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1. Sets – Operations on Sets

1.1 For a set A, show that the following statements are equivalent:
(i) A = /0. (ii) A\B = A∩B for every set B.

(iii) There exists a set B with A\B = A∩B. (iv) B\A = B∪A for every set B.
(v) There exists a set B with B\A = B∪A.

1.2 Show that the operation (· \ ·) is distributive over the operations ∪ and ∩, i. e. for arbitrary three
sets A,B,C :
(a) (A∪B)\C = (A\C)∪ (B\C).
(b) (A∩B)\C = (A\C)∩ (B\C).

1.3 Show that (A∩B)∩ (A\B) = /0 and (A∩B)∪ (A\B) = A.

1.4 Prove that the statements A⊆ B ⇐⇒ (C \B)⊆ (C \A) and (C \ (C \A)) = A are not true for
some sets A, B and C.

1.5 For non-empty sets A and B, show that the following statements are equivalent:
(i) A×B⊆ B×A. (ii) B×A⊆ A×B. (iii) A×B = B×A. (iv) A = B.

(Remark : This shows that × is not a commutative operation.)

1.6 Let A, B, C and D be sets.
(a) If A ⊆C and B ⊆ D, then show that A×B ⊆C×D. Moreover, if A 6= /0 and B 6= /0, then the
converse also holds.
(b) (A×B)∪(C×D)⊆ (A∪C)×(B∪D) . Moreover, the equality holds if and only if the conditions
“A⊆C or D⊆ B” and “C ⊆ A or B⊆ D” are satisfied.

1.7 Let A be a set and let P(A) be the power set of A. Show that
(a) If B ∈P(A), then P(B)⊆P(A). (b)

⋂
B∈P(A)

B = /0.

(c) Let I be a set whose members are also sets. Then⋂
A∈I

P(A) =P(∩A∈I A) and
⋃
A∈I

P(A)⊆P(∪A∈I A) .

Moreover, the last inclusion is, in general, not an equality.

Below one can see Lecture Notes.
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Lecture Notes

Though the naive or intuitive approach to sets will suffice for most purpose, an exposition of
general set theory requires more precision, for without explicit axioms, it is well known that various
contradictions arise. It was the famous English philosopher B e r t r a n d R u s s e l l1 (1872-1970)
who shook the Mathematics community in 1901 by declaring the admission of a set of all sets
would lead to a contradiction. This is the famous R u s s e l l ’ s P a r a d o x2:

T1.1 Russell’s Paradox : Serious difficulties occur if we allow the notion of set to be too general.
For example, it is undesirable to talk of “the set U of all sets.” If such a set exists, it must, being a
set, be a member of itself, that is, U ∈U. This is not in itself disastrous, but now consider Russell’s
famous set V of all sets which are not members of themselves. (Russell’s argument is to be compared
with the ancient paradoxes of the “liar” type, which were the subject of innumerable commentaries
in classical formal logic; the question whether a man who says “I am lying” is telling the truth or
not when he speaks these words.) If V is not a member of itself then by that fact it qualifies as a
member of V, that is, it is then a member of itself and the situation is no better if we yield to this
reasoning and allow that V is a member of itself. For then V does not qualify as a member of V,
which only admits as members those sets which are not members of themselves, so we find that we
have again proved the opposite of what we have assumed.
Therefore, we must accept the terms “set” and “element” as undefined terms or primitives and guide
these primitives by a number of axioms. It is desired to indicate only a framework within which
we will work, which avoids the known antinomies and which, at least until now, has not led to any
contradiction.

