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Lecture Notes

To understand and appreciate the text which is (in dark-violet colour) marked with the symbol
† one may possibly require more mathematical maturity than one has! These are steps towards
applications to various other branches of mathematics, especially to Analysis and Number Theory.

There is a dictum that anyone who desires to get at the roots of the subject should study
its history. Endorsing this, the pain is taken to fit historical remarks in the text whenever
possible.

The Theory of Numbers is concerned with properties on integers and more particularly with the positive
integers (also known as the positive natural numbers) 1,2,3, . . . . The origin of this misnomer harks back to
the early Greeks for whom the number meant positive integer and nothing else. Far from being a gift from
Heaven, number theory has had a long and sometimes painful evolution.
– Few words about the origin of number theory: The Theory of Numbers is one of the oldest branches of
mathematics; its roots goes back to remote date. The Greeks were largely indebted to the Babylonians and
ancient Egyptians for a core of information about the properties of natural numbers, the first rudiments of
this theory are generally credited to Pythagoras10 and his disciples.

P l a t o11 said “God is a geometer” – J a c o b i12 changed this to “God is a arithmatician”. Then
came K r o n e c k e r13 and fashioned the memorable expression “God created the natural numbers
and all the rest is the work of man”. F e l i x K l e i n14 (1849-1925)

T5.1 ( T h e s e t o f N a t u r a l n u m b e r s - - P e a n o ’ s a x i o m s Natural numbers cane be
defined axiomatically as follows:

10P y t h a g o r a s o f S a m o s (born between 580 BC and 562 BC) was an Ionian Greek philosopher, mathe-
matician, and founder of the religious movement called Pythagoreanism. Most of the information about Pythagoras
was written down centuries after he lived, so very little reliable information is known about him. He was born on
the island of Samos, and might have traveled widely in his youth, visiting Egypt and other places seeking knowledge.
Around 530 BC, he moved to Croton, a Greek colony in southern Italy, and there set up a religious sect. The school
concentrated on four mathemata or subjects of stud: arithmetica (arithmetic – Number theory rather than the art of cal-
culating), harmonia (music), geometria (geometry) and astrology (astronomy). This fourfold division of knowledge
became known in the Middle Ages as the quadrivium to which was added the trivium of logic, grammar and rhetoric.
These seven liberal arts came to be looked upon as the necessary course of study of an educated person.
Pythagoras made influential contributions to philosophy and religious teaching in the late 6-th century BC. He is often
revered as a great mathematician, mystic and scientist, but he is best known for the Pythagorean theorem which bears
his name. The society took an active role in the politics of Croton, but this eventually led to their downfall. The
Pythagorean meeting-places were burned, and Pythagoras was forced to flee the city. He is said to have ended his days
in Metapontum.

11P l a t o (427 BC-347 BC) is one of the most important Greek philosophers. He founded the Academy in Athens,
an institution devoted to research and instruction in philosophy and the sciences. His works on philosophy, politics
and mathematics were very influencial and laid the foundations for Euclid’s systematic approach to mathematics.

12C a r l G u s t a v J a c o b J a c o b i (1804-1851) made basic contributions to the theory of elliptic functions.
He carried out important research in partial differential equations of the first order and applied them to the differential
equations of dynamics.

13L e o p o l d K r o n e c k e r (1823-1891) was a German mathematician. His primary contributions were in the
theory of equations. He made major contributions in elliptic functions and the theory of algebraic numbers.

14F e l i x C h r i s t i a n K l e i n (1849-1925) was a German mathematician. Felix Klein’s synthesis of geometry
as the study of the properties of a space that are invariant under a given group of transformations, known as the Erlanger
Programm, profoundly influenced mathematical development.
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A set of natural numbers N is a set with special element 0 and there is a map s : N → N \ {0}
satisfying the following properties:
(P1) s is injective.
(P2) (I n d u c t i o n - A x i o m) Suppose that M ⊆N is a subset such that 0 ∈ M and if n ∈ M,
then s(n) ∈ M. Then M =N.
(Remark : These axioms are known as Peano’s axioms and were introduced by G i u s e p p e P e a n o15

in the “Arithmetices Principia”, Torino, 1889. Peano also showed how one can derive the entire arithmetic
using these axioms.)

The axiom P2 is called the a x i o m o f i n d u c t i o n or i n d u c t i o n - a x i o m. From this
axiom it follows that the map s : N → N \ {0} is surjective and hence it is bijective. Instead of
0,s(0),s(s(0)),s(s(s(0))), . . . , , one can simply write 0,1,2,3, . . . , .

With this one can immediately ask the following two fundamental questions:
(1) Does there exists such a system (N,0,s) which satisfy the axioms P1 and P2, i. e. a model for
natural numbers.
(2) If answer to the question (1) is yes, then ow many such models are there?
For these questions we consider the following concept (due to Dedekind) :
A set X is called ( s i m p l e ) i n f i n i t e if there exists an injective map f : X → X which is not
surjective. Then clearly (if it exists!) the set N of natural numbers is a “smallest” simple infinite
set. More deeper is the following theorem due to Dedekind: There exists a unique simple infinite
set which is a model (N,0,s) for the set of natural numbers. We shall indicate the existence here
and the uniqueness is precisely formulated in T5.9.
Start with the emptyset /0 and put:

0 := /0,
1 := { /0}= {0}= 0+ ,
2 := { /0}∪{{ /0}}= {0,1}= 1+ ,
3 := { /0,{ /0},{ /0,{ /0}}}= {0,1,2}= 2+

and so on . . . n := {0,1,2, . . . ,n−1}= (n−1)+ .
Now, take N := {0,1,2, . . .} and define s : N→N by s(n) := n+ = n∪{n} = {0,1,2, . . . ,n}. It
is easy to check that (N,0,s) satisfies the Peano’s axioms P1 and P2.
In terms of immediate successors the above can be written as: 1 is the immediate successor of
0, 2 is the immediate successor of 1, . . ., n+ is the immediate successor of n for every n ∈ N.
Moreover, there is a unique relation ≤ on N (actually it is the inclusion relation ⊆ ) which a
total order on N with the smallest element 0. (Remark : This unique order ≤ on N is called the
s t a n d a r d or u s u a l o r d e r on N. In T5.2-(b) below, we shall prove that the ordered set (N,≤) is
well-ordered, i. e. every non-empty subset M ⊆N has the smallest element (in M).)

T5.2 We use the Induction-axiom to prove its following consequences:

(a) ( F i r s t p r i n c i p l e o f i n d u c t i o n ) Using the third axiom of Peano prove the following :
Suppose that for each natural number n∈N, we have associated a statement S(n). Assume that
the following conditions are satisfied :
(i) S(0) is true. The ( B a s i s o f I n d u c t i o n )

15G i u s e p p e P e a n o (1858-1932) was an Italian mathematician born on 27 August 1858 and died on 20 April
1932, whose work was of exceptional philosophical value. The author of over 200 books and papers, he was a founder
of mathematical logic and set theory, to which he contributed much notation. The standard axiomatization of the
natural numbers is named in his honor. As part of this axiomatization effort, he made key contributions to the modern
rigorous and systematic treatment of the method of mathematical induction. He spent most of his career teaching
mathematics at the University of Turin, Italy.
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(ii) For every n ∈N, S(n+1) is true whenever S(n) is true. The ( I n d u c t i v e s t e p )
Then S(n) is true for all n ∈N. (Hint : Let M := {n ∈ N | S(n) is true} ⊆ N. Then 0 ∈ M by the
hypothesis (i). Furher, by hypothesis (ii) if n ∈ M, then n+1 ∈ M. Therefore M = N by the induction-
axiom. – Remark: The following variant is also used very often: Let n0 ∈ N. Suppose that for every
natural number n ≥ n0, we have associated a statement S(n). Assume that S(n0) is true and for every
n ≥ n0 , S(n+1) is true whenever S(n) is true. Then S(n) is true for all n ≥ n0. For the proof consider the
set M := {n ∈N | n < n0}∪{n ∈N | n ≥ n0 and S(n) is true }.)

(b) ( M i n i m u m P r i n c i p l e or w e l l O r d e r i n g P r i n c i p l e) Every non-empty subset
M of N has a smallest element, i.e., there exists an element m0 ∈ M such that m0 ≤ m for all
m ∈ M. (Hint : For n ∈N, let S(n) be the following statement: If M contains a natural number m with
m ≤ n, then M has a smallest element. By using induction show that the statement S(n) is true for all n.
– Remark: The minimum principle for N is also known as the w e l l - o r d e r i n g p r o p e r t y o f N.
Moreover, well-ordering property of N is equivalent to the induction-axiom, see the part (c) below.)

(c) Deduce the induction-axiom from the well-ordering property of N. (Hint : Suppose that M ⊆N

such that 0 ∈ M and if n ∈ M, then n+ 1 ∈ M. To prove that M = N or equivalently to prove that the
complement N\M = /0. If N\M ̸= /0, then by the minimal principle, it has a smallest element say n0, i. e.
n0 ∈N\M and n0 ≤ n for every N\M. But then n0 −1 ∈ M and n0 ̸∈ M a contradiction to the hypothesis
in the induction-axiom.)

(d) (A r c h i m e d e a n P r o p e r t y) For every pair of positive natural numbers a and b , there
exists a positive natural number n ∈N∗ such that n · b ≥ b . (Remark : Note that we have assumed
that the binary operations + , · and the order relation ≤ are defined on N, see T5.8. Further, for x,y ∈N,
note that x ≤ y if y = x+ z for some z ∈ N. – Hint: Suppose that b < n · a for every n ∈ N. Then
M := {b− na | n ∈ N} ⊆ N and clearly b ∈ M. Therefore by the Minimum Principle M has a smallest
element, say b−m · a . But then b− (m+ 1) · a ∈ M also and b− (m+ 1) · a = b−m · a− a < b−m · a a
contradiction to the minimality of b−m ·a . )

(e) ( S e c o n d p r i n c i p l e o f i n d u c t i o n ) Suppose that for each natural number n∈N, we
have associated a statement S(n). Assume that for every n ∈N, if the S(m) is true for all m < n,
then S(n) is also true. Then S(n) is true for all n ∈N. (Hint : Let M := {n ∈ N | S(n) is NOT
true} ⊆N. Then show that M = /0.)

T5.3 (Some A r i t h m e t i c s e r i e s ) For all n ∈N, prove the following formulas by induction :

(a)
n

∑
k=1

k =
n(n+1)

2
. (b)

n

∑
k=1

k2 =
n(n+1)(2n+1)

6
. (c)

n

∑
k=1

k3 =
(n(n+1)

2

)2
=

( n

∑
k=1

k
)2

.

