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4. Orders

• Solution of the ∗-Exercise 4.10 carries 10 Bonus Points.

4.1 On the set N+ of positive natural numbers, let | denote the relation “divides”, i. e. for m,n ∈
N+, m | n if and only if n = am for some a ∈N+. Show that:
(a) | is an order on N+ and that the element 1 is the least element.
(b) The prime numbers are precisely the minimal elements in (N+ \{1}, |).
(c) Draw the Hasse-Diagrams for the set of divisors of 12 and 30.
(d) The chains in (N+, |) are either finite or an infinite sequence of the type

C = (q0, q0q1, q0q1q2, . . . )

with qn ∈N+, qn ≥ 2 for all n ≥ 1. Moreover, C is a maximal chain if and only if the sequence
(q0, q1, q2, . . . ) is infinite and q0 = 1 and qn, n ≥ 2 are all prime numbers. (Remark : For
an ordered set (X ,≤), the set C (X) of chains in X is an ordered set with the natural inclusion. A chain
C ∈ C (X) is called a m a x i m a l c h a i n in X if it is a maximal element in the ordered set (C (X),⊆).)

4.2 On the lower half-plane H≤0 := {(x,y)∈R2 | y ≤ 0} ⊆R2, define a relation ≼ by : (x1,y1)≼
(x1,y2) if x1 = x2 and y1 ≼ y2. Show that ≼ is an order on H≤0. Determine its maximal elements.

4.3 (a) Let I be any set and let P(I) be the power set of I. The natural inclusion ⊆ defines and
order on P(I). Moreover, the ordered set (P(I),⊆) is a complete ordered set.

(b) The ordered set (N,≤) of natural numbers N with the usual order ≤ is usually denoted by
ω . Show that ω is a conditionally complete ordered set and all of its finite subsets are complete
ordered. In particular, for each n∈N, the ordered set ∆n :=({0,1, . . . ,n},≤) is a complete ordered
set. What are the lower cuts in ω and in ∆n?

(c) Give an order ≼ on the set N of natural numbers so that (N ,≼) is a complete ordered set.

4.4 Give an order ≼ on the set N×N so that:
(a) The ordered set (N×N ,≼) has infinitely many lower cuts.
(b) The ordered set (N×N ,≼) has no lower cuts.

4.5 Let (X ,≤) be an dense ordered set and let a and b be two elements of X with a < b. Prove that
there exist infinitely elements distinct elements x ∈ X such that a < x < b, i. e. the open interval
(a,b) of X is infinite.

4.6 Let (X ,≤) be a simply ordered set.
(a) Show that X is dense if and only if no element of X has an immediate successor.
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(b) Let x,y ∈ X and I(x) be an initial segment of X . Then show that:
(i) If the initial segment I(y) of X is a subset of I(x), then I(y) is also an initial segment of I(x).
(ii) If I(y) is an initial segment of I(x), then I(y) is also an initial segment of X . (Recall that for
every element a in an arbitrary ordered set (X ,≤), the set IX(a) := I(a) := {x ∈ X | x < a} is called the
i n i t i a l s e g m e n t of X determined by a. If I(a) ̸= /0, then I(a) is called a p r o p e r i n i t i a l
s e g m e n t of X .)
(c) Give an example of a simply ordered set (X ,≤) such that every initial segment of which
contains only finitely many elements.

4.7 (a) Well order the set of natural numbers N so that exactly five of its elements do not have
predecessors.
(b) Give three well orders on the set Z of integers.
(c) Give a well order on the set Q of rational numbers. (Hint : Use the additional fact that Q is
countable, i. e. there exists a bijective map q : N→Q. With this use T4.26-(f).)

4.8 Let X and Y be well ordered sets. Let ≤ defined by:
For x1,x2 ∈ X and y1,y2 ∈ Y : (x1,y1)≤ (x2,y2) if and only if y1 < y2 or y1 = y2 and x1 ≤ x2 .

(a) Show that ≤ is a well order on X ×Y .
(b) Is the dictionary order on X ×Y a well ordering?

4.9 Let (X ,≤X) and (Y,≤Y ) be ordered sets. A map f : X → Y is said to be o r d e r - p r e -
s e r v i n g (or o r d e r - h o m o m o r p h i s m) if for all x,x′ ∈ X with x ≤ x′ implies that
f (x) ≤ f (x′). (Remark : When there is no room for confusion, we shall drop (but remember them at
appropriate places) the suffixes in the notations of the orders ≤X and ≤Y on X and Y , respectively. With
this an order-homomorphism is also called an i n c r e a s i n g m a p. Similarly, if for all x,x′ ∈ X with
x < x′ implies that f (x) < f (x′), then we say that f is s t r i c t l y i n c r e a s i n g. A map is strictly
increasing if and only if it is injective order-homomorphism.)
(a) The successor map σ : ω = (N,≤) → ω = (N,≤), n 7→ n+ 1, is an order-preserving. The
map λ2 : ω →{2n | n ∈N}, n 7→ 2n, is also order-preserving.
(b) The bijection σ : (N,≤)→N\{0}, n 7→ n+1, is an order-isomorphism. (Remark : A bijective
map f : X → Y of ordered sets is called an o r d e r - i s o m o r p h i s m if both f and its inverse f−1 are
order-homomorphisms.)
(c) If (X ,≤X) is simply ordered and if f : (X ,≤X) → (Y,≤Y ) is an injective order homomor-
phism, then f is an order-isomorphism onto its image f (X). Give an example of a bijective
order-homomorphism which is not an order-isomorphism.
(d) Let X be an arbitrary set and let φ : (P(X),⊆) → (Maps(X ,{0,1}),≤) be the map defined
by A 7→ χA. Then φ is an order-isomorphism. (Remark : Note that the order ≤ on Maps(X ,{0,1}) is
defined pointwise, i. e. f ≤ g if and only if f (x)≤ g(x) for x ∈ X .)