T1.2 Classical Logic : In what follows, we are assuming that we are working with classical logic.
To prevent any misunderstanding, ambiguity or arbitrary interpretation, the essential definitions as
well as the axioms of the theory of sets are introduced below using logical connectives:
(1) ∨ (“or”) (in the sense “one or the other or both”),
(2) ¬ (“not”),
(3) ∃ (“there exists” or “for some”),
(4) (∧ (“and”),

1Bertrand Russell was born on May 18, 1872, at Trelleck, Wales. before he was four both of his parents died.
He had been a shy, silent boy until he entered Trinity College, Cambridge University in 1880. After three years of
Mathematics he concluded that what he was being taught was full of errors. He sold of his Mathematics books and
changed to philosophy. In his Pricipia Mathematica (1910-1913), a three volume monumental work co-authored with
A l f r e d N o r t h W h i t e h e a d (1861-1947), he attempted to recast set theory so as to avoid paradoxes. In 1918
he wrote, “I want to stand at time rim of the world and peer into the darkness beyond and see a little more than others
have seen .... I want to bring back into world of men some little bit of wisdom.” He certainly did, more than just “some
little bit.” In the same year he was put into prison for an unfavorable comment about the American Army. In 1950 he
received the Order of Merit from King of England and the Nobel prize for literature. In his later years he led a number
of demonstrations against nuclear warfare.

2Russell’s Paradox was not the only one to arise in set theory. Shortly after the Russell’s Paradox appeared many
paradoxes were constructed by several mathematicians and logicians. This precipitated a search for a rigorous foundation
of set theory which would avoid contradictions. As a consequence of all these paradoxes, many mathematicians and
logicians (with D a v i d H i l b e r t (1862-1943) among its leaders) have contributed to several brands such as
“Zermelo-Fraenkel-Skolem axiomatic set theory” (proposed by E r n s t F r i e d r i c h F e r d i n a n d Z e r m e l o
(1871-1953), A d o l f A b r a h a m H a l e v i F r a e n k e l (1891-1965) and T h o r a l f A l b e r t S k o l e m
(1887-1963)) and “von Neumann-Bernays-Gödel axiomatic set theory.” (proposed by J o h n v o n N e u m a n n
(1903-1957), P a u l I s a a c B e r n a y s (1888-1977) and K u r t G ö d e l (1906-1978)) of “axiomatic set theory,”
each designed to avoid these paradoxes and at the same time to preserve the main body of Cantor’s set theory.
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(5) ∀ (“for every”),
(6) ⇒ (“implies”),
(7) ⇐⇒ (“if and only if”), but we are rather casual about this.

T1.3 The Role of Definitions : A very important ingredient of mathematical creativity is the
ability to formulate useful definitions — the ones that will lead to interesting results. Every definition
is understood to be an if and only if type of statement — even though it is customary to suppress
only if. For example, one may define : “A triangle is i s o s c e l e s if it has two sides of equal
length” The important thing to understand the concept so that you can define precisely the same
concept in your words. The above definition may also be reformulated as: “An i s o s c e l e s
triangle is one having two equal angles”
It is very important to note that proofs concerning the concepts just been defined must use the
definition as an integral part of the proof because the definition is the only information available
regarding the concept immediately after it is defined.
Throughout these lecture notes a term that appears in “g e s p e r r t” type is being defined defined at
that point.

T1.4 Sets : A s e t is a collection of w e l l - d e f i n e d o b j e c t s3 – meaning that if A is a
set and a is some object then either a is definitely in A or a is definitely not in A. The objects that
form the set are called e l e m e n t s or m e m b e r s of the set. We denote sets by capital letters
A,B,C, etc. and elements of sets are denoted by lower case letters a,b,c etc. If a is an element of a
set A then we write a ∈ A and read it as “a belongs to A.” If a is not an element of a set A then we
write a 6∈ A and read it as “a does not belong to A.”
The logical impasse can be avoided by restricting the notion of set, so that “very large” collections
or the “collection of all things” are not counted as sets. We shall never need to deal with any sets
large enough to cause trouble in this way and consequently we may put aside all such worries and
hope that paradoxes will not appear. However, our main interest in this course is the application of
the theory of sets to the basic notions of mathematics. For example, in formulating fundamental
notions such as relations, functions, natural numbers, integers, rational numbers, real numbers,
ordinal numbers and cardinal numbers as well as their arithmetic 4

Therefore we shall take a naive, non-axiomatic approach of set theory. In fact the entire discussion
may be made rigorously precise.

