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5. The Natural Numbers — The Fundamental Theorem of Arithmetic

1 b b+1
5.1 (a) Let a,b,m,k € IN be such that (Z) <m< (a: ) and (k) <m< < -]: > Show that

a = b. (Hint : Suppose that a < b, i.e., a+ 1 < b, then m < (“H) < (Z) <m, since Pr({1,...,a+1}) C
Pr({1,...,b}) acontradiction.)

(b) Let k € N be a positive natural number and let n € IN be an arbitrary natural number. Show

k
. . a:
that there exist unique ay,...,a;y € IN suchthat 0 <ay <ay <---<ag and n = Z ( J) (Hint :
j=1
The existence of ay,...,a; is proved by induction on k. If k=1, then n = (’11) is the required representation.
Assume k > 1 and choose a; € IN with ( ) <n< (a",:rl). For the number m :=n — (”;f) > 0 by induction
hypothesis there exists a representation m = Z (af) with 0 <a; <ay < --- < ar_;. Now we need
to show that a;_; < a;. Since (”k,':l) = (%) + (k ‘), we have n = Z (“]f) + (ak,jl) - (™) < (”kljl);
in particular, (ijll) < (k“_kl) and hence a;_; < a;. Now we prove the uniqueness of ay,...,a;. If k=1,
this is trivial. Assume k > 1 and suppose that n = Zk., (“!) = Zk (bf') with 0 < a; <ap < --- < @ and
0<by <by <+ < byg. Itis enough to show that ( ) <n< (“"H) and ( ) <n< (b"+1) for then, a; = by,
by part a) and by induction hypothesis to the two representations of m :=n— ( k") =n— (bk") ,wegeta;=>b;
forall k=1,...,k— 1. Now, we show that ( ) <n< (“"+1) If ax <k,thena;=j—1forall j=1,...,k
and () = (kzl) =0=n< (”“1) = ( ) = 1. Therefore suppose that a; > k. Then (”ﬁl) Y, (“‘ ’)

(by recursion formula ') and hence (%) = (“kH) Yo (‘;f:ll) and n=Y% (%) = Z (a" ’) +(4) =

(5 = () + D () = (D) = () = 1= (1) = (%)) ) Now, since a—1 > oy
and by induction a; — j > a_; forevery 1 < j <k—1 and hence ):’;;} ((Z‘:Jf) — (‘Z‘:Jf)) > 0. This proves
that n < (“!"), the other inequality (%) < n is trivial.)

(¢) For k€ N, k > 1, show that the map IN*F — IN defined by

Wll])+<m1+’;12+1)+...+(m1+m2+"l'€+mk+k—l)

is bijective. (Hint : Use part (b).)

(ml,m27---amk>’_>(

5.2 (Godelisation) Let py =2, pop =3, p3 =35, ... be (infinite) sequence of the prime
numbers.

'Recursion formula for binomial coefficients: ("I') = (1) + (17}) +---+ ("*") + (",*). This follows from
the equality (’H'l) M +(,")-

m m—1
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(a) Let A be a countable set with an enumeration A = {ay,a2,as,...}, a; # a; for i # j. Then
the map (aj,...,a;,)— pj ---pl is an injective map from the set W(A) := W, yA" of finite
sequences (of arbitrary lengths) of elements from A - such sequences are also called words over
the alphabet A - into the set IN* of positive natural numbers. (Remark : Such a coding of the
words over A is called a Godelisation (due to K.Gddel? ). The natural number associated to a word is
called the G6del number of this word.)

(b) Let A be a finite alphabet {aj,as,...,a,} with g letters, g > 2, and ap ¢ A be another let-
ter. A word W = (a;,,...,a;,) over A can be identified by filling ao with the infinite sequence
(ai,,...ai,,a0,a0,...). Show that: the map (a;,)yen+— Yo_; ivg"~! is a bijective map from the
set of words over A onto the set IN of the natural numbers and in particular, is a Goedelisation.
(Remark : This is a variant of the g-adic expansion (see Test-Exercise T5.21).)

5.3 Let g € N*, g > 2, n be a natural number with digit-sequence (r;);ciy in the g-adic expansion
of n and let d € IN*. (see Test-Exercise T5.21.)

(a) Suppose that d is a divisor of g% for some & € IN*. Then n = (r¢—_1,...,70)e mod d. In partic-
ular, d divides the number 7 if and only if d divides the number (rg—1,...,70)g.

(b) Suppose that d is a divisor of g% — 1 for some o € IN* and

S = (ra_l,...,l"())g—l—(rza_l,...,ra)g—l—"- .
Then n =S mod d. In particular, d divides the number 7 if and only if d divides the sum S.

(¢) Suppose that d is a divisor of g% + 1 for some o € IN* and

W .= (ra,l,...,ro)g— (rw,l,...,ra)g—k--- .
Then n =W mod d. In particular, d divides the number »n if and only if d divides the alternating
sum W. (Remark : With the help of this exercise one can find criterion, which one can decide on the
basis the digit-sequence of the natural number n in the decimal system whether d is a divisor of n with
2 <d < 16. (with d = 3 and d = 9 one uses the simple check-sum, with d = 11 the simple alternating sum.
The divisibility by 7,11 and 13 at the same time can be tested with the alternating sum of the 3-grouped
together in view of the part (c). See Test-Exercise T5.21-(d) for details.)

5.4 (a) For a,m,n € N* with a >2 and d := gcd(m,n), show that ged(a™ —1,a" — 1) = a% — 1.
In particular, @ —1 and a" — 1 are relatively prime if and only if a =2 and m and n are relatively
prime. (Hint : By substituting a? by a one may assume that d = 1. Then show that (a" —1)/(a—1) =
a"'+...+a+1and (@ —1)/(a—1)=a""'+---+a+]1 are relatively prime.)

(b) Suppose that ay,...,a, € IN* are relatively prime. Show that there exists a natural number
f € N such that every natural number b > f can be represented as b = uja; + - - - + aya, with
natural numbers uy,...,u,. In the case n =2, we have f:= (a; —1)(ap — 1) is the smallest

such number; further in this case there are exactly f/2 natural numbers ¢, which do not have
a representation of the form wuja; + upas, uy,uy € N. (Hint : For 0 < ¢ < f — 1, exactly one of the
number ¢ and f — 1 — ¢ can be represented in the above form.)

(¢) Let a,b € N* and d := gcd(a,b) = sa+tb with s,t € Z. Then d = s'a+1t'b for §',t' € 7, if

b
and only if there exists k € Z such that s’ = s —k (E) U =t+k- (g)

5.5 (a) Let x,y € QF and y = c¢/d be the canonical representation of y with ¢,d € N* and

ZKurt Godel (1906-1978) was born on 28 April 1906 in Briinn, Austria-Hungary (now Brno, Czech Republic)
and died on 14 Jan 1978 in Princeton, New Jersey, USA. Godel proved fundamental results about axiomatic systems
showing in any axiomatic mathematical system there are propositions that cannot be proved or disproved within the
axioms of the system.
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ged(e,d) = 1. Show that x” is rational if and only if x is the d-th power of a rational number.

(b) Show that other than (2,4) there is no pair (x,y) of positive infegers numbers with x <y
and x’ = y*. The pairs of rational numbers (x,y) with x<y and x” = y* are precisely the pairs:
(142 (14 1y»F1) | 'n € N*. (Hint : Prove that for each real positive number of x with 1 <x<e
there exists exactly one real number y > x such that ¥’ = y*. (observe that necessarily y > e.) For the proof
of the above assertion : note that x = y* if and only if (Inx)/x = (Iny)/y and consider the function (Inx)/x
on RY.)

A
1/e Inx
(In2)/2 x

0 /’1 ) ¢ I

(¢) Letxe Qi and a be a positive natural number which is not of the form b? with b,d € N*, d >
2. Then show that log, x is either integer or irrational.

(d) For which x,y € Qi, y # 1, the real number logyx rational ? For which x € Qi, the real
number log;qx rational ?

(e) Let n € IN*, n>2 and y € Q7 \ IN*. Then both the numbers +/n! and (n!)” are irrational.
(Hint : The natural number n! has simple prime factors.)

5.6 (a) (Perfect numbers) A natural number n € IN* is called perfect if o(n)=2n, where
o (n) :=Yqj, d denote the sum of positive divisors of n.

(Theorem of Euclid-Euler) An even number n € IN* is perfect if and only if n is of the form
25(25t1 — 1) with s € N* and 2! — 1 prime. (Hint : Suppose that n is perfect, n = 2°b s5,b € IN*
and b odd. Then 2°*'b = 2n = o(n) = (2*7! — 1) (b) and so there exists ¢ € IN* such that o(b = 2°*!c,
b= (2" ~1)c, o(b) =b+c.)

(b) (Mersenne Numbers) Let a,n € N with a,n > 2. If a"—1 is prime, then a =2
and n is prime. (Hint : Use geometric series a" — 1 = (a—1)(a" ' +a" 24 ---+a+1) to conclude
that @ = 2; if n=rs with r > 1,5 > 1, then 2" — 1 = (2") — 1 = (2" — 1)(1 + 2"+ 2% 4. 4 (2" 1).
— The natural numbers of the form a” —1, p € P prime, are called Mersenne numbers. For
p=2,3,5,7 the corresponding Mersenne numbers 3,7,31,127 are prime, but corresponding to p =11, itis
My =211 —1=2047 =23-89 which is not prime. — Remarks : It was asserted by Mersenne® in 1644 that :
M, =27 —1 is prime for 2,3,5,7,13,17,19,31,61,89,107,127, and composite for the other remaining 44
values of p < 257. For example, 47|Ma3, 233|M»9, 223 |M37, 431|M43 and 167‘M33. The first mistake was
found in 1886 by Perusin and Seelhoff that Mg is prime. Subsequently four further mistakes were found
and it need no longer be taken seriously. In 1876 Lucas found a method for testing whether M), is prime
and used it to prove that M|,7 is prime. This remained the largest known prime until 1951. The problem
of Mersenne’s numbers is connected with that of “perfect” numbers which are defined in the part (a) above.
Every two distinct Mersenne numbers are relatively prime. It is not known whether there are infinitely many
Mersenne numbers that are prime. The biggest known* prime is the Mersenne number M » corresponding to

SMarin Mersenne (1588-1648) was a French monk who is best known for his role as a clearing house for
correspondence between eminent philosophers and scientists and for his work in number theory.

“The largest known prime, as of 2009 (update), was discovered 23 August 2008 by the distributed comput-
ing project Great Internet Mersenne Prime Search (This discovery was part of the Great Internet Mersenne Prime
Search (GIMPS)): 243112609 _ 1 This number has 12,978,189 digits and is the 47-th known Mersenne prime by size
as of June 2009 (update). Just a few weeks later, on 6 September 2008 a smaller Mersenne prime was discovered,
237,156,667 _ 1 "also by GIMPS. This was the second largest known prime at the time, until 24>643301 _ | was found
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p =43,112,609; this prime number has [log,((24*112609)] +-1 = [43,112,609 -1og,(2] + 1 = 12,978,189
digits!)

(¢) (Fermat Numbers) Let a,n € IN* with a > 2. If a" + 1 is prime, then « is even and n is
a power of 2. (Hint : If a is odd then a" + 1 is even and if n =2"-m with 7,m € INand m odd, then (put
k:=2)2"41=1—(=25"= (1425 (1 —2F+2% —... 420Dk and if m > 1, then k < n and hence
1 < 142K < 142", Therefore m = 1. — Remarks : The natural number of the form 22" + 1, n € N is called
the n-th Fermat number and is denoted by F;, := 2%+ 1, n € IN. The Fermat numbers corresponding to
n=0,1,2,3,4 are Fy =2,F, =5,F = 17,F; = 257,F; = 65537 are prime (already discovered by Fermat’
himself) and hence conjectured that all were prime, but in 1732 Euler proved that : Fs =22 +1=2341=
641-6700417, since 641 =5%+2*=5-27+1 divides 5228 +232 and 5*-2?8 — 1 and hence the difference
224 1=F;.In1880 Landry proved that Fs = 2% + 1 = 274177 -67280412310721. More recently it is
proved that F, is composite for 7 <n <16 n=18,19,23,36,38,39,55,63,73 and many larger values of
n. Morehead and Western proved that F; and Fg are composite without determining a factor. No
factor is known for Fj3 or for Fi4, but in all the other cases proved to be composite a factor is known. No
prime F, has been found beyond Fj, so that Fermat’s conjecture has not proved a very happy one. There
are practical “primality tests” for Mersenne and Fermat numbers developed by Lucas and Pepin, see
Test-Exercise T5.38 for more details. It is perhaps more probable that the number of Fermat primes F;, is
finite. Fermat numbers are of great interest in many ways, for example, it was proved by Gauss® that : if
F, = p is a prime, then a regular polygon of p sides can be inscribed in a circle by Euclidean methods
(constructions by ruler and compass). The property of the Fermat numbers which is relevant here is : No
two Fermat numbers have a common divisor greater than 1, i.e., gcd(F,,F,) = 1, n # m. For, suppose that
d divides both the Fermat numbers F, and F, ¢, k > 0. Then putting x = 22", we have

Fug—2 2271 -1

2k—1 2k—2
= = = _ e
F, ez phre R
and so Fn‘FnJrk — 2. This proves that d‘FHk and d‘FnJrk — 2 and therefore d‘2. But F;, isodd and so d = 1.
Therefore each of the Fermat numbers Fy, Fi,...,F, is divisible by an odd prime number which does not

divide any of the others and hence there are at least n odd primes not exceeding F,. This proves (proof
due to George Pélya7 ) Euclid’s theorem (see Test-Exercise T5.24-(b)). Moreover, we have the inequality
Pl < Fp = 22" + 1 which is little stronger than the inequality in Test-Exercise T5.25-(a).))

5.7 Let m,n € IN* be relatively prime numbers and let ag,ay,... be the sequence defined recur-
sively as ap =n, a;y1 = ag---aj+m,i € N. Then a;1| = (a; —m)a; +m = al~2 — ma; +m for all
i>1.

(a) ged(aj,a;) =1 forall i,j € N with i # j. The prime divisors of a;,i € IN supply infinitely
many different prime numbers. (Remark : The a; are suitable well for testing prime factorizing proce-
dures.)

m om+l  mit!

a; n ajiy1—m’

(b) For all i € IN, show that i—l—ﬂ—k-“—#
a a1

to be prime by GIMPS in April 2009. The predecessor as largest known prime, 23282657 _ | 'was first shown to be

prime on 4 September 2006 by GIMPS also. GIMPS found the 11 latest records on ordinary computers operated by
participants around the world. Such huge prime numbers are used in problems related to Cryptography.

Pierre de Fermat (1601-1665) was a French lawyer and government official most remembered for his
work in number theory; in particular for Fermat’s Last Theorem. He is also important in the foundations of the
calculus.

®What no one suspected before Gauss (see Footnote No.>?) was that a regular 17-gon can be constructed
by ruler and compass. Gauss was so proud of his discovery that he requested that a regular polygon of 17 sides be
engraved on his tombstone; for some reason, this wish was never fulfilled, but such a polygon is inscribed on the side
of a monument to Gauss erected in Brunswick, Germany, his birthplace.

