(n_{1}+n_{2}\right)+2 \notin M$. We further note that gcd of 40 and 100 does not exists in M and lcm of 4 and 10 does not exits in M (since $4 \nmid 10$ in M).

T5.31 Let $q \in \mathbb{N}^{*}$ be an arbitrary prime number (e. g. $q:=2$ or $q:=1234567891{ }^{33}$) and $N:=$ $\mathbb{N}^{*}-\{q\}$. Then N is a multiplicatively closed and every element in N is a product of irreducible elements of N; such a decomposition is not any more, in general unique. More precisely, prove that: The irreducible elements in N are usual prime numbers $p \neq q$ and their products $p q$ with q and both the elements $q_{2}:=q^{2}$ and $q_{3}:=q^{3}$. The element $n:=q^{6} \in N$ has two essentially different decompositions $n=q_{2} \cdot q_{2} \cdot q_{2}=q_{3} \cdot q_{3}$ as product of irreducible elements of N. The irreducible element q_{3} divides (in N) the product $q_{2} \cdot q_{2} \cdot q_{2}$, but none of its factor. Similarly, q_{2} divides (in N) the product $q_{3} \cdot q_{3}$, but not q_{3}. Similarly, $m:=p q^{3}=(p q) q^{2}$ has (in N) two essentially different decompositions (p prime number $\neq q$).

T5.32 (a) Let $n, k \in \mathbb{N}^{*}$ be relatively prime natural numbers. Show that n divides $\binom{n}{k}$ and k divides $\binom{n-1}{k-1} \cdot\left(\right.$ Hint : Think about the formula $\left.k\binom{n}{k}=n\binom{n-1}{k-1}.\right)$
(b) For every natural number n, show that $4 \cdot 7 \cdot 9=252$ divides $n^{8}-n^{2}$.

[^18](c) Let $r \in \mathbb{N}^{*}, m=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{N}^{r}$ and $n:=\sum_{i=1}^{r} m_{i}$. Let p be a prime number with $\operatorname{Max}\left(m_{1}, \ldots, m_{r}\right)<p \leq n$. Show that p divides $\binom{n}{m}=n!/ m_{1}!\cdots m_{r}!$.
(d) Find the canonical prime decomposition of the natural number 81057226635000 . (Ans : $2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 17 \cdot 23 \cdot 37$.)
(e) If $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is the prime decomposition of the positive natural number n with pairwise distinct prime numbers p_{1}, \ldots, p_{r}, then show that:
(i) $T(n):=\left(\alpha_{1}+1\right) \cdots\left(\alpha_{r}+1\right)$ is the number of positive divisors of n in \mathbb{N}^{*}.
(ii) $\sigma(n):=\prod_{i=1}^{r} \frac{\left(p_{i}^{\alpha_{i}+1}-1\right)}{\left(p_{i}-1\right)}$ is the sum of all positive divisors of n in \mathbb{N}^{*}.
(f) How many divisors are there for the number given in the part (d)? and what is their sum?

T5.33 (a) Let $a \in \mathbb{N}^{*}$, For how many natural numbers $x \in \mathbb{N}^{*}, x(x+a)$ is a (perfect) square?
Compute these x for $a \in\{15,30,60,120\}$. (Hint : You may need Pythagorean triples, see Test-Exercise T5.38.)
(b) For every $s \geq 2$, a pair $\left(m_{s}, n_{s}\right):=\left(2\left(2^{s-1}-1\right), 2^{s+1}\left(2^{s-1}-1\right)\right)$ is a pair (m, n) of positive natural numbers such that $m<n$ and m and n as well as $m+1$ and $n+1$ have the same prime divisors. (Remark : There are other such pairs (m, n), for example, $(75,1215)$ is such a pair. See Makowski: Ens. Math. 14, 193 (1968) .)

T5.34 (Irrational numbers ${ }^{34}$) A real number which is not rational is called an irrational number.
(a) Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or division; The sum, difference, product and quotient of two real numbers, one irrational and the other a non-zero rational, are irrational.
(b) Let $n \in \mathbb{N}^{*}, y \in \mathbb{Q}, y>0$ and let $y=p_{1}^{m_{1}} \cdots p_{r}^{m_{r}}$ be the canonical prime factorisation of y. Show that the following statements are equivalent : (i) There exists a positive rational number x with $x^{n}=y$. (ii) n divides all the exponents $m_{i}, i=1, \ldots, r$.
(c) (Lemma of Gauss) Let $x:=a / b \in \mathbb{Q}$ be a normalised fraction, i.e., $a, b \in \mathbb{Z}, b>0$ and $\operatorname{gcd}(a, b)=1$. Suppose that $a_{n} x^{n}+\cdots+a_{1} x+a_{0}=0$ with $a_{0}, \ldots, a_{n} \in \mathbb{Z}$ and $a_{n} \neq 0, n \geq 1$, i.e., x is a zero of the polynomial function $a_{n} t^{n}+\cdots+a_{0}$. Then a is a divisior of a_{0} and b is a divisor of a_{n}. Deduce that :
(i) If the leading coefficient $a_{n}=1$, then $x \in \mathbb{Z}$.
(ii) For every integer $a \in \mathbb{Z}$ and a natural number $n \in \mathbb{N}^{*}$, every rational solution of $x^{n}-a$ is an integer, in particular, $x^{n}-a$ has a rational solution if and only if a is the n - th power of an integer. (Remark : It follows at once that $\sqrt{2}$ (Phythagoras) ${ }^{35} \sqrt{3}, \sqrt{5}, \ldots, \sqrt{p}$, where p is prime number, are irrational numbers.) More generally :
(iii) Let $r \in \mathbb{N}^{*}, p_{1}, \ldots, p_{r}$ be distinct prime numbers and let $m_{2}, \ldots, m_{r} \in \mathbb{N}^{*}$ Then for every $n \in \mathbb{N}^{*}, n>1$, the real number $\sqrt{p_{1} p_{2}^{m_{2}} \cdots p_{r}^{m_{r}}}$ is an irrational number.

