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6. Finite Sets — Elementary Counting Techniques

• Solution of the Exercise ∗6.8 carries 10 Bonus Points.
• Recommended to read the Exercises R6.9 and R6.10.

6.1 (a) ( T o w e r o f H a n o i 1) The puzzle consists of n disks of decreasing diameter placed on
a pole. There are two other poles. The problem is to move the entire pile to another pole by moving
one disk at a time to any other pole, except that no disk may be placed on top of a smaller disk.

Find a formula for the least number of moves needed to move n disks from one pole to another, and
prove the formula by induction. (Hint : Let Tn be the minimum number of moves needed to solve the
puzzle with n disks. Then note that T0 = 0, T1 = 1, T2 = 3, T3 = 7 and T4 = 15. Moreover, (check!) the
recurrence relation Tn = 2 ·Tn−1 +1 for n > 0. Conclude that Tn = 2n−1.)
(b) Let X , Y be finite sets and Z := X ×Y . For x ∈ X , let Px := {y ∈ Y | (x,y) ∈ Z} and
for y ∈ Y , let Qy := {x ∈ X | (x,y) ∈ Z} . Show that ∑x∈X |Px| = ∑y∈Y |Qy| . (Hint : Note that
Z = ]x∈X Px = ]y∈Y Qy.)

6.2 Let X be a finite set with n elements.
(a) The number of subsets of X is 2n . (Hint : The map P(X)→{0,1}X , A 7→ eA is bijective, where
eA : X →{0,1} denote the indicator function of the subset A, see also Ex. Set 2, T2.26.)
(b) If n ∈N∗ , then the number of subsets of X with an even number of elements is equal to the
number of subsets of X with an odd number of elements. Moreover, this number is equal to 2n−1.
(Hint : Let a ∈ X . The map defined by A 7→ A∪{a} , if a /∈ A , resp. Ar {a} , if a ∈ A , is a bijective
map from the set Peven(X) of all subsets of X with an even number of elements onto the set Podd(X) of all
subsets of X with an odd number of elements.)

1The French mathematician F r a n ç o i s E d o u a r d A n a t o l e L u c a s (1842-1891) invented the Tower of
Hanoi puzzle and other mathematical recreations. The Tower of Hanoi puzzle appeared in 1883 under the name of
M. Claus. Notice that Claus is an anagram of Lucas! His four volume work on recreational mathematics Récréations
mathématiques (1882-94) has become a classic. He is best known for his results in number theory. He studied the
Fibonacci sequence and devised the test for Mersenne primes still used today.
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(c) For n∈N , prove that :
(n

0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n . (Hint : For k ∈ {0,1, . . . ,n}, let Pk({1, . . . ,n})

denote the set of all subsets of {1, . . . ,n} of cardinality k. Then #Pk({1, . . . ,n}) =
(n

k

)
and P({1, . . . ,n}) =

]n
k=0Pk({1, . . . ,n}). Now, use part (a).)

(d) For n ∈N∗, prove that :
(n

0

)
−
(n

1

)
+ · · ·+(−1)n(n

n

)
= 0. (Hint : Use part (b) or (1−1)n = 0.)

(e) Prove that ∑
n
k=0
(2n+1

2k

)
= 4n = ∑

n
k=0
(2n+1

2k+1

)
for n∈N and ∑

n
k=0
(2n

2k

)
= 4n

2 = ∑
n−1
k=0

( 2n
2k+1

)
for n∈N∗. (Hint : Use part (b).)

(f) Let Y be a k-element subset of X . Then the number of m-element subsets of X which contain
Y is

(n−k
m−k

)
.

(g) For natural numbers m,n with m≤ n , show that ∑
m
k=0
(n

k

)(n−k
m−k

)
= 2m(n

m

)
. (Hint : Compute the

sum of all numbers in the part (f), where Y runs through all k-element subsets of X in two different ways or
use the formula

(n
k

)(n−k
m−k

)
=
(n

m

)(m
k

)
.)

(h) For m,n,k ∈N, prove that
(

m+n
k

)
=

(
m
0

)(
n
k

)
+

(
m
1

)(
n

k−1

)
+ · · ·+

(
m
k

)(
n
0

)
. In par-

ticular,
(2n

n

)
=
(n

0

)2
+
(n

1

)2
+ · · ·+

(n
n

)2 for n∈N. (Hint : Let X ,Y be disjoint sets with |X |= m, |Y |= n.
The assignment A 7→ (A∩X , A∩Y ) defines a bijective map P(X ∪Y )→P(X)×P(Y ).)
(i) What is the cardinality of the set P≥n+1({1, . . . ,2n+ 1}) of subsets of {1, . . . ,2n+ 1} of
cardinality ≥ n+1? (see also Exercise 6.5-(d), parts (e) and (d) above.)
(j) Let r,k,n,m ∈N .
(i) If r ≤ k ≤ n , then

(n
k

)(k
r

)
=
(n

r

)(n−r
k−r

)
. (Hint : Just compute both sides!. Variant : Suppose from n

objects we choose k and put a white tag on the selected objects. Then out of these k objects we select r
objects and put a black tag on those selected. This is equivalent to selecting r objects (and putting white and
a black tag on each) and then selecting k− r objects from the remaining n− r putting a white tag on the the
selected objects.)
(ii) If m≤ k , then ∑

k−m
j=0 (−1) j(m+ j

m

)( k
m+ j

)
= 0.