∗4.10 Let (X ,≤) be an ordered set in which every subset has a least upper bound and has a greatest
lower bound. Further, let f : X → X be an increasing map and let FixX( f ) := {x ∈ X | f (x) = x}
be the fixed points of f . Show that:
(a) If A := {x ∈ X | f (x) < x} ̸= /0 and if a is its greatest lower bound, then either a ∈ FixX( f )
or f (a) ∈ FixX( f ). (Hint : Since a ≤ x for all x ∈ A, it follows that f (a) ≤ f (x) < x for all x ∈ A. If
f (a) ̸= a, then f (a)< a, i. e. a∈A and a=Min(A) and hence f (a) ̸∈A. This proves that f ( f (a)) = f (a).)
(b) If {x ∈ X | x < f (x)} ≠ /0 and if b is its least upper bound, then either b ∈ FixX( f ) or f (b) ∈
FixX( f ). (Hint : Similar argument as in part (a).)
(c) FixX( f ) ̸= /0. (Hint : immediate from parts (a) and (b).)
(d) The least upper bound and the greatest lower bound of FixX( f ) belong to FixX( f ).

Below one can see Lecture Notes.
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Lecture Notes

Relations which order a set occur in all domains of mathematics and in branches of the empirical
sciences. Many fundamental questions in mathematics are directly concerned with the notion of
an order. Therefore, the study of the general properties of ordered sets is of capital importance.
There are almost an endless number of interesting theorems about various ordering relations and
their properties.

T4.1 (O r d e r s — S i m p l e o r d e r s, C h a i n s) Let X be a set and let ≤ be a relation on
X . Then ≤ is called an o r d e r (r e l a t i o n) on X if :
(i) For all x ∈ X , x ≤ x. (R e f l e x i v i t y)
(ii) For all x,y ∈ X , from x ≤ y and y ≤ x, it follows that x = y. (A n t i s y m m e t r y)
(iii) For all x,y,z ∈ X , from x ≤ y and y ≤ z, it follows that x ≤ z. (T r a n s i t i v i t y)
Moreover, if ≤ satisfies the condition:
(iv) Every two elements x,y ∈ X are c o m p a r a b l e, i. e. either x ≤ y or y ≤ x.
then ≤ is called a s i m p l e (or t o t a l, or l i n e a r) order on X . A set X with an order ≤ is
denoted by a pair (X ,≤) and is called an o r d e r e d s e t.
Let (X ,≤) be an ordered set. If Y ⊆ X , then the relation induced by ≤ is a order on Y , denoted
again by ≤ |Y . A totally ordered subset of an ordered set (X ,≤) is also called a c h a i n in X .
For x,y ∈ X , we also write x < y for “x ≤ y and x ̸= y”. Further, for x ≤ y (respectively, x < y ),
we also write y ≥ x (respectively, y > x ) and the so defined order ≥ is called the o p p o s i t e
o r d e r of ≤ which is also denoted by ≤op.
(1) (H a s s e-D i a g r a m) An illustration of an order can be given by using a directed graph in
which the vertices are the points of the plane and in general use the following simplification: Note
that the arrows are from bottom to top and hence they can be omitted. Moreover, all loops and all
the connecting edges are opened-up on the basis of the transitivity of the order relation.

Such a diagram for an order relation is called a H a s s e-D i a g r a m. A typical example for a
Hasse-Diagram is the left-figure above. The other both Hasse-Diagrams are for the natural order
on the set {0,1, . . . ,n} respectively, for the inclusion ⊆ on the power-set P({1,2,3}).
(2) (P r o d u c t - O r d e r and L e x i c o g r a p h i c o r d e r) Let (X1,≤1), . . . ,(Xn,≤n) be
ordered sets. On the cartesian product X1 × ·· ·×Xn, we define (x1, . . . ,xn) ≤ (y1, . . . ,yn) if and
only if xi ≤i yi for all i = 1, . . . ,n. Clearly, ≤ is an order on X1 ×·· ·×Xn. This order is called the
p r o d u c t o r d e r on X1 ×·· ·×Xn.
On the cartesian product the relation ≤lex defined by (x1, . . . ,xn) ≤lex (y1, . . . ,yn) if and only if
either (x1, . . . ,xn) = (y1, . . . ,yn) or (x1, . . . ,xn) ̸= (y1, . . . ,yn) and for the smallest index i with
xi ̸= yi, xi <i yi. Clearly, ≤lex is an order on X1 × ·· · ×Xn. This order is called the l e x i c o -
g r a p h i c (or d i c t i o n a r y) o r d e r on X1 ×·· ·×Xn.
In the lexicographic order (1,2) ≤lex (2,1) (in the lexicon the words starting with “ab” come before the
words starting with “ba”). But in the product order (1,2) and (2,1) are not comparable. If all (Xi,≤i),
i = 1, . . . ,n, are simply ordered, then so is (X1 ×·· ·×Xn,≤lex).
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T4.2 (D i s t i n g u i s h e d e l e m e n t s a n d s u b s e t s) Let (X ,≤) be an ordered set.
(a) An element b ∈ X is called an i m m e d i a t e s u c c e s s o r of a ∈ X if a < b and there
is no element c ∈ X such that a < c < b. If b is an immediate successor of a, then a is called an
i m m e d i a t e p r e d e c e s s o r of b.
(b) An element a ∈ X is called a m i n i m a l element of X if x ≤ a implies x = a for every
x ∈ X . In other words, a minimal element of X if no element of X precedes a.
(c) An element b ∈ X is called a m a x i m a l element of X if b ≤ x implies x = b for every
x ∈ X . In other words, b maximal element of X if no element of X exceeds b.
Ordered sets may or may not have minimal or maximal elements. Even if minimal (respectively,
maximal) elements exist they may or may not be unique, see Examples in T4.4.