[^19](iv) For $a, b \in \mathbb{Z}, a>0, b>0$ with $\operatorname{gcd}(a, b)=1$ and a natural number $n \in \mathbb{N}^{*}$, the equation $x^{n}-a / b$ has a rational solution if and only if both a and b are n-th power of integers.
(d) Let $a_{1}, \ldots, a_{r} \in \mathbb{Q}_{+}^{\times}$be positive rational numbers. Show that $\sqrt{a}_{1}+\cdots+\sqrt{a}_{r}$ is rational if and only if each $a_{i}, i=1, \ldots, r$ is a square of rational number.
(e) Determine all rational zeros of the polynomial functions $t^{3}+\frac{3}{4} t^{2}+\frac{3}{2} t+3$ and $3 t^{7}+4 t^{6}-t^{5}+$ $t^{4}+4 t^{3}+5 t^{2}-4$.
(f) Let t be a rational multiple of π^{36}, i.e. $t=r \pi$ with $r \in \mathbb{Q}$. Then $\cos t, \sin t$ and $\tan t$ are irrational numbers apart from the cases where $\tan t$ is undefined and the exceptions $\cos t=$ $0, \pm 1 / 2, \pm 1 ; \sin t=0, \pm 1 / 2, \pm 1 ; \tan t=0, \pm 1$.
(g) The real numbers $\log _{6} 9$ and $\log 3 / \log 2$ are irrational numbers.
(h) Let z be a real number. Show that the following statements are equivalent :
(i) z is rational. (ii) There exists a positive integer k such that $[k z]=k z$. (iii) There exists a positive integer k such that $[(k!) z]=(k!) z$.
(i) Use the above part (h) to prove that the number e is irrational. (Hint : The number $e=\sum_{i=0}^{\infty} \frac{1}{i!}$ is called the Euler's number. For any positive integer k, we have $[(k!) e]=k!\sum_{i=0}^{k} 1 / i!<(k!) e$.) (Proof: (due to J.-B.Fourier (1768-1830) a French mathematician and physicist) Suppose that $e=P / Q$ with $P, Q \in \mathbb{N}, P, Q \geq 1$. Then
$$
P / Q=1+1 / 1!+1 / 2!+\cdots+1 / Q!+1 /(Q+1)!+\cdots
$$

Multiplying by $Q!$, it follows that

$$
(Q-1)!\cdot P=Q!+Q!+\cdots+Q+1+1 /(Q+1)+1 /(Q+1)(Q+2)+\cdots
$$

i. e. the series

$$
\sum_{v=1}^{\infty} \frac{1}{(Q+1) \cdots(Q+v)}>0
$$

has an integer value. But

$$
\frac{1}{(Q+1) \cdots(Q+v)}<\frac{1}{(Q+1)^{v}} \quad \text { for all } \quad v \geq 2
$$

and hence

$$
\frac{1}{(Q+1) \cdots(Q+v)}<\sum_{v=1}^{\infty} \frac{1}{(Q+1)^{v}}=\frac{1}{Q} \leq 1
$$

a contradiction. For the last equality, we have used the formula ${ }^{37}$ (for $\left.x=1 /(Q+1) \leq 1 / 2\right)$.

- Remark: The proof of irrationality of the number π is not quite so easy!)

T5.35 (Congruences) In the first chapter of Disquisitiones Arithmaticae ${ }^{38}$ Gauss introduced the concept of congruence. He was induced to adopt the symbol \equiv because of the close analogy with the (algebraic) equality $=$.
Let $n \in \mathbb{N}^{*}$ be a fixed positive natural number. Two integers a and $b \in \mathbb{Z}$ are said to be congru ent modulo n, denoted by $a \equiv b(\bmod n)$ if n divides the difference $a-b$, i. e. $a-b=k n$ for some integer $k \in \mathbb{Z}$.