T1.5 Some Examples : Sets will be described by explicitly declaring its elements — one calls
this as e n u m e r a t i v e n o t a t i o n, — or by giving characterization of its elements by means
of a property P(x) and is written in the brace notation {x ∈ P(x)} and is read “the set of all x such
that the statement P(x) about x is true”. For example,

{1,−1}= {1,−1,1}= {x | x is a real number and if x2 = 1}= {x ∈R | x2 = 1}

One and the same set can be described in many ways. For the equality of sets it is only important
that they have the same elements.

We shall use the following standard notation:

• N= {0,1,2,3, . . .} The set of natural numbers.
3For example, one should never say “consider the set A of some students from IISc who are registered for the

Discrete Structures course”. For it is not definite whether “John∈ A” or John6∈ A. However, since every positive integer
is definitely either a prime number or not a prime number, one can consider the set P of all positive prime numbers. It
may be hard to determine whether a given object is in a set. For example, it is unknown whether 2217

+1 is in the set P.
However, it is certainly either prime or not prime.

4The arithmetic of ordinal and cardinal numbers is also called t r a n s f i n i t e a r i t h m e t i c.
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• N∗ =N+ = {1,2,3, . . .} The set of positive natural numbers.

• Z= {0,1,−1,2,−2,3,−3, . . .} The set of integers.

• Q= {a
b = a/b | a,b ∈ Z, b 6= 0} The set of rational numbers.

• R The set of real numbers.

• R× = {x ∈R | x 6= 0} The set of non-zero real numbers.

• R+ = {x ∈R | x≥ 0} The set of non-negative real numbers.

• R− = {x ∈R | x≤ 0} The set of non-positive real numbers.

• R×+ = {x ∈R | x > 0} The set of positive real numbers.

• C= {x+ iy | x,y ∈R} The set of complex numbers.

• C× = {z ∈ C | z 6= 0} The set of non-zero complex numbers.

T1.6 (O p e r a t i o n s o n S e t s) We collect some important operations os sets. Let A, B and C
be arbitrary sets.

(1) The set B is called a s u b s e t of A (or A is called a s u p s e t of B) if every element of B is
an element of A. The notations B⊆ A or A⊇ B are both used to mean “B is a subset of A.” or “A is
a supset of B”. The symbol ⊆ is called the i n c l u s i o n of the set B in in the set A. Moreover,
if B 6= A, then we also write B⊂ A or B ( A and say that B is a p r o p e r s u b s e t of A (or A
is a p r o p e r s u p s e t of B). (Remarks : The inclusion relation ⊆ is not to be confused with the
membership relation ∈ . For example, /0⊆ /0 , but not /0 ∈ /0 ; { /0} ∈ {{ /0}} but { /0}* {{ /0}} because there is
a member of { /0}, namely, /0, that is not a member of {{ /0}}; Let US be the set of all people in the United
States and let UN be the set of all countries belonging to the United Nations. Then John Jones ∈ US ∈ UN,
but John Jones ∈ UN (since he is not even a country), and hence US * UN.)

(2) There is exactly one set with no elements and is called the e m p t y (or n u l l or v a c u o u s)-
s e t which is usually denoted5 by /0 and is a subset of every set.

(3) (U n i o n) There is a unique set A∪B such that x ∈ A∪B if and only if either x ∈ A or x 6∈ B.
In symbols: A∪B := {x | x ∈ A or x ∈ B} and is called the u n i o n of the sets A and B. (Remark :
By repeating this operation we can form the union of three sets, four sets etc. moreover, form the union
of finitely many sets. But suppose we want to form the union of infinitely many sets, then we need a more
general union operation. This leads us to the following definition: For any set I (whose members are sets),
the set of all the elements of all the members of I is called the u n i o n - s e t or the s u m - s e t of I. In
symbols: in the case that I = {A | A ∈ I} , the union-set of I {x | x ∈ A for some A ∈ I} is usually denoted
by
⋃

A∈I A. For example, if I = { /0,{ /0}}, then
⋃

A∈I A = { /0} 6= { /0,{ /0}}. However,
⋃

A∈ /0 A =
⋃

A∈{ /0}A = /0.
The operation ∪ is idempotent, commutative and associative, see Test-Exercise T1.7.)