(d) An element a ∈ X is called a l e a s t or s m a l l e s t or f i r s t or m i n i m u m of X if
x ≤ a for every x ∈ X . Observe that if there exists a mimimum element a in X , then it is unique.
Indeed, if a′ ∈ X is such that a′ ≤ x for every x ∈ X , then on one hand a ≤ a′ and on the other hand
a′ ≤ a and hence a′ = a by the anti-symmetry of ≤. Therefore we are justifies to call a minimum
element in X as the minimum of X and is denoted by Min(X).
(e) An element b ∈ X is called a g r e a t e s t or l a r g e s t or l a s t or m a x i m u m of
X if b ≤ x for every x ∈ X . Observe that if there exists a maximum element b in X , then it is
unique. Indeed, if b′ ∈ X is such that x ≤ b′ for every x ∈ X , then on one hand b′ ≤ b and on the
other hand b ≤ b′ and hence b′ = b by the anti-symmetry of ≤. Therefore we are justifies to call
a maximum element in X as the maximum of X and is denoted by Max(X).
The minimum and the maximum elements in an ordered set (X ,≤) are comparable with every
element of X . However, they may or may not exists, see Examples in T4.4.
(f) Let A ⊆ X . An element x ∈ X is called a l o w e r b o u n d (respectively, an u p p e r
b o u n d) for A if x ≤ a (respectively, a ≤ x ) for every a ∈ A. Note that it is not required that a
lower bound or an upper bound of a subset A of an ordered set (X ,≤) belong to A , see Examples
in T4.4. The set of all lower bounds (respectively, upper bounds) of A in X is denoted by LBX(A)
(respectively, UBX(A) ). A subset A is called b o u n d e d b e l o w (respectively, b o u n d e d
a b o v e) if A has a lower bound (respectively, upper bound) in X , i. e. if LBX(A) ̸= /0 (respec-
tively, UBX(A) ̸= /0 ).
(g) Let A ⊆ X . The greatest (respectively, the least) element of the set UBX(A) (respectively,
LBX(A) ) of all upper bounds (respectively, lower bounds) of A is called the g r e a t e s t l o w e r
b o u n d or the s u p r e m u m (respectively, the l e a s t u p p e r b o u n d or the i n f i -
m u m) of A (in X ) and is denoted by GLBX(A) or SupX(A) (respectively, LUBX(A) or InfX(A) .
Note that if GLBX(A) (respectively, LUBX(A) exists, then it is unique. However, GLBX(A)
(respectively, LUBX(A) may or may not exists, see Examples in T4.4.
Note that in any ordered set (X ,≤), we have Min(X) = LUBX( /0) = Inf( /0) and Max(X) =
GLBX( /0) = Sup( /0).

T4.3 Let N be the set of natural numbers. Show that each of the relations ≼ defined below on
the set N of natural numbers are orders: For m,n ∈N, define m ≼ n if
(a) m ≤ n (in the usual sense) and m and n have the same parity.
(b) m is even, and m and n have different parity.
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(c) m = n or upon the division of m and n by 5, m yields the smaller remainder.
(d) m = n or in the division in (c), m and n yield the same remainder and m < n.

T4.4 Notation and Examples : For the sake of convenience in giving many examples , we shall
use the following configuration such as:

{ . . . , ( . . . ; a ; b ; . . . ; c ; . . . ) , ( . . . ; m ; n ; . . . ) , . . . }
to represent the ordered set (X ,≤), where X = { . . . , a , b , c , . . . , , m , n , . . . } and where x ≤ y
if and only if x and y are contained in the same parentheses and x is not written to the right of y.

(a) A = {(a)} (exactly one minimal element and one maximal element, MinA = MaxA = a ).
(b) B = {(a;b),(c;d)} (two minimal elements {a,c} and two maximal elements {b,d} ).
(c) C = {( . . . ; a2 ; a1 ; b1 ; b2 ; . . .)} (no minimal elements and no maximal elements).
(d) D = {( . . . ; a2 ; a1 ; . . . ; b2 ; b1 ; c1 ; c2 ; . . . ; d2 ; d1 ) , (a ; b ; c)} (exactly one minimal ele-
ment a , no minimum and two maximal elements {d1,c} , no maximum.).
(e) E = {(a ; b) , (c ; . . . ; d2 ; d1 ; e1 ; e2 ; . . . ; h) , ( . . . ; m2 ; m1 )} (two minimal elements
{a,c} and three maximal elements {b,h,m1} ).
(f) F = {( . . . ; a2 ; a1 ; b1 ; b2 ; . . . ) , ( . . . c2 ; c1; e1 ; e2 ; . . . )} (no minimal elements and no
maximal elements).
(g) G = {(a1 ; a2 ; a3 ; . . . ; b3 ; b2 ; b1 )} (the minimum a1 and the maximum b1 ).
(h) The set of natural numbers (respectively of integers) with the usual order ≤ is represented as:

(N,≤) = { (0; 1 ; 2 ; . . . )} (respectively (Z,≤) = { ( . . . ; −2; −1; 0 ; 1 ; 2 ; . . . )}).
(Remark : Such a representation for the set Q of rational numbers is more complicated and that for the set
R of real numbers is not possible(?).)

T4.5 Give an example of an ordered set (X ,≤) such that:
(a) There are exactly three minimal elements and two maximal elements and neither a minimum
nor a maximum.
(b) Every non-empty subset Y of X has a least upper bound, but not necessarily a lower bound.
(c) Every non-empty bounded above subset has a least upper bound, but not every subset has a
lower bound.

