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5. The Natural Numbers

• Solution of the Exercise ∗5.10 carries 10 Bonus Points.
• Recommended to solve the Exercise R5.11.

5.1 ( F i b o n a c c i1 S e q u e n c e) The sequence fn, n ∈N, defined recursively by f0 = 0, f1 = 1
and fn+1 = fn + fn−1 for all n ≥ 1, is called the F i b o n a c c i S e q u e n c e2 and its n-th term
fn is called the n-th F i b o n a c c i n u m b e r . The first few terms of the Fibonacci Sequence are
0,1,2,3,5,8,13,21,34,55, . . .. (Remark : The Recursion Theorem T5.7-(a) cannot directly justify its
existence, for the value fn+1 for n ≥ 1 depend not only on fn, but upon fn−1 as well. However, we can
justify the simultaneous existence of the two sequences fn and gn satisfying :{

f0 = 0, fn+1 = fn +gn, for n ≥ 0,
g0 = 1, gn+1 = fn, for n ≥ 0.

For this we can use the Simultaneous Recursion (see T5.10-(b)) by taking (a,b) = (0,1), H : N×N→N

is the addition on N and K : N×N→N is the first projection.)
(a) For the n-th Fibonacci number fn , prove the following explicit ( B i n e t ’ s F o r m u l a 3) :

fn =
1√
5

((
1+

√
5

2

)n
−
(

1−
√

5
2

)n)
.

(Remark: If we put Φ := (1 +
√

5)/2, then Φ = 1 +Φ−1 = Φ2 − 1, −Φ−1 = (1 −
√

5)/2 and fn =

(Φn − (−1)nΦ−n)/
√

5. The number Φ is also denoted by τ . — If α := π/5, then from the equation
(4cos2 α −1−2cosα)sinα = sin3α − sin2α = 0, the equations 4cos2 α −2cosα −1 = 0 and 2cosα =
2cos(π/5) = Φ follow. Consequently, the regular 10-gon (as well as regular pentagon) can be constructed
by using the golden-ration.)

(b) Prove the following equalities by induction :

1L e o n a r d o f P i s a or F i b o n a c c i (1170-1250) an Italian Salesman who wrote a book on “Liber Abaci”
in 1209 and introduced the Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe.
Fibonacci played an important role in reviving ancient mathematics and made significant contributions of his own.

2In 1844 Gabriel Lamé observed that if n division steps are required in the Euclidean algorithm to compute
gcd(a,b), a,b ∈ N∗, then a ≥ fn+2 and b ≥ fn+1. Therefore the sequence was called the Lamé sequence. But
Lucas discovered that Fibonacci had been aware of these numbers six centuries earlier.

3B i n e t J a c q u e s P h i l i p p e (1786-1856) was a French mathematician who discovered this formula (in
1843) expressing fn in terms of the integer n . The Binet’s formula was already known to A b r a h a m d e
M o i v r e (1667-1754) in 1730. Abraham de Moivre was a French mathematician famous for de Moivre’s formula,
which links complex numbers and trigonometry, and for his work on the normal distribution and probability theory.
He was a friend of Isaac Newton, Edmund Halley, and James Stirling. De Moivre first discovered Binet’s formula, the
closed-form expression for Fibonacci numbers linking the n-th power of Φ to the n-th Fibonacci number.
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(i) fn+m = fn−1 fm + fn fm+1 for all m ≥ 0 and all n ≥ 1.
In particular, f2n = fn( fn−1 + fn+1) = f 2

n+1 − f 2
n−1 for all n ≥ 1.

(ii) f 2
n = fn−1 fn+1 +(−1)n+1 for all n ≥ 1.