"George P6lya (1888-1985) was a Hungarian Jewish mathematician. He was a professor of mathematics
from 1914 to 1940 at ETH Ziirich and from 1940 to 1953 at Stanford University. He made fundamental contributions
to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics
and mathematics education.
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o
(¢) From the part (a) deduce that Z ’Z% _mt I .
i=0 "

n
. © i
(d) For m =2 and n =1, from b) prove that a;;| = F; = 224 1,i € IN. In particular, Z 2 =1.
i=0 "1

58 (Periodic Sequences) Letus fix the terminology for periodic sequences which is
used at many places: For an arbitrary sequence (x;);cy of elements of a set X, a pair (mg,n) €
IN x IN* is called a pair of periodicity for (x;) if x;y, = x; for all i > my. In this case my is
called a pre-period length and n a period length of (x;). If no such pair of periodicity
for (x;) exists, then (x;) is called aperiodic, otherwise (x;) is called periodic.

(a) Show that for a periodic sequence (x;);cv, there exists a unique pair of periodicity (ko,¢) €
IN x IN* with the following property: Any pair of periodicity for (x;) is of the form (mg,mf) with
mo > ko and m € IN*. (Hint : The main point to show is the following: If r,s € IN* are period lengths of
(xi), then GCD(r,s) is also a period length of (x;).) — The natural number ko is called the pre-period
length of (x;) and the natural number /¢ is called the period length. The pair (ko,/) itself
is called the (periodicity) type of (x;). The (finite) subsequence (xo,...,xx,—1) is called
the pre-period of (x;) and the (finite) subsequence (xi,,...,Xk,+¢—1) is called the period
of (x;). In this case we simply write (X;)icv = (X0, - -, Xky—1,Xkgs - - - s Xkg10—1)- If ko =0 then (x;)
is called purely periodic. The periodicity type of an aperiodic sequence is often denoted by
(e0,0). In particular, by definition, the period length of an aperiodic sequence is 0.

(b) If x is an element of a group, the sequence (x');cy of its powers has period length ordx
and is purely periodic if ordx > 0. For an element x of a monoid the periodicity type of the
sequence (x');cy characterizes the cyclic monoid generated by x up to isomorphism and any type
in IN x IN* U {(e0,0)} may occur.

(c) For an integer r € IN*, compute the periodicity type of the sequence (x,;);c in terms of the
periodicity type (ko,?) of (x;)ienN-

5.9 (The Sieve of Eratosthenes®) The so-called sieve of Eratosthenes is an alogrithm for
singling out the prime from among the set of natural numbers < N for arbitrary natural number N.
It depends on the fact that if a natural number n > 1 has no divisior d with 1 <d < /n, then n
must be a prime number (See Test-Exercise T5.19-(d)). Let N be a positive natural number and
let 7(N) denote the number of prime numbers < N. Let py,..., p, be all distinct prime numbers
<+N,ie, r== (\/17) . Prove the following well-known formula :

T(N)=N+r—1-") {E}+ Y { N }—---+(—1)’L}L}.

1<i<r Pi 1<i|<ir<r Pi Piy 1 Pr

(Proof : For each i=1,...,r,let M;:={n € N* | n < N and p,-|n} ={pi,2pi,. .., [%} - pi} and hence

|M;| = [%} . For an index v-tuple (ii,...,iy) with 1 <ij <ip <---<iy <r, we have M; N---NM;, =

i

{neWN*|n<Nand p;|n,...,piu n} and so |[M;, N---NM; | = [p_ Np } This
iy iy

proves that ©(N) =N — 1 —|U/_, M;| +r. Now use the Sylvester’s sieve formula, see Exercise 4.3.)

n equivalently p;, ---p;,

5.10 Let n € IN* and let p be a prime number. Show that

(a) The multiplicity of pin n!is vy(n!) = [2] + [ 5] + [

n
p p 3

o

8This process is named after the Greek scientist who invented it. Eratosthenes Cyrene (276-194 BC),
a contemporary of Archimedes, was a many-sided scholar; nicknamed “Beta” because he stood at least second
in every field. He gave a mechanical solution of the problem of duplicating the cube, and he calculated the diameter
of the earth with considerable accuracy. Chief librarian of the Museum in Alexandria, he became blind in his old age
and committed suicide by starvation.
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In particular, (Legendre’s formula®): n!= szle[”/pr].
p<n

(Proof : Note that [nr} =0 if p" > n and hence the sum on the RHS is really a finite sum. The assertion is
p
proved by induction. It is trivial for 1!. Assume n > 1 and the assertion is true for (n—1)! andlet j =v,(n),

, ‘ —1
ie., p1|n but p/*! ){n Since n! =n-(n—1)!, it is enough to prove that Z L’ﬂ —Z {(npi )} = j. But

—1 1, 1 i —1
[n] = [(n : q = { o " and hence Y [n] =Y [(rz)} = j. This proof is rather short and
P P 0, if pln, P P

artificial.
]
pi’
P

for all x € R and all m € IN*.) Among the natural numbers 1 < k < n, those which are divisible by p

for every r € IN (this follows easily from [i} = [[x]}
m m

Another proof : First note that { ’11} =
P’

are p,2p,... , [n] - p; among these that are divisible by p? are p*,2p?,... | [ﬁ} - p?; among these
4

that are divisible by p® are p*,2p*, ... , [%} -p* and so on. This lead us to conclude that ¥~ [n/p’] =
Yioivpk) =vp(1-2----n) =v,(n!). — More generally : If n;, i €I, is a finite family of positive natural
numbers, then the prime number p occurs in the product [];c;n; with the multiplicity ) ;- Vk, where for
each k € IN*, v is the number i € I for which n; is divisible by p*.)

(b) Show that (2n)!/(n!)? is an even integer. Further, show that

o -5 ([2]-+[2])

and if n < p < 2n, then show that v,((2n)!/(n!)?) = 1.

(c) Let n=(ry,...,r0), be the p-adic expansion of n, where 0 <r; < p forall i=0,...,z. Then

show that
vp(n!) = (n — Zr,-)/(p—

i>0

(Hint: The sum on the right hand side of part (a) can be easily computed by recursion :

)} H = (n=Y 1)/ (p—

i=1LP' i>0
@ vy (P =11 =[P = (p—Dk=1]/(p—1).
(Hint : Use the identity (p* —1)= (p—1)(p* ' +---+p>+p+1).)
(e) Find v3(80!) and v7(2400!).
(f) Find n € IN* such that v,(n!) = 100. (Hint : For instance for p = 5, begin by considering the
equation (n—1)/4 =100.)

(g) Let n,k € N*, k <n. Every prime power p” that divides (Z) is <n. (Hint : Use the part (a).)

Proved by the French mathematician Legendre Adrien-Marie (1752-1833). It was Legendre’s fate
to be eclipsed repeatedly by younger mathematicians. He invented the method of least squares in 1806, but Gauss
revealed in 1809 that he had done the same in 1795. He laboured for 40 years on elliptic integrals and then Abel
and Jacobi revolutionized the subject in the 1820s with the introduction of elliptic functions. He conjectured the
prime number theorem and the law of quadratic reciprocity, but could not prove either. Still, he created much beautiful
mathematics, including the determination of the number of representations of an integer as a sum of two squares, and
the exact conditions under which the equation ax? +by? + cz> = 0 holds for some (x,y,z) # (0,0,0). He also wrote an
elementary geometry text in which, in 39 editions of the English translations, replaced Euclid’s Elements in America
schools.
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(h) For each prime power p® > 1 and every k€ IN*, 1 <k < p%, show that

o
()0

5.11 (a) Compute the canonical prime decomposition of:
(i) 50!. (i) theproduct 1-3-5---99 of the first 50 odd natural numbers.
(iii) the least common multiple Icm(1,2,3,...,50) the first 50 positive natural numbers.

(b) The product of two relatively prime natural numbers a and b is the n-th power of a natural
number n € IN* if and only if this hold separately for a and b as well.

*5.12 Congruences are often used to append extra check digit to identification numbers, in order to rec-
ognize transmission errors or forgeries. Personal identification numbers of some kind on passports, credit
cards, bank accounts and other variety of settings.

(a) Some banks use eight digit identification number aja; - --ag together with a final check digit ag. The
check digit is the weighted sum of the eight modulo 10, i. e. ag = ¥'5_, x;a; (mod 10).

Suppose that ag = 7a; + 3a; +9a3 + Tas + 3as + 9ag + 7Ta7 + 3ag = (mod 10). Then:

(1) Verify that the identification number 815042169 have the check digit 9. Obtain the check digits that
should be appended to the numbers 55382006 and 81372439.

(ii) The weighting scheme for assigning check digit detects any single-digit error!® in the identification
number. For example, suppose that the digit ¢; is replaced by a different digit a/, then the difference between
the correct ag and the new check digit a is a9 — ay = k(a; —a}) (mod 10), where k = 7,3, or 9 depending
position of ;. If the valid number is 81504216 were incorrectly entered as 81504316, then the check digit
8 would come up rather than the expected 9.

(iii) The bank identification number 237a418538 has an illegible fourth digit. Determine the value of the
obscured digit.

(b) The International Standard Book Number (ISBN) used in many libraries consist of none digits aja; - - - agag
followed by a tenth check digit a;o which satisfies a9 = 21.9:1 i-a; (mod 10). Determine whether each of the
ISBNs below correct:

(1) 0-07-232569-0 (United States) (ii) 91-7643-497-5 (Sweden) (iii) 1-56947-3034-10 (England).

When printing the ISBN aja - --agag two unequal digits were transposed. Show that the check digits
detected this error.

5.13 Let n € IN* and let +,, -, denote the binary operations on the quotient set Z, under the
equivalence relation congruence modulo 7, see Test-Exercise T5.35.

(a) We characterize the invertible elements in the multiplicative monoid (Z,,-,) as follows: For
a € 7., show that the following statements are equivalent:

(i) a and n, are relatively prime, i. e. ged(a,n) =1.

(ii)) The element [a] € (Z,,-,) is cancelative (or non-zero divisor in the ring (Zy,+n,)), i. €.
the left multiplication map Ay, : Zn — Zy, [x] = [a] -4 [x] = [ax] is injective.

(iii) The element [a] € (Z,,-,) is invertible (with respect to - ), i. e. there exists [b] € Z, such
that [a] -, [b] = [b] -n [a] = [1].

(Hint : Use Bezout’s Lemma, see Test-Exercise T5.16-(a) and also T5.19-(a). — Remark: The cardinality
of the unit group #(Z,,»)* =#{r € IN| 0 <r <n with ged(r,n) = 1} is usually denoted by ¢(n). This
defined a function ¢ : IN* — IN, n+ ¢(n) calledthe Euler’s totient function.)

10The modulo 10 approach is not entirely effective. For, it does not always detect the common error of transposing
distinct adjacent entries a and b within the string of digits. For example, the identification numbers 81504216 and
81504261 have the same check digit 9. The problem occurs when |a —b| = 5. More sophisticated methods are
available with larger moduli and different weights that would prevent this error.

D. P. Patil/lISc €0-221-ds2012-ex05.tex October 19, 2012 ; 4:32 p.m. 7/34



Page 8 EO0 221 Discrete Structures / August-December 2012 Exercise Set 5

(b) Show that the commutative ring (Zj,,+n,») is a field (i. e. every non-zero element [a] € Z,
is invertible (with respect to the multiplication -,) if and only if 7 is a prime number.

5.14 Let p be a prime number.

(a) Let r,k € IN with r < k < p. show that p divides (p : r). In particular, p divides (‘Z) for

all 0 < k < p. (Hint : p divides the numerator (p+r)---(p+r—k+1),since p+r—k+1<p<p+r
and p does not divide the denominator k.)

(b) (Fermat’s Little Theorem) For every natural number n, p divides n” —n, i. e.
n? = n modulo p. (Hint : Use induction and the above part (b). Another proof can be given by using
Test-Exercise T5.35-(d).)

(c) Let p and g be distinct prime numbers and let a be an integer with a” = a(mod ¢) and
a? = a(mod p). Show that a?? = a(mod pq).
(d) Let p and ¢ be two distinct prime numbers. For every integer a, prove that

aP?—aP —a?+a =0(mod pg). (Hint : Use the Fermat’s Little Theorem, see the part
(b).)

5.15 (a) Wilson’s Theorem!') If p is a prime number, then (p—1)! = —1 (mod p).

(b) The converse of Wilson’s Theorem is also true: If (n—1)! = —1(mod n), then n must be a
prime number. (Hint : If n is not prime, then n has a factor d with 1 <d < n. Further, d|(n—1)! and
hence d divides (n—1)!+1 too, a contradiction.)

(¢) Prove that:

(i) Aninteger n > 1 is prime if and only if (n—2)!=1(mod n).

(ii) If n is a composite number, then (n—1)! =0 (mod n) except when n = 4.

(d) For a prime number p, prove the congruence (p—1)!=p—1(mod (1+2+---+(p—1))).

(e) Let p be a prime number. For any integer a, prove the congruences
(i) a?+(p—1)!-a=0(mod p). (i) (p—1)!-a’+a=0(mod p).
(Hint : By Wilson’s Theorem (see the part (a)) a”+ (p—1)!-a=a” —a(mod p).)

(f) Prove that the quadratic congruence X2+ 1 = 0(mod p), where p is an odd prime, has a
solution if and only if p = 1(mod 4).

Below one can see auxiliary results and (simple) Test-Exercises.

"'The English mathematician Edward Waring (1743-1798) announced an interesting property of prime
numbers in his Mediationes Algebraicae, Cambridge, 1770, which was reported to him by his student John Wil-
son (1741-1793): If p is a prime number, then p divides (p —1)!+ 1. It appears that neither Wilson nor Waring
knew how to prove it. Confessing this inability, Waring wrote "Theorems of this kind will be very hard to prove
because of absence of a notations to express prime numbers.” reading this passage, Gauss uttered his comment on
“notationes versus notiones”, implying that it was the notion that really mattered, not the notation. Soon afterward in
1771, Lagran gé? gave a proof of what in literature is called “Wilson’s Theorem” and observed that the converse
also holds.
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Aucxiliary Results/Test-Exercises

There is a dictum that anyone who desires to get at the roots of the subject should study
its history. Endorsing this the pain is taken to fit historical remarks in the text whenever
possible.

The Theory of Numbers is concerned with properties on integers and more particularly with the positive
integers (also known as the positive natural numbers) 1,2,3,.... The origin of this misnomer harks back to
the early Greeks for whom the number meant positive integer and nothing else. Far from being a gift from
Heaven, number theory has had a long and sometimes painful evolution.

— Few words about the origin of number theory: The Theory of Numbers is one of the oldest branches of
mathematics; its roots goes back to remote date. The Greeks were largely indebted to the Babylonians and
ancient Egyptians for a core of information about the properties of natural numbers, the first rudiments of
this theory are generally credited to Pythagoras'? and his disciples.

Plato'* said “God is a geometer” — Jacobil> changed this to “God is a arithmatician”. Then
came Kronecker!S and fashioned the memorable expression “God created the natural numbers
and all the rest is the work of man”. Felix Klein'” (1849-1925)

T5.1 (The set of Natural numbers -- Peano’s axioms Natural numbers cane be
defined axiomatically as follows:

A set of natural numbers IN is a set with special element 0 and there is a map s: IN — IN'\ {0}
satisfying the following properties:

(Py) s is injective.

(P;) Induction-Axiom) Suppose that M C IN is a subset such that 0 € M and if n € M,
then s(n) € M. Then M = IN.

