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3. Relations — Equivalence relations

3.1 Let f : X → Y be a map. The relation ∼ defined by x ∼ y if and only if f (x) = f (y) is an
equivalence relation on X . The equivalence classes with respect to ∼ are precisely the non-empty
fibres of f .

3.2 Give examples of relations which satisfy the two of the three properties of the equivalence
relations, but not the third one. How many relations are there on the set with n elements?

3.3 Let � be a reflexive and transitive relation on the set X . Then the relation ∼ defined by a∼ b
if and only if a� b and b� a, is an equivalence relation on X . On the set X of the equivalence
classes of X with respect to ∼ the relation defined by [a] ≤ [b] if and only if a � b, is a well-
defined relation and is an order. (Remark : It is to be shown in particular that the ≤ -relationship for two
equivalence classes does not depend on the representatives used for the definition. The problem to verify
s u c h i n d e p e n d e n c e f r o m t h e c h o i c e o f t h e r e p r e s e n t a t i v e s is typical for computation of
equivalence classes.)

3.4 For k ∈N+, a k- a r y s e q u e n c e is a sequence with values in a finite set with k elements
(generally in the set {0, . . . ,k−1} ), i.e. a k-ary sequence is an element in the set {0, . . . ,k−1}N.
For k = 2,3,4,5 these sequences are also called b i n a r y , t e r n a r y , q u a t e r n a r y , q u i n t n a r y
sequences. On the set X := {0,1, . . . ,k− 1}{1,...,n} of all k-ary sequences of length n define a
relation ∼ by : (a1, . . . ,an) ∼ (b1, . . . ,bn) if ai = bi whenever ai 6= 0 or 1 , i = 1, . . . ,n . For
example, if k = 4, then 012311220330∼ 112301220331. Show that ∼ is an equivalence relation
on A . The equivalence class with respect to ∼ is called the p a t t e r n o f t h e s y m b o l s
2,3, . . . ,k−1. Two k-ary sequences represent the same pattern of the symbols 2,3, . . . ,k−1 if and
only if all the symbols 2,3, . . . ,k−1 appear exactly at the same positions in them.

3.5 What are the coarest and the finest partitions and the corresponding equivalence relations of a
given set X ? What are the partitions corresponding to the equivalence relations ∆X and X×X ?

3.6 Let R denote the relation on the set N×N defined by
((a,b),(m,n)) ∈ R if and only if a+n = b+m

Show that R is an equivalence relation on N×N. For (m,n)∈N×N, let [m,n] := [(m,n)]R be the
equivalence class of (m,n) ∈N×N under R. What are the equivalence classes [0,0], [0,2], [3,0]?
Further, show that:
(a) The set {(0,n),(0,0),(m,0) | m,n ∈ N+} form a complete system of representative for the
quotient set N×N/R.
(b) The map N×N/R→ Z defined by [0,n] 7→ −n , [0,0] 7→ 0 and [m,0]→ m, is well-defined.
Moreover, show that it is bijective.

Below one can see Lecture Notes.
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Lecture Notes

As a preparation to pursue more modern mathematics, this Lecture begins with a discussion on
relations and its intimate connection between equivalence relations and partitions. An abundance of
examples is provided.

Who married with whom is simply expressed by the set of married couples. More generally, we
define :

T3.1 Definitions : Let A and B be sets. A ( b i n a r y ) r e l a t i o n 1 R from A and B is a subset
R⊆ A×B , i.e. an element R ∈P(A×B) . For the expression “(x,y) ∈ R” we shall write “xRy”
and say that “x is related to y with respect to R”, x ∈ A, y ∈ B.

For the relations defined by special properties we use special symbols. For example, the equality
defined the equality-relation = on the set A and is therefore the subset ∆A := {(a,a) | a ∈ A},
called the d i a g o n a l of A. For x,y ∈ A, x = y is equivalent to (x,y) ∈ ∆A. The diagonal ∆A
can also be interpreted as the graph of the identity map idA : A→ A of A. More generally, every
map f : A→ B defines a relation from A to B, namely, its graph Γ f ⊆ A×B.

The set of relations P(A×B) from A to B is also denoted by Rel(A,B) and its elements are also
denoted by the symbols ∼ , ∼= ≡ , ≤ , � ·· · . In the case B = A , we put Rel(A) = Rel(A,A) =
P(A,A) and its elements are called r e l a t i o n o n A. The relation R = /0 and R = A×B are called
the e m p t y - r e l a t i o n and the a l l - r e l a t i o n from A to B , respectively. Furthermore, we can
also define i n t e r s e c t i o n and u n i o n of arbitrary family of relations.