(iii) Φn = fn−1 + fn Φ, for all n ∈N∗. (Remark : Using this equality we can define the Fibonacci-
numbers fn for all n ∈ Z. We then have fn = fn−1 + fn−2 for all n ∈ Z. Then we have fn = fn−1 + fn−2

and fn = (−1)n+1 f−n for all n ∈Z.)
(c) fn = (an−bn)/

√
5, where a and b are the positive and negative zeros of the quadratic equation

X2 −X −1 = 0 . (Hint : Use Binet’s Formula.)
(d) Show that the sequence fn+1/ fn, n ≥ 1, of the successive quotients of Fibonacci-numbers con-
verges to the g o l d e n s e c t i o n Φ := 1+

√
5

2 . (Moreover, fn+1/ fn is the (n−1)-th approximation-
fraction in the continued fraction expansion of Φ = [1,1,1, . . .]. — In mathematics and the arts, two quanti-
ties are in the g o l d e n r a t i o if their ratio is the same as the ratio of their sum to their maximum. The
following figure illustrates the geometric relationship:

Algebraically, for a and b with a > b, a+b
a = a

b =: Φ , where the Greek letter phi (Φ) represents the golden

ratio. Its value is: Φ = 1+
√

5
2 = 1.6180339887 . . . . The golden ratio is also called the g o l d e n s e c t i o n

(in Latin: sectio aurea) or g o l d e n m e a n. Many artists and architects have proportioned their works to
approximate the golden ratio-especially in the form of the golden rectangle, in which the ratio of the longer
side to the shorter is the golden ratio-believing this proportion to be aesthetically pleasing. The golden ratio
has also been used to analyze the proportions of natural objects as well as man-made systems. For exam-
ple, Flower petals4; Shells5; DNA Molecules; Faces6 (both human and nonhuman); many buildings and
artworks such as the Parthenon in Greece, but it is not really known if it was designed that way. Mathemati-
cians since Euclid have studied the properties of the golden ratio, including its appearance in the dimensions
of a regular pentagon and in a golden rectangle, which can be cut into a square and a smaller rectangle with
the same aspect ratio.)

5.2 For the recursively defined sequences (an) in the parts (a) , (b) , (c) below, prove the given
explicit representations.
(a) a0 = 2, an = 2−a−1

n−1, n ≥ 1. Then an = (n+2)/(n+1) for all n ∈N.

(b) a0 = 0, a1 = 1, an =
1
2(an−1 +an−2), n ≥ 2. Then an =

2
3

(
1− (−1)n 1

2n

)
for all n ∈N.

(c) a0 = 1, an = 1+a−1
n−1, n ≥ 1. Then an = fn+2/ fn+1 for all n ∈N, where for k ∈N, fk is the

k-th Fibonacci-number (see Exercise 5.1).
(d) a0 = 1, an = ∑n−1

k=0 ak, n ≥ 1. Then an = 2n−1 for all n ≥ 1.

5.3 The notion of greatest common divisor (see T5.14) can be extended to more than two integers
in an obvious way. Let a1, . . . ,an ∈N, n ≥ 1, not all zero. Then gcd(a1, . . . ,an) is defined to be
the positive integer d satisfying the following two properties : (i) d

∣∣ai for every i = 1, . . . ,n ;
(ii) if c is a positive integer with c

∣∣ai for every i = 1, . . . ,n, then c
∣∣d ( or, equivalently c ≤ d).

4The number of petals in a flower consistently follows the Fibonacci sequence. Famous examples include the lily.
5This shape, a rectangle in which the ratio of the sides is equal to the golden mean, can result in a nesting process

that can be repeated into infinity — and which takes on the form of a spiral. It is called the logarithmic spiral, and it
abounds in nature.

6The mouth and nose are each positioned at golden sections of the distance between the eyes and the bottom of the
chin. Similar proportions can been seen from the side, and even the eye and ear itself.
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Note that gcd(a1, . . . ,an−1,an) = gcd(gcd(a1, . . . ,an−1),an) = · · · = gcd(a1,gcd(a2, . . . ,an)) by
T5.14-(b)-(iv) and hence the gcd depends only on a1, . . . ,an and not on the order in which they are
written. Similarly, the notion of least common multiple (see T5.15) can be extended to more than
two integers in an obvious way.
(a) Let a1, . . . ,an ∈N∗, n ≥ 1 and let a = a1 · · ·an. Show that the following statements are equiv-
alent:
(i) a1, . . . ,an are pairwise relatively prime.
(ii) If each a1, . . . ,an divide the natural number c, then a also divide the number c.
(iii) lcm(a1, . . . ,an) = a.
(iv) The natural numbers b1 := a/a1, . . . ,bn := a/an are relatively prime.