BPythagoras of Samos (born between 580 BC and 562 BC) was an Ionian Greek philosopher, mathe-
matician, and founder of the religious movement called Pythagoreanism. Most of the information about Pythagoras
was written down centuries after he lived, so very little reliable information is known about him. He was born on
the island of Samos, and might have traveled widely in his youth, visiting Egypt and other places seeking knowledge.
Around 530 BC, he moved to Croton, a Greek colony in southern Italy, and there set up a religious sect. The school
concentrated on four mathemata or subjects of stud: arithmetica (arithmetic — Number theory rather than the art of cal-
culating), harmonia (music), geometria (geometry) and astrology (astronomy). This fourfold division of knowledge
became known in the Middle Ages as the quadrivium to which was added the frivium of logic, grammar and rhetoric.
These seven liberal arts came to be looked upon as the necessary course of study of an educated person.

Pythagoras made influential contributions to philosophy and religious teaching in the late 6-th century BC. He is often
revered as a great mathematician, mystic and scientist, but he is best known for the Pythagorean theorem which bears
his name. The society took an active role in the politics of Croton, but this eventually led to their downfall. The
Pythagorean meeting-places were burned, and Pythagoras was forced to flee the city. He is said to have ended his days
in Metapontum.

14plato (427 BC-347 BC) is one of the most important Greek philosophers. He founded the Academy in Athens,
an institution devoted to research and instruction in philosophy and the sciences. His works on philosophy, politics
and mathematics were very influencial and laid the foundations for Euclid’s systematic approach to mathematics.

5Carl Gustav Jacob Jacobi (1804-1851) made basic contributions to the theory of elliptic functions.
He carried out important research in partial differential equations of the first order and applied them to the differential
equations of dynamics.

Leopold Kronecker (1823-1891) was a German mathematician. His primary contributions were in the
theory of equations. He made major contributions in elliptic functions and the theory of algebraic numbers.

"Felix Christian Klein (1849-1925) was a German mathematician. Felix Klein’s synthesis of geometry
as the study of the properties of a space that are invariant under a given group of transformations, known as the Erlanger
Programm, profoundly influenced mathematical development.
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(Remark : These axioms are known as Peano’s axioms and were introduced by Giuseppe Peano'®

in the “Arithmetices Principia”, Torino, 1889. Peano also showed how one can derive the entire arithmetic
using these axioms.)

The axiom P> is calledthe axiom of induction or induction-axiom. From this
axiom it follows that the map s : IN — IN'\ {0} is surjective and hence it is bijective. Instead of
0,5(0),s(s(0)),s(s(s(0))),..., , one can simply write 0,1,2,3,..., .

With this one can immediately ask the following two fundamental questions:

(1) Does there exists such a system (IN,0,s) which satisfy the axioms P; and P», i. e. a model for
natural numbers.

(2) If answer to the question (1) is yes, then ow many such models are there?
For these questions we consider the following concept (due to Dedekind, see the Footnote No.!?) :

AsetXiscalled (simple) infinite if there exists an injective map f : X — X which is not
surjective. Then clearly (if it exists!) the set IN of natural numbers is a “smallest” simple infinite
set. More deeper is the following theorem due to Dedekind: There exists a unique simple infinite
set which is a model (IN,0,s) for the set of natural numbers. We shall indicate the existence here
and the unique ness is precisely formulated in Test-Exercise T5.8.

Start with the emptyset @ and put:

0:=0,

1:={0} ={0} =07,

2:={0yu{{o}}={0,1} =17,

3:={0,{0},{0.{0}}} ={0,1,2} =27

andsoon ... n:={0,1,2,....n—1}=(n—1)".
Now, take IN :={0,1,2,...} and define s: N — N by s(n) :=nt =nU{n} ={0,1,2,...,n}. It
is easy to check that (IN,0,s) satisfies the Peano’s axioms P and P;.
In terms of immediate successors the above can be written as: 1 is the immediate successor of
0, 2 is the immediate successor of 1, ..., n™ is the immediate successor of n for every n € IN.
Moreover, there is a unique relation < on IN (actually it is the inclusion relation C) which a total
order on IN with the smallest element 0. (Remark : This unique order < on IN is called the stan -
dard or usual order on IN. In Test-Exercise T5.2 -(b), we shall prove that the ordered set (IN, <)
is well-ordered, i. e. every non-empty subset M C IN has the smallest element (in M).)

T5.2 We use the Induction-axiom to prove its following consequences:

(@) (First principle of induction) Using the third axiom of Peano prove the following :
Suppose that for each natural number n € N, we have associated a statement S(n). Assume that
the following conditions are satisfied :

(i) S(0) is true. The (Basis of Induction)

(ii) For every n € N, S(n+1) is true whenever S(n) is true. The (Inductive step)

Then S(n) is true for all n € N. (Hint : Let M := {n € IN| S(n) is true} C IN. Then 0 € M by the
hypothesis (i). Furher, by hypothesis (ii) if n € M, then n+1 € M. Therefore M = IN by the induction-
axiom. — Remark: The following variant is also used very often: Let ny € IN. Suppose that for every
natural number n > ng, we have associated a statement S(n). Assume that S(ng) is true and for every

8Giuseppe Peano (1858-1932) was an Italian mathematician born on 27 August 1858 and died on 20 April
1932, whose work was of exceptional philosophical value. The author of over 200 books and papers, he was a founder
of mathematical logic and set theory, to which he contributed much notation. The standard axiomatization of the
natural numbers is named in his honor. As part of this axiomatization effort, he made key contributions to the modern
rigorous and systematic treatment of the method of mathematical induction. He spent most of his career teaching
mathematics at the University of Turin, Italy.
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n>ng, S(n+1) is true whenever S(n) is true. Then S(n) is true for all n > ng. For the proof consider the
set M:={nelN|n<ny}U{nelN|n>ng and S(n) is true }.)

(b) (Minimum Principle) Every non-empty subset M of N has a smallest element, i.e.,
there exists an element my € M such that my < m for all m € M. (Hint : For n € IN, let S(n) be
the following statement: If M contains a natural number m with m < n, then M has a smallest element.
By using induction show that the statement S(n) is true for all n. — Remark: The minimum principle for
IN is also known as the well-ordering property of IN. Moreover, well-ordering property of IN is
equivalent to the induction-axiom, see the part (c) below.)

(¢) Deduce the induction-axiom from the well-ordering property of IN. (Hint : Suppose that M C IN
such that 0 € M and if n € M, then n+1 € M. To prove that M = IN or equivalently to prove that the
complement IN\ M = 0. If IN\ M # 0, then by the minimal principle, it has a smallest element say ny, i. e.
no € N\ M and ng < n for every IN\ M. But then np — 1 € M and ny ¢ M a contradiction to the hypothesis
in the induction-axiom.)

(d) (Archimedean Property) Forevery pair of positive natural numbers a and b, there
exists a positive natural number n € IN* such that n-b > b. (Remark : Note that we have assumed that
the binary operations +, - and the order relation < are defined on IN, see Test-Exercise T5.7-(d). Further,
for x,y € IN, note that x <y if y =x+z for some z € IN. — Hint: Suppose that b < n-a for every n € IN.
Then M :={b—na|ne N} CIN and clearly b € M. Therefore by the Minimum Principle M has a smallest
element, say b—m-a. Butthen b—(m+1)-a€M alsoand b— (m+1)-a=b—m-a—a<b—m-a a
contradiction to the minimality of b—m-a. )

(e) (Second principle of induction) Suppose that for each natural number nc€ N, we
have associated a statement S(n). Assume that for every n € N, if the S(m) is true for all m < n,
then S(n) is also true. Then S(n) is true for all n € N. (Hint : Let M := {n € IN | S(n) is NOT
true} C IN. Then show that M = 0.)

T5.3 (Some Arithmetic series) Forall n € IN, prove the following formulas by induction :

@ Zk— n—i—l)‘ (b Zkz n+1>6(2n+1) ()):k3 (n+1) (Zk>

(1+(=D""'2n+1)). (o) Zn:(_l)klkz_(_l)nﬂ_n(nz_‘_l)_
k=1

(d) Xn:(_ k— lki
k=1

-lM»—‘

®

(agE

k—1)=n* (g i(2k—1)2:§(4n2—1). (h) ik(k+1):%n(n+1)(n+2).
k k=1 k=1

—— 1 1 R N S YA |
O Yiern e @ ,;141<2—1_2(1 )

1 1 1 C k—1 _ 1 2n+4l
(k) ,;k(k+l)(k+2)_1 2(n+1)(n+2)° M gk(k+1)(k+2)_4 2(n+1)(n+2)°

1

T5.4 Forall n > 1 prove:

@ I0-5)=3005) o (- gdy) =50+3):

2 2

Sk -1 2 1
© ]gk3+1 _§<1+n(n+1)>'

T5.5 (Finite geometric series) Forevery real (or complex) number g # 1 and every n € IN, prove
that :
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nH n % 2n+1_1 n n n+2 n+1 n+1+
@ Do =L m) [[1+) =L @ Y=L DI e
k=0 q—1 k=1 (g—1)
T5.6 Forall n> 1 prove:
(a) 5 divides 2" +3.7", (b) 3 divides n® + 2n. (c) 6 divides n® —n.
(d) 7 divides 5%+ 4 22n+1, (e) 30 divides n° — n. (f) 3 divides 22" — 1.

() 15 divides 3n° +51° +7n.  (h) 133 divides 11772+ 122" (i) 5 divides 3" +23m1,

T5.7 Proofs by induction are very common in Mathematics and are undoubtedly familiar to the
reader. One also encounters quite frequently — without being conscious of it — definitions by
induction or recursion. For example, powers of a non-zero real number «" are defined by a” =
1,a"t! = a’a. Definition by induction is not as trivial as it may appear at first glance. This can be
made precise by the following well-known recursion theorem proved by Dedekind!® :

(@) (Recursion Theorem) Let X be a non-empty set and let F : X — X be a map. For
a € X, there exists a unique (sequence in X) map f:IN ——X such that (i) f(0) =a and
(i) f(s(n))=F(f(n)) forall n € N, i.e., the following diagram is commutative.

N
N— N
|}

F

(Hint : Uniqueness of f is clear by induction. For existence, put I, := {0, 1,...,n}. By induction show that
the following statement S(n) is true for all n € IN. S(n) : There exists a unique map fy, : I, — X such that
fn(0) =a and f,(r+1) = F(fu(r)) for every r € N with r < n. For arbitrary natural numbers m,n € IN
with m < n, we then have f,, = f,|l,. Therefore f,(n) = F(f,(n—1)) =F(f,—1(n—1)) for all n > 1.
Now, define f by n— f,(n).) (Remark : One might be tempted to say that one can define inductively by
conditions (i) and (ii). However, this does not make sense since in talking about a function on IN we must
have an a priori definition of f(n) for every n € IN. A proof of the existence of f must use all of Peano’s
axioms. See the example illustrating this in the part (b) below.)

(b) Henkin)Let N={0,1} and define the map sy : N — N by sy(0) := 1 and sy(1) :=1.
Show that (N, sy) satisfies Peano’s axioms P but not P;. Show that the recursion theorem breaks
down for (N,sy). (Hint : Let F : N — N be the map defined by F(0) =1 and F(1) = 0. Show that there
isnomap f:N — N satisfying f(0) =0 and f(sy(a)) = F(f(a)) forall a € N.)

(¢) (Iteration of maps)Let X beaset, ®:X — X beamap,i.e., ®decXX andlet F: XX — XX
be the map defined by ¥ — ®oW. Then there exists a sequence f: IN — XX in XX such that
f(0)=idy and f(n+1)=F(f(n)) =®of(n) forall n € N. For n € N the map f(n): X — X
is called the n-th iterate of & and is denoted by @”. Note that ®° = idy,®"! = &" o P for
all n € N. Further, (idy)" =idx for n € IN.

(d) Show thatthe addition +:INXIN—IN andthe multiplication -:INxIN— IN on
IN can be defined by using the recursion theorem. Further, verify the standard properties + and -,

YJulius Wilhelm Richard Dedekind (October 6, 1831 - February 12, 1916) was a German math-
ematician who did important work in abstract algebra (particularly ring theory), algebraic number theory and the
foundations of the real numbers. Dedekind was one of the greatest mathematicians of the nineteenth-century, as well
as one of the most important contributors to number theory and algebra of all time. Any comprehensive history of
mathematics will mention him for his invention of the theory of ideals and his investigation of the notions of algebraic
number, field, module, lattice, etc. Often acknowledged are: his analysis of the notion of continuity, his introduction of
the real numbers by means of Dedekind cuts, his formulation of the Dedekind-Peano axioms for the natural numbers,
his proof of the categoricity of these axioms, and his contributions to the early development of set theory.
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e.g., existence of identity element, associativity, commutativity, distributive laws, cancelation laws,
monotonicity (with respect to the standard order < etc. (Hint : For + apply recursion theorem to X =
IN F =5 and a =m € IN to get the unique map s, : IN — IN such that s,,(0) =m and s,,(s(n)) = s(s,(n) for
all n € IN. Now, define m+n := s,,(n). Note that m+0 = 5,,(0) =m and m+s(n) = s,,(s(n)) = s(sm(n)).
Further, note that for m € IN, the map s, : IN — IN is the m-th iterate (see b)) s = soso---os of the
—_—

m-times
successor map s. For m,n € IN, define the multiplication m-n := s'(0) = (s")"(0).)

(e) Show that there exists a binary operation of exponentiation (or n-th power of m)
IN x N — NN, (m,n) — m". Further, state and verify the standard laws of exponents. (Hint : For
m € NN, let p, : IN — IN be the multiplication by m. Define m" := p[} (1).)

(f) Let X beaset,acX,Y :=,cnX" and let G:Y — X be a map. Then there exists a unique
sequence g : IN — X such that ,g(0) =a and g(n+1) = G(g(0 ) g(1),...,g(n)) forall n € IN.
(Hint : Define the map F :Y — Y be (xi,...,x,) — (x1,...,%,,G((x1,...,%,))). Then by recursion theorem
there exists a unique map f:IN — Y such that f(0) =a and f(n+1) = ( f(n)) for all n € IN. Now, define
g:IN— X by n— f(n)(n).)

T5.8 (Uniqueness of the model (IN,0,5)) Use Recursion Theorem (see Test- Exer-
cise T5.7-(a)) to show that the model (IN,0,s) of a set natural numbers (deﬁned in Test-Exercise

T5.1) is essentially unique. More precisely: Let N be a non- empty set, 0ceNandlet5:N— N
be a map. Suppose that for each map F : X — X and each a € X, there exists a unique map

f:IN — X such that i) f(0)=a and (11) fs ( )) = F(f(n)) forall n €N, i.e., the diagram
N

1|
F
X X

is commutative. Then there exists a unique bijective map @ : N — N such that d(0) = 0 and
®(s(n)) =s(P(n)) forall n € N, i.e., the diagramm

N —— N

1S commutative.

T5.9 In this exercise we list some more useful formulations of recursions: Let X and Y be sets.

(@) (Double Recursion)Let a € X and let F,G: X — X be two maps. Then there exists a
unique map g : IN x N — X such that g((0,0)) =a

g((0,n+1)) =F(g(0,n)) forall ne N and g((m+1,n))=G(g(m,n)) forall mneNN.

Use double recursion to obtain directly the operations of addition + and - on IN.