[^20]Given an integer $a \in \mathbb{Z}$, let q and r denote the quotient and remainder upon division by n, so that $a=q n+r, \quad 0 \leq r<n$. then $a \equiv r(\bmod n)$. Therefore every integer is congruent modulo n to exactly one of $0,1, \ldots, n-1$; in particular, $a \equiv 0(\bmod n)$ if and only if n divides a. Further, note that $a \equiv b(\bmod n)$ if and only if a and b have the same remainder upon division by n.
(a) The behavior of \equiv with respect to the addition and multiplication is reminiscent of the ordinary equality. Some of the elementary properties of equality that carry over to \equiv are:
(i) $a \equiv a(\bmod n)$.
(ii) If $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.
(iii) If $a \equiv b(\bmod n)$ and if $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
(Remark : The above three properties show that \equiv is an equivalence relation on the set of integers. The equivalence classes of \equiv are precisely the congruence classes modulo $n:[r]:=r+\mathbb{Z} \cdot n:=$ $\{r+k n \mid k \in \mathbb{Z}\}, r=0, \ldots, n-1$. Therefore the quotient set $\mathbb{Z} / \equiv=\{[r] \mid 0 \leq r<n-1\}$; this quotient set is usually denoted by \mathbb{Z}_{n} and its elements are also called the residue classes modulo n. The system $0,1, \ldots, n-1$ form a complete representative system for the quotient set \mathbb{Z} / \equiv.)
(iv) If $a \equiv b(\bmod n)$ and if $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a \cdot c \equiv b \cdot d(\bmod n)$.
(v) If $a \equiv b(\bmod n)$, then $a+c \equiv b+c(\bmod n)$ and $a \cdot c \equiv b \cdot c(\bmod n)$.
(Remark: It follows from (iv) that the binary operations $+_{n}$ (called the addition modulo n) and \cdot_{n} (called the multiplication modulo n) defined on the quotient set \mathbb{Z}_{n} by $([r],[s]) \mapsto[r+s]$ and $([r],[s]) \mapsto[r \cdot s]$ are well-defined. Both these binary operations are associative, commutative and $[0]$ (respectively, [1]) is the identity element for $+_{n}$ (respectively, \cdot_{n}). Therefore $\left(\mathbb{Z}_{n},+_{n}\right)$ and $\left(\mathbb{Z}_{n}, \cdot{ }_{n}\right)$ are commutative monoids. Moreover, the monoid $\left(\mathbb{Z}_{n},+_{n}\right)$ is a group. Further, the binary operations $+n$ and $c d o t_{n}$ are connected by the distributive laws: $\left([r]+_{n}[s]\right) \cdot{ }_{n}[t]=[r] \cdot n[t]+_{n}[s] \cdot n[t]$ and $[r] \cdot n\left([s]+_{n}[t]\right)=$ $[r] \cdot{ }_{n}[s]+_{n}[r] \cdot n[t]$ for all $r, s, t \in\{0,1, \ldots, n-1\}$. Therefore $\left(\mathbb{Z}_{n},+_{n},{ }_{n}\right)$ is a commutative ring with the (multiplicative) identity [1]. All the above assertions are immediate from the definitions of $+_{n},{ }_{n}$ and the standard associativity, commutativity and the distributive laws of the standard addition and multiplication on the set \mathbb{Z} of integers.)
One cannot unrestrictedly cancel common factor in the arithmetic of congruences. With suitable precautions cancellation can be allowed:
(vi) If $c a \equiv c b(\bmod n)$, then $a \equiv b(\bmod n / d)$, where $d=\operatorname{gcd}(c, n)$. (Hint : Use Euclid's lemma.)
(vii) If $c a \equiv c b(\bmod n)$ and if $\operatorname{gcd}(c, n)=1$, then $a \equiv b(\bmod n)$. In particular, If $c a \equiv c b(\bmod n)$ and if p is a prime number which does not divide c, then $a \equiv b(\bmod n)$.
(b) Let $n \in \mathbb{N}^{*}, a, b \in \mathbb{Z}$ and let $P(X)=\sum_{i=0}^{d} a_{i} X^{i}$ be a polynomial with integer coefficients $a_{0}, \ldots, a_{d} \in \mathbb{Z}$. If $a \equiv b(\bmod n)$ then show that $P(a) \equiv P(b)(\bmod n)$. Deduce that if a is a solution of the congruence $P(a) \equiv 0(\bmod n)$ and if $a \equiv b(\bmod n)$, then b is also a solution.
(c) (i) Find the remainder when 4444^{4444} is divided by 9 . (Hint: Use $2^{3} \equiv-1(\bmod 9)$.)
(ii) For $n \geq 1$, show that $(-13)^{n+1} \equiv(-13)^{n}+(-13)^{n-1}(\bmod 181)$. (Hint : Note that $(-13)^{2} \equiv$ $-13+1(\bmod 181)$ and use induction on n.)
(d) Let $a \in \mathbb{Z}$ be an integer relatively prime to n. Then:
(i) For every $c \in \mathbb{Z}$, the integers $c, c+1, \ldots, c+(n-1) a$ form a complete representative system for \mathbb{Z}_{n}. In particular, any n consecutive integers form a complete representative system for \mathbb{Z}_{n}.
(ii) If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ is a complete representative system for \mathbb{Z}_{n}, then $a \cdot a_{1}, \ldots, a \cdot a_{n}$ also form a complete representative system for \mathbb{Z}_{n}.
(iii) Verify that $0,1,2,2^{2}, \ldots, 2^{9}$ form a complete representative system for \mathbb{Z}_{11}, but that $0,1^{2}, 2^{2}, 3^{2}, \ldots, 10^{2}$ do not.
(e) Find the remainders when
(i) 15 ! is divided by 17 .
(ii) $2 \cdot(26!)$ is divided by 29 .
(iii) $4 \cdot(29$! $)+5$! is divided by 31 .
(f) Explain why the following curious calculation hold:

$$
\begin{aligned}
1 \cdot 9+2 & =11 \\
12 \cdot 9+3 & =111 \\
123 \cdot 9+4 & =1111 \\
1234 \cdot 9+5 & =11111 \\
12345 \cdot 9+6 & =111111 \\
123456 \cdot 9+7 & =1111111 \\
1234567 \cdot 9+8 & =11111111 \\
12345678 \cdot 9+9 & =111111111 \\
123456789 \cdot 9+10 & =1111111111
\end{aligned}
$$

(Hint: Show that $\left(10^{n-1}+2 \cdot 10^{n-2}+3 \cdot 10^{n-3}+\cdots+n\right) \cdot(10-1)+(n+1)=\frac{10^{n+1}-1}{9}$. .)
(g) Determine the last two digits of $9^{9^{9}}$. (Hint : $9^{9} \equiv 9(\bmod 10)$ and hence $9^{9^{9}}=9^{9+10 k}$. Now use $9^{9} \equiv 89(\bmod 100)$.)
(h) Determine the last three digits of $7^{999} .\left(\right.$ Hint : $\left.7^{4 n} \equiv(1+400)^{n} \equiv 1+400 n(\bmod 1000).\right)$
(i) For any $n \geq 1$, show that there exists a prime number with at least n of its digits equal to 0 .
(Hint : consider the arithmetic progression $10^{n+1} \cdot m+1, m \in \mathbb{N}^{*}$.)
(j) Show that 2^{r} divides a integer n if and only if 2^{r} divides the number made up of the last r digits of n. (Hint : $10^{k}=2^{k} \cdot 5^{k} \equiv 0\left(\bmod 2^{r}\right)$ for $k \geq r$.)

T5.36 (a) Faliure of the converse of Fermat's Little Theorem: show that if $n \in \mathbb{N}^{*}$ and if the congruence $a^{n} \equiv a(\bmod n)$ holds for some integer which is relatively prime to n, then n need not be prime. (Hint : $2^{340} \equiv 1(\bmod 341)$, but $341=11 \cdot 31$ is not prime.)
(b) Use Fermat's Little Theorem to:
(i) Verify that 17 divides $11^{104}+1$. (ii) verify that 13 divides $11^{12 n+6}+1$ for every $n \in \mathbb{N}$.
(iii) Let p be a prime number and let a be an integer with $\operatorname{gcd}(a, p)=1$. Verify that $x \equiv$ $a^{p-1} b(\bmod p)$ is the unique solution of the linear congruence $a X \equiv b(\bmod p)$.
(iv) Solve the congruence $2 X \equiv 1(\bmod 31) ; ~ 6 X \equiv 5(\bmod 11)$ and $3 X \equiv 17(\bmod 29)$.
(c) The three most recent appearances of Halley's comet were in the years 1835, 1910 and 1986; the next appearance will be in 2061 . Prove that $1835^{1910}+1986^{2061} \equiv 0(\bmod 7)$.
(d) Verify the congruence $2222^{5555}+5555^{2222} \equiv 0(\bmod 7)$.

T5.37 Let p be a prime number.
(a) If a and b are integers with $\operatorname{gcd}\left(a, p=1 \operatorname{gcd}(b, p)\right.$ and if $a^{p} \equiv b^{p}(\bmod p)$, then $a \equiv b(\bmod p)$.
(b) If p is an odd prime number, then
(i) $1^{p-1}+2^{p-1}+\cdots+(p-1)^{p-1} \equiv-1(\bmod p)$.
(ii) $1^{p}+2^{p}+\cdots+(p-1)^{p} \equiv 0(\bmod p)$.
(iii) $\binom{p-1}{k} \equiv(-1)^{k}(\bmod p)$ for every $1 \leq k \leq p-1$.
(c) Let p and q be two distinct odd prime numbers such that $p-1 \mid q-1$ and let a be an integer with $\operatorname{gcd}(a, p q)=1$. Show that $a^{q-1} \equiv 1(\bmod p q)$.
(d) Let p and q be two distinct prime numbers. Show that $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.
(e) Verify that $2^{561} \equiv 2(\bmod 561)$ and $3^{561} \equiv 3(\bmod 561)$. (Remark : It is an unanswered question whether that exist infinitely many composite numbers n such that n divides both $2^{n}-2$ and $3^{n}-3$.)