(Hint : ∑
k−m
j=0 (−1) j

(m+ j
m

)( k
m+ j

)
= ∑

k−m
j=0 (−1) j

(k
m

)(k−m
j

)
=
(k

m

)
∑

k−m
j=0 (−1) j

(k−m
j

)
= 0 by Exercise 6.2-(d).)

(iii) ∑
n
k=0 k · (k !) = (n+1)!−1. (Hint : Prove by induction on n.)

(iv) ∑
n
k=m

(k
m

)
=
(n+1

m+1

)
, m ∈N, m≤ n . (Hint : Prove by induction on n.)

6.3 Let X be a finite set with n elements.
(a) Prove that the number of pairs (X1, X2) in P(X)×P(X) with X1 ∩ X2 = /0 is 3n . More
generally : The number of m–tuples (X1, . . . ,Xm) of pairwise disjoint subsets X1, . . . ,Xm ⊆ X is
equal (m+1)n .
(b) For n,r ∈N, prove that ∑m

(n
m

)
= rn , where m run through the set of all r-tuples (m1, . . . ,mr)∈

Nr of natural numbers with m1 + · · ·+mr = n . (Hint : Use rn = (1+ · · ·+1)n or the part (a).)

6.4 Let X be a finite set with m elements.
(a) Let pm denote the number of permutations of X which do not have fixed points and let sm = m!
be the number of all permutations of X . Show that :

pm

sm
=

1
0!
− 1

1!
+ · · ·+(−1)m · 1

m!
.

(Hint : Let X = {x1, . . . ,xm}. Set Xi := {σ ∈S(X) : σ(xi) = xi} and compute sm− pm = |
⋃m

i=1 Xi| using the
Sieve formula in T6.1. – Remark : Note that by definition e := limn→∞(1+ 1

n)
n = 2.71828182845904523536 . . .

is the Euler’s number which is base of the natural logarithm and limm→∞ (pm/sm) = e−1.)
(b) For every 0≤ r ≤ m, show that the number of permutations of X with exactly r fixed points

is
(

m
r

)
pm−r . (Hint : For σ ∈ Fr(X) := {σ ∈ S(X) | #Fix(σ) = r}, let Suppσ := (X \ Fixσ) and
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fσ : Suppσ →{1, . . . ,m− r} be a (fixed) bijection and let ρσ := fσ ◦ (σ |Suppσ )◦ ( fσ )
−1 ∈Sm−r. With this

show that the map Fr(X)→Pr(X)×{ρ ∈Sm−r | Fixρ = /0} defined by σ 7→ (Fixσ , ρσ ) is bijective!)
(c) Let X be a finite set with m elements and let Y be a finite set with n elements. The number of
surjective maps from X in Y is

nm−
(

n
1

)
(n−1)m +

(
n
2

)
(n−2)m−·· ·+(−1)n

(
n
n

)
(n−n)m .

(Hint : Let Y = {y1, . . . ,yn}. Set Pi := { f ∈ Y X : yi /∈ im f} and compute the number |
⋃n

i=1 Pi| of non-
surjective maps using the Sieve formula in T6.1.))

6.5 Let m,n be two natural numbers.
(a) Let a(m,n) (respectively, b(m,n) ) denote the number of m–tuples (x1, . . . ,xm) ∈Nm with
x1 + · · ·+ xm ≤ n (respectively, x1 + · · ·+ xm = n) . Show that

a(m,n) =
(

n+m
m

)
and b(m,n) =

(
n+m−1

m−1

)
.

(Hint : Remember to put
(−1
−1

)
:= 1. For m ≥ 1, note the equalities a(m−1,n) = b(m,n) and a(m,n) =

a(m,n−1)+ a(m−1,n) and then use induction on n+m . – Variant : Show that the map (x1, . . . ,xm) 7→
{x1+1, x1+x2+2, . . . ,x1+ · · ·+xm+m} maps the set of m–tuples (x1, . . . ,xm)∈Nm with x1+ · · ·+xm≤ n
bijectively onto the set of m–element subsets of {1,2, . . . ,n+m} .)
(b) Suppose that m ≥ 1. Prove that the number of m–tuples (x1, . . . ,xm) ∈ (N+)m of positive
natural numbers with x1 + · · ·+ xm = n is

(n−1
m−1

)
.

(c) Let k ∈N with k ≤ n . Prove that the subset
X= {A ∈Pk({1, . . . ,n}) | if a ∈ A, then a+1 6∈ A}

of Pk({1, . . . ,n}) has cardinality
(n−k+1

k

)
.

(d) Let X = {x1, . . . ,x2n+1} , n ∈ N be a set with 2n+ 1 elements. For k = 0,1, . . . ,n , let Xk
be the set of all those subsets of X of cardinality ≥ n+ 1 which contain xn+k+1 and exactly n
elements from x1, . . . ,xn+k , i.e.

Xk = {A ∈P≥n+1(X) | |A∩{x1, . . .xn+k}|= n and xn+k+1 ∈ A} .

Show that
⋃n

k=0Xk =P≥n+1(X) and hence deduce that ∑
n
k=0 2n−k(n+k

k

)
= 4n .

( Note that subsets of X which are elements of Xk may contain some elements from xn+k+2, . . . ,xn+1 . See
also Exercise 6.2-(e), (i).)

6.6 For k ∈N+, a k- a r y s e q u e n c e is a sequence with values in a finite set with k elements
(generally in the set {0, . . . ,k−1} ), i.e. a k-ary sequence is an element in the set {0, . . . ,k−1}N.
For k = 2,3,4,5 these sequences are also called b i n a r y , t e r n a r y , q u a t e r n a r y , q u i n t n a r y
sequences. There are exactly kn = |{0,1, . . . ,k−1}{1,...,n}| k-ary sequences of length n. (See also
Exercise 3.4.)