(4) (I n t e r s e c t i o n) There is a unique set A∩B such that x ∈ A∩B if and only if x ∈ A and
x ∈ B. In symbols: A∩B := {x | x ∈ A and x ∈ B} and is called the i n t e r s e c t i o n of the
sets A and B. (Remark : As in the case of union, we also need the corresponding generalization of the
intersection operation. In general, we define for every non-empty set I, the subset of

⋃
A∈I A consisting of

all common elements of all the members of I is called the i n t e r s e c t i o n - s e t of I and is denoted by⋂
A∈I A. In symbols: x ∈

⋂
A∈I A if and only if x ∈ A for every A ∈ I. In contrast to the union operation, there

is no special axiom is needed to justify the intersection operation. However, there is one trouble extreme case,
namely, what happens if I = /0?. There is no set C such that for every x, x ∈C if and only if x belongs to every
member of /0, since the right hand side is true for every x. This presents a mild notational problem: How to

5The symbol /0 is not the Greek letter phi φ , but rather a letter of Danish and Norwegian alphabets. The symbols �
and ∧ also appear in literature for /0.
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define
⋂

/0 ? One option6 is to leave
⋂

/0 undefined, since there is no very satisfactory way of defining it!

For example, if I = { /0,{ /0}}, then
⋂

A∈I A = { /0} 6= { /0,{ /0}}. The operation ∩ is idempotent, commutative
and associative, see Test-Exercise T1.7. For non-emptyset I, clearly

⋂
A∈I A⊆

⋃
A∈I A. Further, note that

the union-set
⋃

A∈I A of the set I = {A | A ∈ I} is the “smallest” set which includes all the sets A ∈ I and the
intersection-set

⋂
A∈I A of the set I is the “largest” set which is a subset of every set A ∈ I. )

(5) (D i f f e r e n c e) There is a unique set A \B such that x ∈ A \B if and only if x ∈ A and
x 6∈ B. In symbols: A\B := {x | x ∈ A and x 6∈ B} and is called the d i f f e r e n c e of the sets A
and B. If B is a subset of A, then the difference set A\B is also called the c o m p l e m e n t o f
B i n A and is usually denoted by {A B. (Remark : Note that for every set A, A\ /0 = A, /0\A = /0 and
A\A = /0. Therefore the difference operation (· \ ·) is not commutative. Further, since (A\ /0)\A = /0 and
A\ ( /0\A) = A, it is also not associative. It is interesting to note that the inclusion and intersection can be
expressed in terms of the difference: A⊆ B if and only if A\B = /0 ; and A∩B = A\ (A\B).)

(6) (S y m m e t r i c D i f f e r e n c e) The s y m m e t r i c d i f f e r e n c e A4B of the sets A
and B is the set of all those elements that are elements of A or B but not of both. In symbols: A4B =
(A∪B) \ (A∩B). Clearly, A4B = {x | either x ∈ A or x ∈ B} = (A\B)∪ (B\A) which justifies
the term the symmetric difference. (Remark : The symmetric difference operation is commutative and
nilpotent, i. e. A4B = B4A and A4A = /0. Moreover, it is associative, see also Exercise 1.??.)

(7) (P o w e r - S e t) There is a unique set P(A) whose elements are precisely all subsets of
A. This set is called the p o w e r - s e t of A. Note that7 unions, intersections, differences and
symmetric differences of the sets from P(A) are again members of P(A). For example, the power-
set P({1,2,3}) of the set {1,2,3} is the set { /0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. Note that the
power-set P( /0) = { /0} of the empty-set /0 is a non-empty set.