T4.6 Let (X ,≤) be an ordered set.
(1) (D u a l) The inverse (or opposite) relation ≤−1 (or ≤op) on X is again an order on X . More-
over (≤−1)−1 = (≤op)op =≤. The ordered set (X ,≤)op := (X ,≤op) is called the d u a l (or
o p p o s i t e) of (X ,≤). Clearly, the ordered sets (X ,≤) and (X ≤op) are duals of each other.
(2) (D u a l s o f D i s t i n g u i s h e d e l e m e n t s a n d s u b s e t s) It is clear that a d i s -
t i n g u i s h e d element – a minimal, a maximal, the least and the greatest element in (X ,≤)
becomes its c o u n t e r p a r t (or d u a l) – a maximal, a minimal, the greatest and the least
element in the dual ordered set (X ,≤op). Moreover, a lower bound, the subset LBX(Y ) of lower
bounds, an upper bound, the subset UBX(Y ) of upper bounds, the greatest lower bound GLBX(Y )
and the least upper bound LUBX(Y ) of a subset Y of X in (X ,≤) becomes its d u a l – an
upper bound, the subset UBXop(Y ) of upper bounds, a lower bound, the subset LBXop(Y ) of lower
bounds, the least upper bound GLBXop(Y ) and the greatest lower bound LUBXop(Y ) of the subset
Y of X in the dual ordered set (X ,≤op).
(3) For a statement S in an ordered set (X ,≤), let S dual be the statement (called the dual of
S ) obtained from the statement S by changing every distinguished elements and subsets to their
duals and ≤ to ≤op.

D. P. Patil/IISc e0-221-ds2013-ex04.tex September 12, 2013 ; 9:56 a.m. 3/12



Page 4 E0 221 Discrete Structures / August-December 2013 Lecture Notes 4

(D u a l i t y T h e o r e m) A statement T is a theorem in every ordered set if and only if its dual
T dual is also a theorem in every ordered set. (Proof Since the distinguished elements of X as well as
those of a subset Y of X in every ordered set (X ,≤) become their duals in the dual ordered set (X ,≤op) and
the ordered sets (X ,≤op) and (X ,≤) are duals of each other, the assertion is immediate.)

T4.7 (D u a l T h e o r e m s) We give some concrete examples of the dual theorems.

(1) T : An ordered set (X ,≤) has a least element if and only if the empty-set /0 has a least upper
bound in X. (Remark : Note that T is a theorem in every ordered set (X ,≤) : For a proof note that
UBX( /0) = X and hence Min(X) = LUBX( /0) = Min(UBX( /0).)
The dual of T is the following:

T dual : An ordered set (X ,≤) has a greatest element if and only if the empty-set /0 has a
greatest lower bound in X.
(2) T : Let (X ,≤) be an ordered set and let Y ⊆ X and z := LUBX(LBX(Y )). Then

LUBX(LBX(Y )) ∈ LBX(Y ) and LUBX(LBX(Y )) = GLBX(Y ) .

(Remark : Note that T is a theorem in every ordered set (X ,≤) : For a proof note that z ≤ y for every
y ∈ Y and hence z ∈ LBX(Y ). On the other hand x ≤ z for every x ∈ LBX(Y ). Therefore z = GLBX(Y ).)
The dual of T is the following:

T dual : Let (X ,≤) be an ordered set and let Y ⊆ X. Then

GLBX(UBX(Y )) ∈ UBX(Y ) and GLBX(UBX(Y )) = LUBX(Y ) .

T4.8 Theorem : Let (X ,≤) be an ordered set. The following two statements are equivalent :
(i) LUBX(Z) exists for every non-empty bounded above subset Z of X.
(ii) GLBX(Y ) exists for every non-empty bounded below subset Y of X.
(Proof (i)⇒(ii): Let Y be a non-empty bounded below subset of X . Then LBX(Y ) ̸= /0 and is bounded above
by every element of Y . Therefore LUBX(LBX(Y )) exists by (i) and by LUBX(LBX(Y )) = GLBX(Y ). The
converse (implication (ii)⇒(i)) follows from the duality Theorem T4.6 (3).)

As a corollary of the above Theorem we have:

T4.9 Corollary : Let (X ,≤) be an ordered set. The following two statements are equivalent :
(i) LUBX(Z) exists for every subset Z of X. (ii) GLBX(Y ) exists for every subset Y of X.

T4.10 (C o m p l e t e a n d C o n d i t i o n a l l y C o m p l e t e O r d e r e d S e t s ) Let
(X ,≤) be an ordered set. We say that X is c o m p l e t e if every subset of X has a least up-
per bound (or equivalently, every subset has a greatest lower bound).
We say that X is c o n d i t i o n a l l y c o m p l e t e if every non-empty subset of X that is
bounded above has a least upper bound (or equivalently, every non-empty subset that is bounded
below has a greatest lower bound).
Clearly, a complete ordered set has the greatest ( Inf /0) and the least (Sup /0) element. Further,
every complete ordered set is conditionally complete.

T4.11 (L o w e r C u t s) Let (X ,≤) be an Ordered Set. A subset L of X is called a l o w e r
c u t of X if
(i) /0 ̸= L ( X , i. e. L is a non-empty proper subset of X .
(ii) L has no greatest element, i. e. MaxL does not exist.
(iii) If x ∈ L, then every element y ∈ X with y ≤ x is also an element of L.

With this definition we have the following:
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T4.12 Theorem : Let L (X) be the set of lower cuts of an ordered set (X ,≤). Then the ordered
set (L (X),⊆) is conditionally complete. Moreover, if (X ,≤) is simply ordered, then (L (X),⊆)
is also simply ordered.
(Proof :

•)

T4.13 Theorem : Let (X ,≤) be a conditionally complete ordered set and f : X → X be a
increasing map from X to X. If there are a,b ∈ X such that a ≤ f (a)≤ f (b)≤ b, then there exists
an element c ∈ X such that a ≤ c ≤ b and f (c) = c. In particular, f has a fixed point.
(Proof : Let Y := {y∈X | a≤ y≤ b and y≤ f (y)}. Then a∈Y and b is an upper bound for Y . Therefore by
assumption c := LUBX(Y ) exists and a ≤ c ≤ b. We shall prove f (c) = c. Since y ≤ c for every y ∈Y and
f is increasing, we have y≤ f (y)≤ f (c) for every y∈Y . Therefore f (c) is an upper bound for Y and hence
c ≤ f (c). Further, f (c)≤ f ( f (c)) . On the other hand, since f is increasing, a ≤ f (a)≤ f (c)≤ f (b)≤ b.
Therefore f (c) ∈ Y and f (c)≤ c, since c = LUBX(Y ). This proves that f (c) = c. •)