(a) Find how many palindromes2 of length n can be formed with an alphabet of k letters. (Ans :
km if n = 2m and km+1 if n = 2m+1.)
(b) How many k-ary sequences of length n are there in which no two consecutive entries are the
same? (Ans : k(k−1)n−1 .)
(c) How many ternary sequences of length n are there which either start with 012 or end with
012? (Ans : 0 if n≤ 2; 2 ·3m−3 , if 3≤ n≤ 5; and 2 ·3n−3−3n−6 , if n≥ 6.)
(d) Show that the number of binary sequences of length n in which the digit 1 occurs even number
of times is 2n−1 . This is also the number of binary sequences of length n in which the digit 1 occurs
odd number of times. (Hint : Let X := {0,1}{1,...,n} be the set of all binary sequences of length n and let

2A p a l i n d r o m e is a word which reads the same backward or forward, e. g., “MADAM”, “ANNA”.
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Xeven(1) (respectively, Xodd(1) ) be the set of all binary sequences of length n in which the digit 1 occurs even
(respectively, odd) number of times. Then clearly X = Xeven(1)]Xodd(1) . First assume that n is odd. Then
the map f : X → X defined by f ((a1, . . . ,an) = (a′1, . . . ,a

′
n) , where a′i = 0 or 1 according as ai = 1 or 0 for

all i = 1, . . .n , is a bijection. Moreover, if n is odd, then f (Xeven(1)) = Xodd(1) and f (Xodd(1)) = Xeven(1) .
Therefore |Xeven(1)|= |Xodd(1)| and 2n = |X |= |Xeven(1)|+ |Xodd(1)|= 2 · |Xeven(1)|= 2 · |Xodd(1)| . Now, if
n is even, then one can reduce the computation to the case when n is odd : Let A := {(a1, . . . ,an,an+1) ∈ X |
an+1 = 1} and B := {(a1, . . . ,an,an+1)∈X | an+1 = 0} . Then |A|= |B|= 2n−1 and hence X =A]B . Further,
Xeven(1) = (A∩Xeven(1))](B∩Xeven(1)) and hence |Xeven(1)|= |(A∩Xeven(1))|+ |(B∩Xeven(1))|= 2n−2+

2n−2 = 2n−1 , since n−1 is odd. Finally, |Xodd(1)|= |X |− |Xeven(1))|= 2n−2n−1 = 2n−1 .)

(e) Show that the number of k-ary sequences of length n in which the digit 1 occurs even number

of times is
kn +(k−2)n

2
. (Hint : Let Y := {2,3, . . . ,k− 1}{1,...,n} denote the set of all those k-ary

sequences of length n which do not contain 0 or 1 and let Z := X \Y . Classify the sequences in Z by their
pattern, i.e., consider the equivalence classes ∼ Z1, . . . ,Zs with respect to the equivalence relation on Z .
Then |Z|= |Z1|+ · · ·+ |Zs| . Note that by definition Zi is the set of all k-ary sequences of length n which
have the same pattern of the symbols 2,3, . . . ,k−1 and hence |Zi|= 2n−r , where r is the number of places
filled by the symbols 2,3, . . . ,k−1. Now by part (a) half of these sequences have even number of 1’s and
this is true for all i = 1, . . . ,s . This proves that |Zeven(1)|= ∑

s
i=1

1
2 |Zi|= 1

2 |Z|=
1
2(k

n− (k−2)n) . Therefore,
since Xeven(1) = Y ]Zeven(1) , we get |Xeven|= |Y |+ |Zeven(1)|= (k−2)n + 1

2(k
n− (k−2)n) . )

(f) For positive natural numbers n,k ∈N+ , k ≥ 2, prove the formula :

∑
r∈N

(
n
2r

)
(k−1)n−2r =

kn +(k−2)n

2
.

(Hint : Follows from the part (b), since the sum on the left is the number of k-ary sequences of length n in
which the digit 1 occurs even number of times.)

(g) Show that the number of k-ary sequences of length n in which both 0 and 1 occur even number

of times is
kn +2(k−2)n +(k−4)n

4
, k ≥ 2 .

(Hint : Let 1 occur 2r times in a k-ary sequences of length n . Then the remaining (k−1)-ary sequence is

of length n−2r . If 0 occur in an even number of times, then by part (b), there are
(k−1)n−2r +(k−3)n−2r

2
such sequences. Now the assertion follows by applying the part (c) twice (once for k and then for k−2) and
adding.)

(h) Find the number of k-ary sequences of length n in which the digit 1 occurs even number of

times and the digit 0 occurs odd number of times. (Hint : The answer is
kn− (k−4)n

4
– From the

k-ary sequences of length n in which the digit 1 occur even number of times, remove the k-ary sequences of
length n in which the digit 0 occur even number of times, i.e. compute

∑
r∈N

(
n
2r

)[
(k−1)n−2r− (k−1)n−2r +(k−3)n−2r

2
]
.)

6.7 Let X be a finite set with #X = n and let m :=(m1, . . . ,mr)∈Nr be such that m1+ · · ·+mr = n .
Show that the number of partitions p = (X1, . . . ,Xr) of X with #Xi = mi , for all i = 1, . . . ,r , is

the polynomial coefficient
(n

m

)
, i. e., #Parr(X ;m1, . . . ,mr) =

(
n
m

)
:=

n!
m!