(v) There exist integers s1, . . . ,sn such that 1
a =

s1
a1

+ · · ·+ sn
an

.

(Remark : If gcd(a1, . . . ,an) = 1, then a1, . . . ,an are called r e l a t i v e l y p r i m e . Note that this concept
is different from that of pairwise relatively prime.)
(b) For a1, . . . ,an ∈ N∗, n ≥ 1, show that there exist u1, . . . ,un ∈ Z such that gcd(a1, . . . ,an) =
u1a1 + · · ·+ unan. In particular, a1, . . . ,an are relatively prime if and only if there exist integers
u1, . . . ,un such that 1 = u1a1 + · · ·+unan. (Remark : One can find the coefficients u1, . . . ,un algorith-
mically by successive use of the lemma of Bezout (see T5.14-(a)). This algorithm supplies frequently dis-
proportionately large coefficients u1, . . . ,un. It is better to proceed as follows : First by renumbering assume
that a1 is minimal in {a1, . . . ,an}, and goes then to tuple (a1,r2, . . . ,rn), where r j the remainder of a j after
dividing by a1, after removing the zeros among r j, consider the new tuple as at the beginning. One has to
control, how the coefficients of the tuple constructed are represented as linear combinations of the a1, . . . ,an,
beginning with ai = ∑n

k=1 δikak.) Find integers u1,u2,u3 such that 1 = u1 ·88+u2 ·152+u3 ·209.

5.4 Let ( fn)n∈N denote the Fibonacci sequence (see Exercise 5.1).
(a) For m,n ∈N∗, show that fm divides fmn. (Hint : Use Exercise T5.1-(b)-(i) and induction on n.)
(b) gcd( fn+2, fn+1) = 1. (Hint: The Euclidean Algorithm for obtaining the gcd leads to the system of n
equations: fn+2 = 1 · fn+1 + fn ; fn+1 = 1 · fn + fn−1 ; · · · f3 = f2 + f1 f2 = 2 · f1 .)

(c) gcd( fm, fn) = fgcd(m,n). (Hint : If m = qn+ r, then gcd( fm, fn) = gcd( fqn−1 fr + fqn fr+1, fn) by
Exercise 5.1-(b)-(i). Further, since fm divides fmn by (a), it follows (by using gcd(a+ c,b) = gcd(a,b) if
b|c) that gcd( fqn−1 fr + fqn fr+1, fn) = gcd( fqn−1 fr, fn) = 1. For the last equality use parts (a) and (b). )
(d) The converse of (a) — For n ≥ m ≥ 3, if fm divides fn, then m divides n. (Hint : Use part
(c). — Remark : It is interesting to note that: For a prime number p > 5, either p divides fp−1 or p
divides fp+1 , but not both. The proof of this statement involves well known Quadratic Reciprocity Law due
to Gauss.)

5.5 Let P denote the set of all prime numbers. Let pn denote the n-th prime (in the natural order
≤ on N∗, i. e. starting with n = 1,2, . . . , ). Then show that :

(a) pn > 2n−1 for n ≥ 5 and pn ≤ 22n−1
for all n ∈N∗. (Hint : Note that pn+1 ≤ p1 · p2 · · · pn+1.)

(b) None of the natural number Pn := p1 · p2 · · · pn +1 is a perfect square. (Hint : Each Pn is of the
form 4m+3.)

(c) The sum
1
p1

+
1
p2

+ · · ·+ 1
pn

is never an integer.