Let R be a relation form a set A to a set B. The subset {x∈A | there existsy∈B such that(x,y)∈ R }
of A of all first coordinates of R is called the d o m a i n of R and is usually denoted by Dom(R).
The subset {y ∈ B | there exists x ∈ A such that (x,y) ∈ R} of B of all second coordinates of R is
called the r a n g e or i m a g e of R and is usually denoted by Rng(R) or Img(R). In particular,
R⊆ Dom(R)×Rng(R), but this inclusion may be strict (see Examples (c) and (d) below in T3.2)

T3.2 Examples : Let A and B be sets.
(a) The empty set (called the e m p t y r e l a t i o n) /0 is a relation from A to Y and Dom( /0) =
/0 = Rng( /0). The product set A×B (called the a l l - r e l a t i o n ) is also a relation from A to B and
if A×B 6= /0, then Dom(A×B) = A and Rng(A×B) = B.
(b) The diagonal subset ∆A := {(x,x) | x ∈ A} is a relation on A and is called the d i a g o n a l or
i d e n t i t y relation on A .
(c) The subset {(x,A′) ∈ A×P(A) | x ∈ A′} is a relation from A to P(A), called the e l e m e n t -
h o o d r e l a t i o n, its domain is A and range is P(A)\{ /0}.
(d) The subset {(A′,B′) ∈P(A)×P(A) | A′ ⊆ B′} is a relation on P(A), called the i n c l u s i o n
r e l a t i o n.
(e) The subset < :={(m,n) ∈N×N | m < n} is a relation, called the s t r i c t o r d e r r e l a -
t i o n on N. Further, Dom(<)=N and Rng(<)=N\{0}. In particular, <( Dom(<)×Rng(<).
(f) If R and S are relations form A to B and if R ⊆ S, then R is also a relation from A to
B and Dom(R) ⊆ Dom(S) and Rng(R) ⊆ Rng(S). In particular, if R and S are relations from
A to B , then R∩ S is also relation from A to B and Dom(R∩ S) ⊆ Dom(R)∩Dom(S) and
Rng(R∩S)⊆ Rng(R)∩Rng(S).

1More generally, for every positive integer n , one can define n- a r y r e l a t i o n as a subset of An := A×·· ·×A
(n-times). We shall rarely consider n-ary relation for n 6= 2 and so by relation from now on we shall mean a binary
relation unless otherwise specified.
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T3.3 Let X and Y be sets.
(a) The map Γ : Maps(X ,Y )→P(X×Y ) defined by f 7→ Γ f := {(x, f (x)) | x ∈ X} the graph of
f is injective. (Remark : Therefore (if we identify maps with its graphs) every map from X to Y is a
relation from X to Y . Further, since the map Γ is not surjective if X 6= /0 and (|X |, |Y |) 6= (1,1) , in this
case there are relations from X to Y which are not maps from X to Y . For example, each of the relations
{(x,y),(x,y′) | x ∈ X ; y,y′ ∈ Y,y 6= y′} and (if |X | > 1) {(x,y) | x ∈ X ,y ∈ Y} from X to Y is not a map
from X to Y .)
(b) The map P(X×Y )→P(Y )X defined by R 7→

(
x 7→ {y ∈ Y | xRy}

)
is bijective. What is the

inverse of this map? (Remark : With this bijection, one can identify every relation R⊆ X×Y between X
and Y as a map from X into P(Y ).)

T3.4 Let A and B be sets.
(a) ( I n v e r s e r e l a t i o n ) If R is a relation from A to B , then R−1 := {(y,x) ∈ B×A | (x,y) ∈ R}
is a relation from B to A and is called the i n v e r s e of the relation R . (Remarks : For example,
(∆A)

−1 = ∆A , (<)−1 = {(n,m) ∈N×N | n > m} is the inverse relation of the strict order relation on N and
(A×B)−1 = B×A . Even if a relation R from A to B is a map, i.e., R = Γ f for some f ∈Maps(A,B) , the
inverse relation R−1 need not be a map from B to A. For example, the inverse relation R−1

c = {(c,x) | x ∈ A}
of the c o n s t a n t r e l a t i o n Rc := {(x,c) | x ∈ A} , c ∈ B is not a map from B to A if either |A|> 1 or
|B|> 1. Further, see the part (d) below.)
(b) ( C o m p o s i t i o n o f r e l a t i o n s ) Let R be a relation from A to B and let S be a relation
from B to Z . We may define the c o m p o s i t i o n of these relations by