(d)
n

∑
k=1

(−1)k−1k = 1
4
(
1+(−1)n−1(2n+1)

)
. (e)

n

∑
k=1

(−1)k−1k2 = (−1)n+1 · n(n+1)
2

.

(f)
n

∑
k=1

(2k−1)=n2. (g)
n

∑
k=1

(2k−1)2=
n
3
(4n2 −1) . (h)

n

∑
k=1

k(k+1)= 1
3

n(n+1)(n+2) .

(i)
n

∑
k=1

1
k(k+1)

= 1− 1
n+1

. (j)
n

∑
k=1

1
4k2 −1

=
1
2

(
1− 1

2n+1

)
.

(k)
n

∑
k=1

1
k(k+1)(k+2)

=
1
4
− 1

2(n+1)(n+2)
. (l)

n

∑
k=1

k−1
k(k+1)(k+2)

=
1
4
− 2n+1

2(n+1)(n+2)
.

T5.4 For all n ≥ 1 prove:

(a)
n

∏
k=2

(
1− 1

k2

)
=

1
2

(
1+ 1

n

)
. (b)

n

∏
k=2

(
1− 2

k(k+1)

)
=

1
3

(
1+ 2

n

)
.
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(c)
n

∏
k=2

k3 −1
k3 +1

=
2
3

(
1+ 1

n(n+1)

)
.

T5.5 ( F i n i t e g e o m e t r i c s e r i e s ) For every real (or complex) number q ̸= 1 and every n ∈N, prove

that : (a) ∑n
k=0 qk = qn+1−1

q−1 (b)
n

∏
k=0

(1+q2k
) =

q2n+1 −1
q−1

. (c)
n

∑
k=1

kqk =
nqn+2 − (n+1)qn+1 +q

(q−1)2 .

T5.6 For all n ≥ 1 prove:

(a) 5 divides 2n+1 +3 ·7n. (b) 3 divides n3 +2n. (c) 6 divides n3 −n.

(d) 7 divides 52n+1 +22n+1. (e) 30 divides n5 −n. (f) 3 divides 22n −1.

(g) 15 divides 3n5 +5n3 +7n. (h) 133 divides 11n+2 +122n+1. (i) 5 divides 3n+1 +23n+1.

T5.7 Proofs by induction are very common in Mathematics and are undoubtedly familiar to the
reader. One also encounters quite frequently – without being conscious of it – definitions by
induction or recursion. For example, powers of a non-zero real number an are defined by a0 =
1,ar+1 = ara. Definition by induction is not as trivial as it may appear at first glance. This can be
made precise by the following well-known recursion theorem proved by Dedekind16 :

(a) ( R e c u r s i o n T h e o r e m ) Let X be a non-empty set and let F : X → X be a map. For
a ∈ X, there exists a unique (sequence in X ) map f : N−−−−−−−−−−−−−−−- X such that (i) f (0) = a and
(ii) f (s(n)) = F( f (n)) for all n ∈N, i.e., the following diagram is commutative.

N −−−−−−−−−−−
s
−−−−−−−−−−−−- N

f
?

f
?

X −−−−−−−−−−−
F
−−−−−−−−−−−−- X

(Hint : Uniqueness of f is clear by induction. For existence, put In := {0,1, . . . ,n}. By induction show that
the following statement S(n) is true for all n ∈N. S(n) : There exists a unique map fn : In → X such that
fn(0) = a and fn(r+ 1) = F( fn(r)) for every r ∈N with r < n. For arbitrary natural numbers m,n ∈N

with m ≤ n, we then have fm = fn|Im. Therefore fn(n) = F( fn(n− 1)) = F( fn−1(n− 1)) for all n ≥ 1.
Now, define f by n 7→ fn(n).) (Remark : One might be tempted to say that one can define inductively by
conditions (i) and (ii). However, this does not make sense since in talking about a function on N we must
have an à priori definition of f (n) for every n ∈N. A proof of the existence of f must use all of Peano’s
axioms. See the example illustrating this in the part (b) below.)

(b) (H e n k i n) Let N = {0,1} and define the map sN : N → N by sN(0) := 1 and sN(1) := 1.
Show that (N,sN) satisfies Peano’s axioms P2 but not P1. Show that the recursion theorem breaks
down for (N,sN). (Hint : Let F : N → N be the map defined by F(0) = 1 and F(1) = 0. Show that there
is no map f : N → N satisfying f (0) = 0 and f (sN(a)) = F( f (a)) for all a ∈ N.)

(c) ( I t e r a t i o n o f m a p s ) Let X be a set, Φ : X → X be a map, i.e., Φ ∈ XX . and let
F : XX → XX be the map defined by Ψ 7→ Φ ◦Ψ. Then there exists a sequence f : N → XX

16J u l i u s W i l h e l m R i c h a r d D e d e k i n d (October 6, 1831 - February 12, 1916) was a German math-
ematician who did important work in abstract algebra (particularly ring theory), algebraic number theory and the
foundations of the real numbers. Dedekind was one of the greatest mathematicians of the nineteenth-century, as well
as one of the most important contributors to number theory and algebra of all time. Any comprehensive history of
mathematics will mention him for his invention of the theory of ideals and his investigation of the notions of algebraic
number, field, module, lattice, etc. Often acknowledged are: his analysis of the notion of continuity, his introduction of
the real numbers by means of Dedekind cuts, his formulation of the Dedekind-Peano axioms for the natural numbers,
his proof of the categoricity of these axioms, and his contributions to the early development of set theory.
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in XX such that f (0) = idX and f (n + 1) = F( f (n)) = Φ ◦ f (n) for all n ∈ N. For n ∈ N

the map f (n) : X → X is called the n- t h i t e r a t e o f Φ and is denoted by Φn. Note that
Φ0 = idX ,Φn+1 = Φn ◦Φ for all n ∈N. Further, (idX)

n = idX for n ∈N.

(d) Let X be a set, a ∈ X , Y :=
∪

n∈NXn and let G : Y → X be a map. Then there exists a unique
sequence g : N→ X such that ,g(0) = a and g(n+ 1) = G(g(0),g(1), . . . ,g(n)) for all n ∈ N.
(Hint : Define the map F : Y →Y be (x1, . . . ,xn) 7→ (x1, . . . ,xn,G((x1, . . . ,xn))). Then by recursion theorem
there exists a unique map f : N→Y such that f (0) = a and f (n+1) = F( f (n)) for all n ∈N. Now, define
g : N→ X by n 7→ f (n)(n).)

T5.8 (A d d i t i o n , M u l t i p l i c a t i o n a n d E x p o n e n t i a t i o n i n N ) Let (N,0,s)
of a set natural numbers (defined in T5.1).
(a) The binary operations a d d i t i o n + : N×N → N and the m u l t i p l i c a t i o n · :
N×N → N on N can be defined by using the recursion theorem. Further, one can verify the
standard properties + and · . For example, existence of identity element, associativity, commu-
tativity, distributive laws, cancelation laws, monotonicity (with respect to the standard order ≤
etc. (Hint : For + apply recursion theorem to X = N F = s and a = m ∈ N to get the unique map
sm : N → N such that sm(0) = m and sm(s(n)) = s(sm(n) for all n ∈ N. Now, define m+ n := sm(n).
Note that m+ 0 = sm(0) = m and m+ s(n) = sm(s(n)) = s(sm(n)). Further, note that for m ∈N, the map
sm : N→N is the m-th iterate (see T5.7-(c)) sm = s◦ s◦ · · · ◦ s︸ ︷︷ ︸

m-times

of the successor map s. For m,n ∈N, define

the multiplication m ·n := sm
n (0) = (sn)m(0).)

(b) There exists a binary operation of e x p o n e n t i a t i o n (or n -th p o w e r o f m ) N×N→N,
(m,n) 7→ mn. Further, one can state and verify the standard laws of exponents. (Hint : For m ∈N,
let pm : N→N be the multiplication by m. Define mn := pn

m(1).)

T5.9 (U n i q u e n e s s o f t h e m o d e l (N,0,s)) Use Recursion Theorem (see T5.7-(a)) to
show that the model (N,0,s) of a set natural numbers (defined in T5.1) is essentially unique. More
precisely: Let Ñ be a non-empty set, 0̃ ∈ Ñ and let s̃ : Ñ→ Ñ be a map. Suppose that for each
map F : X → X and each a ∈ X , there exists a unique map f̃ : Ñ→ X such that (i) f̃ (0̃) = a and
(ii) f̃ (s̃(n)) = F( f̃ (n)) for all n ∈N, i.e., the diagram

Ñ −−−−−−−−−−−̃
s
−−−−−−−−−−−−- Ñ

f̃
?

f̃
?

X −−−−−−−−−−−
F
−−−−−−−−−−−−- X

is commutative. Then there exists a unique bijective map Φ : N → Ñ such that Φ(0) = 0̃ and
Φ(s(n)) = s̃(Φ(n)) for all n ∈N, i.e., the diagram

N −−−−−−−−−−−
s
−−−−−−−−−−−−- N

Φ
?

Φ
?

Ñ −−−−−−−−−−−̃
s
−−−−−−−−−−−−- Ñ

is commutative.

T5.10 In this exercise we list some more useful formulations of recursions: Let X and Y be sets.

(a) ( D o u b l e R e c u r s i o n ) Let a ∈ X and let F,G : X → X be two maps. Then there exists
a unique map g : N×N → X such that g((0,0)) = a, g((0,n+ 1)) = F(g(0,n)) for all n ∈ N

and g((m+1,n)) = G(g(m,n)) for all m,n ∈N . Use double recursion to obtain directly the oper-
ations of addition + and · on N.
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(Hint : By Recursion Theorem T5.7-(a) there exists a map Ψ0 : N→ X such that Ψ0(0) = 0 and Ψ0(n+
1) = F(Ψ0(n)) for all n ∈ N. Now, apply once again the Recursion Theorem to the map Φ : XN → XN,
φ 7→ G ◦φ and Ψ0 ∈XN, to get the map Ψ : N→ XN such that Ψ(0) = Ψ0 and Ψ(m+ 1) = Φ(Ψ(m)).
Finally, define the map g : N×N→ X by g(m,n) := Ψ(m)(n). )

(b) ( S i m u l t a n e o u s R e c u r s i o n ) Let H : X ×Y → X , K : X ×Y → Y be given maps. For
(a,b) ∈ X ×Y , there exist a unique maps f : N→ X and g : N→ Y such that f (0) = a, g(0) = b
and f (n+ 1) = H( f (n),g(n)), g(n+ 1) = K( f (n),g(n)) for all n ∈ N. (Hint : Apply Recursion
Theorem T5.7-(a) to the set X ×Y , the map F := H ×K : X ×Y → X ×Y , (x,y) 7→ (H(x,y),K(x,y)) and
(a,b) ∈ X ×Y , to get the map G : N → X ×Y such that G(0) = (a,b) and G(n+ 1) = F(G(n)) for all
n ∈N. Now, take f = p◦G and q◦G, where p : X ×Y → X (resp. q : X ×Y →Y ) is the first (resp. second)
projection. Using the properties of G check that f and g have the required properties.)