(d) Another proof of infiniteness of P : Suppose that there are only finitely many primes, say,
p1, . . . , pn . Now, use the natural number N = p2 · p3 · · · pn + p1 · p3 · · · pn + · · ·+ p2 · p3 · · · pn−1.

5.6 ( G ö d e l i s a t i o n ) Let p1 = 2, p2 = 3, p3 = 5, . . . be (infinite) sequence of the prime
numbers.
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(a) Let A be a countable set with an enumeration A = {a1,a2,a3, . . .}, ai ̸= a j for i ̸= j. Then
the map (ai1, . . . ,ain) 7→ pi1

1 · · · pin
n is an injective map from the set W(A) :=

⊎
n∈NAn of finite

sequences (of arbitrary lengths) of elements from A - such sequences are also called w o r d s over
the a l p h a b e t A - into the set N∗ of positive natural numbers. (Remark : Such a coding of the
words over A is called a G ö d e l i s a t i o n (due to K.Gödel7 ). The natural number associated to a word is
called the G ö d e l n u m b e r of this word.)
(b) Let A be a finite alphabet {a1,a2, . . . ,ag} with g letters, g ≥ 2, and a0 ̸∈ A be another let-
ter. A word W = (ai1, . . . ,ain) over A can be identified by filling a0 with the infinite sequence
(ai1 , . . .ain ,a0,a0, . . .). Show that: the map (aiν )ν∈N∗ 7→ ∑∞

ν=1 iνgν−1 is a bijective map from the
set of words over A onto the set N of the natural numbers and in particular, is a Gœdelisation.
(Remark : This is a variant of the g-adic expansion (see T5.25).)

5.7 Let g ∈N∗, g ≥ 2, n be a natural number with digit-sequence (ri)i∈N in the g-adic expansion
of n and let d ∈N∗. (see T5.25.)
(a) Suppose that d is a divisor of gα for some α ∈N∗. Then n ≡ (rα−1, . . . ,r0)g mod d. In partic-
ular, d divides the number n if and only if d divides the number (rα−1, . . . ,r0)g.
(b) Suppose that d is a divisor of gα −1 for some α ∈N∗ and

S := (rα−1, . . . ,r0)g +(r2α−1, . . . ,rα)g + · · · .
Then n ≡ S mod d. In particular, d divides the number n if and only if d divides the sum S.
(c) Suppose that d is a divisor of gα +1 for some α ∈N∗ and

W := (rα−1, . . . ,r0)g − (r2α−1, . . . ,rα)g + · · · .
Then n ≡ W mod d. In particular, d divides the number n if and only if d divides the alternating
sum W . (Remark : With the help of this exercise one can find criterion, which one can decide on the
basis the digit-sequence of the natural number n in the decimal system whether d is a divisor of n with
2 ≤ d ≤ 16. (with d = 3 and d = 9 one uses the simple check-sum, with d = 11 the simple alternating sum.
The divisibility by 7,11 and 13 at the same time can be tested with the alternating sum of the 3-grouped
together in view of the part (c). See T5.25-(d) for details.)

5.8 Let n ∈N∗. Show that :
(a) If n > 1 and if n divides (n−1)!+1, then n must be a prime number.
(b) If n > 2, then there exists a prime number p with n < p < n! . (Hint : Consider a prime divisor
p of n!−1.)
(c) If n > 1, then every prime divisor of n!+1 is an odd integer > n. (Remark : This shows again
that there are infinitely many prime numbers. It is unknown whether infinitely many of n!+1 are prime.)
(d) None of the n natural numbers (n+1)!+2, . . . ,(n+1)!+n+1 are prime. (Remark : Therefore
there are gaps of any size between prime numbers.)
(e) Let n,r ∈ N∗, n ≥ 2. If n has no prime divisor ≤ r+1

√
n, then n is a product of at the most r

(not necessarily different) prime numbers. In particular, if n has no prime divisor ≤
√

n, then n is
prime.
(f) For n ∈N, n ≥ 2, the natural number 4n+n4 is never prime. (Hint : For odd n, we have n4+4n =

(n2 −2
n+1

2 ·n+2n)(n2 +2
n+1

2 ·n+2n).)