T4.14 Corollary : Let (X ,≤) be a complete ordered set and f : X → X be a increasing map
from X to X. Then f has at least one fixed point. (Proof : Since X is complete, it has a least and
greatest elements, put a := MinX and b := MaxX . Then a ≤ f (a) ≤ f (b) ≤ b and hence we can apply
Theorem T4.13. Variant : See Exercise 4.10. •)

T4.15 (I n i t i a l S e g m e n t s) Let (X ,≤) be an ordered set. For every element a ∈ X , the set
I(a) := {x ∈ X | x < a} is called the i n i t i a l s e g m e n t of X determined by a. If I(a) ̸= /0,
then I(a) is called a p r o p e r i n i t i a l s e g m e n t of X .

With this definition we have the following:

T4.16 Theorem : Let I (X) be the set of all initial segments of an ordered set (X ,≤). If (X ,≤)
is simply ordered, then the ordered set (I (X),⊆) is again simply ordered.
(Proof : Assume the contrary. Then there exist a,b ∈ X with I(a) ̸⊆ I(b) and I(b) ̸⊆ I(a), i. e. there exist
c ∈ I(a)\ I(b) and d ∈ I(b)\ I(a). However, since X is simply ordered, either c ≤ d or d ≤ c which implies
that either c ∈ I(b) or d ∈ I(a) which is impossible. •)

T4.17 (D e n s e O r d e r e d S e t s) An ordered set (X ,≤) is called d e n s e if for every two
elements a,b ∈ X with a < b , there exists an element c ∈ X such that a < c < b. The set of
natural numbers (N,≤) with its usual order is not dense, but the set (Q,≤) with its usual order is
dense.

With this definition we have the following:

T4.18 Theorem : Let (X ,≤) be a simply ordered set. Then X is dense if and only if every
non-empty initial segment of X is a lower cut of X.
(Proof : (⇒ ): Let b ∈ X be such that I(b) ̸= /0. It is enough to prove that I(b) has no maximum. If
x := Max(I(b)) exists, then x < b and hence by denseness of X there exists c ∈ X with x < c < b a
contradiction to the maximality of x, since c ∈ I(b). (⇐ ): Let a,b ∈ X with a < b. Then a ∈ I(b) and
hence I(b) is a lower cut in X by assumption, in particular, a is not the maximum in I(b), i. e. there exists
c ∈ I(b) with a < c < b. •)

T4.19 (C o n t i n u o u s O r d e r e d S e t s) An ordered set (X ,≤) is called c o n t i n u o u s
if it is simply ordered, dense and conditionally complete.

With this definition we have the following:

T4.20 Theorem : Let (X ,≤) be a continuous ordered set and let L ⊆ X. Then L is a lower cut
of X if and only if L is a proper initial segment of X.
(Proof : (⇒ ): Let L be a lower cut in X . Since X is conditionally complete and L ̸= /0, a := LUBX(L)
exists. Now, since X is simply ordered, either x ≤ a or a ≤ x for every x ∈ X . Therefore, since L is a lower
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cut, we have a ̸∈ L and x < a for every x ∈ L , i. e. L ⊆ I(a), moreover, y ̸∈ L if a ≤ y. (⇐ ): Immediate
from Theorem T4.18. •)

T4.21 Theorem : Let L (X) be the set of lower cuts of an ordered set (X ,≤). If X is simply
ordered and dense, then the ordered set (L (X),⊆) is continuous.
(Proof : In view of Theorem T4.12, it is enough to prove that L (X) is dense. For this, let L1 ( L2 be
lower cuts in L (X). Then there is x ∈ L2 \L1 and there is y ∈ L2 with x < y, since L2 has no maximum.
But then I(y) is a lower cut in X by Theorem T4.18 and L1 ( I(y)( L2. •)

T4.22 Let (X ,≤) be an ordered set.
(a) Let I (X) be the set of all initial segments in X . Suppose that X is simply ordered. Is the
ordered set (I (X),⊆) conditionally complete?
(b) Let L (X) be the set of all lower cuts in X . Suppose that X is dense. Is the ordered set
(L (X),⊆) dense?
(c) Give an example of an ordered set (X ,≤) such that the ordered set (I (X),⊆) of initial
segments of X is complete and simple ordered.

T4.23 (W e l l O r d e r e d S e t s ) Ordered sets as well as simply ordered sets lack the impor-
tant property, namely, the existence of the least element, or, even more general property that every
non-empty subset has the least element. For example, the ordered set

(X ,≤) = {( . . . ; a3 ; a2 ; a1 ) , ( . . . ; b3 ; b2 ; b1 ; . . . ; c3 ; c2 ; c1 )}
has no least element. Also none of the simply ordered subsets (chains) A = {a1,a2,a3, . . .} ,
B = {b1,b2,b3, . . .} or C = {c1,c2,c3, . . .} has least element. We therefore the need to make the
following definition:
An ordered set (X ,≤) is called w e l l o r d e r e d or an o r d i n a l (or the order ≤ is called
an w e l l o r d e r i n g on X ) if every non-empty subset of X has the least element.
Clearly, every well ordered set is simply ordered, but not conversely. For example, the ordered set
(Z,≤) = { ( . . . ; −2; −1; 0 ; 1 ; 2 ; . . . )} is simply ordered but not well ordered. The dual of an
well ordered set need not be well ordered for example, the ordered set (N,≤) = {(0; 1 ; 2 ; . . . )}
is well ordered, but its dual (N,≤)op = { ( . . . ; 2 ; 1 ; 0)} is not well ordered (it has no minimum).
Even the subset of negative integers has no least element.
Let (X ,≤) be a finite non-empty ordered set. Then X has (at least one) a minimal and (at least one)
a maximal element. Further, prove that X is simply ordered if and only if X is well ordered.