=
n!

m1! · · ·mr!
. (Hint :

Show that the fibres of map S(X) −→ Z := {p = (X1, . . . ,Xr) ∈ Parr(X) | |Xi|=mi, i= 1, . . . ,r} defined
by f 7→ p( f ) :=( f (X1), . . . , f (Xr)) have the same cardinality = m! := m1! · · ·mr! . Now use the Shepherd-
rule 2.B.12.)

∗6.8 Let X be a set. A permutation ι : X → X of X is called an i n v o l u t i o n or a r e -
f l e c t i o n, if ι is its own inverse, i. e., if ι = ι−1, or equivalently, – if ι2 = idX . The set
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S(ι) := Fix ι = {x∈X | ι(x) = x} of the fixed points of ι is also called the m i r r o r of ι . In the
following, let ι be a reflection of X . Let Inv(X) denote the set of all involutions of a set X .
(a) The set p(ι) :=

{
{x, ι(x)}

∣∣ x∈ X \S(ι)
}

is a partition of X \S(ι) into 2-element subsets. The
map ι 7→

(
S(ι),p(ι)

)
is a bijection from the set Inv(X) of all involutions of X onto the set of

ordered pairs {(S,p) | S ∈P(X) and p ∈Par((X \S);2)}.
(Hint : Note that for a set Y , the set of all partitions {A1, . . . ,Ar}, r ∈N+ of Y with #Ai = 2, i = 1, . . . ,r,
is denoted by Par(Y ;2) For x∈ X \S(ι), the element {x, ι(x)} ∈ p(ι) is a 2-element subset, since x is not
a fixed point of ι , i. e., x 6= ι(x). Further, two subsets {x, ι(x)},{y, ι(y)} ∈ p(ι) are either equal or disjoint.
– The inverse map of the map ι 7→

(
S(ι),p(ι)

)
is the map which assigns a (S,p) to the involution ι : X → X

defined by ι(x) := x, if x∈ S, and ι(x) := y, if x /∈ S and {x,y} ∈ p.)
(b) Let X be a finite set. Then #X ≡ #S(ι) (mod 2), i. e., the number #X of elements in X and the
number #S(ι) of fixed points of ι have the same parity. In particular, every involution of a finite
set with odd cardinality has a fixed point. (Hint : Let #p(ι)|= k∈N. Since all elements of p(ι) are
2-element subsets, #(X \S(ι)) = #

(⊎
A∈p(ι) A

)
= 2k and #X = #S(ι)+2k, i .e. #X ≡ #S(ι) (mod 2).)

(c) Let X be finite with even cardinality #X = 2n, n∈N. Then the number of fixed point free
involutions on X is equal to the product ∏

n
k=1(2k−1) = 1 ·3 · · ·(2n−1) = (2n)!/2nn! of the first

n odd natural numbers. (Hint : Let Invf(X) denote the set of all fix-point free involutions on a set
X . Let #X = 2n and let sn := #Invf(X). Then prove the recursion sn+1 = (2n+1)sn, n∈N and hence
the equality sn = ∏

n
k=1(2k−1) by induction on n. For a proof of recursion, let #X = 2n+2 and a∈ X

be fixed. For b ∈ X \ {a}, let Invf(X ;a,b) := {ι ∈ Invf(X) | ι(a) = b} . Then #Invf(X ;a,b) = sn for
every b ∈ X \ {a}, since the restriction map Invf(X ;a,b) ≈−−−−−−−−−- Invf(X \ {a,b}), ι 7→ ι |X\{a,b} is bijective.

Therefore #Invf(X) = #
(⊎

b∈X\{a} Invf(X ;a,b)
)
= (2n+1)sn. Another Proof (more direct) : For a set

Y , let Parn(Y,2) = {p = {A1, . . . ,An} ∈ Par(Y ) | #Ai = 2, i = 1, . . . ,n}. By part (a) there is a bijection
Invf(X) ≈−−−−−−−−−- Parn(X ;2) and every element p= {A1, . . . ,An} correspond to n! decompositions (A1, . . . ,An)

of X . Therefore, since the number of decompositions (A1, . . . ,An) of X into n subsets with #Ai = 2 for
all i = 1, . . . ,n, is (by Exercise 6.7) equal to (2n)!/2n, we have #Invf(X) = #Parn(X ;2) = (2n)!/2nn! =
1 ·2 · · ·(2n−1) ·2n/2 ·4 · · ·(2n) = 1 ·3 · · ·(2n−1).)

(d) Let X be finite with #X = m∈N arbitrary, then show that #Inv(X) = ∑
[m/2]
k=0

( m
2k

)(2k)!
2kk!

.
(Hint : Let #X = m∈N be arbitrary. By part (a) #Inv(X) = #{(S,p) | S ∈P(X) and p ∈Par((X \S);2)}.
This is also equal to #{(S, ι) | S ∈ P(X) and ι ∈ Invf(X \ S)} . For fixed S ∈ P(X) with #(X \ S) = 2k
— we have just shown in the more direct proof of the part (c) that — the number of pairs (S, ι) is equal to

(2k)!/2kk!. Now, since #P2k(X) =
( m

2k

)
, it follows that #Inv(X) = ∑

[m/2]
k=0

( m
2k

)(2k)!
2kk!