(c) ( P r i m i t i v e R e c u r s i o n ) Let a ∈ X and let H : X ×N→ X be a given map. Show that
there exists a unique map f : N→ X such that f (0) = a and f (n+1) = H( f (n),n) for all n ∈N.
(Hint : Apply the Simultaneous Recursion to Y = N, b = 0 and the map K : X ×N → N defined by
(x,n) 7→ n+1.)

(d) (F a c t o r i a l s) Construct a map f :N→N such that f (0)= 1 and f (n)= 1 ·2 · · ·(n−1) ·n
(the product of the first n non-zero natural numbers) for each n > 0. (Hint : Use the primitive
recursion to X =N, a = 1 and H : N×N→N the map defined by H(m,n) = (n+1) ·m. – Remark: For
each n ∈N, the natural number F(n) is called f a c t o r i a l n and is denoted by n!.)

T5.11 ( n - a r y o p e r a t i o n s – g e n e r a l i z e d s u m s a n d p r o d u c t s ) Let n ∈N and let
X{1,...,n} := Xn := X ×·· ·×X︸ ︷︷ ︸

n- times

. A map f : Xn → X is called an n- a r y o p e r a t i o n o n X .

Let ∗ : X ×X → X be a binary operation on X . Then there exists a unique family fn : Xn → X ,
n ∈N∗ of n-ary operation on X such that : f1 = idX , f2 = ∗ and

fn+1((x1, . . . ,xn,xn+1))= fn((x1, . . . ,xn))∗xn+1 for all (x1, . . . ,xn,xn+1)∈Xn+1 and for all n≥ 1 .

(a) Applying the above result to the binary operation of addition + on N, we have a unique family
fn : Nn → X , n ∈N∗ of n-ary operation on N.
For n ∈ N and (x1, . . . ,xn) ∈ Nn, fn((x1, . . . ,xn)) is denoted by ∑n

i=1 xi. Therefore ∑0
i=1 xi = 0

and ∑n+1
i=1 xi = (∑n

i=1 xi)+ xn+1 for all (x1, . . . ,xn,xn+1) ∈Nn+1 and for all n ≥ 1.

(b) Applying the above result to the binary operation of multiplication · on N, we have a unique
family pn : Nn → X , n ∈N∗ of n-ary operation on N.
For n ∈ N and (x1, . . . ,xn) ∈ Nn, pn((x1, . . . ,xn)) is denoted by ∏n

i=1 xi. Therefore ∏0
i=1 xi = 1

and ∏n+1
i=1 xi = (∏n

i=1 xi)+ xn+1 for all (x1, . . . ,xn,xn+1) ∈Nn+1 and for all n ≥ 1.

(c) For n ∈ N, (x1, . . . ,xn) ∈ Nn and any permutation σ of {1, . . . ,n}, prove that ∑n
i=1 xi =

∑n
i=1 xσ(i) and ∏n

i=1 xi = ∏n
i=1 xσ(i).

(d) Applying the above result to the binary operation of composition XX , we have a unique family
Φn : (XX)n → XX , n ∈ N∗ of n-ary operation on XX . For n ∈ N and ( f1, . . . , fn) ∈ (XX)n,
Φn(( f1, . . . , fn)) is denoted by f1 ◦ f2 ◦ · ◦ fn. In particular, if fi = f for every i ≥ 1, then for
n ≥ 1 Φn(( f , f , . . . , f )) = f n is the n-th iterate of f (see also T5.7-(c)).)

T5.12 ( D i v i s i o n A l g o r i t h m ) Let a,b ∈ Z with b ≥ 1. Then there exists unique integers q
and r such that a = qb+ r with 0 ≤ r < b. Moreover, in the case a ≥ 0, we have q ≥ 0.
– The integers q and r are called q u o t i e n t and r e m a i n d e r , respectively, in the division of a
by b. (Existence of q and r : The subset A := {x ∈ N | x = a− zb with z ∈ Z} ⊆ N is non-empty : if
a ≥ 0, then a ∈ A : if a < 0, then a−ab = a(1−b)≥ 0 and hence a−ab ∈ A. Therefore by the Minimum
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Principle A has a minimal element r. Then r = a− qb ≥ 0 for some q ∈ Z. Further, r < b ; otherwise
a− (q+1)b = r−b ≥ 0 and hence r−b ∈ A a contradiction to the minimality of r. Therefore a = qb+ r
is the required equation. If a ≥ 0, then q ≥ 0; otherwise q ≤ −1, i. e., −q ≥ 1 and r = a− qb ≥ b a
contradiction. Uniqueness of q and r : If a = qb+ r = q′b+ r′ with q,q′,q,r′ ∈ Z with 0 ≤ r,r′ < b.
Then r − r′ = (q′ − q)b and so b

∣∣(r − r′). But since 0 ≤ r,r′ ≤ b we have −b ≤ r − r′ ≤ b and hence
r− r′ = 0, i.e., r′ = r. Now from (q′−q)b = 0 and b ̸= 0, it follows that q′ = q. )

T5.13 ( D i v i s i b i l i t y ) An integer d is called a d i v i s o r of a ∈ Z in Z, and is denoted by
d
∣∣a, if there exists v ∈ Z such that a = dv. In this case we also say that d d i v i d e s a or a is

a m u l t i p l e of d (in Z ). If d is not a divisor of a, then we write d ̸
∣∣a. If 0 ̸= d is a divisor of

a, then v ∈ Z in the equation a = dv is uniquely determined by the cancelation law. An integer
a,∈ Z is called e v e n (respectively o d d ) if 2

∣∣a (respectively, 2 ̸
∣∣a ), i. e., a is of the form 2v

(respectively, 2v+1).

(a) The divisibility defines a relation on Z and it satisfies the following basic rules : For all
a,b,c,d ∈ Z, we have :

(i) (Reflexivity) a
∣∣a.

(ii) (Transitivity) If a
∣∣b and b

∣∣c, then a
∣∣c.

(iii) If a
∣∣b and c

∣∣d, then ac
∣∣bd.

(iv) If a
∣∣b and a

∣∣c, then a
∣∣(xb+ yc) for all x,y ∈ Z.

(Remarks : The rule (iii) does not hold if one replaces ac (respectively, bd ) by a+c (respectively, b+d ).
The number 0 is divisible by every integer d ∈ Z, since 0 = d ·0; this is the only case of an integer which
has infinitely many distinct divisors. This is proved in the part b) below which is an important connection
between divisibility relation

∣∣ and the (standard) order ≤ on N.)

(b) Let a ∈ Z, a ̸= 0 and let d ∈ Z be a divisor of a. Then : 1 ≤ |d| ≤ |a|. In particular, every
non- zero integer a has at most finitely many divisors.

(c) Let a,d ∈ Z, a > 0, d > 0. If d
∣∣a and a

∣∣d then d = a. (Remarks : Every integer a has the
four (distinct) divisors a,−a,1,−1; these are called the t r i v i a l d i v i s o r s of a ; other divisors are
called p r o p e r d i v i s o r s of a. Therefore from (b) it follows that : If d is a proper divisor of a ̸= 0,
then 1 < |d|< |a|. Since a = dv if and only if −a = d(−v), the integers a and −a have the same divisors.
Therefore, since for every integer a, exactly one of a or −a is a natural number, for the divisibility questions,
we may without loss of generality assume that a ∈N. Further, if d is a divisor of a, then −d is also divisor
of a (since if a = dv with v ∈ Z, then a = (−d)(−v) ) Therefore one knows all divisors of an integer a if
one knows all positive divisors of |a|. On this basis many considerations in number theory can be reduced
to the set N∗ of positive integers. See for example, the numerical functions τ(n) and σ(n), n ∈N∗.)

T5.14 ( G C D ) For an integer a ∈ Z, let D(a) denote the set of all positive divisors of a. Then
1 and a ∈ D(a) ; D(a) =N⇐⇒ a = 0 ; if a ̸= 0, then D(a) is a finite subset of N. For a,b ∈ Z,
the intersection D(a)∩D(b) is precisely the set of all common divisors of a and b. Moreover, if
(a,b) ̸= (0,0), then D(a)∩D(b) is a finite subset of N and hence it has a largest element; this
element is called the g r e a t e s t c o m m o n d i v i s o r of a and b and is denoted by gcd(a,b).
Therefore for a,b ∈ Z with (a,b) ̸= (0,0), the gcd(a,b) is the positive integer d satisfying :
(i) d

∣∣a and d
∣∣b ; (ii) if c is a positive integer with c

∣∣a and c
∣∣b, then c ≤ d.

We put gcd(0,0) := 0.

(a) ( B e z o u t ’ s L e m m a 17 ) For integers a,b ∈ Z with (a,b) ̸= (0,0) there exists integers
s, t ∈ Z such that gcd(a,b) = sa+ tb. (Hint : Let M := {ua+ vb | u,v ∈ Z and ua+ vb ∈ N∗} be

17É t i e n n e B é z o u t (1730-1783) was a French mathematician who is best known for his theorem on the num-
ber of solutions of polynomial equations. In 1758 Bézout was elected an adjoint in mechanics of the French Academy
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the set of all positive linear combinations of a and b. Then both |a|, |b| ∈ M and hence by the Minimum
Principle T5.2-(b), M contains a smallest element, say d = sa+ tb , s, t ∈ Z. Show that a = gcd(a,b). See
also T5.16-(b).)

Deduce that :

(i) For two non-zero integers a,b ∈ Z∗ with (a,b) ̸= (0,0), show that the set {sa+ tb | s, t ∈ Z}
is precisely the set of all multiples of d = gcd(a,b) .
Two integers a,b ∈ Z with (a,b) ̸= (0,0) are said to be r e l a t i v e l y p r i m e if gcd(a,b) = 1,
equivalently, there exist integers s, t ∈ Z such that 1 = sa+ tb.

(ii) If d = gcd(a,b), then gcd(a/d,b/d) = 1, i.e., a/d and b/d are relatively prime.
(iii) If a,b,c ∈Z and a

∣∣c and b|c with gcd(a,b) = 1, then ab
∣∣c . (Hint : Use Bezout’s Lemma.)