(Hint : By Recursion Theorem (Test-Exercise T5.7-(a)) there exists amap W : IN — X such that ¥y(0) =0
and Wo(n+1) = F(Wo(n)) for all n € IN. Now, apply once again the Recursion Theorem to the map
®: XN XN @ Gog and ¥y € XN, to get the map ¥ : IN — X™ such that ¥(0) =¥y and ¥(m+1) =
®(W(m)). Finally, define the map g: IN x N — X by g(m,n) :=¥(m)(n). )

(b) (Simultaneous Recursion) Let H: X XY — X, K: X xY —Y be given maps.
For (a,b) € X x Y, there exist a unique maps f:IN — X and g: IN — Y such that f(0) = a,
g(0)=>band f(n+1)=H(f(n),g(n)), gln+1)=K(f(n),g(n)) for all n € N. (Hint : Apply
recursion theorem to the set X x Y, themap F :=H xK : X xY — X xY, (x,y) — (H(x,y),K(x,y)) and
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(a,b) € X xY, to get the map G :IN — X x Y such that G(0) = (a,b) and G(n+ 1) = F(G(n)) for all
n € IN. Now, take f = poG and goG, where p: X XY — X (resp. ¢g: X XY — Y ) is the first (resp. second)
projection. Using the properties of G check that f and g have the required properties.)

(¢) (Primitive recursion) Let ac€ X andlet H : X x N — X be a given map. Show that
there exists a unique map f: IN — X such that f(0) =a and f(n+1) = H(f(n),n) forall n € IN.
(Hint : Apply the simultaneous recursion to ¥ = IN, » =0 and the map K : X x N — IN defined by
(x,n) —»n+1.)

(d) Constructamap f: IN — IN such that f(0)=1 and f(n)=1-2---(n—1)-n (the product of
the first n non-zero natural numbers) for each n > 0. (Hint : Use the primitive recursion to X = IN,
a=1and H: N x N — IN the map defined by H(m,n) = (n+1)-m. — Remark: For each n € N, the
natural number F(n) is called factorial n and is denoted by n!.)

T5.10 (n-ary operations — generalized sums and products) Let n € IN and let
X{boonb . xn— X x...xX. Amap f:X" — X iscalledan n-ary operation on X.
\—‘,—/
n- times
Let %« : X x X — X be a binary operation on X. Then there exists a unique family f, : X" — X,
n € IN* of n-ary operation on X such that: f; =idy, f, =+ and

o1 ((eny oo xn, Xn1)) = fu((x1, ..oy x0) ) kx41 forall (xq,...,%,,X041) eX"™andforall n>1.

(a) Applying the above result to the binary operation of addition 4+ on IN, we have a unique family
fu:IN* = X, n € IN* of n-ary operation on IN.

For n € N and (xy,...,x,) € N", f,((x1,...,x,)) is denoted by Y | x;. Therefore Z?:lxi =0
and Z?ill xi = (X x;) +xpeq forall (xp,...,%,%,+1) € N1 and for all n > 1.

(b) Applying the above result to the binary operation of multiplication - on IN, we have a unique
family p,: IN* — X, n € IN* of n-ary operation on IN.

For n € IN and (x1,...,x,) € N, p,((x1,...,x,)) is denoted by []’_,x;. Therefore H?:lx,- =1
and H?jllxi = (T2 xi) +xp41 forall (x,...,%,,%,11) € IN"*1 and for all n > 1.

(c) For n € N, (xi,...,x,) € N" and any permutation ¢ of {l,...,n}, prove that }*  x; =
Z?:lxcr(i) and [T, xi = H?:lxc(i)'

(d) Applying the above result to the binary operation of composition XX, we have a unique family
&, : (XX)" — XX, n € N* of n-ary operation on XX. For n € N and (f1,...,f,) € (X*)",
®,((f1,---,fn)) is denoted by fjo fro-of,. In particular, if f; = f for every i > 1, then for
n>1 ®,((f,f,....f)) = f" is the n-th iterate of f (see also Test-Exercise T5.7-(c)).)

T5.11 (Fibonacci?® Sequence) The sequence f,, n € N, defined recursively by fy =0,
fi=1land f,11 = fu+ fu_1 forall n > 1,is called the Fibonacci Sequence21 and its n-th
term f, is called the n-th Fibonacci number. The first few terms of the Fibonacci Sequence
are 0,1,2,3,5,8,13,21,34,55,.... (Remark : The Recursion Theorem (see Test-Exercise T5.7-(a))
cannot directly justify its existence, for the value f,+; for n > 1 depend not only on f,, but upon f,_; as
well. However, we can justify the simultaneous existence of the two sequences f, and g, satisfying :

{fo :07fn+1 :fn +gn, for n Z 07
go=1,gn11=fu, for n>0.

]

01, eonard of Pisa or Fibonacci (1170-1250) an Italian Salesman who wrote a book on “Liber Abaci’
in 1209 and introduced the Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe.
Fibonacci played an important role in reviving ancient mathematics and made significant contributions of his own.

2!In 1844 Gabriel Lamé observed that if n division steps are required in the Euclidean algorithm to compute
gcd(a,b), a,b € IN*, then a > f,4» and b > f,11. Therefore the sequence was called the Lamé sequence. But
Lucas discovered that Fibonacci had been aware of these numbers six centuries earlier.
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For this we can use the Simultaneous Recursion (see Test-Exercise T5.9-(b)) by taking (a,b) = (0,1), H :
IN x IN — IN is the addition on IN and K : IN x IN — IN is the first projection.)

(a) For the n-th Fibonacci number f,,, prove the following explicit (Binet’s Formula??):

=% ((%5)" - (55))

(b) Prove the following equalities by induction :

Q) foxrm = fo-1Sfm+ fufme1 forall m >0 and all n > 1.
In particular, fo, = fu(fuo1 + for1) = f2, — f7_, forall n> 1.

(i) 2= fu1fur1 +(=1)"" forall n > 1.

(i) @" = f,_1 + f, @, for all n € N*, where @ := (1++/5)/2. (Remark : Using this equality we
can define the Fibonacci-numbers f,, for all n € Z. We then have f, = f,,_| + f,_ forall n € Z.)

(V) fot+ for1t + foi3 = fura- ~V) ft+fat 4 fon=Sfonr1— 1.
V) ittt o1 =fon (Vi) fi-fot i (D) = (D" 1
(viil) f, < (5/3)". (x) 2"f, < (V5+1)".

(€) f,=(a"—b")/\/5, where a and b are the positive and negative zeros of the quadratic equation
X2 —X—1=0. (Hint : Use Binet’s Formula.)

(d) (Lucas ;1876) prove the following formula for the Fibonacci numbers in terms of binomial

coefficients:
fo= (";1>+(”12) +...+(;;5n_711)+<”—[[';7%11]—1)‘

2
(Hint : Use induction with f, = f,,_1 + f_2 and ('Z) = (m/zl) + (',1::11 ) )

(e) For n >, prove the formulas:

fon= G) ‘f1+(z> -f2+-~~+(z> fu and —fn:—(’D it (Z) -f2+~~-+(—1)"(Z) f

(Hint : Use the Binet’s formula and the Binomial Theorem (1+X)" =Y}, (})X*.)

n__ Jnt1 fn ._ 11
(f) A" = ( f: fn_l),wherte.— <1 0)
(@) #(3n) = fut2, where §, :={A € P({1,2,...,n}) | {i,i+ 1} ZAforevery ] <i<n-—1}.

T5.12 Let X be a non-empty set.

(a) If X is not finite, then show that there exists an injective map IN — X. (Hint : Consider the set
Pe(X) := {A € P(X) | A is finite} of all finite subsets of X. Then for every A € P¢(X), the complement
X \ A is a non-empty subset of X and by the axiom of choice there exists a choice function g :B¢(X) —
Usegx) (X \A), ie., g(A) € X\ A for every A € P¢(X). Now, apply recursion theorem to the map F :
Pe(X) — Pr(X) defined by A— AU{g(A)}, to getasequence f: IN — P¢(X) in P¢(X) such that £(0) =0
and f(n+1) = F(f(n)) for all n > 1. Then x, := g(f(n)) € f(n) C {xo,...,xs—1}. Therefore the map
IN — X, n+— x, is injective.)

(b) Show that the following statements are equivalent:
(1) X isnot finite. ~ (ii) There exists a proper subset ¥ C X with a bijective map ¥ — X.
(Hint : Use part (a). — Remark: Dedekind defined infinite sets using the condition (ii).)

2Binet Jacques Philippe (1786-1856) was a French mathematician who discovered this formula (in
1843) expressing f;, in terms of the integer n.
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T5.13 For the recursively defined sequences (ay,) in the parts (a) ,(b) ,(c) below, prove the given
explicit representations.

(@) ap=2,a,=2—a,',,n>1 Thena, = (n+2)/(n+1) foralln € N.
(b) ap=0,a1=1,a, = 3(ay-1+an—2),n>2. Thena, =3(1—(—1)"5;) foralln € N,

) ap=1,a,=1 +a;_1], n > 1. Then a, = fy42/ fur1 for all n € N, where for k € IN, f; is the
k-th Fibonacci-number (see Test-Exercise T5.11).

(d ap=1,a, =Y} jar,n>1. Thena,=2""foralln > I.

T5.14 (Division Algorithm) Let a,b € Z with b > 1. Then there exists unique integers g
and r such that a = gb+r with 0 < r < b. Moreover, in the case a > 0, we have g > 0.

— The integers g and r are called quotient and remainder, respectively, in the division of a
by b. (Existence of ¢ and r : The subset A :={x € IN | x =a—zb with z € Z} C N is non-empty : if
a>0,then a€A: if a<0,then a—ab =a(l —b) >0 and hence a — ab € A. Therefore by the Minimum
Principle A has a minimal element . Then r = a —gb > 0 for some g € Z. Further, r < b; otherwise
a—(q+1)b=r—b>0 and hence r—b € A a contradiction to the minimality of r. Therefore a = gb+r
is the required equation. If a > 0, then g > 0; otherwise ¢ < —1,i.e.,, —g>1and r=a—gb>b a
contradiction. Uniqueness of ¢ and r : If a =gb+r=q¢b+7r with q,4',q,r € Z with 0 < r,r/ <b.
Then r—r = (¢ —¢)b and so b|(r— ). Butsince 0 < r,r’ <b we have —b < r—+ < b and hence
r—r' =0,ie., ¥ =r. Now from (¢’ —q)b =0 and b # 0, it follows that ¢’ = q. )

T5.15 (Divisibility) Aninteger d is called a divisor of a € Z in Z, and is denoted by
d|a, if there exists v € Z such that a = dv. In this case we also say that d divides a or a is
a multiple of d (in Z). If d is not a divisor of a, then we write d )(a. If 0 d is a divisor of
a, then v € 7Z in the equation a = dv is uniquely determined by the cancelation law. An integer
a,c€ 7 is called even (respectively odd) if Z‘a (respectively, 2 )(a), 1. €., a is of the form 2v
(respectively, 2v+1).

(a) The divisibility defines a relation on 7 and it satisfies the following basic rules : For all
a,b,c,d € 7., we have :
(i)  (Reflexivity) ala.
(1) (Transitivity) If a‘b and b
(iii) If a|b and c|d, then ac|bd.
(iv) If a|b and a|c, then a|(xb+ yc) for all x,y € Z.

(Remarks : The rule (iii) does not hold if one replaces ac (respectively, bd) by a-+ c (respectively, b+d).
The number 0 is divisible by every integer d € Z, since 0 = d - 0; this is the only case of an integer which
has infinitely many distinct divisors. This is proved in the part b) below which is an important connection
between divisibility relation ‘ and the (standard) order < on IN.)

¢, then a’c.

(b) Let a € Z, a# 0 and let d € Z be a divisor of a. Then : 1 <|d| < |a|. In particular, every
non- zero integer a has at most finitely many divisors.

(¢c) Leta,de”Z, a>0,d>0.If d‘a and a|d then d = a. (Remarks : Every integer a has the
four (distinct) divisors a,—a,1,—1; these are called the trivial divisors of a; other divisors are
called proper divisors of a. Therefore from b) it follows that : If d is a proper divisor of a # 0,
then 1 < |d| < |a|. Since a = dv if and only if —a = d(—v), the integers a and —a have the same divisors.
Therefore, since for every integer a, exactly one of a or —a is a natural number, for the divisibility questions,
we may without loss of generality assume that a € IN. Further, if d is a divisor of a, then —d is also divisor
of a (since if a = dv with v € Z, then a = (—d)(—v)) Therefore one knows all divisors of an integer a if
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one knows all positive divisors of |al|. On this basis many considerations in number theory can be reduced
to the set IN* of positive integers. See for example, 7(n) and 6(n), n € IN* in Test-Exercise T5.32)

T5.16 (GCD) For an integer a € Z, let D(a) denote the set of all positive divisors of a. Then
1 and a € D(a); D(a) =N <= a =0 ;if a # 0, then D(a) is a finite subset of IN. For a,b € Z,
the intersection D(a) ND(b) is precisely the set of all common divisors of a and b. Moreover, if
(a,b) # (0,0), then D(a) ND(b) is a finite subset of IN and hence it has a largest element; this
element is called the greatest common divisor of @ and b and is denoted by gcd(a,b).
Therefore for a,b € 7, with (a,b) # (0,0), the gcd(a,b) is the positive integer d satisfying :

b, then ¢ <d.

(1) d‘a and d‘b; (i1) if ¢ is a positive integer with c|a and ¢
We put gcd(0,0) :=0.

(@) (Bezout’s Lemma 3 ) For integers a,b € Z with (a,b) # (0,0) there exists integers
s,t € 7 such that ged(a,b) = sa+tb. (Hint : Let M := {ua+vb | u,v € Z and ua+ vb € N*} be
the set of all positive linear combinations of a and b. Then both |al,|b| € M and hence by the Minimum

Principle T5.2-(b), M contains a smallest element, say d = sa+tb, s,t € Z.. Show that a = gcd(a,b). See
also Test-Exercise T5.19-(b).)

Deduce that :

(i) For two non-zero integers a,b € Z* with (a,b) # (0,0), show that the set {sa+1b | s,t € Z}
is precisely the set of all multiples of d = gcd(a,b).

Two integers a,b € 7 with (a,b) # (0,0) are said to be relatively prime if ged(a,b) =1,
equivalently, there exist integers s,t € Z such that 1 = sa+1b.

(ii) If d = ged(a,b), then ged(a/d,b/d) = 1,1i.e., a/d and b/d are relatively prime.

(iii) If a,b,c € Z and a|c and b|c with ged(a,b) =1, then ab|c.  (Hint : Use Bezout’s Lemma.)
(iv) (Euclid’s Lemma) If a,b,c € Z and a|bc and gcd(a,b) = 1, then a!c. (Hint : By

Bezout’s Lemma, there exist integers s,¢ € Z such that 1 = sa+tb and hence a divides sac+tbc = c. See
also Test-Exercise T5.19-(d).)

(v) Forintegers a,b € Z with (a,b) # (0,0), a positive integer d is a gcd of a and b if and only
if (1) d‘a and d |b and (ii) whenever a positive integer ¢ divides both a and b, then c’d. (Hint:
Use the part (ii). — Remark : The assertion (vi) often serves as a definition of gcd(a,b). The advantage is
the order relationship < is not involved.)

(vi) D(a)ND(b) =D(gcd(a,b)).

(vii) For integers a,b € Z with b# 0 and a = gb+r, q,r € Z, show that gcd(a,b) = ged(b,r).
(b) (Rules for GCD) For integers a,b,c € Z, we have :

() ged(a,a) = |al. (i) a|b <= a=gcd(a,b).

(iii) (Commutativity) gcd(a,b) = ged(b,a).  (iv) (Associativity) ged(ged(a,b),c) = ged(a,ged(b,c)).
(v) (Distributivity) gcd(ca,cb) = |c|ged(a,b). (vi) (Product formula) ged(ab,c) = ged(ged(a,c)b,c).