. )

R6.9 3 (L a t i n S q u a r e s4 and F i n i t e G e o m e t r i e s) In 1782 Euler stated a problem :
(E u l e r ’ s P r o b l e m) This problem asks for an arrangement of 36 officers of 6 ranks and from 6
regiments in a square formation of size 6×6 so that each vertical and each horizontal line of this formation
contain one and only one officer of each rank and one and only one officer from each regiment. Euler denoted
regiments by the Latin letters a,b,c,d,e, f and the ranks by the Greek letters α,β ,γ,δ ,ε,ζ . This was the
origin of the term “Graeco-Latin square” (or, Euler’s Square).

In modern terminology they are just called Latin Squares which are defined as : Let n ∈N∗. An
n×n matrix A= (ai j)1≤i, j≤n ∈Mn(X) is called a L a t i n s q u a r e with entries in a set X with
#X = n if each row and each column of A is a permutation of X .

3In this Exercise one can see that the history indicated that significant advances were made when one branch of
mathematics was shown to be related to a different branch of mathematics.

4The great mathematician L e o n h a r d E u l e r (1707-1783) introduced Latin squares in 1783 as a “nouveau
espece de carres magiques”, a new kind of magic squares. The name “Latin square” was inspired by mathematical
papers by Leonhard Euler, who used Latin characters as symbols. Leonhard Euler was a Swiss mathematician who
made enormous contributions to a wide range of mathematics and physics including analytic geometry, trigonometry,
geometry, calculus and number theory.
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(a) The binary operation table of a group G with #G = n is an n×n Latin square. In particular,
the binary operation table of the group (Zn,+n) is an n×n Latin square.

Two Latin squares A = (ai j)1≤i, j≤n ∈Mn(X) and B = (bi j)1≤i, j≤n ∈Mn(Y ) with entries in sets
X and Y , respectively, with #X = n = #Y are said to be o r t h o g o n a l if every ordered pair
(x,y) ∈ X ×Y occurs as an entry in their Hadamard product A ◦B or , equivalently, all pairs
(ai j,bi j) are distinct.
(Remarks : Recall that the H a d a m a r d p r o d u c t5 (also known as the S c h u r p r o d u c t or the
e n t r y - w i s e p r o d u c t) of the two m×n matrices A= (ai j) 1≤i≤m

1≤ j≤n
∈Mm ,n(X) and B= (ai j) 1≤i≤m

1≤ j≤n
∈

Mm ,n(Y ) with entries in the sets X and Y , respectively, is the m× n matrix A ◦B := ((ai j,bi j)) 1≤i≤m
1≤ j≤n

∈
Mm ,n(X×Y ) whose (i, j)-th entry is the ordered pair (ai j,bi j) ∈ X×Y . — Euler defined orthogonal Latin
squares and observed that the first step is to arrange Latin letters into a Latin square. In any case, if we label
both the ranks and the regiments by 1,2, . . . ,6, then Euler’s problem reduces to the construction of a pair of
orthogonal 6×6 Latin squares. Euler proved that :
(E u l e r ’ s T h e o r e m) If n ∈N+ and if n 6≡ 2( mod 4), then there exists a pair of orthogonal n×n
Latin squares.
Euler found no solution to his problem and then he conjectured that :
(E u l e r ’ s C o n j e c t u r e) If n ∈N+, n > 2 then there is no orthogonal pair n× n Latin squares if
n≡ 2( mod 4).
The first case n = 2 is trivially impossible. In 1901, G . T a r r y6 proved by a systematic enumeration that
Euler’s conjecture holds for n = 6 and hence proved that there is no solution to the Euler’s problems of
36 officers. E . T . P a r k e r discovered an orthogonal pair of 10×10 Latin squares, there by disproving
Euler’s conjecture. However, it is not until 1960, through the combined efforts of R . C . B o s e, S . S .
S h r i k h a n d e and E . T . P a r k e r7 the remainder of Euler’s conjecture is false. They proved that : If
n ∈N+, n > 6 and if n≡ 2( mod 4), then there exists a pair of orthogonal n×n Latin squares.)
There is an upper bound on the number of n×n Latin Squares that are pairwise orthogonal : If n∈N+, n > 2
and if A1, . . . ,Ar are pairwise orthogonal n×n Latin Squares, then r≤ n−1. If this upper bound is attained,
then we say that there exists a c o m p l e t e o r t h o g o n a l s e t o f n×n L a t i n s q u a r e s.
If n = pe, e ∈N+ is a power of a prime number p, then the following construction of orthogonal Latin
squares uses the structure of a finite fields8 Fpe :

(b) Let k be a finite field with #k = q and let a ∈ k×. Then the matrix La := (ax+ y)(x,y)∈k2 is a
q× q Latin square. Moreover, for a,b ∈ k×, a 6= b, the Latin squares La and Lb are orthogonal.
In particular, for every prime power pe > 2, La, a ∈ k×, is a complete orthogonal set of pe×pe

Latin squares. (Remark : If we replace the finite field k by a finite ring (Zn,+n, ·n), n ∈N+, n≥ 2, then
La is a Latin square if and only if a is a unit in the ring Zn, i. e., a ∈Z×n . For which a,b ∈Z×n , a 6= b , the
Latin squares La and Lb are orthogonal?)
(c) (G e o m e t r i e s) The basic axioms that we use in the Euclidean (plane) geometry9 of the real plane
are : (i) Two distinct points determine a unique line. (ii) If L is a line and P is a point not on L , then
there exists a unique line L′ such that P ∈ L′ and L′ is parallel to L , i. e., L∩L′ = /0.

5It should not be confused with the more common matrix product. It is attributed to, and named after, either French
mathematician J a c q u e s H a d a m a r d, or German mathematician I s s a i S c h u r.