T4.24 Examples : (1) (W e l l o r d e r i n g P r o p e r t y of N) : The ordered set (N,≤)

with the usual order ≤ is well ordered. This ordinal is usually denoted by ω . (Remark : This will
be proved later in Lecture Notes 5 by using the axiom of induction. In fact, it is an incarnation of the axiom
of induction!)
(2) Let N :=N∪{w} where w ̸∈N. Extend the usual order ≤ on N to the order ≤ on N by
w ≤ w and n ≤ w for all n ∈N. Then the ordered set ω := (N , ≤ ) = {(0; 1 ; 2 ; . . . ;w)} is
also well ordered and it has the minimum 0 and the maximum w.
(3) Each of the following order is an well ordering on Z :
(i) ≤1= { (0; 1 ; −1; 2 ; −2; 3 ; −3; . . . ; n ; −n ; . . . ) } .
(ii) ≤2= { (0; 1 ; 3 ; 5 ; 7 ; . . . ; 2 ; 4 ; 6 ; 8 ; . . . ; −1; −2; −3; −4; . . . ) } .
(iii) ≤3= { (0; 3 ; 4 ; 5 ; 6 ; . . . ; −1; −2; −3; −4; . . . ; 1 ; 2) } .
These orders are quite different from each other. For example:
(a) Every non-zero element in the order in (i) has an immediate predecessor.
(b) The elements −1 and 2 in the order in (ii) have no immediate predecessors.
(c) The elements −1 and 1 in the order in (iii) have no immediate predecessors.
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(d) There are no maximal elements in the orders in (i) and (ii), but the elements 2 is a maximal
element in the order in (iii), in fact it the maximum. The element 0 is the least element in all the
three orders.

T4.25 Let (W,≤) be an well ordered set.
(a) Every element in W other than the last element has a unique immediate successor.
(b) Every element of W has at most one immediate predecessor.
(c) Every well ordered set is conditionally complete.
(d) The ordered set (I (W ),⊆) of initial segments of W is also well ordered.

T4.26 (O r d e r - h o m o m o r p h i s m s) Let (X ,≤X) and (Y,≤Y ) be ordered sets. A map
f : X →Y is said to be o r d e r - p r e s e r v i n g (or o r d e r - h o m o m o r p h i s m) if for all
x,x′ ∈ X with x ≤ x′ implies that f (x)≤ f (x′).
When there is no room for confusion, we shall drop (but remember them at appropriate places)
the suffixes in the notations of the orders ≤X and ≤Y on X and Y , respectively. With this an
order-homomorphism is also called an i n c r e a s i n g m a p. Similarly, if for all x,x′ ∈ X with
x < x′ implies that f (x) < f (x′), then we say that f is s t r i c t l y i n c r e a s i n g. A map
is strictly increasing if and only if it is injective order-homomorphism. Compositions of order-
homomorphisms is again an order-homomorphism. A bijective map f : X → Y of ordered sets is
called an o r d e r - i s o m o r p h i s m or s i m i l a r i t y if both f and its inverse f−1 are order-
homomorphisms. In general, a bijective order-homomorphism need not be an order-isomorphism.
Two ordered sets X and Y are called i s o m o r p h i c or s i m i l a r if there is an order-
isomorphism f : X → Y and in this case we write f : X ≈−−−−−−−- Y . An ordered-isomorphism of an
ordered set X is also called an a u t o m o r p h i s m of X . The set of all automorphisms of an
ordered set X is denoted by Aut X = Aut (X ,≤). (Remark : Note that (AutX ,◦) is a group under
composition and is called the a u t o m o r p h i s m g r o u p of the ordered set X .)
(a) Aut ω = {idN}. More generally, for every ordinal (W,≤) show that Aut W = {idW}.
(b) For each integer n ∈ Z, the map λn : Z→ Z, x 7→ x+ n, is an automorphism of the ordered
set (Z,≤) with inverse λ−n. Moreover, Aut (Z,≤) = {λn | n ∈ Z}. (Remark : In other words the
map Z→ Aut (Z,≤) defined by n 7→ λn, is an isomorphism of groups.)
(c) Let I be any set. Describe all the automorphisms of the ordered set Aut (P(I),⊆). (Hint : Each
permutation σ : I → I defines an automorphism σ∗ : (P(I),⊆) → (P(I),⊆), A 7→ σ(A) and conversely.
Therefore the map S(I)→ Aut (P(I),⊆) defined by σ 7→ σ∗, is an isomorphism of groups.)
(d) Show that the ordinals ω and ω (see T4.24-(2)) are not isomorphic.
(e) Show that no two of the well orders on Z given in T4.24-(3) are isomorphic, i. e. no two of
the ordered sets (Z,≤1),(Z,≤2),(Z,≤3), are isomorphic.
(f) Let (X ,≤X) be any order set and f : X → Y be any bijection. Then one can define an order
≤Y on Y such that the map f : (X ,≤X)→ (Y,≤Y ) is an order-isomorphism. (Remark : This can
be used to constructions of well orders (or more generally, orders with give properties) on countable sets X
(in terms of of the bijection f : N→ X). The notation adopted in T4.4 is correspond to the bijective maps.
For instance, the examples of orders given in T4.24-(2) correspond to the bijective maps N→ Z and then
the usual order on N is used to define orders ≤i, i = 1,2,3 on Z. What are these bijective maps f : N→Z