(iv) ( E u c l i d ’ s L e m m a ) If a,b,c ∈ Z and a
∣∣bc and gcd(a,b) = 1, then a

∣∣c . (Hint : By
Bezout’s Lemma, there exist integers s, t ∈Z such that 1 = sa+ tb and hence a divides sac+ tbc = c . See
also T5.16-(d).)
(v) For integers a,b ∈Z with (a,b) ̸= (0,0), a positive integer d is a gcd of a and b if and only
if (i) d

∣∣a and d
∣∣b and (ii) whenever a positive integer c divides both a and b, then c

∣∣d. (Hint:
Use the part (ii). – Remark : The assertion (vi) often serves as a definition of gcd(a,b). The advantage is
the order relationship ≤ is not involved.)

(vi) D(a)∩D(b) = D(gcd(a,b)).
(vii) For integers a,b ∈Z with b ̸= 0 and a = qb+ r, q,r ∈Z, show that gcd(a,b) = gcd(b,r).

(b) ( R u l e s f o r G C D ) For integers a,b,c ∈Z, we have :

(i) gcd(a,a) = |a|. (ii) a
∣∣b ⇐⇒ a = gcd(a,b).

(iii) (Commutativity) gcd(a,b) = gcd(b,a). (iv) (Associativity) gcd(gcd(a,b),c) = gcd(a,gcd(b,c)).

(v) (Distributivity) gcd(ca,cb) = |c|gcd(a,b). (vi) (Product formula) gcd(ab,c) = gcd(gcd(a,c)b,c).

(Remark : These rules are elementary to prove, but gives unwieldy impression; probably because of the
unaccountability of the classical notation gcd. If instead of gcd one uses an elegant symbol, for example,
a⊓b := gcd(a,b), then these rules are more suggestive :

(i) a⊓a = |a| ; (ii) a
∣∣b ⇐⇒ a = a⊓b ;

(iii) (Commutativity) a⊓b = b⊓a ; (iv) (Associativity) (a⊓b)⊓ c = a⊓ (b⊓ c) ;

(v) (Distributivity) (c ·a)⊓ (c ·b) = |c| · (a⊓b) ; (vi) (Product formula) (a ·b)⊓c = ((a⊓c) ·b)⊓c ;

The use of the terms “associativity” and “distributivity” is immediately clear. This example shows the
importance of the good notation; unfortunately in literature till today everybody use the traditional notation
gcd(a,b).)

(c) For positive natural numbers a,b,c,d ,m,n ∈N∗, show that :
(i) gcd(a,1) = 1. (ii) gcd(a,a+n)

∣∣n and hence gcd(a,a+1) = 1.

(iii) If gcd(a,b) = 1 and gcd(a,c) = 1, then gcd(a,bc) = 1. (Hint : 1 = sa+ tb = ua+vc for some
s, t,u,v ∈Z. Then 1 = (sa+ tb)(ua+ vc) = (aus+ cvs+btu)a+(tv)bc.)

(iv) If gcd(a,b) = 1, then gcd(am,bn) = 1. (Hint : Use the above part (iii).)

(v) The relation an |bn implies that a |b. (Hint : Let d := gcd(a,b) and write a = rd and b = sd.
Then

gcd(r,s) = 1 and hence gcd(rn,sn) = 1 by (iv). Now show that r = 1, whence a = d, i.e, a
∣∣b.)

of Sciences. Besides numerous minor works, wrote a Théorie générale des équations algébriques, published at Paris
in 1779, which in particular contained much new and valuable matter on the theory of elimination and symmetrical
functions of the roots of an equation: he used determinants in a paper in the Histoire de l’acadé mie royale, 1764, but
did not treat the general theory.
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(vi) If gcd(a,b) = 1 and c
∣∣a, then gcd(b,c) = 1.

(vii) If gcd(a,b) = 1, then gcd(ac,b) = gcd(c,b).
(viii) If gcd(a,b) = 1 and c

∣∣(a+b), then gcd(a,c) = gcd(b,c). (Hint : Let d = gcd(a,c). Then
d
∣∣a and d

∣∣c∣∣(a+b) and hence d
∣∣(a+b)−a = b.)

(ix) If gcd(a,b) = 1, then gcd(a+b,ab) = 1.
(x) If gcd(a,b) = 1, d

∣∣ac and d
∣∣bc, then d

∣∣c.
(xi) If d

∣∣n, then 2d −1
∣∣2n −1.

(xii) Show that there are no positive natural numbers a,b∈N∗ and n∈N with n> 1 and an−bn

divides an +bn. (Hint : We may assume that b < a and gcd(a,b) = 1.)
(xiii) Show that for a,b ∈N∗, b > 2, 2a +1 is not divisible by 2b −1. (Hint : Prove that a > b.)
(xiv) For m,n ∈ N with m > n, show that a2n

+ 1 divides a2m − 1. Moreover, if m,n,a ∈ N∗,

m ̸= n, then gcd(a2m
+1,a2n

+1) =

{
1, if a is even,
2, if a is odd.

(Hint : a2n
+1

∣∣a2n+1 −1. For the second part use the first part.)
(xv) Suppose that 2n +1 = xy, where x,y ∈N∗, x > 1,y > 1 and n ∈N∗. Show that 2a divides
x−1 if and only if 2a divides y−1. (Hint : Write x−1 = 2a ·b and y−1 = 2c ·d with b and d odd.)
(xvi) Show that gcd(n!+1,(n+1)!+1) = 1.

T5.15 ( L C M ) The concept parallel to that of a gcd is the concept of the least common multiple.
For an integer a ∈ Z, let M(a) = Za = {na | n ∈ Z} denote the set of all multiples of a. Then
M(a) = {0} ⇐⇒ a = 0 ; if a ̸= 0, then M(a) = N · a⊎ (−N+) · a. Further, for a,b ∈ Z∗, the
intersection M(a)∩M(b) is precisely the set of all common multiples of a and b. Moreover,
ab ∈ M(a)∩M(b), in particular, |ab| ∈ N · a∩N · b and hence by minimality principle, it has a
minimal element; this element is called the l e a s t c o m m o n m u l t i p l e of a and b and is
denoted by lcm(a,b). Therefore for a,b ∈Z∗, the lcm(a,b) is the positive integer m satisfying :
(i) a

∣∣m and b
∣∣m ; (ii) if c is a positive integer with a

∣∣c and b
∣∣c, then m

∣∣c (equivalently, m ≤ c ).
We put lcm(0,0) := 0. It is clear that for any two non-zero integers a,b ∈ Z, lcm(a,b) always
exists and lcm(a,b)≤ |ab|.

(a) Let a,b ∈ Z∗. Then gcd(a,b) divides lcm(a,b) and gcd(a,b) · lcm(a,b) = ab. Moreover,
(i) gcd(a,b) = lcm(a,b) if and only if a = b . (ii) gcd(a,b) = 1 if and only if lcm(a,b) = ab .

(b) For a,b,c ∈ Z∗, show that the following statements are equivalent :
(i) a

∣∣b. (ii) gcd(a,b) = a. (iii) lcm(a,b) = b.

(c) For a,b,c ∈ Z, show that lcm(ca,cb) = |c|lcm(a,b).
(d) For non-zero integers a,b ∈ Z, a positive integer m is a lcm of a and b if and only if
(i) a

∣∣m and b
∣∣m and (ii) whenever a positive integer c is a multiple of both a and b, then m

∣∣c.
(Hint : Put v = lcm(a,b) and use division algorithm to write m = qt + r with q,r ∈ Z, 0 ≤ r < t. Then r
is common multiple of a and b. – Remark : This assertion often serves as a definition of lcm(a,b). The
advantage is the order relationship is not involved.)

(e) For integers a,b ∈ Z, show that M(a)∩M(b) = M(lcm(a,b)).

T5.16 ( E u c l i d e a n a l g o r i t h m 18 ) Let a,b ∈N∗ with a ≥ b.

18A more efficient method involving repeated application of division algorithm is given in the VII-th book of the
Elements and it is referred to as the E u c l i d e a n a l g o r i t h m . The French mathematician G a b r i e l L a m é
(1795-1870) proved that the number of steps required to find gcd in the Euclidean algorithm is at most five times
the number of the digits in the smaller integer, i.e., 5 log10 b = (2.17 . . .) logb. Lamé was a primarily a mathematical
physicist. is only other known contributions to number theory were the first proof of Fermat’s Last Theorem for the
exponent 7 and a fallacious “proof” for the general n.
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We put: r0 := a and r1 := b and consider the system of equations obtained by the repeated use of
division algorithm :

r0 = q1r1 + r2 , 0 < r2 < r1 ;
r1 = q2r2 + r3 , 0 < r3 < r2 ;
· · · · · ·

rk−1 = qkrk + rk+1 , 0 < rk+1 < rk

rk = qk+1rk+1 .

Then :
(a) gcd(a,b) = rk+1. (Hint : By repeated use of the T5.14-(a)-(vii), we have gcd(a,b) = gcd(r0,r1) =

gcd(r1,r2) = · · ·= gcd(rk,rk+1) = gcd(rk+1,0) = rk+1.)

(b) For i = 0, . . . ,k+1, define si and ti recursively by :
s0 = 1 , t0 = 0;
s1 = 0 , t1 = 1;

si+1 = si−1 −qisi , i = 1, . . . ,k
ti+1 = ti−1 −qiti , i = 1, . . . ,k

Then:
a = r0 = s0a+ t0b , r1 = s1a+t1b , ri+1 = ri−1−qiri = si−1a+ ti−1b−qisia−qitib = si+1a+ti+1b ,
for all i = 1, . . . ,k . In particular, gcd(a,b) = rk+1 = sk+1a+ tk+1b . (Remark : This proves once
again the Bezout’s Lemma T5.14-(a).) (c) Let a := 36667 and b := 12247. Then we have:

36667 = 2 ·12247+12173
12247 = 1 ·12173+74
12173 = 164 ·74+37

74 = 2 ·37 .

The integers si and ti can be computed using the following table:

i 0 1 2 3 4
qi 2 1 164
si 1 0 1 −1 165
ti 0 1 −2 3 −494 .

Therefore 37 = gcd(36667,12247) = 165 ·36667−494 ·12247.

(d) (E u c l i d ’ s L e m m a) (see also T5.14-(a)-(iv)): If a prime number p divides a product
a1 · · ·ar of positive natural numbers, then p divides at least one of the factors ai. (Hint : We may
assume that r = 2 (Induction on r). By hypothesis a1a2 = pc with c ∈N∗. Suppose that p does not divide b1.
Then p and b1 are relatively prime and by Bezout’s Lemma there exist integers s, t ∈Z such that 1= sp+tb1.
Then b2 = spb2 + tb1b2 = p(sb2 + tc), i. e. p divides b2.)