(Remark : These rules are elementary to prove, but gives unwieldy impression; probably because of the
unaccountability of the classical notation gcd. If instead of gcd one uses an elegant symbol, for example,
anb:= gcd(a,b), then these rules are more suggestive :

() aNa=la|; (i) alb < a=anb;

BEtienne Bézout (1730-1783) was a French mathematician who is best known for his theorem on the num-
ber of solutions of polynomial equations. In 1758 Bézout was elected an adjoint in mechanics of the French Academy
of Sciences. Besides numerous minor works, wrote a Théorie générale des équations algébriques, published at Paris
in 1779, which in particular contained much new and valuable matter on the theory of elimination and symmetrical
functions of the roots of an equation: he used determinants in a paper in the Histoire de 1’acadé mie royale, 1764, but
did not treat the general theory.
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(iii) (Commutativity) aMb=bMa; (iv) (Associativity) (aMb)Mc=aM(bMc);

(v) (Distributivity) (c-a)M(c-b)=|c|-(aMb); (vi) (Product formula) (a-b)Mc= ((aMc)-b)Mc;
The use of the terms “associativity” and “distributivity” is immediately clear. This example shows the
importance of the good notation; unfortunately in literature till today everybody use the traditional notation
ged(a,b).)

(¢) For positive natural numbers a,b,c,d ,m,n € IN*, show that :

(i) ged(a,1)=1. (i) ged(a,a+n)|n and hence ged(a,a+1)=1.

(iii) If ged(a,b) =1 and ged(a,c) =1, then ged(a,bc) = 1. (Hint : 1 = sa+1tb = ua+ vc for some
s,t,u,v € Z. Then 1 = (sa+1tb)(ua+vc) = (aus + cvs + btu)a+ (tv)bc.)

(iv) If ged(a,b) =1, then ged(a™,b") = 1. (Hint : Use the above part (iii).)

(v) The relation @"|b" implies that a|b. (Hint : Let d := gcd(a,b) and write a = rd and b = sd. Then
ged(r,s) = 1 and hence ged(r",s") = 1 by (ii). Now show that r = 1, whence a =d, i.e, a|b.)

(vi) If ged(a,b) =1 and c|a, then ged(b,c) = 1. (vii) If ged(a,b) = 1, then ged(ac,b) =
ged(e,b).

(viii) If ged(a,b) =1 and c|(a+b), then ged(a,c) = ged(b,c). (Hint : Let d = ged(a,c). Then
d|a and d|c|(a+b) and hence d|(a+b) —a=1D.)

(ix) If ged(a,b) =1, then ged(a+b,ab) =1.  (x) If ged(a,b) =1, d|ac and d|bc, then d|c.

(xi) If d|n, then 29 — 1]2" — 1.
(xii) Show that there are no positive natural numbers a,b € N* and n € IN with n > 1 and a" —b"
divides a" +b". (Hint : We may assume that b < a and ged(a,b) = 1.)

(xiii) Show that for a,b € IN*, b > 2, 241 is not divisible by 2 _ 1. (Hint : Prove that a > b.)
(xiv) For m,n € N with m > n, show that ¢®' + 1 divides a®" — 1. Moreover, if m,n,a € IN*,

1, if a iseven,
2, if a isodd.
(Hint : o> + l{azn+1 — 1. For the second part use the first part.)

(xv) Suppose that 2" 41 = xy, where x,y € N*, x > 1,y > 1 and n € IN*. Show that 2¢ divides
x—1 if and only if 2¢ divides y — 1. (Hint : Write x—1 =2%-b and y— 1 =2-d with b and d odd.)

(xvi) Show that ged(n!+1,(n+1)!+1) =1.

m # n, then ged(a®” +1,a* +1) =

T5.17 (LCM) The concept parallel to that of a gcd is the concept of the least common multiple.
For an integer a € Z, let M(a) = Za = {na | n € Z} denote the set of all multiples of a. Then
M(a) = {0} <= a=0 ; if a #0, then M(a) = N-aW (—IN")-a. Further, for a,b € Z*, the
intersection M(a) "M(b) is precisely the set of all common multiples of a and b. Moreover,
ab € M(a) "M(b), in particular, |ab| € N-aNIN-b and hence by minimality principle, it has a
minimal element; this element is called the least common multiple of @ and b and is
denoted by lcm(a,b). Therefore for a,b € Z*, the lcm(a,b) is the positive integer m satisfying :

@) a‘m and b|m; (i1) if ¢ is a positive integer with a}c and b|c, then m‘c (equivalently, m < c¢).

We put Icm(0,0) := 0. It is clear that for any two non-zero integers a,b € Z, lcm(a,b) always
exists and lecm(a,b) < |ab|.

(a) Let a,b € Z*. Then gcd(a,b) divides lem(a,b) and ged(a,b) -lem(a,b) = ab. Moreover,
(i) ged(a,b) =lecm(a,b) if and only if a=b. (i) ged(a,b) =1 if and only if lcm(a,b) = ab.

(b) For a,b,c € Z*, show that the following statements are equivalent :
(i) alb. (i) ged(a,b) =a. (iii) lem(a,b) = b.

(¢) For a,b,c € Z, show that lcm(ca,ch) = |c|lcm(a, D).
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(d) For non-zero integers a,b € Z., a positive integer m is a Ilcm of a and b if and only if

(1) a|m and b|m and (ii) whenever a positive integer ¢ is a multiple of both a and b, then m|c.
(Hint : Put v =1cm(a,b) and use division algorithm to write m = gt +r with ¢,r € Z, 0 < r <t. Then r
is common multiple of a and b. — Remark : This assertion often serves as a definition of lem(a,b). The
advantage is the order relationship is not involved.)

(e) For integers a,b € Z, show that M(a) "M(b) =M(lem(a,b)).

T5.18 The notion of greatest common divisor can be extended to more than two integers in an
obvious way. Let ay,...,a, € N, n > 1, not all zero. Then gcd(ay,...,a,) is defined to be the
positive integer d satisfying the following two properties :

(1) d|a,~ forevery i =1,...,n; (ii) if ¢ is a positive integer with c}a,- for every i =1,...,n, then
c‘d (equivalently ¢ < d).

Note that ged(ay,...,an—1,a,) = ged(ged(ay, ... an—1),a,) = --- = ged(ay, ged(ay, . .. ,a,)) by
Test-Exercise T5.22-(b)-(iv) and hence the gcd depends only on ay,...,a, and not on the order in

which they are written.

(a) Let ay,...,ap € N*, n>1 andlet a = a; - - - a,. Show that the following statements are equiv-
alent:
(i) ai,...,a, are pairwise relatively prime.
(i1) Ifeach ay,...,a, divide the natural number c, then a also divide the number c.
(iii) lem(ay,...,a,) =a.
(iv) The natural numbers b; :=a/ay,...,b, := a/a, are relatively prime.
(v) There exist integers sy, ...,s, such that 1_s1 g On
a a an
(Remark : Icm of finite many numbers ay,...,a, are defined like in the case n = 2. If ged(ay,...,a,) =1,
then ay,...,a, are called relatively prime. Note that this concept is different from that of pairwise

relatively prime.)

(b) For ay,...,a, € N*, n > 1, show that there exist uy,...,u, € Z such that gcd(ay,...,a,) =
uiay + -+ - +uya,. In particular, ay,...,a, are relatively prime if and only if there exist integers
ui,...,u, such that 1 = uja; +---+ uya,. (Remark : One can find the coefficients uy,...,u, al-
gorithmically by successive use of the lemma of Bezout (see Test-Exercise T5.22-(a)). This algorithm
supplies frequently disproportionately large coefficients uy,...,u,. It is better to proceed as follows : First
by renumbering assume that @; is minimal in {ay,...,a,}, and goes then to tuple (ay,r3,...,r,), where
r; the remainder of a; after dividing by ay, after removing the zeros among r;, consider the new tuple as
at the beginning. One has to control, how the coefficients of the tuple constructed are represented as lin-
ear combinations of the ay,...,a,, beginning with a; = Y}, dzax.) Find integers u;,us,u3 such that
I =uy-88+4uy- 152+ u3-209.

T5.19 (Euclidean algorithm?*) Let a,b € N* with a > b.

We put: ry :=a and r; := b and consider the system of equations obtained by the repeated use of
division algorithm :

24 A more efficient method involving repeated application of division algorithm is given in the VII-th book of the
Elements and it is referred to as the Euclidean algorithm. The French mathematician Gabriel Lamé
(1795-1870) proved that the number of steps required to find gcd in the Euclidean algorithm is at most five times
the number of the digits in the smaller integer, i.e., 5log;ob = (2.17...)logh. Lamé was a primarily a mathematical
physicist. is only other known contributions to number theory were the first proof of Fermat’s Last Theorem for the
exponent 7 and a fallacious “proof” for the general n.
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ro=qir1+r, 0<r<r;
ry=qar+r3, 0<r<r;
Fk—1 = qkFk + Tkt 1 0<rgp1 <rg
Tk = Qr1Tk+1 -
Then :
(a) ged(a,b) = ry1. (Hint : By repeated use of the Test-Exercise T5.16-(a)-(vii), we have ged(a,b) =
ged(ro,r1) = ged(ri,r2) = -+ = ged(ri, ey 1) = ged(rer1,0) = 1)
(b) For i=0,...,k+ 1, define s; and #; recursively by :
so=1,tp=0;
S1 = 0, th=1;
Si+1 = Si—1 — 4iSi, iIl,...,k
tiv1 =ti—1 —qit;, i=1,...,k

Then:

a=ryg=soa+1tob, r =sia+nb, riy1 =ri_1 —qiri = si—1a+ti—1b — qisia— qitib = siy1a+ 111 b,
forall i=1,...,k. In particular, gcd(a,b) = rys1 = Skr1a+tx1b. (Remark : This proves once
again the Bezout’s Lemma Test-Exercise T5.16-(a).) (¢) Leta := 36667 and b := 12247. Then we have:

36667 =2-12247+ 12173
12247 =1-12173+4+74
12173 =164 -74 437

74=2-37.
The integers s; and #; can be computed using the following table:
i 0 1 2 3 4
qi 2 1 164
Si 1 0 1 —1 165
7 0 1 -2 3 —494

Therefore 37 = gcd(36667,12247) = 165 - 36667 — 494 - 12247.

(d) (Euclid’s Lemma) (see also Test-Exercise T5.16-(a)-(iv)): If a prime number p divides
a product ay - - - a, of positive natural numbers, then p divides at least one of the factors a;. (Hint :
We may assume that » = 2 (Induction on r). By hypothesis ajar, = pc with ¢ € IN*. Suppose that p does not
divide b;. Then p and b, are relatively prime and by Bezout’s Lemma there exist integers s,¢ € Z such that
1 = sp+1tby. Then by = spby +tb1by = p(sby +1c), i. e. p divides by.)

T5.20 Let (f,)qen denote the Fibonacci sequence (see Test-Exercise T5.11).

(a) For m,n € IN*, show that f,,, divides f,,. (Hint : Use test-Exercise T5.11-(b)-(i) and induction
on n.)

(b) gcd(fu+2,fut+1) = 1. (Hint: The Euclidean Algorithm for obtaining the ged leads to the system of n
equations: fpo=1-for1+fus furi=1-futfoors - fa=1l-fs+f f=2-£.)

(C) ng(fM7fn) = fgcd(m,n)- (Hint : If m = gn+r, then ng(fmafn) = ng(fqnflfr+fqnfr+l7fn) by Test-
Exercise T5.11-(b)-(i). Further, since f,, divides f, by (a), it follows (by using gcd(a+c¢,b) = ged(a, b) if

blc) that ged(fgn—1fr+ fanSfr+1, fn) = ged(fyn—1fr, fu) = 1. For the last equality use parts (a) and (b). )
(d) Let p > 5 be a prime number. Show that either p divides f, 1 or p divides f,;, but
not both. (Hint : By Test-Exercise T5.11-(c) f, = (a" —b")/ /5, where a (respectively b) is a positive
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(respectively, negative) root of X2 —X — 1 = 0. Expanding a” and b” by the Binomial theorem and reading
modulo p (using (’]:) = 0(mod p) and 27! = 1(mod p)), we get f, = 5(P=1)/2 = 41 (mod p). Therefore

5 = 1 (mod p), i. e. p divides fg — 1. Finally by Test-Exercise T5.11-(b)-(ii) f,—1fp+1 = 0(mod p) and
hence one of f,, | and f, 1 is divisible by p. Further, since ged(fp—1,fp+1) = fecd(p—1,p+1) = f2 = 1 by (b),
the last assertion is clear. )

T5.21 (g-adic-Expansion) Let g be natural number > 2. For every natural number n > 1,
there exist uniquely determined natural numbers r and ay, . ..,a, with a, # 0 and 0 < g; < g such
that

n=aotaig+--+ag = Z::()aigl
The digits a; of this g-adic-expansion of n recursively by repeated use of division with
remainder by using the following scheme, with gg := n:

g0 = q18+ao, 0<ap<yg,

q1 = qrg +ay, 0<a;<g,
4r-1=9qrgtar 1, 0<a-1<g,

qr = dar, O<ai’<g'

The uniqueness of these digits follows immediately follows from the uniqueness of the divison
with remainder. We also write shortly n = (a,...ap)s. For g = 2 respectively, g = 3, g = 10,
g = 16, then we also use the terms the dual- respectively ternary- decimal- hexa- or
sedecimal expansion of n. In the last system the digits 10,...,15 denoted by the letters
A,... F. Conversely, from the g-adic expansion n = ag+ajg+--- + a,g" one can compute the

number n rapidly by using the recursion? :

no=day,
ny =nog+a—i (=arg+ar_1),
ne1=n08+a (=a,8 ' +a, 18+ tagtal),
nyp=nr_18§+ap=n.
Let n € IN* and let n = aug™ +am—18" ' +--+ajg+ap, m€ N and a; € {0,1,...,g— 1} be

the g-adic expansion of n. Put Q¢(n) :=ag+---+an and Q',(n) :=ag—ay +---+ (=1)"an.
Then:

(@) n=Qg(n)(mod (g—1)) and n=Q’,(n) (mod (g+1)).
In particular, g — 1|n <= g — 1] Qg(n) and g+ 1 |n <= g+ 1] Q4 (n).

(b) Qg(n+n') = Qg(n)+Qq(n') (mod g —1) and Q f(n+n") = Q 4(n) + Q4 (n') (mod g+ 1).
(©) Qg(n-n')=Q4(n)-Qg(n')(mod g—1)and Qf(n-n') =Q4(n)-Q4(n') (mod g +1).

(d) Let n € N* and let n = @, 10" + a1 10" '+ +a;10+ag, m € N and a; € {0,1,...,9}
be the decimal expansion of n. Then

(i) 3|n < 3|(ap+ai1+---+am); 5Sln < Slag; 6|n < 6|(ap+4a;+4ar+---+4an);
9n <= 9l(ap+ar1+--+am); 1ln < 11|(ap—a; +---+ (—1)"a,,). More generally, if
n=aug"+au 18" '+ +ajg+ap, mc N and aj€{0,1,...,g—1} is the g-adic expansion
of n. Then g —1 divides n if and only if g — 1 divides the sum a,, + - - - + ag of the digits of n.