T5.38 In this test-Exercise we undertake the task of finding all solutions of the Pythagorean equation $X^{2}+Y^{2}=Z^{2}$ in the positive integers.
(a) (Pythagorean Triples) A triple $(x, y, z) \in \mathbb{Z}^{3}$ is calleda Pythagoreantriple if $x^{2}+y^{2}=z^{2}$; the triple is said to be primitive if $\operatorname{gcd}(x, y z)=1$. The characterization of all primitive Pythagorean triples is fairly straight forward: $(x, y, z) \in \mathbb{Z}^{3}, \operatorname{gcd}(x, y, z)=1,2 \mid x, x>0$, $y>0, z>0$ are given by the formulas: $x=2 s t, y=s^{2}-t^{2}, z=s^{2}+t^{2}$ for integers $s>t>0$, $\operatorname{gcd}(s, t)=1$ and $s \not \equiv t(\bmod 2)$. (Proof:)
(b) (Pythagorean Triangles) A right angled triangle is called a Pythagorean triangle if all its sides are of integral lengths. An interesting geometric fact concerning Pythagorean triangles is: The radius of the inscribed circle of a Pythagorean triangle is always an integer. (Proof:)
(c) Let $n \in \mathbb{N}^{*}$. Show that
(i) There are at least n Pythagorean triples having the same first member. (Hint : Let $y_{k}=$ $2^{k}\left(2^{2 n-2 k}-1\right)$ and $z_{k}=2^{k}\left(2^{2 n-2 k}+1\right), k=0,1, \ldots, n-1$. Then $\left(2^{n+1}, y_{k}, z_{k}\right)$ are all Pythagorean triples.)
(ii) There exists a Pythagorean triangle the radius of whose inscribed circle is n. (Hint : If r denotes the radius of the circle inscribed in the Pythagorean triangle having sides a and b and hypotenuse c, then $r=\frac{1}{2}(a+b-c)$. Consider the triple $\left(2 n+1,2 n^{2}+2 n, 2 n^{2}+2 n=1\right)$.)
${ }^{\dagger}$ T5.39 (Primality Tests ${ }^{39}$) Let $n \in \mathbb{N}^{*}$.
(a) (Lucas's Test) If there exists $a \in \mathbb{Z}$ such that $a^{n-1} \equiv 1(\bmod n)$ and $a^{(n-1) / p} \not \equiv 1(\bmod n)$ for all prime numebrs p which divide $n-1$, then n is a prime number.
(b) (Pepin's Test t${ }^{40}$) The Fermat number $F_{n}=2^{2^{n}}+1$ is prime if and only if $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$.
†'T5.40 (Fermat's Last Theorem) ${ }^{41}$
(a)
(b) (Fermat's Method of Infinite Decent)
(c) (S o me History) Some highlights of the 19-th century work on FLT are:

- In 1816 - The French Academy announces a first prize for a solution to FLT.
- in 1820 s - Sophie Germain shows that if p and $2 p+1$ are prime, then $x^{p}+y^{p}=z^{p}$ has no solution with $p \nmid x y z$. (This is called the Case I of FLT; the Case II is where $p \mid x y z$ and is usually much harder.)
- In 1825 - Drichlet and Legendre prove FLT for $n=5$.
- In 1832 - Drichlet attempts to prove FLT for $n=7$ and proves FLT for $n=14$.
- In 1839 - L a m é proves FLT for $n=7$.
- In 1847 - Lamé and Cauchy presents faulty proof of FLT for general n.
- In 1844-1847 - K u m m e r's work on FLT:

[^21]- In 1847 - Theorem: FLT holds for p if $p \nmid h$ (such prime are called regular primes).
- In 1847 - Theorem: p is regular if and only if p does not divide the numerators of the Bernoullinumbers ${ }^{42} B_{2}, B_{4}, \ldots B_{p-3}$. - As a consequence of this for $p<100$ only $37,59,67$ are irregular primes.
- In 1850 - The French Academy offers a second prize for a solution to FLT.
- In 1856 - at C a uch y's suggestion, the French Academy withdraws the prize and then awards a medal to Kummer.
- In 1857 - K u m m e r develops a complicated criteria for proving FLT for certain irregular primes. - Some gaps in his proof which are later filled by Vandiver in 1920s. These result establish FLT for $p<100$.
- Some highlights of the history of FLT after Kummer:

[^22]
[^0]: ${ }^{2}$ K urt G ödel (1906-1978) was born on 28 April 1906 in Brünn, Austria-Hungary (now Brno, Czech Republic) and died on 14 Jan 1978 in Princeton, New Jersey, USA. Gödel proved fundamental results about axiomatic systems showing in any axiomatic mathematical system there are propositions that cannot be proved or disproved within the axioms of the system.