S◦R = {(x,z) ∈ A×Z | there exists y ∈ B such that (x,y) ∈ R and (y,z) ∈ S} .
which is a relation from A to Z .
(c) If R = Γ f and S = Γg , then S ◦R = Γg◦ f . (Remarks : This mean that we have extended the
definition of the composition from the set of maps to the set of relations. If R is a relation from A to B with
R−1 ◦R⊆ ∆A and if for every x ∈ A , there exists y ∈ B with (x,y) ∈ R , then R is a map from A to B .)
(d) ( A s s o c i a t i v i t y o f c o m p o s i t i o n ) If furthermore T is a relation from Z to W , then

T ◦ (S◦R) = (T ◦S)◦R .

(e) (S◦R)−1 = R−1 ◦S−1 .
(f) ( P r o d u c t r e l a t i o n s ) Let R be a relation from A to B and let R′ be a relation from A′ to
B . We may define the p r o d u c t of these relations by

R×R′ := {((x,x′),(y,y′)) ∈ (A×A′)× (B×B′) | (x,y) ∈ R and (x′,y′) ∈ R′} .
which is a relation from A×A′ to B×B′ .

T3.5 Definitions : Let A be a set. A relation R ∈P(A×A) on A is called
(1) r e f l e x i v e if aRa for all a ∈ A ;
(2) s y m m e t r i c if for a,b ∈ A , aRb implies bRa ;
(3) t r a n s i t i v e if for a,b,c ∈ A , aRb and bRc implies aRc ;
(4) a n t i - s y m m e t r i c if for a,b ∈ A , aRb and bRa implies a = b .
(5) ( E q u i v a l e n c e r e l a t i o n s ) A relation R on A is called an e q u i v a l e n c e r e l a t i o n if it
is reflexive, symmetric and transitive. The identity relation ∆A and the all-relation A×A on A are
clearly equivalence relations on A .

T3.6 Let R be an equivalence relation on A . Then for a ∈ A , the subset [a]R = [a] = {x ∈ A |
(x,a) ∈ R} is called the e q u i v a l e n c e c l a s s of a under R (sometimes equivalence classes are
also denoted by a ).
(1) For every a ∈ A , a ∈ [a] . In particular, [a] 6= /0 for every a ∈ A and A =

⋃
a∈A[a] .
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Proof. Immediate from (the reflexivity of R) (a,a) ∈ R for every a ∈ A. •
(2) For all a,b ∈ A , the following statements are equivalent :

(i) [a] = [b] . (ii) [a]∩ [b] 6= /0 . (iii) (a,b) ∈ R .
Proof. For a proof we shall prove: (i)⇒(ii) : If [a] = [b], then a ∈ [a] = [b] and hence a ∈ [a]∩ [b].
(ii)⇒(iii) : Let c ∈ [a]∩ [b], i. e. (c,a) ∈ R and (c,b) ∈ R. Then from (a,c) ∈ R (by the symmetry
of R) and (c,b) ∈ R, it follows from (the transitivity of R) that (a,b) ∈ R. (iii)⇒(i) : Because of the
symmetry of R, it is enough to prove that [a]⊆ [b]. Let c ∈ [a], i. e. (c,a) ∈ R. This together with
(a,b) ∈ R, it follows that (c,b) ∈ R, i. e. c ∈ [b]. •
(3) ( Q u o t i e n t s e t o f a n e q u i v a l e n c e r e l a t i o n ) The set of equivalence classes in A
under the relation R is denoted by A/R (read : “A modulo R”) and is called the q u o t i e n t s e t
of A with respect to R .
(a) The canonical map π : A→ A/R , x 7→ [x]R is clearly surjective and is called c a n o n i c a l
p r o j e c t i o n o f A onto A/R . The fibres of the canonical projection are precisely the equivalence
classes (in A ) under R, i. e. π−1([a]R) = [a]R.
(b) An element a ∈ A is called a r e p r e s e n t a t i v e of the equivalence class [a]R ; any other
element x ∈ A is a representative of [a]R if and only if x ∈ [a]R or equivalently (x,a) ∈ R.
(c) A ( f u l l or c o m p l e t e) r e p r e s e n t a t i v e s y s t e m or a F u n d a m e n t a l d o m a i n
for the quotient set A/R is a family xi , i ∈ I of elements in A such that the map I→ A/R defined
by i 7→ [xi] is bijective, i. e., every equivalence class in A is represented by a unique element xi ,
i ∈ I . In particular, a subset A′ ⊆ A is a representative system for A/R if and only if the restriction
π|A′ : A′→ A/R of the canonical projection to A′ is bijective.
(4) Let R and S be equivalence relations on the sets X and Y , respectively. Then the product
relation R×S is an equivalence relation on X×Y . What are the equivalence classes of the product
relation R×S? What is the quotient set (X×Y )/(R×S)?