exactly?. — Though Zermelo’s Theorem assures every set can be well ordered, no specific constructions for
well orders on any uncountable (for example, on the set of real numbers!) set in known. Moreover, there
are sets on which no specific constructions of a simple order in known. For example, on the set RR of
real valued functions of one real variable. Note also that a well order guaranteed by Zermelo’s Theorem is
obviously not unique and is not stated to have any relation to any given structure on the set. For example, a
well order on the sets Q and on R cannot coincide with their usual orders.)
(Remark : Below in T4.30, T4.32 and T4.33, we give a characterizations (up to an order-isomorphism)
of the special ordered sets (N,≤), (Q,≤) and (R,≤) of the natural numbers, rational numbers and real
numbers with their usual orders, respectively.)
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T4.27 ( I n v a r i a n t s u n d e r o r d e r - i s o m o r p h i s m s) The notions of distinguished
elements — predecessor, successor, immediate predecessor, immediate successor, minimum, max-
imum, minimal, maximal, lower bounds, upper bounds, GLB, LUB, lower cut, initial segments,
simply order, dense order, continuous order and well order, are preserved under order-isomorphisms.
In such case, we usually say that these properties are invariant under order-isomorphisms. The in-
variants are used for characterizations of special ordered sets up to order isomorphisms, see for
example, T4.30, T4.32 and T4.33. (Proofs of these assertions are routine verifications and hence we
leave them to the reader. — Remark : These invariants are very useful for concluding the given ordered
sets are non-isomorphic. For example, the ordered sets in T4.24-(2) and T4.26-(d) are non-isomorphic.)

T4.28 Let (X ,≤) be a simply ordered set. Then
(a) If every initial segment IX(x) is finite, then (X ,≤) is well ordered. Moreover, every element
x ∈ X other than the minimum has an immediate predecessor. (Hint : Assume the contrary that there
is a non-empty subset A ⊆ X has no minimum. Let a ∈ A. Since a is not minimum of A and since A is
simply ordered, there is b ∈ A with b < a. Repeating this argument conclude that the initial segment IX(a)
contain an infinite subset, a contradiction. The last assertion is also proved by the similar argument. )
(b) If X is non-empty and finite, then X is well ordered and the maximum Max(X) exists.

T4.29 Two (X ,≤X) and (Y,≤Y ) non-empty finite simply ordered sets are order-isomorphic if
and only if #X = #Y , i. e. there exists a bijective map f : X → Y . (Hint : Use induction on #X .)

T4.30 Theorem (C h a r a c t e r i z a t i o n o n t h e o r d i n a l ω ) For a non-empty simply
ordered set (X ,≤), the following statements are equivalent :
(i) X is order isomorphic to ω .
(ii) For every x ∈ X, the initial segment IX(x) is finite and X contain no maximum.
(iii) X is infinite and for every x ∈ X, the initial segment IX(x) is finite.
(iv) X contain minimum, no maximum and that X contain no lower cut. (Remark : A proof use
Recursion Theorem, See Lecture Notes 5 for details.)
Deduce that :
(a) Corollary : Let (X ,≤) be a non-empty simply ordered set (X ,≤) which has no maximum. If
every initial segment IX(x) is finite, then X is countable. (Hint : Immediate from the implication (ii)
⇒ (i) of Theorem T4.30.)
(b) Corollary : Two (X ,≤X) and (Y,≤Y ) non-empty simply ordered sets are order-isomorphic
if and only if both satisfy the condition (ii) of Theorem T4.30. (Hint : Immediate from the implication
(ii) ⇒ (i) of Theorem T4.30.)

T4.31 Theorem : Let (X ,≤) be a countable simply ordered set and let (Y,≤) be a non-empty
dense simply ordered set with no minimum and no maximum. Then (X ,≤) is isomorphic to a
subset of Y . (Remark : A proof use Axiom of Choice, See Lecture Notes 4a and Lecture Notes 5 for
details.)
Deduce that :
(a) Corollary : Every non-empty dense simply ordered set (Y,≤) with no minimum and no maxi-
mum has a subset isomorphic to (Q,≤). (Hint : The ordinal (Q,≤) is countable and simply ordered.)
(b) Corollary : Every non-empty simply ordered set (X ,≤) is isomorphic to a subset of (Q,≤).
(Hint : The ordinal (Q,≤) is dense and simply ordered and has no minimum and no maximum.)

T4.32 (C h a r a c t e r i z a t i o n o n t h e o r d i n a l (Q,≤) ) For a non-empty simply or-
dered set (X ,≤), the following statements are equivalent :
(i) (X ,≤) is order isomorphic to (Q,≤).
(ii) X is countable, has no minimum, no maximum and that (X ,≤) is dense.
(Remark : A proof use countability of Q and the Axiom of Choice, See Lecture Notes 4a and Lecture
Notes 5 for details.)
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(c) Corollary : Two (X ,≤X) and (Y,≤Y ) non-empty simply ordered sets are order-isomorphic
if and only if both satisfy the condition (ii) of Theorem T4.32. (Hint : Immediate from the implication
(ii) ⇒ (i) of Theorem T4.32.)

T4.33 Theorem : Let (X ,≤) be a continuous ordered set with no minimum and no maximum and
let Y be a dense subset of X. Then (X ,≤) is order-isomorphic to the ordered set (L (Y ),⊆) of
all lower cuts of Y . (Hint : We may assume that X ̸= /0. Check that the map f : X → L (Y ), defined by
x 7→ IY (x) is an order-isomorphism.)
Deduce that :
(a) Corollary : (C h a r a c t e r i z a t i o n o n t h e o r d i n a l (R,≤) ) For a simply ordered
set (X ,≤), the following statements are equivalent :
(i) (X ,≤) is order isomorphic to (R,≤).
(ii) X has no minimum, no maximum, X have a countable dense subset and that (X ,≤) is
continuous.
(b) Corollary : Two (X ,≤X) and (Y,≤Y ) simply ordered sets are order-isomorphic if and only
if both satisfy the condition (ii) of Corollary (a) above. (Hint : Immediate from the implication (ii) ⇒
(i) of The Corollary (a) above.)
(Remark : (T h e s e t o f r e a l n u m b e r s) The set of rational numbers (Q,≤) with its usual order
is a dense simply ordered set, but its not conditionally complete (and hence not continuous). For example,
the subset {x ∈Q | x2 ≤ 2} is bounded by 2 and has no least upper bound. The set R= (L (Q),⊆) of all
the lower cuts of a dense simply ordered set (Q,≤) is conditionally complete dense simply ordered set and
hence continuous, see Theorem T4.21. Motivated by this, a r e a l n u m b e r is, by definition, a lower cut
of the set Q of rational numbers with its usual order.)