ZThis is a special case of the well known Horner’s scheme. Named after William George
Horner (1786-1837), who is largely remembered only for the method, Horner’s method, of solving algebraic
equations ascribed to him by Augustus De Morgan and others.
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(i) 7\n<="T|(az,a1,a0)10— (as,as,a3)i0+-+; 1l|jn<=11|(az,a1,a0)10— (as,as,a3)10+- - ;
13|n <= 13|(ap+2a; +---+2"ay).

T(Remarks: More generally, one can also prove that: Every non-negative real number x > 0 can be rep-
resented uniquely by a infinite convergent series x =Y ., _oay/g", where the g-digit sequence of natural
numbers (a,),eN is obtained by the g-adic algorithm and satisfy the following inequalities: a, > g— 1 for
all n > 1 and a, < g —2 for infinitely many n.

Moreover, such a sequence of natural numbers comes as a g-adic digit sequence of a non-negative real
number. The g-adic algorithm of a non-negative real number x > 0 gives a simple criterion to test whether
or not x is rational. More precisely:

A non-negative real number x > 0 is a rational number if and only if the sequence (a,)ncN is periodic (see
Exercise 5.8), i. e. there exist r € N and s € IN* such that a,,vy = a1y forall v € IN*.

We use the notation x = (ag,ajaz---ap---), and (ag;aiaz- - ay, a1 Gris)g -

(e) For a rational number x € [0, 1) and natural numbers r, s, the following statements are equivalent:

(i) g"(¢*—1)-x€Z. (ii) x has the g-adic expansion of the form x = (ap;a1a2 - a,@r 1 Grrg)g -

(f) For a rational number x = a/b € [0,1) with gcd(a,b) = 1, show that ged(b,g) = 1 if and only if the g-

adic expansion of x is purely periodic (see Exercise 5.8), i. e. it is of the form x = (0,a; -~ dy), . In particular,

is purely periodic with period n. for example, g,i ;=

a
gn —1

the g-adic expansion of reduced fractions x =
(0;00---01),.

(g) Which of the following (real) numbers are irrational numbers :

(i) The number x with the g-adic expansion x = (0;101001000100001 - - - ),.

(ii) The number y with the g-adic expansion y = (0;ajaz---a,---)g, where a, =1 if n is prime and 0
otherwise.

< 71\ © /1 v(v+1)/2 © /1 v2
(iii) u:Z<g> v:2<> and w:z<> :

v=0 v=0 \& v—=0 \&

a
and ——. Moreover, show that

a
h) Compute the g-adic exppansions of the numbers - =
(h) p 8 pp 7—1 P (g— 1)

(0;0123---(g—3)(g— 1)), is purely periodic. )

T5.22 (Linear Diophantine Equation) The ancient Greek mathematician Diophantus
26 had initiated the study of solutions (in integers) of equations in one or more indeterminate with
integer coefficients.

(a) The linear Diophantine equation aX + bY = ¢, ab,c € Z, has a solution if and only if d :=
gcd(a,b) divides c¢. Moreover, if (xg,y0) is a particular solution of this equation, then all other
solutions are given by (x,y) = (x0,y0) + (b/d,—a/d)t, t € Z.

(b) Let a and b be relatively prime positive integers. Prove that the Diophantine equation
aX — bY = c¢ has infinitely many solutions in the positive integers. (Hint : There exists integers
x0,Y0 such that axo + byy = c. Then (x,y) = (xo,—yo) + (b,a)t, t € Z with t > Max (|xo|/b, |yo|/a) are
positive solutions of the given equation.)

¥Diophantus of Alexandria (A.D.200 and 214 - between 284 and 298 at age 84), sometimes called
"the father of algebra", was an Alexandrian Greek mathematician and the author of a series of books called Arithmetica.
These texts deal with solving algebraic equations, many of which are now lost. In studying Arithmetica, Fermat
concluded that a certain equation considered by Diophantus had no solutions, and noted without elaboration that
he had found "a truly marvelous proof of this proposition," now referred to as Fermat’s Last Theorem. This led
to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and
of Diophantine approximations remain important areas of mathematical research. Diophantus was the first Greek
mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients
and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for
which integer solutions are sought. Diophantus also made advances in mathematical notation.
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(¢) The contents of the Mathematical classic of Chang Ch’iu-chie n?’ (6th century) attest to the
algebraic abilities of the Chinese scholars contains the following famous problem: If an Apple costs Rs. 5, an
Orange Rs. 3 and three Bananas together Rs. 1, how many Apples, Oranges and Bananas, totaling 100, can

be bought for Rs. 100? (Hint : Solve the Diophantine equations 5X + 3Y + %Z =100and X+Y+Z =100
simultaneously by eliminating one unknown (for example, Z).)

(d) Mahaviracharya, 850) There were 63 equal piles of plantain fruit put together and 7 single
fruits. They were divided evenly among 23 travelers. What is the number of fruits in each pile? (Hint :
Solve the Diophantine equation 63X +7 = 23Y.)

(e) When Mr. Dey cashed a check at his bank, the teller mistook the number of paise for the number
of rupees and vice versa. Unaware of this, Mr. Dey spent 68 paise and then noticed to his surprise that
he had twice the amount of the original check. Determine the smallest value for which the check could
have been written. Hintlf x denotes the number of rupees and y the number of paise in the check, then
100y +x — 68 = 2(100x +y).

T5.23 (Continued Fractions?® ) (see the book?® ) A finite continued fraction is a
fraction of the form

1
ap + i
ap+ i
a + i
az+——
)
1
ap—1+—
an
where ag,ay,...,a, are real numbers with ay,...,a, are positive. The numbers ay,...,a, are

called partial denominators of this fraction. Such a fractionis called simple ifall
ap,day,...,d, are integers.

(a) Every rational number can be can be written as a finite simple continued fraction. (Hint: Let
x=a/b,a,b € Z, b+#0,be an arbitrary rational number. Then the Euclidean algorithm for finding gcd(a,b)
gives the equations:

a=bay+r,0<r<b;b=ria1+rn,0<rn<ry; - moa=t10—1+¥,0<r, <r,_1; rh—1="raa,.
Since each remainder r, € IN*, ay,...,a, are all positive integers. rewriting the above equations as:

r1 1 b %) 1 Fn—2 I Fn—1
alb=ay+—=ay+-——; —=a+—-=a+ 3o =ap-1+ ; = ay.

b b/ri” n r r/r Fn—1 Fn—1 In

Now substituting the values r;/riy1, i =n,...2,1 successively from later equations into earlier equations,
we get the required multi-decked expression.)

Because continued fractions are unwieldy to print or write, we adopt the convention to denote a continued

fraction by a symbol [ag;ay,...,a,]. It is a good practice to express the rational numbers 3—119 and %

Y’Zhang Qiujian (about 430-about 490) was a Chinese mathematician who wrote the text Zhang Qiujian
suanjing (Zhang Qiujian’s Mathematical Manual) This is a work of historical significance not only because existing
treatises of very early mathematics are scarce, but also because it provides a rare insight into the early development of
arithmetic — an arithmetic which was built on a numeral system that had the same concept as Hindu-Arabic numeral
system — Jiu zhang suanshu.

2BIn Liber Abaci Fibonacci (see Footnote 2 ) introduced “continued fractions” — a multiple-decked expressions.
Although giving due credit to Fibonacci, most authorities agree that the theory of continued fractions begins with
Rafael Bombelli (1526-1572) the last of the great algebraist of renaissance Italy. In his “L’ Algebra Opera”
(1572), Bombelli attempted to find square roots by means of infinite continued fractions — a method both ingenious
and novel. It may be interesting to mention that Bombelli was the first to popularize the work of Diophantus.

Yperron, O. : Die Lehre von den Kettenbriichen, Bd. 1. 3. Aufl. Stuttgart 1954.
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as finite simple continued fractions. Further, determine the rational numbers which are represented by the
simple continued fractions: [—2;2,4,6,8] and [0;1,2,3,4,3,2,1].

f(Remarks: One of the main use of the theory of continued fractions is finding approximate values of
irrational numbers. For this the notion of infinite continued fractions is necessary. Moreover, one can prove

that: Every real number x is the value of an uniquely determined normalized simple continued fractions.
Moreover; this continued fraction is finite if and only if x is rational. Therefore x = lim,_,[ag;ar, -+ ,ay|.

(b) (i) Using continued fractions verify that the first 4 digits in the decimal expansion of the following
square-roots: 2 =1.4142---; v/3=1.7320---; v/5=2.2360---; /7 =2.6457---; /11 =3.3166---.

(ii) For a,b € N*, show that [a,b,a,b,a,b---| = (ab+\/a?b> + 4ab) /ab.
(iii) For n € IN*, show that : vn2+1 = [n,2n,2n,2n,---| = [n,2n];
(Euler) : Vn2+2 = [n,n,2n,n,2n,n,2n,---] = [n,n,2n];
(n?+1)2—1=n,1,2n,1,2n,1,2n,---] = [n, 1,2n];

(Hint : n++vVn>+1=2n+(Vn*+1—n)=2n+ Wﬁ.)
(Buler): n>2, \/(n2+1)2—=2=[n,1,n—1,1,,2n];
n
n—gq
of n/(n— ¢q). Show that ?1 = [1+by,by,...by] is the continued fraction expansion of n/q.

(iv) Letgine Nwithl <g<n—qg<nand = [1,by,bs,...by] be the continued fraction expansion

(v) If xe R\Q, x> 1, is represented by the (infinite) continued fraction [ag;a,az,- -+ ,ay,---|, then show
that — = [ag;ay,az,- - ,a,,---] is the continued fraction expansion of 1/x.
X
(¢) The Fibonacci sequence fy, f1,--., fn,-.. gives the continued fraction expansion of the golden-ratio (see
1+5

Test-Exercise T5.11) ¢ :=

5 sie. @ =][1,1,1,---].

(d) The beginning of the continued fraction expansion of the number 7 is:
m=13;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,---].
Note that [3] =3 < [3;7,5] =32 <7< [3;7,15,1] = 333 < [3,7] = £, this was already known to Archimedes.

(e) The beginning of the continued fraction expansion of the number ¢ which was found by Euler is:
e=1[2;1,2,1,1,4,1,1,6,1,1,8,---].

(f) It is interesting to ask the question: Which numbers have periodic continued fractions? (see Exercise

5.8). For example, the golden-ratio ¢ = HT‘B = [1]. In 1737 Euler proved that: All irrational numbers
X with periodic continued fraction expansion are quadratic irrationalities, i. e. are irrational roots of a
quadratic equation of the form X?> + BX +y = 0, or equivalently, of aX?>+bX +c¢ =0, a,b € Z,b # 0.
Moreover, in 1770 Lagrange proved that: Quadratic irrationalities are exactly the ones which have periodic
continued fraction expansion.

(g) Similar to the Question in the part (c) one can also ask: Which quadratic irrational numbers have pure
periodic continued fraction expansion? This was answered by Galois in 1828/29.

T5.24 (Prime numbers) A natural number p is calleda prime number oran irreducible
(in N)if p>1 and p = ab with a,b € IN, then either a =1 or b = 1. A natural number n > 1 is
called composite or reducible ifitis nota prime number. The set of all prime numbers
is denoted by P. Then by definition 1 ¢ IP. For a natural number p > 1, the following statements
are equivalent :

i pelP.
(i) 1 and p are the only positive divisors of p.

(i1i1)) p has no proper divisor. (Remark : On the basis of the property (iii) prime numbers are also called
irreducible.)
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(@) (Existence Theorem) Every natural number a > 1 has a smallest (positive) divisor
t > 1. Moreover, this divisor ¢ is a prime number. (Proof : The set T = {d € N* | d|a and d > 1} is
non-empty, since a € T. Therefore by the Minimum Principle (see Test-Exercise T5.2-(b)) T has a minimal
element 7. This integer 7 is a prime number. For, if not, then there is a divisor ¢’ of 7 with 1 <¢ <. But
then ¢’ ’t and t!a and hence ¢/ ‘a a contradiction to the minimality of ¢ in 7'.)

(b) (Euclid’s Theorem?3°) There are infinitely many prime numbers, 1. €., the set IP is infinite.
(Proof : In the text of Euclid the word “infinite” is not mentioned; this theorem was formulated as : Given
any finite set of prime numbers, one can always find a prime number which does not belong to the given
set. Show that : Let qy,...,q, be finite set of prime numbers. Then the smallest (positive) divisor t > 1 of
the natural number a .= q1-q2---qn + 1 is a prime number which is different from all the prime numbers
qi,---,9n. — Since a > 1, t exists and hence ¢ is a prime number by the Existence theorem in the part (a).
If ¢ is one of the numbers ¢y,...,q,, then t‘ql g2+ qn. Then t‘a—ql -q2---q, = 1 a contradiction.)

(¢) (Euclid’s Lemma) If a prime number p divides a product ab of two natural numbers
a and b, then p divides one of the factor a or b. More generally, If a prime number p divides a
product ay ---ay, of n positive natural numbers ay,...,a,, then p divides one of the factor a; for
some 1 < i< n. (Proof : The set A := {x € N* | p|ax} contains p and b and hence by the Minimum
Principle (see Test-Exercise T5.2-(b)) it has a smallest element ¢. We claim that c| y for every y € A. For, by
division algorithm y = gc+r with ¢,r € IN and 0 < r < c. Then, since p‘ay and p{ac, p‘ay —q(ac) =ar.
This proves that r = 0; otherwise r € A and r < ¢ a contradiction to the minimality of ¢ in A. Therefore
c|y for every y € A; in particular, c!p and hence c =1 or ¢ = p. If ¢ =1, then p!ac =a. If ¢ = p, then
(since b € A) by the above claim p‘b. — The last part follows from the first by induction.)

(d) For a natural number p the following statements are equivalent :

(i) p is aprime number. (ii) If p divides a product ab of two integers a and b, then p‘a or p|b.

(Proof : We may assume that a and b are both positive. The implication (i)=-(ii) is proved in (c). For the
implication (ii)=-(i) Let d be any positive divisor of p, i.e., p = dd’' with d’ € IN. This means that p|dd’
and hence by (ii) either p‘d or p‘d' . Butsince 1 <d < p and 1 <d' < p it follows that either p =d or
p=d', ie. either d = p or d = 1. This proves that the only positive divisors of p are 1 and p and hence p
is a prime number. — Remark : The property (ii) is (usually distinguished from the irreducibility property
of p) called the prime property. Therefore we can reformulate the part (d) as : A natural number
p > 1 isirreducible if and only if p has the prime property. See also 777.)

T5.25 Let P denote the set of all prime numbers. Let p, denote the n-th prime (in the natural
order < on IN*, i. e. starting with n =1,2,...,). Then show that :

@ p,>2n—1forn>5 and p, < 22'171 for all n € IN*. (Hint : Note that p,,1 < py-p2--pn+1.)

(b) None of the natural number P, := p; - py--- p,+ 1 is a perfect square. (Hint : Each P, is of the
form 4m+3.)

1 1
(¢) The sum — + — +---+ — is never an integer.
P1 P2 Pn

Proved in the “Elements (Book IX, Theorem 20)” of Euclid. Euclid’s argument is universally regarded as a
model of mathematical elegance. — Euclid of Alexandria (325 BC-265 BC) was a Greek mathematician
best known for his treatise on mathematics (especially Geometry) — The Elements. This influenced the development
of Western mathematics for more than 2000 years. The long lasting nature of The Elements must make Euclid the
leading mathematics teacher of all time. However little is known of Euclid’s life except that he taught at Alexandria in
Egypt. Euclid may not have been a first class mathematician but the long lasting nature of The Elements must make
him the leading mathematics teacher of antiquity or perhaps of all time. As a final personal note let me add that my
own introduction to mathematics at school in the 1970s was from an edition of part of Euclid’s Elements and the work
provided a logical basis for mathematics and the concept of proof which seem to be lacking in school mathematics
today.
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(d) Another proof of infiniteness of IP: Suppose that there are only finitely many primes, say,
P1,---,Pn- Now, use the natural number N =py-p3---p,+p1-p3--Pn+---+p2-P3  Pn-1-

T5.26 Let n € IN*. Show that :
(@) If n>1and if n divides (n—1)!+ 1, then n must be a prime number.