T5.17 (L i n e a r D i o p h a n t i n e E q u a t i o n) The ancient Greek mathematician Diophantus
19 had initiated the study of solutions (in integers) of equations in one or more indeterminate with

19D i o p h a n t u s o f A l e x a n d r i a (AD 200 and 214 - between 284 and 298 at age 84), sometimes called
"the father of algebra", was an Alexandrian Greek mathematician and the author of a series of books called Arithmetica.
These texts deal with solving algebraic equations, many of which are now lost. In studying Arithmetica, Fermat
concluded that a certain equation considered by Diophantus had no solutions, and noted without elaboration that
he had found "a truly marvelous proof of this proposition," now referred to as Fermat’s Last Theorem. This led
to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and
of Diophantine approximations remain important areas of mathematical research. Diophantus was the first Greek
mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients
and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for
which integer solutions are sought. Diophantus also made advances in mathematical notation.
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integer coefficients.

(a) The linear Diophantine equation aX + bY = c , ab,c ∈ Z , has a solution if and only if d :=
gcd(a,b) divides c. Moreover, if (x0,y0) is a particular solution of this equation, then all other
solutions are given by (x,y) = (x0,y0)+(b/d,−a/d)t , t ∈ Z.
(b) Let a and b be relatively prime positive integers. Prove that the Diophantine equation
aX − bY = c has infinitely many solutions in the positive integers. (Hint : There exists integers
x0,y0 such that ax0 + by0 = c. Then (x,y) = (x0,−y0)+ (b,a)t , t ∈ Z with t ≥ Max(|x0|/b, |y0|/a) are
positive solutions of the given equation.)
(c) The contents of the Mathematical classic of C h a n g C h’ i u-c h i e n20 (6th century AD) attest to the
algebraic abilities of the Chinese scholars contains the following famous problem: If an Apple costs Rs. 5, an
Orange Rs. 3 and three Bananas together Rs. 1, how many Apples, Oranges and Bananas, totaling 100 , can
be bought for Rs. 100? (Hint : Solve the Diophantine equations 5X +3Y + 1

3 Z = 100 and X +Y +Z = 100
simultaneously by eliminating one unknown (for example, Z).)
(d) (M a h a v i r a c h a r y a, 850) There were 63 equal piles of plantain fruit put together and 7 single
fruits. They were divided evenly among 23 travelers. What is the number of fruits in each pile? (Hint :
Solve the Diophantine equation 63X +7 = 23Y .)

(e) When Mr. Dey cashed a check at his bank, the teller mistook the number of paise for the number
of rupees and vice versa. Unaware of this, Mr. Dey spent 68 paise and then noticed to his surprise that
he had twice the amount of the original check. Determine the smallest value for which the check could
have been written. HintIf x denotes the number of rupees and y the number of paise in the check, then
100y+ x−68 = 2(100x+ y).

T5.18 (Pr ime numbers ) A natural number p is called a pr ime number or an i r reduc ib le
(in N ) if p > 1 and p = ab with a,b ∈N, then either a = 1 or b = 1. A natural number n > 1 is
called c o m p o s i t e or r e d u c i b l e if it is not a prime number. The set of all prime numbers
is denoted by P. Then by definition 1 ̸∈ P. For a natural number p > 1, the following statements
are equivalent :

(i) p ∈ P.
(ii) 1 and p are the only positive divisors of p.
(iii) p has no proper divisor. (Remark : On the basis of the property (iii) prime numbers are also called
irreducible.)

(a) ( E x i s t e n c e T h e o r e m ) Every natural number a > 1 has a smallest (positive) divisor
t > 1. Moreover, this divisor t is a prime number. (Proof : The set T = {d ∈N∗ | d

∣∣a and d > 1} is
non-empty, since a ∈ T . Therefore by the Minimum Principle (see T5.2-(b)) T has a minimal element t.
This integer t is a prime number. For, if not, then there is a divisor t ′ of t with 1 < t ′ < t. But then t ′

∣∣t and
t
∣∣a and hence t ′

∣∣a a contradiction to the minimality of t in T .)

(b) (Euc l id ’ s Theorem21 ) There are infinitely many prime numbers, i. e., the set P is infinite.
(Proof : In the text of Euclid the word “infinite” is not mentioned; this theorem was formulated as : Given

20Z h a n g Q i u j i a n (about 430-about 490) was a Chinese mathematician who wrote the text Zhang Qiujian
suanjing (Zhang Qiujian’s Mathematical Manual) This is a work of historical significance not only because existing
treatises of very early mathematics are scarce, but also because it provides a rare insight into the early development of
arithmetic – an arithmetic which was built on a numeral system that had the same concept as Hindu-Arabic numeral
system – Jiu zhang suanshu.

21Proved in the “Elements (Book IX, Theorem 20)” of Euclid. Euclid’s argument is universally regarded as a
model of mathematical elegance. – E u c l i d o f A l e x a n d r i a (325 BC-265 BC) was a Greek mathematician
best known for his treatise on mathematics (especially Geometry) – The Elements. This influenced the development
of Western mathematics for more than 2000 years. The long lasting nature of The Elements must make Euclid the
leading mathematics teacher of all time. However little is known of Euclid’s life except that he taught at Alexandria in
Egypt. Euclid may not have been a first class mathematician but the long lasting nature of The Elements must make
him the leading mathematics teacher of antiquity or perhaps of all time. As a final personal note let me add that my
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any finite set of prime numbers, one can always find a prime number which does not belong to the given
set. Show that : Let q1, . . . ,qn be finite set of prime numbers. Then the smallest (positive) divisor t > 1 of
the natural number a := q1 · q2 · · ·qn + 1 is a prime number which is different from all the prime numbers
q1, . . . ,qn. — Since a > 1, t exists and hence t is a prime number by the Existence theorem in the part (a).
If t is one of the numbers q1, . . . ,qn, then t

∣∣q1 ·q2 · · ·qn. Then t
∣∣a−q1 ·q2 · · ·qn = 1 a contradiction.)

(c) ( E u c l i d ’ s L e m m a ) If a prime number p divides a product ab of two natural numbers
a and b, then p divides one of the factor a or b. More generally, If a prime number p divides a
product a1 · · ·an of n positive natural numbers a1, . . . ,an, then p divides one of the factor ai for
some 1 ≤ i ≤ n. (Proof : The set A := {x ∈ N∗ | p

∣∣ax} contains p and b and hence by the Minimum
Principle (see T5.2-(b)) it has a smallest element c. We claim that c

∣∣y for every y ∈ A. For, by division
algorithm y = qc+ r with q,r ∈ N and 0 ≤ r < c. Then, since p

∣∣ay and p
∣∣ac, p

∣∣ay− q(ac) = ar. This
proves that r = 0; otherwise r ∈ A and r < c a contradiction to the minimality of c in A. Therefore c

∣∣y
for every y ∈ A ; in particular, c

∣∣p and hence c = 1 or c = p. If c = 1, then p
∣∣ac = a. If c = p, then (since

b ∈ A ) by the above claim p
∣∣b. – The last part follows from the first by induction.)

(d) For a natural number p the following statements are equivalent :

(i) p is a prime number. (ii) If p divides a product ab of two integers a and b, then p
∣∣a or p

∣∣b.

(Proof : We may assume that a and b are both positive. The implication (i)⇒(ii) is proved in (c). For the
implication (ii)⇒(i) Let d be any positive divisor of p, i.e., p = dd′ with d′ ∈N. This means that p

∣∣dd′

and hence by (ii) either p
∣∣d or p

∣∣d′. But since 1 ≤ d ≤ p and 1 ≤ d′ ≤ p it follows that either p = d or
p = d′, i.e., either d = p or d = 1. This proves that the only positive divisors of p are 1 and p and hence p
is a prime number. — Remark : The property (ii) is (usually distinguished from the irreducibility property
of p ) called the p r i m e p r o p e r t y . Therefore we can reformulate the part (d) as : A natural number
p > 1 is irreducible if and only if p has the prime property. See also ???.)

T5.19 For a = 3,4,6, show that in the sequence an+(a− 1), n ∈ N, there are infinitely many
prime numbers. (Hint : Make an argument with ap1 · · · pr +(a−1).) (Remark : These are very special
cases of a remarkable theorem of Dirichlet22 on primes in arithmetic progressions established in 1837. The
proof is much too difficult to include here, so that we must content ourselves with the mere statement: If
a,b are relatively prime positive natural numbers, then there are infinitely many prime numbers of the form
an+ b, n ∈ N . — Remarks: For example, (by Dirichelt’s Theorem), there are infinitely many primes
ending 999 such as 1999, 100999, 1000999, . . ., for these appear in the arithmetic progression determined
by 1000n+999, where gcd(1000,999) = 1. )

(a) There is no arithmetic progression a+ n · b , n ∈ N that consists of only of prime numbers.
(Hint : Suppose that p = a+n ·b is a prime number. Then the n+kp-th term of the arithmetic progression
is a+(n+kp) ·b = (a+n ·b)+kp ·b = p(1+kb). This shows that the arithmetic progression must contain
infinitely many composite numbers.)

(b) If all the n > 2 terms of the arithmetic progression p, p+d, . . . , p+(n−1)d are prime num-
bers, then the common difference d is divisible by every prime q < n.

own introduction to mathematics at school in the 1970s was from an edition of part of Euclid’s Elements and the work
provided a logical basis for mathematics and the concept of proof which seem to be lacking in school mathematics
today.

22P e t e r G u s t a v L e j e u n e D i r i c h l e t (1805-1859) was a German mathematician with deep contribu-
tions to number theory (including creating the field of analytic number theory), and to the theory of Fourier series and
other topics in mathematical analysis; he is credited with being one of the first mathematicians to give the modern for-
mal definition of a function. Dirichelt’s doctoral advisers were Simeon Poisson and Joseph Fourier. Doctoral students
of Drichelts were Gotthold Eisenstein, Leopold Kronecker, Rudolf Lipschitz, Carl Wilhelm Borchardt. Other notable
students were Richard Dedekind, Eduard Heine, Bernhard Riemann, Wilhelm Weber.
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T5.20 ( F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c23 ) Proposition 14 of Book IX of Euclid’s
“Elements” embodies the result which later became known as:
F u n d a m e n t a l T h e o r e m o f A r i t h m e t i c : Every Natural number a > 1 is a prod-
uct of prime numbers and this representation is “essentially” unique, apart from the order in which
the prime factors occur.
More precisely, the existence and uniqueness parts are stated as:

(a) ( E x i s t e n c e o f p r i m e d e c o m p o s i t i o n ) Every natural number a > 1 has a prime
decomposition a = p1 · · · pn, where we may choose p1 as the smallest (prime) divisor of a. (Proof :
Either a is prime or composite.; in the former case there is nothing to prove. If a is composite, then by T5.18-
(a) there exists a smallest prime divisor p1 of a, i.e., a = p1 ·b with 1 ≤ b < a (since 1 < p1 ≤ a ). Now,
by induction hypothesis b has a prime decomposition b = p2 · · · pn and hence a has a prime decomposition
a = p1 · p2 · · · pn.)