T4.34 ( I s o m o r p h i s m s o f W e l l o r d e r e d s e t s ) We study questions related to
the isomorphisms between well ordered sets. Since every set can be well ordered (see Lecture
Notes 4a); therefore the study of well ordered sets has special significance.
(1) Let (X ,≤X) be a simply ordered set. Then (X ,≤X) is well ordered if and only if X has no
subset which is isomorphic to the ordinal ωop. (Proof : (⇒): Follows easily from T4.27. (⇐): Let
A ⊆ X be non-empty and assume on contrary that A has no minimum. Then for every a ∈ A, the initial
segments Aa ̸= /0 for all a ∈ A. Let f : A →∪a∈AAa be a choice function of the family {Aa | a ∈ A} (this
exists by the Axiom of Choice, See Lecture Notes 4a). Then for each a∈A, f induces an order-isomorphism
ωop ≈−−−−−−−−−-{a, f (a), f ( f (a)), . . . ,}= { f n(a) | n ∈N}, (n 7→ f n)(a) ). •)

(2) Let (X ,≤) be an ordered set. A s e c t i o n of X is a subset A of X with the following
property: if x ∈ A, y ∈ X with y ≤ x, then y ∈ A. — The subsets /0 and X are sections of X .
Arbitrary intersections and arbitrary unions of sections of X are again sections of X . For a ∈ X ,
the subsets IX(a) = Xa := {x ∈ X | x < a} and Xa := {x ∈ X | x ≤ a} are sections of X .
(a) The map (X ,≤) → (P(X),⊆), a 7→ Xa, is an order-homomorphism and induces an order-
isomorphism of X onto a subset of P(X).
(b) Suppose further that (X ,≤) is well-ordered. Then for every section A, A ̸= X , of X , there
exists exactly one a ∈ X such that A = Xa. The map a 7→ Xa, is an order-isomorphism of X onto
the set of sections different from X which is ordered by the natural inclusion. The set of sections
of X is well-ordered and has a greatest element. (Hint : Let a := Min(X \A). Then A = Xa, since A
is a section.)
(3) Let (X ,≤) be a well–ordered set and let g : X → X be an injective order-homomorphism.
Then x ≤ g(x) for all x ∈ X . (Proof : If A := {x ∈ X | g(x) < x} ̸= /0, then a := Min(A) ∈ A, i. e.
g(a)< a and hence g(g(a))< g(a)< a, i. e. g(a) ∈ A a contradiction to the minimality of a. •)

(4) If Img is a section of X , then g = idX . In particular, idX is the only isomorphism of X onto
itself. (Proof : If Img(g)⊆ X , then Img(g) = Xa for a unique a ∈ X . But then g(a)< a a contradiction to
part (a). Therefore Img(g) = X , i. e. g is bijective. Now, since X is well ordered and hence simply ordered,
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by Exercise 4.9-(c) g is an automorphism, in particular, x ≤ g−1(x) for all x ∈ X by part (3) and hence
g(x)≤ g(g−1(x)) = x for all x ∈ X . altogether g(x) = x for all x ∈ X , i. e. g = idX . See also T4.26-(a). •)

(5) For every a ∈ X , there is no injective order-homomorphism X → Xa. In particular, X is not
isomorphic to any of its initial segment Xa, a ∈ X . (Proof : Assume the contrary that there is an
injective order-homomorphism f : X → Xa for some a ∈ X . Then by part (a) x ≤ f (x) for all x ∈ X ,
in particular, f (a) ̸∈ Xa a contradiction. •)

(6) Give an example of a well ordered set (X ,≤X) which is order isomorphic to a proper subset
Y of X . (Hint : The successor map σ : N→N\{0}, n 7→ n+1, is an order-isomorphism.)
(7) If (X ,≤X) and (Y,≤Y ) are two well–ordered sets, then there is at most one order-isomorphism
of X onto a section of Y .

T4.35 (P r i n c i p l e o f T r a n s f i n i t e I n d u c t i o n) One of the significant features of
well ordering ≤ on a set X is that it enables us to extend the principle of mathematical induction
for (N,≤) (or the axiom of induction of N ) to arbitrary well ordered (W,≤). This feature is
called the theorem (or principle) of transfinite induction. This provides a convenient device for
making definitions or to carry out constructions at a ∈W depending upon what has been defined
or done at all the predecessors of a in the well ordering ≤. The general form of this process is
described in the theorem below :
Theorem (P r i n c i p l e o f T r a n s f i n i t e I n d u c t i o n) Let (W,≤) be a well ordered
set and let V ⊆ W. Suppose that every element a ∈ W satisfies the following condition: if every
predecessor of a belongs to V , then a∈V (in symbols: for every a∈W, if IX(a)⊆V , then a∈V ).
Then V =W. (Proof : Assume that (W \V ) ̸= /0 and a := Min(W \V ). Then by the minimality of a, we
have IW (a)⊆V and hence a ∈V a contradiction. •)
(Remark : In the case of the ordinal ω the principle of transfinite induction is also known as second
principle of mathematical induction and is equivalent to the first principle of mathematical induction. In
this equivalence the most crucial property used is that each element of ω has an immediate predecessor.
Since well ordered sets do not always have this property the analogue of the first induction principle is not
generally true. For example, on the ordinal ω in Example T4.24-(2), one cannot establish the first induction
principle!. See more on this in the Lecture Notes 5.)
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