(b) If n > 2, then there exists a prime number p with n < p < n!. (Hint : Consider a prime divisor
pofn!—1))

(c) If n > 1, then every prime divisor of n!+1 is an odd integer > n. (Remark : This shows again
that there are infinitely many prime numbers. It is unknown whether infinitely many of n!+ 1 are prime.)

(d) None of the n natural numbers (n+1)!+2,...,(n+1)!+n+1 are prime. (Remark : Therefore
there are gaps of any size between prime numbers.)

(e) Let n,r € N*, n > 2. If n has no prime divisor < "/n, then n is a product of at the most r
(not necessarily different) prime numbers. In particular, if n has no prime divisor < /n, then n is
prime.

(f) For n € N, n > 2, the natural number 4" 4 n* is never prime. (Hint : For odd n, we have n* 44" =
(N2 —2" n4+2M(n2+2" -n+2").)

T5.27 For a = 3,4,6, show that in the sequence an+ (a—1),n € IN, there are infinitely many
prime numbers. (Hint : Make an argument with ap; --- p,+ (a—1).) (Remark : These are very special
cases of a remarkable theorem of Dirichlet?' on primes in arithmetic progressions established in 1837. The
proof is much too difficult to include here, so that we must content ourselves with the mere statement: If
a,b are relatively prime positive natural numbers, then there are infinitely many prime numbers of the form
an+b, n € N. — Remarks: For example, (by Dirichelt’s Theorem), there are infinitely many primes
ending 999 such as 1999, 100999, 1000999, ..., for these appear in the arithmetic progression determined
by 1000n + 999, where gcd(1000,999) =1.)

(a) There is no arithmetic progression a+n-b, n € IN that consists of only of prime numbers.
(Hint : Suppose that p =a+n-b is a prime number. Then the n + kp-th term of the arithmetic progression
isa+ (n+kp)-b=(a+n-b)+kp-b= p(1+kb). This shows that the arithmetic progression must contain
infinitely many composite numbers.)

(b) If all the n > 2 terms of the arithmetic progression p,p+d,...,p+ (n—1)d are prime num-
bers, then the common difference d is divisible by every prime g < n.

T5.28 (Fundamental Theorem of Arithmetic3?) Proposition 14 of Book IX of Euclid’s
“Elements” embodies the result which later became known as:

Fundamental Theorem of Arithmetic : Every Natural number a > 1 is a prod-
uct of prime numbers and this representation is “essentially” unique, apart from the order in which
the prime factors occur.

3Peter Gustav Lejeune Dirichlet (1805-1859) was a German mathematician with deep contribu-
tions to number theory (including creating the field of analytic number theory), and to the theory of Fourier series and
other topics in mathematical analysis; he is credited with being one of the first mathematicians to give the modern for-
mal definition of a function. Dirichelt’s doctoral advisers were Simeon Poisson and Joseph Fourier. Doctoral students
of Drichelts were Gotthold Eisenstein, Leopold Kronecker, Rudolf Lipschitz, Carl Wilhelm Borchardt. Other notable
students were Richard Dedekind, Eduard Heine, Bernhard Riemann, Wilhelm Weber.

3The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid’s elements, al-
though some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof
seems to have been given by Gauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801), see also Footnote 27.
It was, of course, familiar to earlier mathematicians; but GAUSS was the first to develop arithmetic as a systematic
science.
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More precisely, the existence and uniqueness parts are stated as:

(@) (Existence of prime decomposition) Every natural number a > 1 has a prime
decomposition a = p\ - - p,, where we may choose py as the smallest (prime) divisor of a. (Proof :
Either a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by
Test-Exercise T5.16-(a) there exists a smallest prime divisor p; of a,i.e., a= p;-b with 1 <b < a (since
1 < p1 < a). Now, by induction hypothesis b has a prime decomposition b = p;--- p, and hence a has a
prime decomposition @ = py - p2- -+ pp.)

(b) (Uniqueness of prime decomposition) A prime decomposition of every natural
number a > 1 is essentially unique. More precisely, if a = p1--- p, and a = q --- q,, are two
prime decompositions of a with prime numbers py,...,Pn;q1,---,qm, then m =n and there exists
a permutation p € &, such that q; = pp;) for every i =1,...,n. (Proof : We prove the assertion by
induction on n. If n =1, then py =a=¢q;---gm, i.6., p1 ‘ql ---gm and hence by the prime property Test-
Exercise T5.16-(d) p; ‘q ; for some j, 1 < j < m. Renumbering if necessary, we may assume that j=1;
further, since ¢g; is a prime number, we must have p; = g; by the irreducibility of g;. Now, by canceling
p1, we get two prime decompositions of the number a' = py---p, = q2---qm. Therefore by induction
hypothesis m —1 =n— 1 and there exists a permutation p’ € &({2,...,n}) such that g, = p; for all
i=2,...,n. Now, define p € S, by p(1) =1 and p(i) = p’(i) forall i =2,...,n. — Remarks : The
above proof for uniqueness use the Euclid’s lemma on the prime property (see Test-Exercise T5-16-(a)-(iv))
and hence uses implicitly the division algorithm and therefore make use of the additive structure of IN. The
existence of prime decomposition only uses the multiplicative structure on IN and not the additive structure
on IN. This leads to the question : Can one give a proof of the uniqueness of the prime decomposition which
only depends on the multiplicative structure of IN? The answer to this question is negative as we can see
in the example given in the Test-Exercise T5.30. The uniqueness of the decomposition of a positive natural
number into product of irreducible elements is less obvious than the existence of such a decomposition
(see also Zermelo’s proof given in the Test-exercise T5.29). This can also be seen in the examples in the
Test-Exercises T5.30 and T5.31.

(c) (Canonical Prime Decomposition) Let n € IN*. Collecting the equal prime
factors in the prime decomposition of n, we getthe canonical prime decomposi-
tion n= Hp P p® . In this product P denote the set of all prime numbers and the p-exponents
or multiplicities o, € IN are non-zero only for finitely many prime numbers p € I?, so
that the above product has only finitely many factors # 1. For example, 1001 =7-11-13 and
10200 = 23-3-52-17. Therefore, for every prime number p € P, we define a map vy i IN* — N by
n—v,(n) := o,. The map v, is called the p-adic valuation. It is clear that v,(n) = 0 for almost
all pe P.

If m,n € N* and m = [],cp prm = [Iep p'?") are the canonical prime decompositions of
m and n respectively. Then:

(i) m divides n if and only if v, (m) <v,(n) forall p € P.
(i1) gcd(m’n) = HpGIP pMin(vp(m),Vp(n)) and lcm<m’n) = HpEIP pMaX (vp(m),vp(n)) and

For an integer a € Z, a # 0, the canonical prime decomposition is a = (—1)®[],cp p'rlaD) | where
€ €{0,1} (and hence (—1)¢ is the sign of a and |a| is the absolute value of a. Moreover, for
every non-zero rational number x = a/b with a,b € Z\ {0}, combining the canonical prime
decompositions of a and b, we getthe canonical prime decomposition of x:
x= (=1 Ilpep p"»™)  where the p-exponents vp(x), p € P are integers (and not just the natural
numbers) and are non-zero only for finitely many prime numbers p € IP. Note that x is uniquely
determined by the p-exponents v,(x), p € P and its sign (—1)¢. Further, note that a rational
number x € Q\ {0} is an integer if and only if v,(x) >0 forall p € P.

T5.29 (Zermelo’s proof of uniqueness of irreducible decomposition) In this
proof we recall that a natural number p € IN* is called an irreducible number if p > 1 and the
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only divisors of p in IN* are 1 and p itself. Let n € IN*. We shall prove the uniqueness of irreducible
decomposition by induction on n. If n =1 or n = p is a (irreducible) prime number, then the assertion is
clear by the definition of prime (irreducible) number. Now, suppose that n =p—1---p, = q; ---g; where
Pi,---,Pr; q—1,...,qs are irreducible numbers with r,s > 2. We may assume that p; < p, <--- < p,;
G <q@p<---<gsand p; <q.If py =qi,then ' .= py---p, = q2---qs < n and hence the uniqueness
assertion follows from the induction hypothesis. If p; < g1, then we must lead to a contradiction (of the
irreducibility of g;). Put m:=n—piq2---qs=(q1 —p1)q2---qs=p1(p2--pr—q2---qs). Then 1 <m < n.
Therefore by induction hypothesis it follows from the uniqueness assertion for m = py(p2-+-pr—q2+--qs)
that p; must occur in every irreducible decomposition of m. In particular, p; must occur in the product
m = (q1 — p1)q2---qs, Where q,...,qs are irreducible numbers and p; # ¢; for every j=1,...,s. This
shows that p; must occur in g; — p1, i. e. p; divides g; — p; in IN*, or equivalently, g; — p; = bp; with
b e IN*,i.e. g1 = (b+ 1)p; which contradicts the irreduciblity of g. .
(Remark : Zermelo’s indirect method of proof is psycological and less convincing. However, this proof
is elegant and didactically difficult to present in the class room. Moreover, the Euclid’s Lemma is not in
this proof. In fact we can now deduce the Euclid’s Lemma as a corollary of the Fundamental Theorem of
Arithmetic.)

T5.30 Let M be the set of all natural numbers which have remainder 1 upon division by 3, i.e.,
M ={3n+1|ne€ N}. Then M is a multiplicative submonoid of N,i.e., 1 € M andif ay,...,a, €
M, then a;---a, € M. For this, it is enough (by induction) to note that (3n;+1)(3ny+1) =
3(3n1ny +ny +ny) + 1. Similar to the irreducibility in IN, we say that an element ¢ € M is irre-
ducible if ¢ > 1 and if ¢ = ab with a,b € M, then either a = 1 or b = 1. The first few irreducible
elements in M are : 4,7,10,13,19,22,25,31; the elements 16 =4 -4 and 28 =4 -7 are not ir-
reducible in M. One can easily (by induction — analogous proof as in the existence of a prime
decomposition) : Every element a € M is a (finite) product a = c| --- ¢, of irreducible elements
c1,...,cp in M. However, the uniqueness of this representation does not hold, for example, the
element 100 € M has two irreducible decompositions 100 =4-25 and 100 = 10- 10 which are not
essentially unique. One can (similar to those of in IN') also define divisibility and prime property in
M, with these definitions 4‘ 100 =10-10 in M, but 4 )(10 in M, i.e., the element 4 is irreducible
in M, but does not have the prime property in M. In this example what is missing is that the set M
is not additively closed, for example, 4 € M, but 8 =4+4 ¢ M or more generally, 3n; =1 €M
and 3np+1 €M, but 3n;+1)+ (3np+1) =3(n; +ny) +2 ¢ M. We further note that gcd of 40
and 100 does not exists in M and Icm of 4 and 10 does not exits in M (since 4 )(10 in M).

T5.31 Let g € IN* be an arbitrary prime number (e. g. ¢:=2 or g:= 1234567891 ¥ )and N :=
IN* — {g}. Then N is a multiplicatively closed and every element in N is a product of irreducible
elements of N; such a decomposition is not any more, in general unique. More precisely, prove
that: The irreducible elements in N are usual prime numbers p # ¢ and their products pg with
g and both the elements ¢; := ¢*> and ¢3 := ¢°. The element n := ¢® € N has two essentially
different decompositions n = g2 - ¢2 - g2 = g3 - q3 as product of irreducible elements of N. The
irreducible element g3 divides (in N) the product g3 - ¢> - g2, but none of its factor. Similarly,
¢g> divides (in N) the product g3 - g3, but not g3. Similarly, m := pg® = (pq)q® has (in N) two
essentially different decompositions ( p prime number # g).

T5.32 (a) Let n,k € IN* be relatively prime natural numbers. Show that n divides (Z) and k
divides ("1 (Hint : Think about the formula k(") =n(" 1))
k—l . 1 . 1K abou € Iormula k =n k—1 .

(b) For every natural number n, show that 4-7-9 = 252 divides nd —n2.

30ne can check this with a small computer programm that this number is really a prime number. Is the number
12345678901 also prime?
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(¢) Let r € N*, m = (my,...,m;) € N" and n:=Y! m;. Let p be a prime number with

Max (my,...,m;) < p <n. Show that p divides (n) =n!/m!---m!.
m

(d) Find the canonical prime decomposition of the natural number 81057226635000. (Ans :
23.33.54.73.112.17-23.37))

(e) If n = p‘lx1 -+« p% is the prime decomposition of the positive natural number n with pairwise
distinct prime numbers py,..., p,, then show that:
(i) T(n):=(ar+1)---(a+1) is the number of positive divisors of n in IN*.

r a,+1 . 1)

(f) How many divisors are there for the number given in the part (d)? and what is their sum?

is the sum of all positive divisors of n in IN*.

T5.33 (a) Let a € IN*, For how many natural numbers x € IN*, x(x+ a) is a (perfect) square?

Compute these x for a € {15,30,60,120}. (Hint : You may need Pythagorean triples, see Test-Exercise
T5.38.)

(b) For every s> 2, a pair (mg,n,) := (2(2°1—1),271(25~1 - 1)) is a pair (m,n) of positive
natural numbers such that m < n and m and n as well as m 4 1 and n+ 1 have the same prime divi-
sors. (Remark : There are other such pairs (m,n), for example, (75,1215) is such a pair. See Makowski:
Ens. Math. 14, 193 (1968) .)

T5.34 (Irrational numbers3*) A real number which is not rational is called an irrational
number.

(a) Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or
division; The sum, difference, product and quotient of two real numbers, one irrational and the
other a non-zero rational, are irrational.

(b) Let ne€ N*, y € Q, y >0 and let y = p['"'--- p! be the canonical prime factorisation of y.
Show that the following statements are equivalent : (i) There exists a positive rational number x
with x" =y. (ii) n divides all the exponents m;, i=1,...,r.

(¢c) (Lemma of Gauss) Let x:=a/b € Q be a normalised fraction, i.e., a,b € Z,, b > 0 and
gcd(a,b) = 1. Suppose that a,x" + - -+ +ajx+ag = 0 with ag,...,a, € Z and a, #0, n > 1, i.e.,
x is a zero of the polynomial function a,t" +---+ag. Then a is a divisior of ag and b is a divisor
of a,. Deduce that :

(1) If the leading coefficient a,, = 1, then x € Z.

(i1) For every integer a € Z and a natural number n € IN*, every rational solution of x" —a is an
integer, in particular, x* — a has a rational solution if and only if a is the n- th power of an integer.
(Remark : It follows at once that /2 (Phythagoras)35 \@, \6, .-+,+/DP> where p is prime number, are
irrational numbers.) ~ More generally :

(iii) Let r € N*, py,...,p, be distinct prime numbers and let my,...,m, € IN* Then for every

n € IN*, n > 1, the real number /pip5?---p;" is an irrational number.

34The word “irrational” is the translation of the Greek word “ A oyo > in Latin. The Greek word probably means
“not pronounceable”. The misunderstanding that in Latin “ratio” is essentially the meaning of “rationality” made
“irrational numbers”.