[^1]: ${ }^{3}$ Marin Mersenne (1588-1648) was a French monk who is best known for his role as a clearing house for correspondence between eminent philosophers and scientists and for his work in number theory.
 ${ }^{4}$ The largest known prime, as of 2009 (update), was discovered 23 August 2008 by the distributed computing project Great Internet Mersenne Prime Search (This discovery was part of the Great Internet Mersenne Prime Search (GIMPS)): $2^{43,112,609}-1$. This number has $12,978,189$ digits and is the 47 -th known Mersenne prime by size as of June 2009 (update). Just a few weeks later, on 6 September 2008 a smaller Mersenne prime was discovered, $2^{37,156,667}-1$, also by GIMPS. This was the second largest known prime at the time, until $2^{42,643,801}-1$ was found

[^2]: ${ }^{8}$ This process is named after the Greek scientist who invented it. Eratosthenes Cyrene (276-194 BC), a contemporary of Archimedes, was a many-sided scholar; nicknamed "Beta" because he stood at least second in every field. He gave a mechanical solution of the problem of duplicating the cube, and he calculated the diameter of the earth with considerable accuracy. Chief librarian of the Museum in Alexandria, he became blind in his old age and committed suicide by starvation.

[^3]: ${ }^{9}$ Proved by the French mathematician Legendre Adrien-Marie (1752-1833). It was Legendre's fate to be eclipsed repeatedly by younger mathematicians. He invented the method of least squares in 1806, but Gauss revealed in 1809 that he had done the same in 1795. He laboured for 40 years on elliptic integrals and then A b e l and J a cobi revolutionized the subject in the 1820 s with the introduction of elliptic functions. He conjectured the prime number theorem and the law of quadratic reciprocity, but could not prove either. Still, he created much beautiful mathematics, including the determination of the number of representations of an integer as a sum of two squares, and the exact conditions under which the equation $a x^{2}+b y^{2}+c z^{2}=0$ holds for some $(x, y, z) \neq(0,0,0)$. He also wrote an elementary geometry text in which, in 39 editions of the English translations, replaced Euclid's Elements in America schools.

[^4]: ${ }^{10}$ The modulo 10 approach is not entirely effective. For, it does not always detect the common error of transposing distinct adjacent entries a and b within the string of digits. For example, the identification numbers 81504216 and 81504261 have the same check digit 9 . The problem occurs when $|a-b|=5$. More sophisticated methods are available with larger moduli and different weights that would prevent this error.

[^5]: ${ }^{11}$ The English mathematician Edward Waring (1743-1798) announced an interesting property of prime numbers in his Mediationes Algebraicae, Cambridge, 1770, which was reported to him by his student John Wils o n (1741-1793): If p is a prime number, then p divides $(p-1)!+1$. It appears that neither Wilson nor Waring knew how to prove it. Confessing this inability, Waring wrote "Theorems of this kind will be very hard to prove because of absence of a notations to express prime numbers." reading this passage, Gauss uttered his comment on "notationes versus notiones", implying that it was the notion that really mattered, not the notation. Soon afterward in 1771, L a granged gave a proof of what in literature is called "Wilson's Theorem" and observed that the converse also holds.

[^6]: ${ }^{13} \mathrm{Pythagoras}$ of Samos (born between 580 BC and 562 BC) was an Ionian Greek philosopher, mathematician, and founder of the religious movement called Pythagoreanism. Most of the information about Pythagoras was written down centuries after he lived, so very little reliable information is known about him. He was born on the island of Samos, and might have traveled widely in his youth, visiting Egypt and other places seeking knowledge. Around 530 BC, he moved to Croton, a Greek colony in southern Italy, and there set up a religious sect. The school concentrated on four mathemata or subjects of stud: arithmetica (arithmetic - Number theory rather than the art of calculating), harmonia (music), geometria (geometry) and astrology (astronomy). This fourfold division of knowledge became known in the Middle Ages as the quadrivium to which was added the trivium of logic, grammar and rhetoric. These seven liberal arts came to be looked upon as the necessary course of study of an educated person.
 Pythagoras made influential contributions to philosophy and religious teaching in the late 6-th century BC. He is often revered as a great mathematician, mystic and scientist, but he is best known for the Pythagorean theorem which bears his name. The society took an active role in the politics of Croton, but this eventually led to their downfall. The Pythagorean meeting-places were burned, and Pythagoras was forced to flee the city. He is said to have ended his days in Metapontum.
 ${ }^{14} \mathrm{P} 1$ a to $(427 \mathrm{BC}-347 \mathrm{BC})$ is one of the most important Greek philosophers. He founded the Academy in Athens, an institution devoted to research and instruction in philosophy and the sciences. His works on philosophy, politics and mathematics were very influencial and laid the foundations for Euclid's systematic approach to mathematics.
 ${ }^{15}$ Carl Gustav Jacob Jacobi (1804-1851) made basic contributions to the theory of elliptic functions. He carried out important research in partial differential equations of the first order and applied them to the differential equations of dynamics.
 ${ }^{16}$ Leopold Kronecker (1823-1891) was a German mathematician. His primary contributions were in the theory of equations. He made major contributions in elliptic functions and the theory of algebraic numbers.
 ${ }^{17}$ Felix Christian Klein (1849-1925) was a German mathematician. Felix Klein's synthesis of geometry as the study of the properties of a space that are invariant under a given group of transformations, known as the Erlanger Programm, profoundly influenced mathematical development.