T3.7 ( R e l a t i o n M a t r i x ) Let X := {x1, . . . ,xm} , Y := {y1, . . . ,ym} be finite sets and let R be a
relation from X to Y . Then R can be specified by a matrix whose rows are labeled by the elements
of X and whose columns are labeled by the elements of Y . In the i-th row and j-th column we
write the entry 1 if (xi,y j) ∈ R and 0 if (xi,y j) 6∈ R . This matrix is called a r e l a t i o n m a t r i x
of R and is usually denoted by A(R) .

(a) If X = {a,b} , Y = {c,d,e} and R = {(a,c),(a,d),(b,e)} , R′ = {(b,c),(b,d),(a,e)} . Then

A(R) =
(

1 1 0
0 0 1

)
and A(R′) =

(
0 0 1
1 1 0

)
.

(b) Conversely, each m×n matrix A= (ai j) of 0’s and 1’s defines a relation R from the set X to
the set Y by the rule (xi,y j) ∈ R if and only if ai j = 1.
(c) Compute the matrices of the following relations :
(i) = and ≤ on the sets {−1,0,1},{−2,−1,0,1,2} .
(ii) = and “negative of” on the sets {−1,0,1},{−2,−1,0,1,2} .
(d) Show that the following statements are equivalent :
(i) R is both symmetric and anti-symmetric.
(ii) The matrix A(R) = (ai j) is diagonal, that is, ai j = 0 whenever i 6= j .
(iii) R ⊆ ∆X .

T3.8 Let f : X → Y be a map and let T be a relation on the set Y . Define a relation R on the
set X by: (x,x′) ∈ R if and only if ( f (x), f (x′)) ∈ T . Prove that T is reflexive (respectively,
symmetric, transitive), then R is also reflexive (respectively, symmetric, transitive). This generalize
the Exercise 3.1 (how?). If the map f is bijective and if T is an equivalence relation, then R is also
an equivalence relation on X . What is the relation between equivalence classes of R and those of T ?
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T3.9 Partitions of a set : Let A, be a set. A set of subsets of A is called a d e c o m p o s i -
t i o n or a p a r t i t i o n o f A if the subsets are pairwise disjoint and if their union is whole
A. More generally, an arbitrary family Ai, i ∈ I, of subsets of A is called a p a r t i t i o n o f A
(parameterized by the index set I ) if Ai∩A j = /0 for all i, j ∈ I with i 6= j and if

⋃
i∈I

Ai = A. In

this we shall also write A =
⊎
i∈I

Ai. 2 If A =
⋃

i∈I Ai without necessarily the condition of pairwise

disjointness of Ai, i ∈ I , then the family Ai, i ∈ I, is called the c o v e r i n g of A.

The set of all partitions of A is denoted by Par(A) ; this is a subset of the set P
(
P(A)

)
. As usual

for n ∈N , we put Parn(A) = {P ∈Par(A) | |P| = n} . Clearly the family Parn(A) , n ∈N is
pairwise disjoint and ∪n∈NParn(A) =Par(A).
(a) The partitions Ai , i ∈ I, of A corresponds to the maps f : A→ I : The decomposition Ai, i ∈ I,
defines the map f by f (a) := i , if a ∈ Ai, and conversely, the map f defines the decomposition
Ai := f−1(i) , i ∈ I, of A. The subsets Ai 6= /0 for all i ∈ I if and only if f is surjective. If A is a
finite set, then clearly every partition P of A is also a finite set (and |P| ≤ |X |).
(b) Show that the map α : P(X×X)→P

(
P(X)

)
, R 7→

{
{y ∈ A | xRy} | x ∈ X

}
maps the subset

Eq(X) ⊆ P(X × X) of all equivalence relations on X bijectively onto the set Par(X) of all
partitions of X . (Hint : This means to each equivalence relation R on X , α associates a unique partition
α(R) of X and conversely. The partition corresponding to the equivalence relation R on X is denoted by
pR and the equivalence relation corresponding to the partition p of X is denoted by Rp. Then the maps
P(X)→ Eq(X) , p 7→ pR and Eq(X)→ Par(X) , R 7→ Rp are bijective and are inverses of each other.
Moreover, if Eqr(X) is the set of all equivalence relations on X with exactly r equivalence classes. Then

|Eqr(X)|= |Parr(X)| and Eq(X) =
n⊎

r=0

Eqr(X) .)