(8) (C a r t e s i a n - p r o d u c t) For sets A and B, the set of (ordered) pairs (a,b), a ∈ A and
b ∈ B, is called the C a r t e s i a n - p r o d u c t or the c r o s s - p r o d u c t of the sets A and
B and is usually denoted by A×B. (Remark : The set {{a},{a,b}} is called the o r d e r e d p a i r
and is denoted by (a,b). The two ordered pairs (a,b) and (a′,b′) are equal if and only if the corresponding
c o m p o n e n t s are equal, i. e. a = a′ and b = b′. Therefore the pair (a,b) and the set {a,b} needs to be
distinguished! For a 6= b, naturally (a,b) 6= (b,a) but {a,b}= {b,a}.)

For example, let A := [a,b] = {x ∈ R | a ≤ x ≤ b} and B := [c,d] = {y ∈ R | c ≤ y ≤ d} be two closed
intervals with a < b and c < d. Then A×B is the “rectangle”:

[a,b]× [c,d] = {(x,y) ∈R×R | a≤ x≤ b , c≤ y≤ d} .

T1.7 (E u l e r - V e n n D i a g r a m s8) Euler-Venn diagrams are drawings that illustrate abstract
ideas. Generally circles are drawn so that they overlap to illustrate set theory concepts.

6This option works perfectly well, but some logicians dislike it. It leaves the intersection-set
⋂

A∈ /0 A of the empty-set
/0 as an untidy loose end, which they may later trip over!

7Therefore ∪ , ∩ , (· \ ·) and 4 are binary operations on the power-set P(A).
8J o h n V e n n ( 1 8 3 4 - 1 9 2 3 ) was an English logician who made contributions to logic and probability. He

was an ordained minister but resigned his ministry in 1883 to concentrate on logic, which he taught at Cambridge.
The diagrams for which he remembered were actually used earlier by a Swiss mathematician L e o n h a r d E u l e r
(1707-1783), but were perfected by Venn.
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T1.8 (A l g e b r a o f S e t s9 and C o m p u t a t i o n a l - R u l e s) The following identities
which hold for arbitrary sets, are some computational rules in the algebra of sets:

Let A,B and C be arbitrary sets. Then:

(1) A∪ /0 = A and A∩ /0 = /0 .

(2) A∪A = A and A∩A = A . ( I d e n p o t e n c y )

(3) A∪B = B∪A and A∩B = B∩A . ( C o m m u t a t i v i t y )

(4) A∪ (B∪C) = (A∪B)∪C and A∩ (B∩C) = (A∩B)∩C . ( A s s o c i a t i v i t y )

(5) A∪ (B∩C) = (A∪B)∩ (A∪C) and A∩ (B∪C) = (A∩B)∪ (A∩C) . ( D i s t r i b u t i v i t y )

(6) A\ (B∪C)=(A\B)∩ (A\C) and A\ (B∩C)=(A\B)∪ (A\C) . ( D e M o r g a n ’ s l a w s 10)

T1.9 For arbitrary three sets A, B, and C, show that:
(a) (A\B) = A if and only if (B\A) = B.
(b) B = /0 if and only if A∪B = A\B.
(c) A = B if and only if (A\B) = (B\A).
(d) A⊆ B∪C if and only if (B\C)⊆ A.
(e) (B\A)⊆C if and only if (B\A) = B.

T1.10 For sets A and B, show that the following statements are equivalent:
(i) A⊆ B. (ii) A∩B = A.

(iii) A∪B = B. (iv) A\B = /0.
(v) B\ (B\A) = A. (vi) A∪ (B∩C) = (A∪C)∩B for every set C.

(vii) There exists a set C with A∪ (B∩C) = (A∪C)∩B.

T1.11 For sets A,B,C, show that:

(a) A\ (B∪C) = (A\B)\C.
(b) (A\B)∩C = (A∩C)\ (B∩C) = (A∩C)\B.
(c) A\ (B\C) = (A\B)∪ (A∩C).
(d) A\ (B∩C) = (A\B)∪ (A\C).
(e) A∩ (B\C) = (A∩B)\ (A∩C).
(f) A∪ (B\C)⊇ (A∩B)\ (A∩C). Further, show that the equality holds if and only if A∩C = /0
and give an example to show that, in general, the equality does not hold.