[^7]: ${ }^{18}$ Giuseppe Peano (1858-1932) was an Italian mathematician born on 27 August 1858 and died on 20 April 1932, whose work was of exceptional philosophical value. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much notation. The standard axiomatization of the natural numbers is named in his honor. As part of this axiomatization effort, he made key contributions to the modern rigorous and systematic treatment of the method of mathematical induction. He spent most of his career teaching mathematics at the University of Turin, Italy.

[^8]: ${ }^{19}$ Julius Wilhelm Richard Dedekind (October 6, 1831 - February 12, 1916) was a German mathematician who did important work in abstract algebra (particularly ring theory), algebraic number theory and the foundations of the real numbers. Dedekind was one of the greatest mathematicians of the nineteenth-century, as well as one of the most important contributors to number theory and algebra of all time. Any comprehensive history of mathematics will mention him for his invention of the theory of ideals and his investigation of the notions of algebraic number, field, module, lattice, etc. Often acknowledged are: his analysis of the notion of continuity, his introduction of the real numbers by means of Dedekind cuts, his formulation of the Dedekind-Peano axioms for the natural numbers, his proof of the categoricity of these axioms, and his contributions to the early development of set theory.

[^9]: ${ }^{20}$ Leonard of Pis a or Fibonacci (1170-1250) an Italian Salesman who wrote a book on "Liber Abaci" in 1209 and introduced the Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe. Fibonacci played an important role in reviving ancient mathematics and made significant contributions of his own.
 ${ }^{21}$ In 1844 Gabriel Lamé observed that if n division steps are required in the Euclidean algorithm to compute $\operatorname{gcd}(a, b), a, b \in \mathbb{N}^{*}$, then $a \geq f_{n+2}$ and $b \geq f_{n+1}$. Therefore the sequence was called the Lamé sequence. But Lucas discovered that Fibonacci had been aware of these numbers six centuries earlier.

[^10]: ${ }^{22}$ Binet Jacques Philippe (1786-1856) was a French mathematician who discovered this formula (in 1843) expressing f_{n} in terms of the integer n.

[^11]: ${ }^{23}$ Étienne Bézout (1730-1783) was a French mathematician who is best known for his theorem on the number of solutions of polynomial equations. In 1758 Bézout was elected an adjoint in mechanics of the French Academy of Sciences. Besides numerous minor works, wrote a Théorie générale des équations algébriques, published at Paris in 1779, which in particular contained much new and valuable matter on the theory of elimination and symmetrical functions of the roots of an equation: he used determinants in a paper in the Histoire de l'acadé mie royale, 1764, but did not treat the general theory.

[^12]: ${ }^{24}$ A more efficient method involving repeated application of division algorithm is given in the VII-th book of the Elements and it is referred to as the Euclidean algorithm. The French mathematician Gabriel Lamé (1795-1870) proved that the number of steps required to find gcd in the Euclidean algorithm is at most five times the number of the digits in the smaller integer, i.e., $5 \log _{10} b=(2.17 \ldots) \log b$. Lamé was a primarily a mathematical physicist. is only other known contributions to number theory were the first proof of Fermat's Last Theorem for the exponent 7 and a fallacious "proof" for the general n.

[^13]: ${ }^{25}$ This is a special case of the well known Horner's scheme. Named after William George Horner (1786-1837), who is largely remembered only for the method, Horner's method, of solving algebraic equations ascribed to him by Augustus De Morgan and others.

[^14]: ${ }^{26}$ Diophantus of Alexandria (A.D. 200 and 214 - between 284 and 298 at age 84), sometimes called "the father of algebra", was an Alexandrian Greek mathematician and the author of a series of books called Arithmetica. These texts deal with solving algebraic equations, many of which are now lost. In studying Arithmetica, Fermat concluded that a certain equation considered by Diophantus had no solutions, and noted without elaboration that he had found "a truly marvelous proof of this proposition," now referred to as Fermat's Last Theorem. This led to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and of Diophantine approximations remain important areas of mathematical research. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought. Diophantus also made advances in mathematical notation.

[^15]: ${ }^{27}$ Zhang Qiujian (about 430-about 490) was a Chinese mathematician who wrote the text Zhang Qiujian suanjing (Zhang Qiujian's Mathematical Manual) This is a work of historical significance not only because existing treatises of very early mathematics are scarce, but also because it provides a rare insight into the early development of arithmetic - an arithmetic which was built on a numeral system that had the same concept as Hindu-Arabic numeral system - Jiu zhang suanshu.
 ${ }^{28}$ In Liber Abaci Fibonacci (see Footnote ${ }^{20}$) introduced "continued fractions" - a multiple-decked expressions. Although giving due credit to Fibonacci, most authorities agree that the theory of continued fractions begins with Rafael Bombelli (1526-1572) the last of the great algebraist of renaissance Italy. In his "L'Algebra Opera" (1572), Bombelli attempted to find square roots by means of infinite continued fractions - a method both ingenious and novel. It may be interesting to mention that Bombelli was the first to popularize the work of Diophantus.