5.9 (P e r i o d i c S e q u e n c e s) Let us fix the terminology for periodic sequences which is
used at many places: For an arbitrary sequence (xi)i∈N of elements of a set X , a pair (m0,n) ∈

7K u r t G ö d e l (1906-1978) was born on 28 April 1906 in Brünn, Austria-Hungary (now Brno, Czech Republic)
and died on 14 Jan 1978 in Princeton, New Jersey, USA. Gödel proved fundamental results about axiomatic systems
showing in any axiomatic mathematical system there are propositions that cannot be proved or disproved within the
axioms of the system.
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N×N∗ is called a p a i r o f p e r i o d i c i t y for (xi) if xi+n = xi for all i ≥ m0. In this case m0 is
called a p r e - p e r i o d l e n g t h and n a p e r i o d l e n g t h of (xi). If no such pair of periodicity
for (xi) exists, then (xi) is called a p e r i o d i c , otherwise (xi) is called p e r i o d i c .

(a) Show that for a periodic sequence (xi)i∈N, there exists a unique pair of periodicity (k0, ℓ) ∈
N×N∗ with the following property: Any pair of periodicity for (xi) is of the form (m0,mℓ) with
m0 ≥ k0 and m ∈N∗. (Hint : The main point to show is the following: If r,s ∈N∗ are period lengths of
(xi), then GCD(r,s) is also a period length of (xi).) – The natural number k0 is called the pre -pe r iod
l e n g t h of (xi) and the natural number ℓ is called the p e r i o d l e n g t h . The pair (k0, ℓ) itself
is called the ( p e r i o d i c i t y ) t y p e of (xi). The (finite) subsequence (x0, . . . ,xk0−1) is called
the p r e - p e r i o d of (xi) and the (finite) subsequence (xk0, . . . ,xk0+ℓ−1) is called the p e r i o d
of (xi). In this case we simply write (xi)i∈N = (x0, . . . ,xk0−1,xk0, . . . ,xk0+ℓ−1). If k0 = 0 then (xi)
is called p u r e l y p e r i o d i c . The periodicity type of an aperiodic sequence is often denoted by
(∞,0). In particular, by definition, the period length of an aperiodic sequence is 0.

(b) If x is an element of a group, the sequence (xi)i∈N of its powers has period length ordx
and is purely periodic if ordx > 0. For an element x of a monoid the periodicity type of the
sequence (xi)i∈N characterizes the cyclic monoid generated by x up to isomorphism and any type
in N×N∗∪{(∞,0)} may occur.

(c) For an integer r ∈ N∗, compute the periodicity type of the sequence (xri)i∈N in terms of the
periodicity type (k0, ℓ) of (xi)i∈N.

∗5.10 (D i c k s o n ’ s L e m m a8) Let r ∈ N+. The set Nr = N× ·· ·×N (r-times) of the r-
tuples of natural numbers is ordered by the product order of the usual order on N, i. e. by definition
(x1, . . . ,xr) ≤ (y1, . . . ,yr) if and only if xi ≤ yi for all i = 1, . . . ,r. For r ≥ 2, this product order is
not a total order. For r = 2, the set of points ≥ (x1,x2) is shaded in the following picture:

( ),x
x

1
1

2

2

x

x

Sketch the picture for the set of points ≤ (x1,x2). Clearly (0, . . . ,0)∈Nr is the least element of Nr.
Let X be an arbitrary subset of Nr (with the induced order from the product order of Nr). Show
that X has only finitely many minimal elements. (Hint : Proof by induction on r. For this one may
assume that if a r-tuple x ∈ X , then all r-tuples y ∈Nr with x ≤ y also belong to X . This means replace X
by the set