9The study of operations of union ∪ , intersections ∩ , differences (· \ ·) together with the inclusion ⊆ goes by the
name a l g e b r a o f s e t s. In some ways algebra of sets obeys laws reminiscent of algebra of real numbers (with + ,
· , − and ≤), but there are significant differences!

10A u g u s t u s D e M o r g a n (1806-1871) was an English logician who made major contributions to logic and
probability. De Morgan was a brilliant mathematician who introduced the slash notation for representing fractions,
such as 1/2 and 3/4. Once asked when he was born, De Morgan replied, “I was x years old in the year x2.” Can you
determine the year he was born ?
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T1.12 For sets A,B,C, show that:

(a) A4A = /0 and A4 /0 = A. (b) A = B if and only if A4B = /0.
(c) A∩B = /0 if and only if A4B = A∪B. (d) (A4B)∩ (A∩B) = /0 .
(e) (A4B)∪ (A∩B) = A∪B. (f) (A4B)∩C = (A∩C)4(B∩C).
(g) If A4B = A4C, then B =C. (h) (A4B)4C = A4(B4C).

(Remark : For neater proof use the Exercise T2.27.)

T1.13 For arbitrary four sets A, B, C and D, show that:
(a) (A\B)∪C = ((A\ (B\C))∪ (C \A).
(b) A∪ (B\C) = ((A∪B)\C)∪ (A∩C).
(c) (A\B)∪C = ((A∪C)\B)∪ (B∩C).
(d) (A\B)∩ (C \D) = (A∩C)\ (B∪D).
(e) (A\B)\ (C \D) = (A\ (B∪C))∪ ((A∩D)\B).
(f) A\ (B\ (C \D)) = (A\B)∪ ((A∩C)\D).
(g) A\ (A\ (B\ (B\C))) = A∩B∩C.
(h) (A\D)⊆ (A\B)∪ (B\C)∪ (C \D).

T1.14 Show that the operation× is distributive over the operations ∪, ∩ and (·\ ·), i. e. for arbitrary
three sets A,B,C :
(a) A× (B∪C) = (A×B)∪ (A×C) and (B∪C)×A = (B×A)∪ (C×A).
(b) A× (B∩C) = (A×B)∩ (A×C) and (B∩C)×A = (B×A)∩ (C×A).
(c) A× (B\C) = (A×B)\ (A×C) and (B\C)×A = (B×A)\ (C×A).

T1.15 For sets A,B,C,D, show that:
(a) (A×B)∩ (C×D) = (A∩C)× (B∩D) .
(b) If A⊆C and D⊆ B, then show that (C×D)\ (A×B) = ((C \A)×D)∪ (C× (D\B)).

T1.16 Let Ai, i ∈ I, and let B j, j ∈ J, be families of sets with I 6= /0 6= J. Then:
(a)

( ⋂
i∈I

Ai
)
∪
( ⋂

j∈J
B j
)
=

⋂
(i, j)∈I×J

(Ai∪B j) ,
( ⋂

i∈I
Ai
)
∪
( ⋃

j∈J
B j
)
=
⋂
i∈I

( ⋃
j∈J

Ai∪B j
)

.

(b)
( ⋃

i∈I
Ai
)
∩
( ⋃

j∈J
B j
)
=

⋃
(i, j)∈I×J

(Ai∩B j) ,
( ⋃

i∈I
Ai
)
∩
( ⋂

j∈J
B j
)
=
⋃
i∈I

( ⋂
j∈J

Ai∩B j
)
.

(c)
( ⋃

i∈I
Ai
)
\
( ⋃

j∈J
B j
)
=
⋃
i∈I

( ⋂
j∈J

(Ai\B j)
)
,
( ⋃

i∈I
Ai
)
\
( ⋂

j∈J
B j
)
=

⋃
(i, j)∈I×J

(Ai\B j) .

(d) Further, if A is another set, then A\
( ⋃

j∈J
B j
)
=
⋂
j∈J

(A\B j) und A\
( ⋂

j∈J
B j
)
=
⋃
j∈J

(A\B j) .

In particular, the complement of a union is equal to the intersection of the complements and the
complement of an intersection is equal to the union of the complements.
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