(b) ( U n i q u e n e s s o f p r i m e d e c o m p o s i t i o n ) A prime decomposition of every natural
number a > 1 is essentially unique. More precisely, if a = p1 · · · pn and a = q1 · · · qm are two
prime decompositions of a with prime numbers p1, . . . , pn ; q1, . . . ,qm, then m = n and there exists
a permutation ρ ∈ Sn such that qi = pρ(i) for every i = 1, . . . ,n. (Proof : We prove the assertion
by induction on n. If n = 1, then p1 = a = q1 · · ·qm, i.e., p1

∣∣q1 · · ·qm and hence by the prime property
T5.18-(d) p1

∣∣q j for some j, 1 ≤ j ≤ m. Renumbering if necessary, we may assume that j = 1; further,
since q1 is a prime number, we must have p1 = q1 by the irreducibility of q1. Now, by canceling p1, we
get two prime decompositions of the number a′ = p2 · · · pn = q2 · · ·qm. Therefore by induction hypothesis
m− 1 = n− 1 and there exists a permutation ρ ′ ∈ S({2, . . . ,n}) such that qρ(i) = pi for all i = 2, . . . ,n.
Now, define ρ ∈ Sn by ρ(1) = 1 and ρ(i) = ρ ′(i) for all i = 2, . . . ,n. — Remarks : The above proof
for uniqueness use the Euclid’s lemma on the prime property (see Test-Exercise T5-16-(a)-(iv)) and hence
uses implicitly the division algorithm and therefore make use of the additive structure of N. The existence
of prime decomposition only uses the multiplicative structure on N and not the additive structure on N.
This leads to the question : Can one give a proof of the uniqueness of the prime decomposition which only
depends on the multiplicative structure of N? The answer to this question is negative as we can see in the
examples given in T5.22 and T5.23. The uniqueness of the decomposition of a positive natural number
into product of irreducible elements is less obvious than the existence of such a decomposition (see also
Zermelo’s proof given in the T5.21). This can also be seen in the examples in the Examples T5.22 and
T5.23.

(c) (C a n o n i c a l P r i m e D e c o m p o s i t i o n) Let n ∈ N∗. Collecting the equal prime
factors in the prime decomposition of n , we get the c a n o n i c a l p r i m e d e c o m p o s i -
t i o n n =∏p∈P pαp . In this product P denote the set of all prime numbers and the p-exponents
or m u l t i p l i c i t i e s αp ∈ N are non-zero only for finitely many prime numbers p ∈ P, so
that the above product has only finitely many factors ̸= 1. For example, 1001 = 7 · 11 · 13 and
10200 = 23 ·3 ·52 ·17. Therefore, for every prime number p ∈P, we define a map vp : N∗ →N by
n 7→ vp(n) := αp. The map vp is called the p-adic valuation. It is clear that vp(n) = 0 for almost
all p ∈ P.

If m,n ∈ N∗ and m = ∏p∈P pvp(m) , n = ∏p∈P pvp(n) are the canonical prime decompositions of
m and n respectively. Then:

(i) m divides n if and only if vp(m)≤ vp(n) for all p ∈ P.

(ii) gcd(m,n) = ∏p∈P pMin(vp(m),vp(n)) and lcm(m,n) = ∏p∈P pMax(vp(m),vp(n)) and

23The Fundamental Theorem of Arithmetic does not seem to have been stated explicitly in Euclid’s elements, al-
though some of the propositions in book VII and/or IX are almost equivalent to it. Its first clear formulation with proof
seems to have been given by Gauss in Disquisitiones arithmeticae §16 (Leipzig, Fleischer, 1801), see also Footnote 27.
It was, of course, familiar to earlier mathematicians; but GAUSS was the first to develop arithmetic as a systematic
science.
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For an integer a ∈Z, a ̸= 0, the canonical prime decomposition is a = (−1)ε ∏p∈P pvp(|a|) , where
ε ∈ {0,1} (and hence (−1)ε is the sign of a and |a| is the absolute value of a. Moreover, for
every non-zero rational number x = a/b with a,b ∈ Z \ {0}, combining the canonical prime
decompositions of a and b , we get the c a n o n i c a l p r i m e d e c o m p o s i t i o n of x :
x = (−1)ε ∏p∈P pvp(x) , where the p-exponents vp(x), p ∈ P are integers (and not just the natural
numbers) and are non-zero only for finitely many prime numbers p ∈ P. Note that x is uniquely
determined by the p-exponents vp(x) , p ∈ P and its sign (−1)ε . Further, note that a rational
number x ∈Q\{0} is an integer if and only if vp(x)≥ 0 for all p ∈ P.

T5.21 ( Z e r m e l o ’ s p r o o f o f u n i q u e n e s s o f i r r e d u c i b l e d e c o m p o s i t i o n ) In this
proof we recall that a natural number p ∈N∗ is called an i r r e d u c i b l e n u m b e r if p > 1 and the
only divisors of p in N∗ are 1 and p itself. Let n ∈ N∗. We shall prove the uniqueness of irreducible
decomposition by induction on n. If n = 1 or n = p is a (irreducible) prime number, then the assertion is
clear by the definition of prime (irreducible) number. Now, suppose that n = p− 1 · · · pr = q1 · · ·qs where
p1, . . . , pr ; q− 1, . . . ,qs are irreducible numbers with r,s ≥ 2. We may assume that p1 ≤ p2 ≤ ·· · ≤ pr ;
q1 ≤ q2 ≤ ·· · ≤ qs and p1 ≤ q1 . If p1 = q1 , then n′ := p2 · · · pr = q2 · · ·qs < n and hence the uniqueness
assertion follows from the induction hypothesis. If p1 < q1 , then we must lead to a contradiction (of the
irreducibility of q1). Put m := n− p1q2 · · ·qs = (q1− p1)q2 · · ·qs = p1(p2 · · · pr −q2 · · ·qs). Then 1 < m < n.
Therefore by induction hypothesis it follows from the uniqueness assertion for m = p1(p2 · · · pr −q2 · · ·qs)
that p1 must occur in every irreducible decomposition of m. In particular, p1 must occur in the product
m = (q1 − p1)q2 · · ·qs, where q2, . . . ,qs are irreducible numbers and p1 ̸= q j for every j = 1, . . . ,s. This
shows that p1 must occur in q1 − p1, i. e. p1 divides q1 − p1 in N∗, or equivalently, q1 − p1 = bp1 with
b ∈N∗, i. e. q1 = (b+1)p1 which contradicts the irreduciblity of q1. •
(Remark : Zermelo’s indirect method of proof is psycological and less convincing. However, this proof
is elegant and didactically difficult to present in the class room. Moreover, the Euclid’s Lemma is not in
this proof. In fact we can now deduce the Euclid’s Lemma as a corollary of the Fundamental Theorem of
Arithmetic.)

T5.22 Let M be the set of all natural numbers which have remainder 1 upon division by 3, i.e.,
M = {3n+1 | n ∈N}. Then M is a multiplicative submonoid of N, i. e., 1 ∈ M and if a1, . . . ,an ∈
M, then a1 · · ·an ∈ M. For this, it is enough (by induction) to note that (3n1 + 1)(3n2 + 1) =
3(3n1n2 + n1 + n2)+ 1. Similar to the irreducibility in N, we say that an element c ∈ M is irre-
ducible if c > 1 and if c = ab with a,b ∈ M, then either a = 1 or b = 1. The first few irreducible
elements in M are : 4,7,10,13,19,22,25,31; the elements 16 = 4 · 4 and 28 = 4 · 7 are not ir-
reducible in M. One can easily (by induction — analogous proof as in the existence of a prime
decomposition) : Every element a ∈ M is a (finite) product a = c1 · · ·cn of irreducible elements
c1, . . . ,cn in M. However, the uniqueness of this representation does not hold, for example, the
element 100∈M has two irreducible decompositions 100= 4 ·25 and 100= 10 ·10 which are not
essentially unique. One can (similar to those of in N ) also define divisibility and prime property in
M, with these definitions 4

∣∣100 = 10 ·10 in M, but 4 ̸
∣∣10 in M, i.e., the element 4 is irreducible

in M, but does not have the prime property in M. In this example what is missing is that the set M
is not additively closed, for example, 4 ∈ M, but 8 = 4+4 ̸∈ M or more generally, 3n1 = 1 ∈ M
and 3n2+1 ∈ M, but (3n1+1)+(3n2+1) = 3(n1+n2)+2 ̸∈ M. We further note that gcd of 40
and 100 does not exists in M and lcm of 4 and 10 does not exits in M (since 4 ̸

∣∣10 in M ).

T5.23 Let q ∈N∗ be an arbitrary prime number (e. g. q := 2 or q := 1234567891 24 ) and N :=
N∗−{q}. Then N is a multiplicatively closed and every element in N is a product of irreducible
elements of N ; such a decomposition is not any more, in general unique. More precisely, prove
that: The irreducible elements in N are usual prime numbers p ̸= q and their products pq with
q and both the elements q2 := q2 and q3 := q3. The element n := q6 ∈ N has two essentially
different decompositions n = q2 · q2 · q2 = q3 · q3 as product of irreducible elements of N. The

24One can check this with a small computer programm that this number is really a prime number. Is the number
12345678901 also prime?
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irreducible element q3 divides (in N ) the product q2 · q2 · q2, but none of its factor. Similarly,
q2 divides (in N ) the product q3 · q3, but not q3. Similarly, m := pq3 = (pq)q2 has (in N ) two
essentially different decompositions ( p prime number ̸= q).