33Phythagoras deserve the credit for being the first to classify numbers into odd and even, prime and composite. The
following elementary short proof was given by (T. Estermann in Math. Gazette 59 (1975), pp. 110) : If v/2 is rational,
then there exists k € IN* such that kv/2 € Z. By the Minimum Principle T5.2-(b) choose a minimal k € IN* with this
property. Then, since 1 < /2 <2, m:= (v2— 1)k € N* with m < k, but mv/2 = (vV2 - 1)kv/2=2k—kV2 € Z a
contradiction.
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(iv) For a,b € Z, a > 0,b > 0 with ged(a,b) =1 and a natural number n € IN*, the equation
x" — a/b has a rational solution if and only if both @ and b are n-th power of integers.

(d) Let ai,...,a, € Q be positive rational numbers. Show that \/a; +---+\/a, is rational if
and only if each a;, i =1,...,r is a square of rational number.

(e) Determine all rational zeros of the polynomial functions > + %tz + %t +3 and 3t7 4+ 41 — 1> +
4 +483 + 512 — 4.

(f) Let ¢ be a rational multiple of n3%, ie. t=rm with r € Q. Then cost, sins and tant
are irrational numbers apart from the cases where tant is undefined and the exceptions cost =
0,+1/2,£1; sint =0,£1/2,4+1; tant =0, £1.

(g) The real numbers logg9 and log3/log?2 are irrational numbers.

(h) Let z be a real number. Show that the following statements are equivalent :

(i) zisrational. (i) There exists a positive integer k such that [kz] =kz.  (iii) There exists
a positive integer k such that [(k!)z] = (k!)z.

(i) Use the above part (h) to prove that the number e is irrational. (Hint : The number e = Z‘;‘;Oil!

is called the Euler’s number. For any positive integer k, we have [(k!)e] = k'YX ,1/i! < (k!)e.) (Proof:
(dueto J.-B.Fourier (1768-1830) a French mathematician and physicist) Suppose that ¢ = P/Q with
PQOcN, PQO>1. Then

P/Q=1+1/11+1/2!4 - +1/Q!+1/(Q+ 1) +---
Multiplying by Q!, it follows that
(Q-1DI-P=014+ Q!+ +0+1+1/(Q+1)+1/(Q+1)(Q+2) + -

1. €. the series

- 1
0
Eorn-(0+v)
has an integer value. But
1 1
O+ 1) (0FV) < 0+1)" forall v>2,
and hence . N | .
— =<1
GERVEN R R NGRS

a contradiction. For the last equality, we have used the formula’” (for x =1/(Q+1) < 1/2).
— Remark: The proof of irrationality of the number 7 is not quite so easy!)

T5.35 (Congruences) Inthe first chapter of Disquisitiones Arithmaticae’® Gauss introduced
the concept of congruence. He was induced to adopt the symbol = because of the close analogy
with the (algebraic) equality =.

Let n € IN* be a fixed positive natural number. Two integers a and b € Z are saidtobe congru -
ent modulo n,denoted by a =b(mod n) if n divides the difference a —b,i.e. a—b=kn
for some integer k € Z.

36What is the definition of the number 7 ? Ancient Greeks defined the number 7 as the ratio of the circumference
of a circle to its diameter. The letter 7 came from Greek the word perimetros. It was Euler’s adoption of the symbol
in his many popular textbooks that made it widely known and used. The first recorded scientific effort to approximate
7 appeared in the Measurement of a Circle by the Greek mathematician of ancient Syracuse, archimedes (287-
212 B. C.). His method was to inscribe and circumscribe regular polygon about circle, determine their perimeters and
use these as lower and upper bounds on the circumference. Using a polygon of 96 sides, he obtained the inequality:
223/71 < w < 22/7.

. — X
3For every x € R with |x| < 1, we have Z xV =

v=0

1—x

33This monumental work of the German mathematician Carl Friedrich Gauss (1777-1855) appeared
in 1801 when he was 24 years old. In this work Gauss laid the foundations of modern number theory, see also the
Footnote 32
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Given an integer a € Z, let ¢ and r denote the quotient and remainder upon division by 7, so that
a=gn+r, 0<r<n. then a =r(mod n). Therefore every integer is congruent modulo n to
exactly one of 0,1,...,n—1; in particular, a = 0 (mod n) if and only if n divides a. Further, note
that @ = b (mod n) if and only if a and b have the same remainder upon division by n.

(a) The behavior of = with respect to the addition and multiplication is reminiscent of the ordinary
equality. Some of the elementary properties of equality that carry over to = are:

(i) a=a(modn). (ii)) If a=b(modn), then b =a(mod n).

(iii) If a=b(mod n) and if b = ¢(mod n), then a = ¢ (mod n).

(Remark : The above three properties show that = is an equivalence relation on the set of integers. The
equivalence classes of = are precisely the congruence classes modulo n: [r]:==r4+Z-n:=
{r+kn|keZ}, r=0,...,n— 1. Therefore the quotient set Z/== {[r] | 0 < r < n— 1}; this quotient set
is usually denoted by Z, and its elements are also called the residue classes modulo n. The
system O, 1,...,n— 1 form a complete representative system for the quotient set Z/=.)

(iv) If a=b(modn) and if ¢ =d (mod n), then a+c=>b+d(modn) and a-c =b-d(mod n).
(v) If a=b(modn),then a+c=b+c(modn) and a-c=b-c(mod n).

(Remark : It follows from (iv) that the binary operations +, (calledthe addition modulo n)and
n (calledthe multiplication modulo n) defined on the quotient set Z, by ([r],[s]) — [r+ ]
and ([r],[s]) = [r-s] are well-defined. Both these binary operations are associative, commutative and [0]
(respectively, [1]) is the identity element for +, (respectively, -,). Therefore (Z,,+,) and (Zy,-,) are
commutative monoids. Moreover, the monoid (Z,,+,) is a group. Further, the binary operations +n and
cdot, are connected by the distributive laws: ([r] +, [s]) -n [t] = [r] n [t] +2 [s] -n [t] and [r] -, ([s] +, [t]) =
[7] - [s] +u [r] - [t] forall r,s,t € {0,1,...,n— 1}. Therefore (Zy,~+n,n) is a commutative ring with the
(multiplicative) identity [1]. All the above assertions are immediate from the definitions of +,, -, and the
standard associativity, commutativity and the distributive laws of the standard addition and multiplication
on the set Z of integers. )

One cannot unrestrictedly cancel common factor in the arithmetic of congruences. With suitable
precautions cancellation can be allowed:

(vi) If ca=cbh(mod n), then a =b(mod n/d), where d = ged(c,n). (Hint : Use Euclid’s lemma.)
(vii) If ca=cb(modn) and if ged(c,n) =1, then a=b(mod n). In particular, If ca = cb (mod n)
and if p is a prime number which does not divide ¢, then a = b(mod n).

(b) Let n € N*, a,b € Z and let P(X) = Zf’l:o a;X' be a polynomial with integer coefficients
ap,...,aq € 7. If a=> (mod n) then show that P(a) = P(b) (mod n). Deduce that if a is a
solution of the congruence P(a) =0 (mod n) and if @ = b (mod n), then b is also a solution.

(¢) () Find the remainder when 4444%4 is divided by 9. (Hint : Use 2°> = —1(mod 9).)

(ii) For n > 1, show that (—13)"*! = (—13)" + (—13)"~!(mod 181). (Hint : Note that (—13)% =
—13+ 1(mod 181) and use induction on n.)

(d) Let a € Z be an integer relatively prime to n. Then:

(i) Forevery c € Z, the integers c¢,c+ 1,...,c+ (n— 1)a form a complete representative system
for Z.,. In particular, any n consecutive integers form a complete representative system for Z,,.

(1) If ay,...,a, € 7 is a complete representative system for Z,, then a-ay,...,a-a, also form a
complete representative system for Z,.

(iii) Verify that 0,1,2,22,...,2° form a complete representative system for Zi;, but that
0,12,22,32,...,10% do not.

(e) Find the remainders when
(i) 15! isdivided by 17.  (ii) 2-(26!) is divided by 29.  (iii) 4-(29!)+5! is divided by 31.

(f) Explain why the following curious calculation hold:
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1-94 2=11
12-94 3 =111
123-9+ 4 =1111
1234-9+4 5=11111
12345-9+ 6 =111111
123456 -9+ 7=1111111
1234567-9+ 8 = 11111111
12345678 -9+ 9 = 111111111
123456789-94+10=1111111111

10}1+1 -1

9 )

(Hint: Show that (10" ' 4+2-10"24+3-10" 3 +.-- 1) - (10—-1) + (n+1) =
(g) Determine the last two digits of 99 (Hint : 9° =9 (mod 10) and hence 99" = 9910k Now use
9% = 89 (mod 100).)

(h) Determine the last three digits of 7°°°. (Hint : 74" = (1 +400)" = 14 400n (mod 1000).)

(i) For any n > 1, show that there exists a prime number with at least »n of its digits equal to O.
y p g q
(Hint : consider the arithmetic progression 10"*!.m+1, m € IN*.)

(j) Show that 2" divides a integer n if and only if 2" divides the number made up of the last r
digits of n. (Hint : 10 = 2%.5F =0 (mod?2") for k > r.)

T5.36 (a) Faliure of the converse of Fermat’s Little Theorem: show that if n € IN* and if the

congruence a" = a(mod n) holds for some integer which is relatively prime to n, then n need not
be prime. (Hint : 234 = 1 (mod 341), but 341 = 11-31 is not prime.)

(b) Use Fermat’s Little Theorem to:

(i) Verify that 17 divides 11'%4+1. (i) verify that 13 divides 11!+ 41 for every n € IN.

(iii) Let p be a prime number and let a be an integer with ged(a,p) = 1. Verify that x =
a?~1b(mod p) is the unique solution of the linear congruence aX = b(mod p).

(iv) Solve the congruence 2X = 1 (mod 31); 6X =5(mod 11) and 3X = 17 (mod 29).

(c) The three most recent appearances of Halley’s comet were in the years 1835, 1910 and 1986;
the next appearance will be in 2061 . Prove that 1835'1% + 19862%! = (0 (mod 7).

(d) Verify the congruence 2222333 4 5555%222 = 0 (mod 7).
T5.37 Let p be a prime number.

(a) If a and b are integers with gcd(a, p = 1gcd(b, p) and if a” =bP (mod p), then a=b(mod p).
(b) If p is an odd prime number, then

G 1772ty (p—1)P"1 = —1(mod p).
(i) 17427 +---+(p—1)’ =0(mod p).

-1
(iii) (pk ) = (—1)*(mod p) forevery 1 <k<p—1.
(¢) Let p and g be two distinct odd prime numbers such that p — l}q — 1 and let a be an integer
with gcd(a, pg) = 1. Show that a9~! = 1 (mod pq).
(d) Let p and g be two distinct prime numbers. Show that p?~! 4+ ¢~ = I (mod pq).

(e) Verify that 25! =2 (mod 561) and 3°°! =3 (mod 561). (Remark : It is an unanswered question
whether that exist infinitely many composite numbers n such that n divides both 2" —2 and 3" —3.)
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T5.38 In this test-Exercise we undertake the task of finding all solutions of the Pythagorean equa-
tion X2+ Y? = Z? in the positive integers.

(@) Pythagorean Triples) Atriple (x,y,z) € Z3iscalleda Pythagorean triple
if x> +y? =z?; the triple is said tobe primitive if gcd(x,yz) = 1. The characterization of all
primitive Pythagorean triples is fairly straight forward: (x,y,z) € Z3, ged(x,y,z) = 1, 2|x, x > 0,
y >0, z > 0 are given by the formulas: x = 2st, y = 5% — 2, z = s> + 1> for integers s >t > 0,
gcd(s,2) =1 and s £t (mod 2). (Proof: )

(b) (Pythagorean Triangles) A right angled triangle is called a Pythagorean
triangle if all its sides are of integral lengths. An interesting geometric fact concerning
Pythagorean triangles is: The radius of the inscribed circle of a Pythagorean triangle is always
an integer. (Proof: )

(¢) Let n € IN*. Show that

(1) There are at least n Pythagorean triples having the same first member. (Hint : Let y, =
2k(22n=2k 1) and z; = 2¢(2*"2* + 1), k=0, 1,...,n— 1. Then (2"*!,y;,z;) are all Pythagorean triples.)

(i1) There exists a Pythagorean triangle the radius of whose inscribed circle is n. (Hint : If r denotes
the radius of the circle inscribed in the Pythagorean triangle having sides a and b and hypotenuse c, then
r=%(a+b—c). Consider the triple (2n+41,2n> +2n,2n> +2n = 1).)

T5.39 (Primality Tests*) Let n € IN*.

(@) (Lucas’s Test) If there exists a € Z such that a"~' = 1 (mod n) and a"~1/? 1 (mod n) for all
prime numebrs p which divide n — 1, then » is a prime number.

(b) Pepin’s Tes *0) The Fermat number F, = 22" +1 is prime if and only if 3E-D/2=_1 (mod F,).

T5.40 (Fermat’s Last Theorem) ¥

(a)

(b) Fermat’s Method of Infinite Decent)

(¢) Some History) Some highlights of the 19-th century work on FLT are:

e In 1816 — The French Academy announces a first prize for a solution to FLT.

e in 1820s— Sophie Germain shows thatif p and 2p+ 1 are prime, then x” + y” = z” has no solution
with p /xyz. (This is called the Case I of FLT; the Case II is where p|xyz and is usually much harder.)

e In1825—- Drichlet and Legendre prove FLT forn =5.

e In1832- Drichlet attempts to prove FLT for n = 7 and proves FLT for n = 14.
e In 1839 - Lamé proves FLT forn =7.

e In1847—- Lamé and Cauchy presents faulty proof of FLT for general n.

o In 1844-1847 — Kumme r’s work on FLT:

LT}

¥Lucas Edouard (1842-1891) a French number theorist was the first to device an effieint “primality test
that is, a procedure that guarantees whether a number is prime or composite without revealing its factors. His primality
criteria for Mersenne and Fermat numbers were developed in a series of 13 papers published between 1876 and 1878.
By imposing further restrictions on the base in Fermat’s congruence ¢"~! = 1 (mod ), it is possible to obtain a definite
guarantee of primality of n. This result which was proved in 1876 is known as Lucas’s converse of of Fermat’s Little
Theorem. See also Lucas’s book Théorie des Nombres (1891).

40In 1877, the Jesuit Priest Théophile Pepin (1826-1904) devised the practical test for determining the
primality of the Fermant Number F;,.

41By the early 1800s, all of Fermat Problems were solved except for FLT, thus justifying the name “Fermat’s Last
Theorem”.
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— In 1847 — Theorem: FLT holds for p if p fh (such prime are called regular primes).
— In 1847 — Theorem: p is regular if and only if p does not divide the numerators of the Bernoulli-
numbers*> By, By, .. .B,_3. — As a consequence of this for p < 100 only 37,59,67 are irregular primes.
e In 1850 — The French Academy offers a second prize for a solution to FLT.

e In 1856 —at Cauchy’s suggestion, the French Academy withdraws the prize and then awards a medal to
Kummer.

e In 1857 - Kummer develops a complicated criteria for proving FLT for certain irregular primes. — Some
gaps in his proof which are later filled by Vandiver in 1920s. These result establish FLT for p < 100.

e Some highlights of the history of FLT after Kummer:

. . . . x -
“2Bernoulli-numbers are defined by the power series expansion of the function e Y —
- n
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