6See : [G. Tarry, Le problẽme des 36 officers, C. R. Assoc. Fran. Av. Sci., 1 (1900), 122-123, Vol. 2 (1901), 170-203.
7See : [R. C. Bose and S. S. Shrikhande, On the falsity of Euler’s conjecture about the non-existence of two

orthogonal latin squares of order 4t + 2, Proc. Nat. Acad. Sci., 45 (1959), 734-737.] and [R. C. Bose, S. S. Shrikhande,
and E. T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s
conjecture, Canad. J. Math., 12 (1960), 189-203.]

8E v a r i s t e G a l o i s (1811-1832) invented finite fields around 1830. Galois was a French mathematician
who produced a method of determining when a general equation could be solved by radicals and is famous for his
development of early group theory; In 1782 Euler constructed orthogonal pn× pn Latin squares in a (different) more
complicated way.

9During 18-th and 19-th centuries non-Euclidean geometries were developed when alternatives to the condition (ii)
were investigated. However, all these geometries contained infinitely many points and lines in them.
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One can also make the following more general definition :
Definition (A f f i n e p l a n e) Let A be any set — called the set of points and let L ⊆ P(A) \ { /0}
— called the set of lines. An affine plane is a structure on the pair (A,L) which satisfy the following three
properties : (A1) Two distinct points determine a unique line. (A2) If L is a line and P is a point not on
L , then there exists a unique line L′ such that P ∈ L′ and L′ is parallel to L , i. e., L∩L′ = /0. (A3) There
are at least 4 points in A, no three of them are collinear, i. e., they do not lie on any line L ∈ L.
In the 17-th century, the co-ordinates were introduced by Fermat10 and Descartes11 with this Euclidean
geometry became analytical geometry, there by points by coordinates and and lines are described algebraically
by their equations and slopes : the lines X = a , a ∈ R are vertical lines (with infinite slopes); the lines
Y = mX + c , (m,c) ∈R2 are lines with finite slopes m ∈R and two line are parallel if and only if they have
the same slopes. The introduction of co-ordinates Euclidean geometry became the co-ordinate (or analytic)
geometry. This also brought out the most important property used in Euclidean or analytic geometry, namely,
the usual addition and the usual multiplication on the set of real numbers form a field and that one can solve
quadratic equations with real coefficients.
We can therefore starting from an arbitrary field k (may be even finite) the following examples of affine
planes (over k are useful :
Definition (A f f i n e p l a n e o v e r a f i e l d ) Let k be a field (may be even finite). Let A2

k :=k2 and let
Lk :={vertical lines :La :=X−a=0 | a ∈ k}∪{lines with finite slopes :Lm ,c :=Y−mX+c=0 | (m,c)∈k2} .
One can easily check (using the field structure on k ) that (A2

k ,Lk) has a structure of an affine plane (in the
sense of above definition).
Now, if k = Fq is a finite field with q elements, then #A2

k = q2, each line L ∈ Lk contains exactly q points,
each point in A2

k lies on exactly q+1 lines and #Lk = q2 +q. These are specific examples of finite affine
planes or finite geometries which have connection with the Latin squares, see the part (b) above.
What exactly goes wrong (which of geometric properties A1, A2, A3 in the definition of affine plane fail) if
we try to construct an affine plane A2

Z4
or A2

Z6
using the finite rings Z4 or Z6 instead of a field?

We now introduce a construction that enlarges affine planes to what is called a projective plane :
Definition (P r o j e c t i v e p l a n e12) Let P be any set — called the set of points and let L⊆P(P)\{ /0}
— called the set of lines. A projective plane is a structure on the pair (P,L) which satisfy the following three
properties : (P1) Two distinct points determine a unique line. (P2) Any two lines L,L′ ∈ L intersect
in a unique point P ∈ P. (P3) There are at least 4 points in P, no three of them are collinear, i. e., they
do not lie on any line L ∈ L. We further say that (P,L) is a p r o j e c t i v e p l a n e o f o r d e r n if
#P= n2 +n+1.
The affine planes over a field are extended to projective planes as follows :
Definition (P r o j e c t i v e p l a n e o v e r a f i e l d ) Let k be a field (may be even finite). Start with an
affine plane A2

k and let P2
k := {(x,y,1) | (x,y) ∈A2

k ∪L∞, where L∞ := {(1,0,0)}∪{(x,1,0) | x ∈ k}. Now
think of points (x,y,1) as ordered triples (x,y,z) ∈ k3, where z = 1 and rewrite the equations La=X−a=0
and Lm ,c=Y−mX+c=0 of lines in A2

k as : La=X−aZ=0 and Lm ,c=Y−mX+cZ=0, where Z = 1. In
addition to these lines add the new line L∞ — called the line at infinity — which has the equation Z = 0
with the convention that we never have x = y = z = 0, i. e., (0,0,0) 6∈ P2

k . One can now easily check (using
the field structure on k ) that (P2

k ,Lk ∪{L∞}) has a structure of a projective plane (in the sense of above
definition). Moreover, if k = Fq is a finite field with q elements, then #P2

k = q2 +q+1 elements, i. e., the
finite projective plane (P2

k ,Lk∪{L∞}) has order q. Furthermore, each line L ∈ Lk∪{L∞} contains exactly

10Pierre de Fermat (1601-1665) was a French lawyer and government official most remembered for his work in
number theory; in particular for Fermat’s Last Theorem. He is also important in the foundations of the calculus.