T5.24 (C o n g r u e n c e s) In the first chapter of Disquisitiones Arithmaticae25 Gauss introduced
the concept of congruence and the notation that makes it such a powerful technique for computa-
tions. He was induced to adopt the symbol ≡ because of the close analogy with the (algebraic)
equality = .
Let n ∈N∗ be a fixed positive natural number. Two integers a and b ∈Z are said to be c o n g r u -
e n t m o d u l o n , denoted by a ≡ b(mod n) if n divides the difference a−b , i. e. a−b = kn
for some integer k ∈ Z.
Given an integer a ∈Z, let q and r denote the quotient and remainder upon division by n, so that
a = qn+ r, 0 ≤ r < n. then a ≡ r (mod n). Therefore every integer is congruent modulo n to
exactly one of 0,1, . . . ,n−1; in particular, a ≡ 0(mod n) if and only if n divides a. Further, note
that a ≡ b(mod n) if and only if a and b have the same remainder upon division by n.

(a) The behavior of ≡ with respect to the addition and multiplication is reminiscent of the ordinary
equality. For a (fixed) natural number n > 1 and arbitrary integers a,b,c,d ∈ Z, some of the
elementary properties of equality that carry over to ≡ are:

(i) a ≡ a(mod n).
(ii) If a ≡ b(mod n), then b ≡ a(mod n).
(iii) If a ≡ b(mod n) and if b ≡ c(mod n), then a ≡ c(mod n).
(Remark : The above three properties show that ≡ is an equivalence relation on the set of integers. The
equivalence classes of ≡ are precisely the c o n g r u e n c e c l a s s e s m o d u l o n : [r] := r+Z ·n :=
{r+ kn | k ∈ Z} , r = 0, . . . ,n−1. Therefore the quotient set Z/≡= {[r] | 0 ≤ r < n−1}; this quotient set
is usually denoted by Zn and its elements are also called the r e s i d u e c l a s s e s m o d u l o n. The
system 0,1, . . . ,n−1 form a complete representative system for the quotient set Z/≡ .)

(iv) If a ≡ b(mod n) and if c ≡ d (mod n), then a+ c ≡ b+d (mod n) and a · c ≡ b ·d (mod n) .
In particular, if a ≡ b(mod n) , then am ≡ bm (mod n) for every m∈N and a+ c ≡ b+ c(mod n)
and a · c ≡ b · c(mod n) .
(Remark : It follows from (iv) that the binary operations +n (called the a d d i t i o n m o d u l o n ) and
·n (called the m u l t i p l i c a t i o n m o d u l o n ) defined on the quotient set Zn by ([r], [s]) 7→ [r+ s]
and ([r], [s]) 7→ [r · s] are well-defined. Both these binary operations are associative, commutative and [0]
(respectively, [1] ) is the identity element for +n (respectively, ·n ). Therefore (Zn,+n) and (Zn, ·n) are
commutative monoids. Moreover, the monoid (Zn,+n) is a group. Further, the binary operations +n and
cdotn are connected by the distributive laws: ([r] +n [s]) ·n [t] = [r] ·n [t] +n [s] ·n [t] and [r] ·n ([s] +n [t]) =
[r] ·n [s] +n [r] ·n [t] for all r,s, t ∈ {0,1, . . . ,n− 1}. Therefore (Zn,+n, ·n) is a commutative ring with the
(multiplicative) identity [1] . All the above assertions are immediate from the definitions of +n , ·n and the
standard associativity, commutativity and the distributive laws of the standard addition and multiplication
on the set Z of integers.)
One cannot unrestrictedly cancel common factor in the arithmetic of congruences. With suitable
precautions cancelation can be allowed:

(v) If ca ≡ cb(mod n) , then a ≡ b(mod n/d) , where d = gcd(c,n) . (Hint : Use Euclid’s lemma.)
(vi) If ca ≡ cb(mod n) and if gcd(c,n) = 1, then a ≡ b(mod n) . In particular, if p is a prime
number which does not divide c and if ca ≡ cb(mod p) , then a ≡ b(mod n) .

25This monumental work of the German mathematician C a r l F r i e d r i c h G a u s s (1777-1855) appeared
in 1801 when he was 24 years old. In this work Gauss laid the foundations of modern number theory, see also the
Footnote 23
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(b) For a (fixed) natural number n > 1 and arbitrary integers a,b,c,d ∈ Z, prove that:
(i) If a ≡ b(mod n) and if m |n , then a ≡ b(mod m) .
(ii) If a ≡ b(mod n) and if c > 0, then ca ≡ cb(mod cn) .
(iii) If a ≡ b(mod n) and if each a,b,n is divisible by d > 0, then a/d ≡ b/d (mod n/d) .
(iv) If a ≡ b(mod n) , then gcd(a,n) = gcd(a,b) .

(c) Find the remainders : (i) when 250 , 4165 , 111333 and 333111 are divided by 7.

(ii) when 53103 and 10353 are divided by 39.
(iii) when 44444444 is divided by 9. (Hint : Use 23 ≡−1(mod 9).)
(iv) when 15! is divided by 17.
(v) when 2 · (26!) is divided by 29.
(vi) when 4 · (29!)+5! is divided by 31.

(d) For n ∈N∗, show that :
(i) 7 divides 52n +3 ·25n−2 ; 13 divides 3n+1 +42n+1 ; 27 divides 25n+1 +5n+2 ;

43 divides 6n+2 +72n+1 .
(ii) For n ≥ 1, show that (−13)n+1 ≡ (−13)n +(−13)n−1(mod 181). (Hint : Note that (−13)2 ≡
−13+1(mod 181) and use induction on n.)
(iii) 89 divides 244 −1 and 97 divides 248 −1.

(e) Show that :
(i) If a1, . . . ,an ∈ Z is a complete representative system for Zn and if a ∈ Z is relatively prime
to n , then a ·a1, . . . ,a ·an also form a complete representative system for Zn.
(ii) Verify that 0,1,2,22, . . . ,29 form a complete representative system for Z11, but that
0,12,22,32, . . . ,102 do not.
(iii) If a ∈ Z is relatively prime to n and if c ∈ Z is arbitrary, then the integers c,c+ a, . . . ,c+
(n−1)a form a complete representative system for Zn. In particular, any n consecutive integers
form a complete representative system for Zn. Deduce that the product of any set of n consecutive
integers is divisible by n.

(f) If a ∈ Z is an odd integer, then show that a2n ≡ 1(mod 2n+2) for every n ∈N∗. (Hint : Use
induction on n.)

(g) For a natural number n > 1 and arbitrary integers a,b,c,d ∈Z with gcd(b,n) = 1, prove that:
if ab ≡ cd (mod n) and b ≡ d (mod n) , then a ≡ c(mod n) .

(h) For natural numbers m,n∈N∗ and arbitrary integers a,b,c∈Z , prove that: if a ≡ b(mod m)
and a ≡ c(mod n) , then b ≡ c(mod gcd(m,n)) .

T5.25 (g- a d i c - E x p a n s i o n ) Let g be natural number ≥ 2. For every natural number n ≥ 1,
there exist uniquely determined natural numbers r and a0, . . . ,ar with ar ̸= 0 and 0 ≤ ai < g such
that

n = a0 +a1g+ · · ·+argr = ∑r
i=0 aigi .

The d i g i t s ai of this g- a d i c - e x p a n s i o n of n recursively by repeated use of division with
remainder by using the following scheme, with q0 := n:

q0 = q1g+a0 , 0 ≤ a0 < g ,

q1 = q2g+a1 , 0 ≤ a1 < g ,

· · · · · · · · · · · · · · · · · · · · · ·
qr−1 = qrg+ar−1 , 0 ≤ ar−1 < g ,

qr = ar , 0 < ar < g .
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The uniqueness of these digits follows immediately follows from the uniqueness of the divison
with remainder. We also write shortly n = (ar . . .a0)g. For g = 2 respectively, g = 3, g = 10,
g = 16, then we also use the terms the d u a l - respectively t e r n a r y - d e c i m a l - h e x a - or
s e d e c i m a l e x p a n s i o n of n. In the last system the digits 10, . . . ,15 denoted by the letters
A, . . . ,F. Conversely, from the g-adic expansion n = a0 + a1g+ · · ·+ argr one can compute the
number n rapidly by using the recursion26 :

n0 = ar ,

n1 = n0g+ar−1 (= arg+ar−1) ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ·
nr−1 = nr−2g+a1 (= argr−1 +ar−1gr−2 + · · ·+a2g+a1) ,

nr = nr−1g+a0 = n .

Let n ∈N∗ and let n = amgm +am−1gm−1 + · · ·+a1g+a0, m ∈N and a j ∈ {0,1, . . . ,g−1} be
the g-adic expansion of n. Put Qg(n) := a0 + · · ·+ am and Q ′

g(n) := a0 − a1 + · · ·+(−1)mam .
Then:

(a) n ≡ Qg(n)(mod (g−1)) and n ≡ Q ′
g(n)(mod (g+1)) .

In particular, g−1 |n ⇐⇒ g−1 |Qg(n) and g+1 |n ⇐⇒ g+1 |Q ′
g(n).

(b) Qg(n+n′) ≡ Qg(n)+Qg(n′)(mod g−1) and Q ′
g(n+n′) ≡ Q ′

g(n)+Q ′
g(n

′)(mod g+1).

(c) Qg(n ·n′) ≡ Qg(n) ·Qg(n′)(mod g−1) and Q ′
g(n ·n′) ≡ Q ′

g(n) ·Q ′
g(n

′)(mod g+1).

(d) Let n ∈N∗ and let n = am10m +am−110m−1 + · · ·+a110+a0, m ∈N and a j ∈ {0,1, . . . ,9}
be the decimal expansion of n. Then
(i) 3|n ⇐⇒ 3|(a0+a1+ · · ·+am) ; 5|n ⇐⇒ 5|a0 ; 6|n ⇐⇒ 6|(a0+4a1+4a2+ · · ·+4am) ;
9|n ⇐⇒ 9|(a0 + a1 + · · ·+ am) ; 11|n ⇐⇒ 11|(a0 − a1 + · · ·+ (−1)mam). More generally, if
n = amgm +am−1gm−1 + · · ·+a1g+a0, m ∈N and a j ∈ {0,1, . . . ,g−1} is the g-adic expansion
of n. Then g−1 divides n if and only if g−1 divides the sum am + · · ·+a0 of the digits of n.
(ii) 7|n⇐⇒7|(a2,a1,a0)10−(a5,a4,a3)10+ · · · ; 11|n⇐⇒11|(a2,a1,a0)10−(a5,a4,a3)10+ · · · ;
13|n ⇐⇒ 13|(a0 +2a1 + · · ·+2mam) .