[^16]: ${ }^{30}$ Proved in the "Elements (Book IX, Theorem 20)" of Euclid. Euclid's argument is universally regarded as a model of mathematical elegance. - Euclid of Alexandria ($325 \mathrm{BC}-265 \mathrm{BC}$) was a Greek mathematician best known for his treatise on mathematics (especially Geometry) - The Elements. This influenced the development of Western mathematics for more than 2000 years. The long lasting nature of The Elements must make Euclid the leading mathematics teacher of all time. However little is known of Euclid's life except that he taught at Alexandria in Egypt. Euclid may not have been a first class mathematician but the long lasting nature of The Elements must make him the leading mathematics teacher of antiquity or perhaps of all time. As a final personal note let me add that my own introduction to mathematics at school in the 1970s was from an edition of part of Euclid's Elements and the work provided a logical basis for mathematics and the concept of proof which seem to be lacking in school mathematics today.

[^17]: ${ }^{31}$ Peter Gustav Lejeune Dirichlet (1805-1859) was a German mathematician with deep contributions to number theory (including creating the field of analytic number theory), and to the theory of Fourier series and other topics in mathematical analysis; he is credited with being one of the first mathematicians to give the modern formal definition of a function. Dirichelt's doctoral advisers were Simeon Poisson and Joseph Fourier. Doctoral students of Drichelts were Gotthold Eisenstein, Leopold Kronecker, Rudolf Lipschitz, Carl Wilhelm Borchardt. Other notable students were Richard Dedekind, Eduard Heine, Bernhard Riemann, Wilhelm Weber.
 ${ }^{32}$ The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid's elements, although some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof seems to have been given by Gauss in Disquisitiones arithmeticae $\S 16$ (Leipzig, Fleischer, 1801), see also Footnote 27. It was, of course, familiar to earlier mathematicians; but GAUSS was the first to develop arithmetic as a systematic science.

[^18]: ${ }^{33}$ One can check this with a small computer programm that this number is really a prime number. Is the number 12345678901 also prime?

[^19]: ${ }^{34}$ The word "irrational" is the translation of the Greek word " $\alpha \lambda o \gamma_{o} \zeta$ " in Latin. The Greek word probably means "not pronounceable". The misunderstanding that in Latin "ratio" is essentially the meaning of "rationality" made "irrational numbers".
 ${ }^{35}$ Phythagoras deserve the credit for being the first to classify numbers into odd and even, prime and composite. The following elementary short proof was given by (T. Estermann in Math. Gazette 59 (1975), pp. 110) : If $\sqrt{2}$ is rational, then there exists $k \in \mathbb{N}^{*}$ such that $k \sqrt{2} \in \mathbb{Z}$. By the Minimum Principle T5.2-(b) choose a minimal $k \in \mathbb{N}^{*}$ with this property. Then, since $1<\sqrt{2}<2, m:=(\sqrt{2}-1) k \in \mathbb{N}^{*}$ with $m<k$, but $m \sqrt{2}=(\sqrt{2}-1) k \sqrt{2}=2 k-k \sqrt{2} \in \mathbb{Z}$ a contradiction.

[^20]: ${ }^{36}$ What is the definition of the number π ? Ancient Greeks defined the number π as the ratio of the circumference of a circle to its diameter. The letter π came from Greek the word perimetros. It was Euler's adoption of the symbol in his many popular textbooks that made it widely known and used. The first recorded scientific effort to approximate π appeared in the Measurement of a Circle by the Greek mathematician of ancient Syracuse, a r chimedes (287212 B. C.). His method was to inscribe and circumscribe regular polygon about circle, determine their perimeters and use these as lower and upper bounds on the circumference. Using a polygon of 96 sides, he obtained the inequality: $223 / 71<\pi<22 / 7$.
 ${ }^{37}$ For every $x \in \mathbb{R}$ with $|x|<1$, we have $\sum_{v=0}^{\infty} x^{v}=\frac{x}{1-x}$.
 ${ }^{38}$ This monumental work of the German mathematician Carl Friedrich Gauss (1777-1855) appeared in 1801 when he was 24 years old. In this work Gauss laid the foundations of modern number theory, see also the Footnote ${ }^{32}$

[^21]: ${ }^{39}$ Lucas Edouard (1842-1891) a French number theorist was the first to device an effieint "primality test" that is, a procedure that guarantees whether a number is prime or composite without revealing its factors. His primality criteria for Mersenne and Fermat numbers were developed in a series of 13 papers published between 1876 and 1878. By imposing further restrictions on the base in Fermat's congruence $a^{n-1} \equiv 1(\bmod n)$, it is possible to obtain a definite guarantee of primality of n. This result which was proved in 1876 is known as Lucas's converse of of Fermat's Little Theorem. See also Lucas's book Théorie des Nombres (1891).
 ${ }^{40}$ In 1877, the Jesuit Priest Thé ophile Pepin (1826-1904) devised the practical test for determining the primality of the Fermant Number F_{n}.
 ${ }^{41}$ By the early 1800s, all of Fermat Problems were solved except for FLT, thus justifying the name "Fermat's Last Theorem".

[^22]: ${ }^{42}$ Bernoulli-numbers are defined by the power series expansion of the function $\frac{x}{e^{x}-1}=\sum_{n=1}^{\infty} \frac{B_{n}}{n!} x^{n}$.