11R e n é D e s c a r t e s (1596-1650) was a French philosopher whose work, La géométrie, includes his application
of algebra to geometry from which we now have Cartesian geometry. His work had a great influence on both
mathematicians and philosophers.

12Projective geometry has its origins in the early Italian Renaissance, particularly in the architectural drawings of
F i l i p p o B r u n e l l e s c h i (1377 - 1446) and L e o n B a t t i s t a A l b e r t i (1404 - 1472), who invented the
method of perspective drawing. In the early 1800s, mathematicians were studying problems of perspective arising from
artists painting pictures of three-dimensional scenes on two-dimensional canvases. To eye parallel lines seem to meet at
the horizon, this suggests adjoining a new line called the “line at infinity” to the ordinary (affine) plane. With this this
the concept of projective plane came into existence.
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q+1 points, each point in P2
k lie on exactly q+1 lines, there are exactly #Lk ∪{L∞} = q2 +q+1 lines

and any two points in P2
k lie on only one line.

The difference between the affine and projective planes is that in projective planes there are no parallel lines.
The smallest example of a finite projective plane13 is a triangle– the projective plane of order 1. The smallest
non-trivial example is of order 2, i. e., P2

F2
which has 7 points and 7 lines. It is possible to constructive

projective planes without using finite fields. For example, it is known that there are four projective planes of
order 9 and only one among them arises from the finite field with 9 elements.
— Remarks : One can generalize the definitions of affine and projective planes to higher dimensional affine
and projective spaces using the vector spaces (over fields) of higher dimensions. Their study is then called
affine geometry or projective geometry. Combinatorial designs14 are related to finite projective geometries.
The following theorem is the reason for introducing the concept of (finite) projective planes :
Theorem (B o s e, 1938)15 If n ∈N+, n≥ 3, then there exists a projective plane of order n if and only if
there exists a complete orthogonal set of n×n Latin squares.

Since there does not exist even a pair of orthogonal 6× 6 Latin squares, Bose’s result implies the non-
existence of a projective plane of order 6. Systematic hand enumeration is messy and is error prone. But
mathematicians did find a better explanation in the following celebrated result of Bruck and Ryser :

Theorem (B r u c k - R y s e r, 1949)16 Suppose that n ∈N+ with either n≡ 1( mod 4), or n≡ 2( mod
4). Then a necessary condition for the existence of a finite projective plane of order n is that n is a sum of
squares, i. e., n = x2 + y2 for some x,y ∈Z.
An equivalent formulation of the Bruck-Ryser theorem is : If a projective plane of order n exists and if
n≡ 1,2(mod 4), then the square-free part of n has no prime divisors of the form 3(mod 4).
We can deduce some simple corollaries : among the first few numbers of the form 1(mod 4) are : 5,9,13,17,
21,25,29,33, there are no projective planes of orders 21 and 33 ; among the first few numbers of the form
2(mod 4) are : 6,10,14,18,22,26,30,34 there are no projective planes of orders 6,14,22 and 30.
The crucial step involved in the proof of Bruck-Ryser Theorem is the use of incidence matrix A∈Mn({0,1})
of the projective plane of order n and its properties which are translated from the properties of the projective
plane. Ryser showed that the incidence matrix A is a normal matrix, i. e., A ·trA=trA ·A.
Since there exists a projective plane of order p , Bruck-Ryser Theorem implies the F e r m a t ’ s t w o -
s q u a r e t h e o r e m: If p is a prime number with p≡ 1( mod 4), then p is a sum of two squares. In fact,
Bruck-Ryser Theorem implies that : If p is a prime number with p≡ 1( mod 4), then pe is a sum of two
squares for every e≥ 2.

— Remarks : In 1988 C . L a m17 was able to show that there does not exist a projective plane of order 10.
He used a massive amount of calculation : 19,200 hours (approximately 800 days) on VAX-11/780 followed
by 3,000 hours (approximately 3 months) on CRAY-1A. Thus, two and half years of actual computer running
time (not counting the years of human thought and ingenuity involved in instructing the machines) solved the
problem. It is unknown whether a projective plane of order 12 exists (since 12≡ 0( mod 4), it is not covered
by Bruck-Ryser theorem.)

13The notion of a finite projective planes did not appear until the end of 19-th century in the work of G i n o F a n o
(1871-1952) an Italian mathematician. The Fano-plane is a projective plane of order 2, i. e., with 7 points. Another one
of order 3, i. e., with 13 points was constructed by T i c t a c a theoretical physicists by adding to their word 4 points.
The attractiveness of these objects is in their simplicity and their reliance on the language of geometry.

14Notion of designs was first studied by statisticians (R . A . F i s h e r and his followers) in the area called the
design of experiments. This area play an important role in the modern theory of statistical analysis.

15See :[R. C. Bose, On the application of the properties of Galois fields to the problem of construction of hyper-
Graeco-Latin squares, Sankhyd, 3 (1938) 323-338.]

16See : [R. H. Bruck and H. J. Ryser, The non-existence of certain finite projective planes, Can. J. Math., 1 (1949)
88-93.]

17See : [C. W. H. Lam, L. H. Thiel, and S. Swiercz, The non-existence of finite projective planes of order 10, Can. J.
Math., XLI (1989), 1117-1123.]
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(d) (L a t i n r e c t a n g l e s) Let r,s ∈ N∗. A r× s matrix A = (ai j) ∈ Mr,s(X) is called a
L a t i n r e c t a n g l e with entries in a set X if entries in each row and in each column of A
are distinct. Suppose that #X = n≥max{r,s}, then we say that a Latin rectangle A ∈Mr,s(X) is
e x t e n d a b l e t o a n n× n L a t i n s q u a r e if it is possible to add n− s columns and
n− r rows to A such that it becomes an n×n Latin square. With this definition, prove that :

Theorem (M a r s h a l l H a l l, 1945)18 Let r,n∈N∗ with r < n. Then every r×n Latin rectangle
A=(ai j) 1≤i≤r

1≤ j≤n
∈Mr ,n(X) with entries in a set X can be extended to an n×n Latin square.