†(Remarks: More generally, one can also prove that: Every non-negative real number x ≥ 0 can be rep-
resented uniquely by a infinite convergent series x = ∑∞

ν=0 aν/gν , where the g-digit sequence of natural
numbers (an)n∈N is obtained by the g-adic algorithm and satisfy the following inequalities: an ≤ g−1 for
all n ≥ 1 and an ≤ g−2 for infinitely many n.
Moreover, such a sequence of natural numbers comes as a g-adic digit sequence of a non-negative real
number. The g-adic algorithm of a non-negative real number x ≥ 0 gives a simple criterion to test whether
or not x is rational. More precisely:
A non-negative real number x ≥ 0 is a rational number if and only if the sequence (an)n∈N is periodic (see
Exercise 5.9), i. e. there exist r ∈N and s ∈N∗ such that ar+ν = ar+ν+s for all ν ∈N∗.
We use the notation x = (a0,a1a2 · · ·an · · ·)g and (a0;a1a2 · · ·ar,ar+1 · · ·ar+s)g .
(a) For a rational number x ∈ [0,1) and natural numbers r,s, the following statements are equivalent:
(i) gr(gs −1) · x ∈Z. (ii) x has the g-adic expansion of the form x = (a0;a1a2 · · ·ar,ar+1 · · ·ar+s)g .

(b) For a rational number x = a/b ∈ [0,1) with gcd(a,b) = 1, show that gcd(b,g) = 1 if and only if
the g-adic expansion of x is purely periodic (see Exercise 5.9), i. e. it is of the form x = (0,a1 · · ·as)g .
In particular, the g-adic expansion of reduced fractions x = a

gn−1 is purely periodic with period n. for
example, 1

gn−1 = (0;00 · · ·01)g.

26This is a special case of the well known H o r n e r ’ s s c h e m e. Named after W i l l i a m G e o r g e
H o r n e r (1786-1837), who is largely remembered only for the method, Horner’s method, of solving algebraic
equations ascribed to him by Augustus De Morgan and others.
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(c) Which of the following (real) numbers are irrational numbers :

(i) The number x with the g-adic expansion x = (0;101001000100001 · · ·)g.

(ii) The number y with the g-adic expansion y = (0;a1a2 · · ·an · · ·)g , where an = 1 if n is prime and 0
otherwise.

(iii) u =
∞

∑
ν=0

(
1
g

)ν
, v =

∞

∑
ν=0

(
1
g

)ν(ν+1)/2

and w =
∞

∑
ν=0

(
1
g

)ν2

.

(d) Compute the g-adic exppansions of the numbers
a

g−1
and

a
g+1

. Moreover, show that
1

(g−1)2 =

(0;0123 · · ·(g−3)(g−1))g is purely periodic. )

T5.26 Let n ∈ N∗, a,b ∈ Z and let P(X) = ∑d
i=0 aiX i be a polynomial with integer coefficients

a0, . . . ,ad ∈Z. We say that an integer a ∈Z is a s o l u t i o n o f t h e p o l y n o m i a l c o n -
g r u e n c e P(X) ≡ 0(mod n) if P(a) ≡ 0(mod n) .

(a) If a ≡ b (mod n) then show that P(a) ≡ P(b) (mod n) . Deduce that if a is a solution of the
congruence P(a)≡ 0 (mod n) and if a ≡ b (mod n) , then b is also a solution.

(b) Determine the last two digits of 999
. (Hint : 99 ≡ 9(mod 10) and hence 999

= 99+10k . Now use
99 ≡ 89(mod 100).)

(c) Is the integer (447836)9 divisible by 3 and 8?

(d) Find the missing digits (by working modulo 9 or 11) in the calculations below :

(i) 51840 ·273581 = 1418243x040. (ii) 2x99561 = (3(523+ x))2 . (iii) 2784x = x ·5569.

(iv) 512 ·1x53125 = 1000000000. (v) If 495 divides 273x49y5, then find the digits x and y .

(e) Determine the last three digits of 7999 . (Hint : 74n ≡ (1+400)n ≡ 1+400n(mod 1000).)

(f) For any n ≥ 1, show that there exists a prime number with at least n of its digits equal to 0.
(Hint : consider the arithmetic progression 10n+1 ·m+1, m ∈N∗.)

(g) Show that 2r+1 divides a integer n if and only if 2r divides the number made up of the last r
digits of n. (Hint : 10k = 2k ·5k ≡ 0(mod2r ) for k ≥ r.)

(h) Explain why the following curious calculation hold:

1 ·9+ 2 = 11
12 ·9+ 3 = 111

123 ·9+ 4 = 1111
1234 ·9+ 5 = 11111

12345 ·9+ 6 = 111111
123456 ·9+ 7 = 1111111

1234567 ·9+ 8 = 11111111
12345678 ·9+ 9 = 111111111

123456789 ·9+10 = 1111111111

(Hint: Show that (10n−1 +2 ·10n−2 +3 ·10n−3 + · · ·+n) · (10−1)+(n+1) =
10n+1 −1

9
.)

(i) If 792 divides the integer (13xy45z)10 , then find the digits x , y and z. (Hint : Use T5.25-(d)-
(ii).)

(j) For any prime number p > 3, prove that 13 divides 102p −10p +1.
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T5.27 ( I r r a t i o n a l n u m b e r s 27 ) A real number which is not rational is called an i r r a t i o n a l
number.
(a) Prove that the irrational numbers are not closed under addition, subtraction, multiplication, or
division; The sum, difference, product and quotient of two real numbers, one irrational and the
other a non-zero rational, are irrational.
(b) Let n ∈ N∗, y ∈ Q, y > 0 and let y = pm1

1 · · · pmr
r be the canonical prime factorisation of y.

Show that the following statements are equivalent : (i) There exists a positive rational number x
with xn = y. (ii) n divides all the exponents mi, i = 1, . . . ,r.
(c) ( L e m m a o f G a u s s ) Let x := a/b ∈Q be a normalised fraction, i.e., a,b ∈ Z, b > 0 and
gcd(a,b) = 1. Suppose that anxn + · · ·+a1x+a0 = 0 with a0, . . . ,an ∈ Z and an ̸= 0, n ≥ 1, i.e.,
x is a zero of the polynomial function antn+ · · ·+a0. Then a is a divisior of a0 and b is a divisor
of an. Deduce that :
(i) If the leading coefficient an = 1, then x ∈ Z .

(ii) For every integer a ∈ Z and a natural number n ∈N∗, every rational solution of xn −a is an
integer, in particular, xn −a has a rational solution if and only if a is the n- th power of an integer.
(Remark : It follows at once that

√
2 (Phythagoras)28

√
3,
√

5, . . . ,
√

p, where p is prime number, are
irrational numbers.) More generally :
(iii) Let r ∈ N∗, p1, . . . , pr be distinct prime numbers and let m2, . . . ,mr ∈ N∗ Then for every

n ∈N∗, n > 1, the real number
√

p1 pm2
2 · · · pmr

r is an irrational number.

(iv) For a,b ∈ Z, a > 0,b > 0 with gcd(a,b) = 1 and a natural number n ∈ N∗, the equation
xn −a/b has a rational solution if and only if both a and b are n-th power of integers.
(d) Let a1, . . . ,ar ∈ Q×

+ be positive rational numbers. Show that
√

a1 + · · ·+
√

ar is rational if
and only if each ai, i = 1, . . . ,r is a square of rational number.
(e) Determine all rational zeros of the polynomial functions t3 + 3

4t2 + 3
2t +3 and 3t7 +4t6 − t5 +

t4 +4t3 +5t2 −4.
(f) Let t be a rational multiple of π 29, i.e. t = rπ with r ∈ Q. Then cos t, sin t and tan t
are irrational numbers apart from the cases where tan t is undefined and the exceptions cos t =
0,±1/2,±1; sin t = 0,±1/2,±1; tan t = 0,±1.
(g) The real numbers log6 9 and log3/ log2 are irrational numbers.
(h) Let z be a real number. Show that the following statements are equivalent :
(i) z is rational. (ii) There exists a positive integer k such that [kz] = kz. (iii) There exists

a positive integer k such that [(k!)z] = (k!)z.

27The word “irrational” is the translation of the Greek word “αλoγoζ ” in Latin. The Greek word probably means
“not pronounceable”. The misunderstanding that in Latin “ratio” is essentially the meaning of “rationality” made
“irrational numbers”.

28Phythagoras deserve the credit for being the first to classify numbers into odd and even, prime and composite. The
following elementary short proof was given by (T. Estermann in Math. Gazette 59 (1975), pp. 110) : If

√
2 is rational,

then there exists k ∈N∗ such that k
√

2 ∈Z. By the Minimum Principle T5.2-(b) choose a minimal k ∈N∗ with this
property. Then, since 1 <

√
2 < 2, m := (

√
2−1)k ∈N∗ with m < k, but m

√
2 = (

√
2−1)k

√
2 = 2k− k

√
2 ∈ Z a

contradiction.
29What is the definition of the number π ? Ancient Greeks defined the number π as the ratio of the circumference

of a circle to its diameter. The letter π came from Greek the word perimetros. It was Euler’s adoption of the symbol
in his many popular textbooks that made it widely known and used. The first recorded scientific effort to approximate
π appeared in the Measurement of a Circle by the Greek mathematician of ancient Syracuse, A r c h i m e d e s (287-
212 BC). His method was to inscribe and circumscribe regular polygon about circle, determine their perimeters and
use these as lower and upper bounds on the circumference. Using a polygon of 96 sides, he obtained the inequality:
223/71 < π < 22/7.
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(i) Use the above part (h) to prove that the number e is irrational. (Hint : The number e = ∑∞
i=0

1
i!

is called the Euler’s number. For any positive integer k, we have [(k!)e] = k!∑k
i=0 1/i! < (k!)e.) (Proof:

(due to J . - B . F o u r i e r (1768-1830) a French mathematician and physicist) Suppose that e = P/Q with
P,Q ∈N, P,Q ≥ 1. Then

P/Q = 1+1/1!+1/2!+ · · ·+1/Q!+1/(Q+1)!+ · · ·
Multiplying by Q!, it follows that

(Q−1)! ·P = Q!+Q!+ · · ·+Q+1+1/(Q+1)+1/(Q+1)(Q+2)+ · · ·
i. e. the series

∞

∑
ν=1

1
(Q+1) · · ·(Q+ν)

> 0

has an integer value. But
1

(Q+1) · · ·(Q+ν)
<

1
(Q+1)ν for all ν ≥ 2 ,

and hence
1

(Q+1) · · ·(Q+ν)
<

∞

∑
ν=1

1
(Q+1)ν =

1
Q

≤ 1

a contradiction. For the last equality, we have used the formula30 (for x = 1/(Q+1)≤ 1/2).
– Remark: The proof of irrationality of the number π involves Differential and Integral Calculus and is not
quite so easy!)

30For every x ∈R with |x|< 1, we have
∞

∑
ν=0

xν =
x

1− x
.
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