E0 221 Discrete Structures / August-December 2012

(ME, MSc. Ph. D. Programmes)
Download from : http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel : +91-(0)80-2293 2239/(Maths Dept. 3212) Lectures : Monday and Wednesday ; 11:30-13:00		E-mails : dppatil@csa.iisc.ernet.in/patil@math.iisc.ernet.in Venue: CSA, Lecture Hall (Room No. 117)				
1-st Midterm : Saturday, September 22, 2012; 14:00-16:30 Final Examination : December ??, 2012, 10:00-13:00			2-nd Midterm : Sunday, October 14, 2012; 10:00-12:00			
Evaluation Weightage : Midterms (Two) : 50%					Final Examination : 50\%	
Range of Marks for Grades (Total 100 Marks)						
Marks-Range	Grade S	Grade A	Grade B	Grade C	Grade D	Grade F
	> 90	76-90	61-75	46-60	35-45	< 35
TEST 1						
Saturday, September 22, 2012		14:00 to 16:30		Maximum Points : 50 Points		

T1.1 (a) Let A, B, C and D be sets. If $A \subseteq C$ and $B \subseteq D$, then show that $A \times B \subseteq C \times D$. Moreover, if $A \neq \emptyset$ and $B \neq \emptyset$, then the converse also holds. [3 points]
(b) Investigate whether the map $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R},(x, y) \mapsto(x y, x+y)$, is injective, surjective respectively, bijective.
(c) Draw the pictures of the fibres $f^{-1}(1)$ and $g^{-1}(-1)$ of the maps $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R},(x, y) \mapsto x y$ and $g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R},(x, y) \mapsto|y-x|$, at the points 1 and -1 , respectively.
[4 points]
T1.2 Let $f: X \rightarrow Y, g: Y \rightarrow X$ and $h: X \rightarrow Y$ be maps. Show that:
(a) If $g \circ f$ is bijective, then f injective and g is surjective. Give an example to show that neither f nor g is bijective even if $g \circ f$ is bijective.
[4 points]
(b) If $g \circ f$ is bijective and if f is bijective, then g is also bijective.
[3 points]
(c) From the equalities $g \circ f=\mathrm{id}_{X}$ and $h \circ g=\mathrm{id}_{Y}$, show that equality $f=h$. Further, show that g is bijective and $g^{-1}=f=h$.
[4 points]
T1.3 Let X and Y be sets.
(a) Show that the map $\Gamma: \operatorname{Maps}(X, Y) \rightarrow \mathfrak{P}(X \times Y)$ defined by $f \mapsto \Gamma_{f}:=\{(x, f(x)) \mid x \in X\}$ the graph of f is injective.
[5 points]
(b) For $X:=[0,1]:=\{t \in \mathbb{R} \mid 0 \leq t \leq 1\}$ and $Y:=\mathbb{R}$, find the fibres $\Gamma^{-1}(R)$ and $\Gamma^{-1}(S)$ over the relations $R:=\{(x, y) \in X \times Y \mid x<y\}$ and $S:=\{(x, 1) \in X \times Y \mid x \in X\}$ under the map Γ given in the part (a) above.
[5 points]
T1.4 (a) On the set \mathbb{N}^{+}of positive natural numbers, let \middenote the relation "divides", i. e. for $m, n \in \mathbb{N}^{+}, m \mid n$ if and only if $n=a m$ for some $a \in \mathbb{N}^{+}$. Show that:
(i) \mid is an order on \mathbb{N}^{+}and that the element 1 is the least element. [2 points]
(ii) The prime numbers are precisely the minimal elements in $\left(\mathbb{N}^{+} \backslash\{1\}, \mid\right)$. [2 points]
(iii) Draw the Hasse-Diagrams for the set of divisors of 12 and 30 . [2 points]
(iv) The subset $\mathrm{C}:=\left\{2^{n} \mid n \in \mathbb{N}\right\} \subseteq \mathbb{N}^{+}$is a maximal chain in the ordered set $\left(\mathbb{N}^{+}, \mid\right)$. [3 points]
(b) Give an example of an ordered set (X, \leq) such that there are exactly three minimal elements and two maximal elements and neither a minimum nor a maximum.

T1.5 (a) Let (X, \leq) be a conditionally complete ordered set and $f: X \rightarrow X$ be a non-decreasing map from X to X. If there are $a, b \in X$ such that $a \leq f(a) \leq f(b) \leq b$, then there exists an element $c \in X$ such that $a \leq c \leq b$ and $f(c)=c$.
(b) Explain why one cannot apply the result in part (a) above to the map $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq)$, $n \mapsto n^{2}+1$, even though the map f is non-decreasing?
(c) Give an example of an order \preceq on the set \mathbb{N} of natural numbers such that the ordered set (\mathbb{N}, \preceq) is a complete ordered set.
[3 points]
*T1.6 (a) Let (M, \cdot) be a monoid with neutral element e. For an element a in a monoid M, show that the following statements are equivalent:
(i) a is invertible in M.
(ii) The left translation $\lambda_{a}: M \rightarrow M, x \mapsto a \cdot x$ is bijective.
(iii) The right translation $\rho_{a}: M \rightarrow M, x \mapsto x \cdot a$ is bijective.
(b) Is the successor map $\sigma: \mathbb{N} \rightarrow \mathbb{N}, n \mapsto n+1$, invertible in the monoid ($\mathbb{N}^{\mathbb{N}}, \circ$)?
(c) Give at least two explicit examples of invertible elements in the monoid $\left(\mathbb{N}^{\mathbb{N}}, \circ\right)$. Is the set $\left(\mathbb{N}^{\mathbb{N}}, \circ\right)^{\times}$of invertible elements in the monoid $\left(\mathbb{N}^{\mathbb{N}}, \circ\right)$ finite?