(Proof : Obviously #X ≥ n and we may assume that X = {1, . . . ,n} and that every row is a permutation
of X . We use the Marriage Theorem T6.1 to the family Yj := {i ∈ X | i does not appear in the j-th column} ,
j ∈ X . Now, to verify that the Marriage condition is satisfied, it is easy to check that : (i) #Yj = n− r for
every j ∈ X . (ii) Every element of X appears exactly in n− r subsets Yj, j ∈ X . For this use the fact that
every element of X appears exactly r times in the Latin rectangle. (iii) For every m ∈ X , any m sets Yj,
j ∈ X together contain m(n− r) elements and hence (by (ii)) at least m distinct elements. •)

R6.10 (a) Let a,b,m,k ∈N be such that
(

a
k

)
≤ m <

(
a+1

k

)
and

(
b
k

)
≤ m <

(
b+1

k

)
. Show

that a = b. (Hint : Suppose that a < b, i.e., a+1≤ b. Then, since Pk({1, . . . ,a+1})⊆Pk({1, . . . ,b}) ,
we have m <

(a+1
k

)
≤
(b

k

)
≤ m, a contradiction.)

(b) Let k ∈N+ be a positive natural number and let n ∈N be an arbitrary natural number. Show

that there exist unique a1, . . . ,ak ∈N such that 0≤ a1 < a2 < · · ·< ak and n =
k

∑
j=1

(
a j

j

)
. (Hint :

The existence of a1, . . . ,ak is proved by induction on k. If k = 1, then n =
(n

1

)
is the required representation.

Assume k > 1 and choose ak ∈N with
(ak

k

)
≤ n <

(ak+1
k

)
. For the number m := n−

(ak
k

)
≥ 0 by induction

hypothesis there exists a representation m = ∑
k−1
j=1

(a j
j

)
with 0 ≤ a1 < a2 < · · · < ak−1. Now we need

to show that ak−1 < ak. Since
(ak+1

k

)
=
(ak

k

)
+
( ak

k−1

)
, we have n = ∑

k−1
j=1

(a j
j

)
+
(ak+1

k

)
−
( ak

k−1

)
<
(ak+1

k

)
;

in particular,
(ak−1

k−1

)
<
( ak

k−1

)
and hence ak−1 < ak. Now we prove the uniqueness of a1, . . . ,ak. If k = 1,

this is trivial. Assume k > 1 and suppose that n = ∑
k
j=1
(a j

j

)
= ∑

k
j=1
(b j

j

)
with 0≤ a1 < a2 < · · ·< ak and

0≤ b1 < b2 < · · ·< bk. It is enough to show that
(ak

k

)
≤ n <

(ak+1
k

)
and

(bk
k

)
≤ n <

(bk+1
k

)
, for then, ak = bk

by part a) and by induction hypothesis to the two representations of m := n−
(ak

k

)
= n−

(bk
k

)
, we get a j = b j

for all k = 1, . . . ,k−1. Now, we show that
(ak

k

)
≤ n <

(ak+1
k

)
. If ak < k, then a j = j−1 for all j = 1, . . . ,k

and
(ak

k

)
=
(k−1

k

)
= 0 = n <

(ak+1
k

)
=
(k

k

)
= 1. Therefore suppose that ak ≥ k. Then

(ak+1
k

)
= ∑

k
i=0
(ak−i

k−i

)
(by recursion formula 19) and hence

(ak
k

)
=
(ak+1

k

)
−∑

k
i=1
(ak−i

k−i

)
and n = ∑

k
i=0
(ai

i

)
= ∑

k−1
j=1

(ak− j
k− j

)
+
(ak

k

)
=(ak+1

k

)
−
(ak−k

0

)
+∑

k−1
j=1

((ak− j
k− j

)
−
(ak− j

k− j

))
=
(ak+1

k

)
−1−∑

k−1
j=1

((ak− j
k− j

)
−
(ak− j

k− j

))
. Now, since ak−1≥ ak−1

and by induction ak− j ≥ ak− j for every 1≤ j ≤ k−1 and hence ∑
k−1
j=1

((ak− j
k− j

)
−
(ak− j

k− j

))
≥ 0. This proves

that n <
(ak+1

k

)
, the other inequality

(ak
k

)
≤ n is trivial.)

(c) For k ∈N, k ≥ 1, show that the map Nk→N defined by

(m1,m2, . . . ,mk) 7→
(

m1

1

)
+

(
m1 +m2 +1

2

)
+ · · ·+

(
m1 +m2 + · · ·+mk + k−1

k

)
is bijective. (Hint : Use part (b).)

Below one can see Lecture Notes.

18See : [Marshall Hall, An existence theorem for Latin squares, Bull. Amer. Math. Soc. Vol. 51 (1945), 387-293.]
19Recursion formula for binomial coefficients:

(n+1
k

)
=
(n

k

)
+
(n−1

k−1

)
+ · · ·+

(n−k+1
1

)
+
(n−k

0

)
. This follows from

the equality
(n+1

m

)
=
(n

m

)
+
( n

m−1

)
.
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