∪
x∈X

(x+Nr). Note that this does not change the set of minimal elements. For the inductive step

from r to r+1, apply induction-hypothesis to the sets X ′
n := {x′ ∈Nr | (x′,n) ∈ X} ⊆Nr, n ∈N. Observe

that X ′
0 ⊆ X ′

1 ⊆ X ′
2 ⊆ ·· · and there exists n0 ∈N such that X ′

n = X ′
n0

for all n ≥ n0. This already proves the
case from r = 1 to r+1 = 2 :

8This simple fact from combinatorics has become attributed to the American algebraist L . E . D i c k s o n (1874-
1954), who used it to prove a result in number theory about perfect numbers. He was one of the first American
researchers in abstract algebra, in particular the theory of finite fields and classical groups, and is also remembered for
a three-volume history of number theory, History of the Theory of Numbers. However, the lemma was certainly known
earlier, for example to Paul Gordan in his research on invariant theory. P a u l A l b e r t G o r d a n (1837-1912)
was a German mathematician, a student of Carl Jacobi at the University of Königsberg before obtaining his Ph.D. at
the University of Breslau (1862), and a professor at the University of Erlangen-Nuremberg. He was known as "the
king of invariant theory". Gordan also served as the thesis advisor for Emmy Noether.
The tuples (a1,a2, . . . ,an)inNn are in bijective correspondence with the monomials Xa1

1 Xa2
2 . . .Xan

n over a set of n
variables X1,X2, . . .Xn. Under this correspondence, Dickson’s lemma may be seen as a special case of the Hilbert’s
basis theorem which states that: every polynomial ideal generated by monomials has a finite basis. Indeed, Paul
Gordan used this restatement of Dickson’s lemma in 1899 to prove the Hilbert’s basis theorem.
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elements of

and makes it clear how can one make a general argument.)

R5.11 Congruences (see T5.24) are often used to append extra check digit to identification num-
bers, in order to recognize transmission errors or forgeries. Personal identification numbers of
some kind on passports, credit cards, bank accounts and other variety of settings.

(a) Some banks use eight digit identification number a1a2 · · ·a8 together with a final check digit
a9. The check digit is the weighted sum of the eight modulo 10, i. e. a9 ≡ ∑8

i=1 xiai (mod10).
Suppose that a9 ≡ 7a1 +3a2 +9a3 +7a4 +3a5 +9a6 +7a7 +3a8 ≡ (mod10). Then:

(i) Verify that the identification number 815042169 have the check digit 9 . Obtain the check
digits that should be appended to the numbers 55382006 and 81372439.

(ii) The weighting scheme for assigning check digit detects any single-digit error9 in the iden-
tification number. For example, suppose that the digit ai is replaced by a different digit a′i, then
the difference between the correct a9 and the new check digit a′9 is a9 −a′9 ≡ k(ai −a′i) (mod10),
where k = 7,3, or 9 depending position of a′i. If the valid number is 81504216 were incorrectly
entered as 81504316, then the check digit 8 would come up rather than the expected 9.

(iii) The bank identification number 237a418538 has an illegible fourth digit. Determine the
value of the obscured digit.

(b) The International Standard Book Number (ISBN) used in many libraries consist of none digits
a1a2 · · ·a8a9 followed by a tenth check digit a10 which satisfies a10 ≡ ∑9

i=1 i ·ai (mod10). Deter-
mine whether each of the ISBNs below correct:
(i) 0-07-232569-0 (United States) (ii) 91-7643-497-5 (Sweden) (iii) 1-56947-3034-10 (England).
When printing the ISBN a1a2 · · ·a8a9 two unequal digits were transposed. Show that the check
digits detected this error.

Below one can see Lecture Notes.

9The modulo 10 approach is not entirely effective. For, it does not always detect the common error of transposing
distinct adjacent entries a and b within the string of digits. For example, the identification numbers 81504216 and
81504261 have the same check digit 9. The problem occurs when |a− b| = 5. More sophisticated methods are
available with larger moduli and different weights that would prevent this error.
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