T3.10 ( C o n g r u e n c e r e l a t i o n s ) Let n ∈N+ be a positive natural number. Two integers a
and b are called c o n g r u e n t m o d u l o n, if the difference b−a is divisible by n . In this we
write a≡ b (mod n) or a≡n b .

The congruence modulo n ≡n is equivalence relation on the set of integers Z. Two integers are
congruent modulo n if and only if their remainders (between 0 and n−1) after the division by n
are equal. Therefore the numbers 0, . . . ,n−1 form a full representative system for the quotient set
Z/≡n ; there are exactly n equivalence classes, namely,

i := i+Zn = {i+ kn | k ∈ Z} , i = 0, . . . ,n−1;

these are also called the r e s i d u e c l a s s e s m o d u l o n.

T3.11 Let p and q be two partitions of a set X . We say that p is c o a r s e r than q (or q is
f i n e r than p ) if p⊆ q.
(a) Let R and S be two equivalence relations on a set X and let pR and pS be the corresponding
(see T.37-(b)) partitions of X . Then S is stronger than R, i. e. S⊆ R if and only if pR is finer than
pS, i. e. pS ⊆ pR.
(b) If the relation R is induced by some map on X , then the result in part (a) is often expressed
using maps, for this first let us define:

Let S be an equivalence relation on a set X and let f : X → Y be a map. We say that f is
c o m p a t i b l e w i t h S if for all x,x′ ∈ X , (x,x′) ∈ S implies f (x) = f (x′). For examples see
part (c) below. With this definition, we can now reformulate the result in part (a) as follows:

Let S be an equivalence relation on a set X and let f : X → Y be a map. Then the following
statements are equivalent:

2We don’t insists — like some other authors do this — that all Ai 6= /0.
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(i) S is stronger than Γ f .
(ii) The map f is compatible with S.
(iii) There exists a map g : X/S→ Y such that g◦πS = f (in this case one also say that f factors
through p ). Moreover, such a g is uniquely determined by f . (Remark: In this case we also say that
the following diagram of maps is commutative:

X −−−−−−−−−−−−−
f
−−−−−−−−−−−−−−- Y

πS
? g��

�
�*

X = X/S )

(c) Examples: Let X be the set of all persons in a country IND and let S be the relation: (x,y)∈ S
if and only if x and y live in the same district. Further, let f : X → Y := the set of all states in
IND be defined by f (x) := the state the person x lives in. Then f is compatible with the relation
S because two persons living in the same district obviously live in the same state. But if we define
f : X → R by f (x) := the height of x, then f is not compatible with S (except in the unlikely
event that all persons in each district are of equal height).
(d) Let R and S be equivalence relations on the sets X and Y , respectively and let f : X → Y be a
map which is compatible with R and S, i. e. for all x,x′ ∈X , (x,x′)∈R implies that ( f (x), f (x′))∈ S.
Prove that there exists a unique map g : X/R→ Y/S such that g◦πR = g◦πS, i. e. the diagram of
maps

X −−−−−−−−−−−
f
−−−−−−−−−−−−- Y

πR
?

πS
?

X/R −−−−−−−−−−−
g
−−−−−−−−−−−−- Y/S

is commutative.
(e) Examples: Let m,n ∈ N+ be two non-zero natural numbers. For an integer a ∈ Z, let
λa :Z→Z and τa :Z→Z be the left multiplication x 7→ ax and the translation x 7→ x+a, x ∈Z,
maps by a, respectively. Determine the conditions on integers a,m,n so that
(i) λa is compatible with the congruence relation ≡m.
(ii) τa is compatible with the congruence relation ≡m.
(iii) λa is compatible with the congruence relations ≡m and ≡n.
(iv) τa is compatible with the congruence relations ≡m and ≡n.
Moreover, in the cases of compatibility describe the unique maps (see parts (b) and (d)) induced by
the maps λa and τa.
(f) Which of the following maps are compatible with the equivalence relation R defined in the
Exercise 3.6:
(i) N×N→ Z, (m,n) 7→ m+n.
(ii) N×N→ Z, (m,n) 7→ m ·n.
(iii) N×N→ Z, (m,n) 7→ m−n.
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